
Primal infon logic: derivability in polynomial time

A Baskar1, Prasad Naldurg2, K R Raghavendra3, and S P Suresh4

1 Institute of Mathematical Sciences, Chennai, India
abaskar@imsc.res.in

2 IBMResearch India, Bangalore, India
pnaldurg@in.ibm.com

3 International Institute of Information Technology, Bangalore, India
rkr@iiitb.ac.in

4 Chennai Mathematical Institute, Chennai, India
spsuresh@cmi.ac.in

Abstract

Primal infon logic (PIL), introduced by Gurevich and Neeman in 2009, is a logic for authorization in
distributed systems. It is a variant of the (→,∧)-fragment of intuitionistic modal logic. It presents
many interesting technical challenges – one of them is to determine the complexity of the derivab-
ility problem. Previously, some restrictions of propositional PIL were proved to have a linear time
algorithm, and some extensions have been proved to be pspace-complete. In this paper, we provide an
O(N3) algorithm for derivability in propositional PIL. The solution involves an interesting interplay
between the sequent calculus formulation (to prove the subformula property) and the natural deduc-
tion formulation of the logic (based on which we provide an algorithm for the derivability problem).

Keywords and phrases Authorization logics, Intuitionistic modal logic, Proof theory, Cut elimination,
Subformula property

 Introduction

Infon logic [9, 10, 11] is a version of modal intuitionistic logic specially designed to reason about
trust and delegation in authorization systems. Its application is in the domain of access control
design for distributed or federated systems,where principalswho request access to resources need
to present a set of assertions (or certificates) that encodes their right to access. This right may
be conditioned upon attribute values, or encoded as a chain of delegations. A reasoning engine
examines this query and uses the presented assertions, along with any local assertions, to derive
whether the access is allowed or not according to the rules of inference in an underlying logic.
The work on infon logic is situated in the larger context of authorization languages, includ-

ing SecPAL [4] and DKAL [9, 10]. These languages provide constructs to specify communica-
tion of assertions between principals, and to import or derive knowledge arising from these com-
munications. In infon logic, the basic unit of an assertion is an infon, which is any information
that can be communicated between two principals [11]. Infons range over relation terms, e.g.,
CanRead(Alice,ncfile), which represents a right for Alice to read ncfile, and form the basis of access
control design.
In addition to basic terms, infon logic also allows one to express authorization (and delega-

tion) using the modal operators said and implied. To illustrate, consider an administrator who has
the right to decide access to a network configuration file ncfile, and can authorize a user Alice the
right to read the file by giving her the following assertion: Admin said CanRead(Alice,ncfile). The

 Primal infon logic: derivability in polynomial time

statement CanRead(Alice,ncfile) is true if Admin is trusted i.e., (Admin said x)→ x. The said operator
is similar in function to the says operator in the SpeaksFor calculus [2, 13]. Assertions can be con-
ditional, e.g., the administrator can decide that Alice can be granted this right if she owns the file.
This ismodelled asAdmin said [CanRead(Alice,ncfile) ifOwns(Alice,ncfile)]. A reasoning engine needs
to check the validity ofOwns(Alice,ncfile) to derive an answer to the queryCanRead(Alice,ncfile). Del-
egation is captured by formulas like Alice said x→ Bob said x (this is expressed as Alice speaksforBob
in [2]). Note that the enforcement of the authorization is decoupled from themechanismof grant-
ing access, enabling flexible design and control.
There are many other systems for authorization whose logical cores have similarities with in-

fon logic. For instance, the SpeaksFor calculus [13], which pioneered the logical formulation of au-
thorization decisions, uses the saysmodality which is similar to our saidmodality. The semantics
and properties of the SpeaksFor calculus were further explored byAbadi and others [1, 2]. Among
other authorization logics, Binder [7], SD3 [12], DelegationLogic [14], and SecPAL [3, 4] useData-
log as basis for both syntax and semantics. DKAL is an authorization logic that extends SecPAL
with constructs for specifying and reasoning about localized knowledge and targeted communic-
ation of authorization statements.
In [11], Gurevich andNeeman studied the propositional core of infon logic, explored some as-

pects of its proof theory and semantics, and also the complexity of the deciding validity. They also
introduced a primal version of the logic, as an alternate systemwhich promises to be computation-
ally more efficient. They also provided efficient algorithms for some restrictions of propositional
PIL. In this paper, we show that validity in PIL can be decided in ptime.
The rest of the paper is structured as follows. In Section 2, we formally present primal infon

logic, and explore its interesting proof-theoretical properties. In Section 3, we prove the subformula
property for PIL, which is used in the algorithm for checking derivability in Section 4. After prov-
ing the correctness of the algorithm, we devote Section 5 to the nontrivial analysis of its running
time. We end with concluding remarks in Section 6.

 Primal infon logic

We present primal infon logic (PIL) formally in this section. Assume a set of atomic propositions
P . The set of formulas of primal infon logic is given by:

Φ ::= p | x∧ y | x→ y |□ax | ⊞a x
where a �A , p �P , and x,y � Φ. □ax and⊞axmodel a said x and a implied x from [11], respectively.
The set of subformulas of a formula x, denoted sf(x), is defined to be the smallest set S such that:

x � S; whenever x∧ y � S or x→ y � S, {x,y} ⊆ S; and whenever□ax � S or⊞ax � S, x � S. For a set X
of formulas, sf(X) =

∪
x�Xsf(x).

The logic is defined by the derivation system in Figure 1. In the rules, X and X′ stand for sets
of formulas, and we use □aX and ⊞aX to denote {□ax | x � X} and {⊞ax | x � X}, respectively. We
also use□−1a (X) and⊞−1a (X) to denote {x |□ax � X} and {x |⊞ax � X}, respectively. We use X,X′ to
denoteX∪X′ andX,x to denoteX∪{x}. We also useX−x to denoteX\{x}. In a sequentX ⊢ x,X is
the antecedent and x is the consequent. In a rule, the sequent occurring below the line is the conclusion
and the sequents occurring above the line are the premises. The formula x occurring in the cut rule
is called the cut formula. We use X ⊢nd x to denote that there is a derivation of the sequent X ⊢ x in

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

ax
X,x ⊢ x

X ⊢ x
weaken

X,X′ ⊢ x

X ⊢ x X ⊢ y ∧i
X ⊢ x∧ y

X ⊢ x0 ∧ x1 ∧ei
X ⊢ xi

X ⊢ y → i
X ⊢ x→ y

X ⊢ x→ y X ⊢ x →e
X ⊢ y

X ⊢ x
□a□aX ⊢□ax

X,Y ⊢ x
⊞a□aX,⊞aY ⊢⊞ax

X ⊢ x Y ⊢ y
cut

X,Y− x ⊢ y

Figure The system PILnd

ax
X,x ⊢ x

X ⊢ x
weaken

X,X′ ⊢ x

X ⊢ x X ⊢ y ∧r
X ⊢ x∧ y

X,xi ⊢ y ∧ℓi
X,x0 ∧ x1 ⊢ y

X ⊢ y →r
X ⊢ x→ y

X ⊢ x X,y ⊢ z →ℓ
X,x→ y ⊢ z

X ⊢ x
□a□aX ⊢□ax

X,Y ⊢ x
⊞a□aX,⊞aY ⊢⊞ax

X ⊢ x Y ⊢ y
cut

X,Y− x ⊢ y

Figure The system PILsc

PILnd. The derivation problem asks, given X and x, whether X ⊢nd x. We also introduce the sequent
calculus formulation of PIL, PILsc, in Figure 2. We useX ⊢sc x to denote that there is a derivation of
the sequent X ⊢ x in PILsc.
Three features of PILnd are significant: the→ i rule, the presence of the cut rule, and the⊞a rule.

The→ i is what distinguishes PIL from full infon logic (FIL), which has the following (more standard)
version of the→ i rule.

X,x ⊢ y → i
X ⊢ x→ y

The implication in FIL involves discharging assumptions, while the implication in PIL is just a
weakening of the consequent from y to x→ y, without discharging any assumptions. Thus, the
implication in PIL is a new kind of operator. It is worth noting that the derivability problem for
just the {→}-fragment of full infon logic is pspace-hard (see [15]), while evenwithmodalities, the
corresponding problem for PIL is in ptime (Theorem 11 in this paper).

The other noteworthy feature is the presence of the cut rule, which is usually a feature of se-
quent calculus formulations. In most reasonable proof systems, though, this rule is admissible, i.e.
whenever there are cut-free proofs of X ⊢ x and Y ⊢ y, there is a cut-free proof of X,Y− x ⊢ y. The
cut rule is easily seen to be admissible in FIL. If π1 and π2 are cut-free proofs of X ⊢ x and Y ⊢ y,

 Primal infon logic: derivability in polynomial time

the following is a cut-free proof of X,Y− x ⊢ y.
π2···
Y ⊢ y → i

Y− x ⊢ x→ y

π1···
X ⊢ x →e

X,Y− x ⊢ y
But with the weaker primal→ i rule and modalities, it can be shown that cut is not admissible in
cut-free PILnd, and hence needs to be added as an explicit rule.
Consider the sequent □ax ∧□ay ⊢ □a(x∧ y), for instance. Here is one possible derivation in

PILnd (which crucially uses the cut rule).

ax
□ax∧□ay ⊢□ax∧□ay ∧e1□ax∧□ay ⊢□ay

ax
□ax∧□ay ⊢□ax∧□ay ∧e0□ax∧□ay ⊢□ax

ax
x,y ⊢ x ax

x,y ⊢ y ∧i
x,y ⊢ x∧ y

□a□ax,□ay ⊢□a(x∧ y)
cut

□ax∧□ay,□ay ⊢□a(x∧ y)
cut

□ax∧□ay ⊢□a(x∧ y)

We say that a proof systemS has the subformula property if the following holds:
WheneverX ⊢S x, there is aS -derivationπ ofX ⊢ x such that every formula y occurring inπ
belongs to sf(X∪{x}).

It can be easily shown that cut-free PILnd has the subformula property. (A detailed proof is given in
Appendix A.) Now suppose there is a cut-free PILnd proof of□ap∧□aq ⊢□a(p∧ q). Then there is a
proofπwith the same conclusion such that only formulas from sf({□ap∧□aq,□a(p∧ q)}) can occur
in π. It is easy to see that the last rule of π cannot be an elimination rule. The only possibility is
that the last rule is weaken, whose premise is ⊢ □a(p∧ q). This can only be got by using the □a
rule from the premise ⊢ p∧ q. But this is not provable, since it is not a validity (according to the
semantics given in [11]). Thus there is no cut-free PILnd proof of□ap∧□aq ⊢□a(p∧ q), even though
it is provable in PILnd. This means that the cut rule is not admissible in cut-free PILnd, and therefore
that that cut cannot be eliminated in PILnd. Thismakes it difficult to prove the subformulaproperty
for PILnd.
But the subformula property is essential for our algorithms on PILnd. How then are we to prove

it? Our solution is simple. We move to the system PILsc of Figure 2 (this system was already con-
sidered in [5]). It is reasonably straightforward to prove that cut is eliminable for this system
(cut elimination also holds for the sequent calculus formulation of FIL and many extensions).
It is also straightforward to show that cut-free derivations in PILsc have the subformula property.
We show that one can always translate between derivations in PILnd and PILsc without introducing
new formulas in the process. This yields the subformula property for PILnd. The formal details are
presented in the next section.1

1 An interesting aspect of these results is that the standard translation of a cut-free sequent-calculus proof to a
normal derivationdoes notwork in the presence ofmodalities. The left-rules of sequent calculus usually translate
to elimination rules at the level of the hypotheses in an equivalent natural deduction derivation, but the rules
for modalities are non-local – they modify both the hypotheses and conclusion. This is the source of the proof-
theoretic complexity of these systems, and makes the cut-rule in PILnd non-eliminable.

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

A natural question arises now – why not work with PILsc throughout, since it behaves better
proof-theoretically? The answer is that it is not algorithmically well-behaved, since the left-hand
sides of the sequents in a proof shrink and grow in an uncontrolled manner. On the other hand,
we shall exploit precisely the controlled nature of the change in the left-hand side of the sequents
in a PILnd derivation to extract an algorithm for the derivation problem. In particular, Lemma 5,
which solves the non-modal fragment of PIL in linear time, uses an algorithm that closelymimics
the rules in PILnd.
The third feature of interest is the ⊞a modality and the ⊞a rule. The intention is that ⊞a is a

weakermodality than□a but has the same flavour. It is conjunctive: ⊞ap∧⊞aq ⊢⊞a(p∧ q). This is
to be contrasted with the♢a modality frommodal logic which is not conjunctive, and which has
the following rule (which looks similar to the⊞a rule, but is very different in spirit):

X,y ⊢ x
□aX,♢ay ⊢♢ax

Note that this rule insists that there be exactly one♢a formula in the antecedent. Because of this
difference, the algorithm in our paper does not extend to♢-like modalities, but it is interesting
to seek restrictions to which our techniques can apply.
It should be noted that PILnd and PILsc are not the only formulations of infon logic possible. In

[11], after introducing PILnd, the authors consider a Hilbert-style proof system that helps develop
efficient (linear time) algorithms for some special cases. In [6], the fragment of PIL without the
⊞a modalities has been shown to have a linear time algorithm for the derivation problem.2 The
algorithm is based on the Hilbert-style formulation of PIL. But for unrestricted PIL (with the□a
and ⊞a modalities), it has been shown by Gurevich and Savateev in [8] that there are sequents
for which all derivations in the Hilbert-style system of [11] are exponential in size. This has the
consequence that the linear-time algorithm developed in [6] does not extend to unrestricted PIL.
In [5], the authors study PIL with the ∨ and ⊥ operators and prove that its derivability problem
is pspace-complete. In contrast, our paper provides an O(N3) algorithm for PIL, thus settling an
important question in the study of this logic.

 The subformula property for PILnd

In this section, we formally prove the equivalence between PILnd and PILsc (preserving the set of
formulas occurring in the respective proofs). We then state a cut elimination theorem for PILsc,
and as corollaries, derive the subformula property for both PILsc and PILnd.

▶ Proposition . . Supposeπ is a proof of X ⊢ x in PILnd. Then there is a proofπ′ of X ⊢ x in PILsc such that
all formulas occurring inπ′ occur inπ.

. Suppose π′ is a proof of X ⊢ x in PILsc. Then there is a proof π of X ⊢ x in PILnd such that all formulas
occurring inπ occur inπ′.

Proof. Theproof is by induction on the structure of derivations, and an analysis of the last rule of
π. Most of the cases are straightforward – the ax, weaken, cut,□a, and⊞a rules are present in both

2 In fact, this fragment, called basic primal infon logic, is now used in DKAL [10] instead of unrestricted PIL. But the
⊞a is justified in its own right (see [11]) and makes the language richer. It is also of potential interest to other
authorization logics, and its derivability problem is a technical challenge. Hence the interest in unrestricted PIL.

 Primal infon logic: derivability in polynomial time

systems; and the→ i and ∧i rules have the same form as the→ r and ∧r rules, respectively. We
only need to look at the other rules.
. There are two cases to consider.

Suppose π has the following form.

π1···
X ⊢ x→ y

π2···
X ⊢ x →e

X ⊢ y
By induction hypothesis there are PILsc derivationsπ′1 ofX ⊢ x→ y andπ′2 ofX ⊢ x such that
every formula occurring inπ′1 occurs inπ1, and every formula occurring inπ′2 occurs inπ2.
π′ can be taken to be the following PILsc derivation.

π′1···
X ⊢ x→ y

π′2···
X ⊢ x ax

X,y ⊢ y →ℓ
X,x→ y ⊢ y

cut
X ⊢ y

The case when the last rule of π is ∧ei is similarly handled, using the ∧ℓi and cut rules.
. There are two cases to consider.

Suppose π′ has the following form.

π′1···
X ⊢ x

π′2···
X,y ⊢ z →ℓ

X,x→ y ⊢ z
By induction hypothesis there are PILnd derivations π1 of X ⊢ x and π2 of X,y ⊢ z such that
every formula occurring inπ1 occurs inπ′1, and every formula occurring inπ2 occurs inπ′2.
π can be taken to be the following PILnd derivation.

ax
X,x→ y ⊢ x→ y

π1···
X ⊢ x →e

X,x→ y ⊢ y

π2···
X,y ⊢ z

cut
X,x→ y ⊢ z

The case when the last rule of π is ∧ℓi is similarly handled, using the ∧ei and cut rules.
Clearly the translated proofs do not contain formulas not occurring in the original proof, in all
these cases.

◀

Themain reason to consider PILsc is the following important property.

▶ Theorem  (Cut elimination for PILsc (Theorem . in []). If X ⊢sc x, then there is a derivationπ of X ⊢ x in
PILsc such that the cut rule does not occur inπ.

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

A detailed proof is presented in Appendix B, for easy reference.

▶ Proposition  (Subformula property for PILsc). Letπ be a cut-free proof of X ⊢ x in PILsc and y be any formula
that belongs to a sequent occurring inπ. Then y � sf(X∪{x}).
Proof. Observe that in every rule of PILsc other than cut, all formulas occurring in the premises are
subformulas of the ones occurring in the conclusion. Thus any formula occurring in a cut-free PILsc
derivation of X ⊢ x is in sf(X∪{x}).

◀

▶ Theorem  (Subformula property for PILnd). Suppose X ⊢nd x. Then there is a proof π of X ⊢ x in PILnd such
that any formula y occurring inπ is in sf(X∪{x}).
Proof. Since X ⊢nd x, it follows (from Proposition 1) that X ⊢sc x. Therefore there is a cut-free PILsc
proofπ′ ofX ⊢ x, byTheorem2. By the subformula property for PILsc (Proposition 3), every formula
occurring inπ′ is from sf(X∪{x}). We use Proposition 1 again, to translateπ′ back to a proofπ in
PILnd, such that every formula occurring in π also occurs in π′, and hence is in sf(X∪{x}).

◀

 Algorithm for derivability

We present the algorithm for the derivation problem of PILnd in this section and prove its correct-
ness. Fix a set of formulasX0 and a formula x0, and let Y0 to be sf(X0∪{x0}). LetN= |Y0|. For any
X⊆ Y0:
closure(X) = {x � Y0 |X ⊢nd x}.
closure′(X) = {x � Y0 | there is a proof of X ⊢ x that does not use the□ and ⊞ rules}.

▶ Lemma . For X⊆ Y0, closure′(X) can be computed in O(N) time.
The above result is an immediate adaptation ofTheorem 6.1 in [11], where a linear time algorithm
for primal constructive logic is provided. The proof is also presented in Appendix C, for ease of refer-
ence.
The algorithm for computing closure is presented in Algorithm 1 as two mutually recursive

functions f :℘(Y0)→℘(Y0) and g :℘(Y0)→℘(Y0). The function g simulates one application of the
□a and⊞a rules for each a �A , composed with an application of closure′. This might yield modal
formulas that can be used in further □a and ⊞a rules, so fmakes repeated calls to g till a fixpoint
is reached. f can thus be thought of as repeatedly simulating the cut rule after each call to g.
An application of a modal rule involves stripping the modalities from the set of formulas cur-

rently derivable, computing closure of the stripped set, and applying the modalities again to this
set. Towards this, gmakes a recursive call to fwith the appropriate arguments. To make the com-
plexity analysis easier, we keep track of the sequence ofmodalities stripped along each path in the
recursive call tree. We call these sequencesmodal contexts, and provide them as further arguments
to the functions f and g. For ease of notation, for anymodal context σ , we refer to f(σ , ·) and g(σ , ·)
as fσ and gσ , respectively.
Let Σ = {□a,⊞a | a �A }. The set of modal contexts of a formula x, denoted C (x), is a subset of

Σ∗, defined by induction as follows:
C (p) = {ε}

 Primal infon logic: derivability in polynomial time

C (x∧ y) = C (x→ y) = C (x)∪C (y)
C (□ax) = {ε} ∪ {□a ·σ | σ � C (x)}
C (⊞ax) = {ε} ∪ {⊞a ·σ | σ � C (x)}.

For a setX of formulas,C (X) =
∪
x�XC (x). To simplify notation, we letC denoteC (Y0). Note that

for any X⊆ Y0, |C (X)| ≤ |C | ≤ |Y0| ≤N.
Themodal depth of a formula x, denoted depth(x), is defined by induction as follows:
depth(p) = 0 for p �P .
depth(x∧ y) = depth(x→ y) =max(depth(x),depth(y)).
depth(□ax) = depth(⊞ax) = depth(x)+ 1.

For a set X of formulas, depth(X) =max{depth(x) | x �X}.
Algorithm  Algorithm to compute closure

function f(σ ,X)
if σ /� C or X=∅ then

return∅;
end if

Y←X;
while Y ̸= g(σ ,Y) do
Y← g(σ ,Y);

end while

return Y;
end function

function g(σ ,X)
for all a �A : Ya←□−1a (X);
for all a �A : Za←□−1a (X)∪⊞−1a (X);
return closure′(X∪∪a�A□af(σ□a,Ya)∪∪a�A ⊞a f(σ ⊞a ,Za));

end function

▶ Lemma . Suppose X,Y⊆ Y0 and σ � C . Then:
. X⊆ closure′(X)⊆ closure(X).
. closure′(closure(X)) = closure(closure(X)) = closure(X).
. If X⊆ Y then gσ (X)⊆ gσ (Y) and fσ (X)⊆ fσ (Y).
. X⊆ gσ (X)⊆ g2σ (X)⊆ · · ·Y0.
. fσ (X) = gmσ (X) for some m≤N.
The last fact is true because |Y0|=N and the giσ ’s form a nondecreasing sequence.
▶ Proposition  (Soundness). For X⊆ Y0, σ � C , and m≥ 0, gmσ (X)⊆ closure(X).
Proof. We shall assume that

gnτ(Y)⊆ closure(Y) for all Y⊆ Y0,τ � C , and n≥ 0 such that (depth(Y),n)<lex (depth(X),m)
and prove that

gmσ (X)⊆ closure(X) for all σ � C .

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

For a � A , let Ya = □−1a (gm−1σ (X)) and Za = □−1a (gm−1σ (X)) ∪⊞−1a (gm−1σ (X)). Further, let X′ be
gm−1σ (X)∪
∪
a�A□afσ□a(Ya)∪

∪
a�A ⊞a fσ⊞a(Za). Then gmσ (X) = closure

′(X′). It can be seen easily that
depth(Ya)< depth(X) and depth(Za)< depth(X). Now if x �X′ we can distinguish the following three
cases that can arise:
Suppose x � gm−1σ (X). Since (depth(X),m−1)<lex (depth(X),m), gm−1σ (X)⊆ closure(X)by induction
hypothesis, and hence x � closure(X).
Suppose x = □ay for some a � A and some y � fσ□a(Ya). But ∃n ≤ N : fσ□a(Ya) = g

n
σ□a(Ya).

Since depth(Ya)< depth(X), (depth(Ya),n)<lex (depth(X),m), and hence by induction hypothesis,
gnσ□a(Ya)⊆ closure(Ya). Therefore y � closure(Ya). Now one can use the□a rule and weaken rule to
show that□ay � closure(gm−1σ (X)).
Suppose x = ⊞ay for some a � A and some y � fσ⊞a(Za). But ∃n ≤ N : fσ⊞a(Za) = g

n
σ⊞a(Za).

Since depth(Za)< depth(X), (depth(Za),n)<lex (depth(X),m), and hence by induction hypothesis,
gnσ⊞a(Za)⊆ closure(Za). Therefore y � closure(Za). Now one can use the⊞a rule and weaken rule to
show that⊞ay � closure(gm−1σ (X)).

ThusX′ ⊆ closure(gm−1σ (X)). Also, gm−1σ (X)⊆ closure(X). ThereforeX′ ⊆ closure(X). And since we have
that gmσ (X) = closure

′(X′), gmσ (X)⊆ closure(X). ◀

We next prove that whenever X ⊢ x, x � gnσ (X) for an appropriate σ and n ≤ N. Because of
our use of contexts, this is nontrivial. We illustrate the subtleties with an example. Let X0 be
{□a⊞bp,⊞a□bq}. One can easily see that x0 = ⊞a⊞b(p∧ q) is derivable from X0. It is also easy to
see that x0 � fε(X0). But x0 /� f⊞a(X0). This is because all the recursive subcalls to f return∅, either
because ∅ is passed as argument or because the context passed does not belong to C (X0 ∪ {x0}).
Thuswe need to ensure that the contexts supplied to recursive calls are proper. Oneway to ensure
this is that the given context σ concatenated with any context in the argument set X belongs to
C (X0∪{x0}). But that condition is too strong anddoes not apply to the recursive call f⊞a(X) (where
X= {⊞bp,□bq}) even though this call will be made by fε(X0). A weaker condition holds, though –
for every context inX, we can prepend either□a or⊞a to it to get a context fromX0. We formalize
this intuition below.
For two contexts σ = M1 · · ·Mn and σ ′ = M′1 · · ·M′n, we say that σ ′ is a strengthening of σ (in

symbols: σ ′ ≥ σ) if for all i ≤ N, either Mi = M′i , or Mi = ⊞a and M′i = □a for some a � A . We say
that σ � C is safe for X⊆ Y0 if for every τ � C (X), there is some σ ′ ≥ σ such that σ ′ ·τ � C .
▶ Proposition  (Completeness). Suppose X ⊆ Y0, x � closure(X), and σ � C . If σ is safe for X∪ {x}, then
there is m≥ 0 such that x � gmσ (X).
Proof. Suppose x � closure(X). Then there is a proof π of X ⊢ x. ByTheorem 4, we can assume that
for every subproofπ′ ofπwith conclusionX′ ⊢ x′, and all formulas y occurring inπ′, it holds that
y � sf(X′ ∪{x′}). We now prove the desired claim by induction on the structure of π.
Suppose the last rule of π is ax, ∧i,→ i, ∧e, or→ e. Without loss of generality, let the last rule
have two premises and let x′ and x′′ be the consequents in the two premises. Suppose σ is safe
forX∪{x}. It is also safe forX∪{x′} andX∪{x′′}. By induction hypothesis, there existm,n≥ 0
such that x′ � gmσ (X) and x′′ � gnσ (X). Without loss of generality, let m ≥ n. Then x′,x′′ � gmσ (X),
and x � closure′({x′,x′′})⊆ gmσ (X).
Suppose the last rule ofπ is weaken. Suppose the last rule has premise X′ ⊢ x, for some X′ ⊆X.
Since σ is safe forX, it is also safe forX′. Hence by induction hypothesis, there is somem such
that x � gmσ (X′)⊆ gmσ (X).

 Primal infon logic: derivability in polynomial time

Suppose π has the following form (and Y=□−1a (X) and x=□ay):
π′···
Y ⊢ y □aX ⊢ x

Now for every τ � C (Y∪{y}),□aτ � C (X∪{x}). Since σ is safe forX∪{x}, it follows that σ□a
is safe for Y∪{y}. Thus by induction hypothesis, y � gnσ□a(Y)⊆ fσ□a(Y), for some n≥ 0. Now it
is immediately seen that x � gσ (X), by definition of gσ .
Suppose π has the following form (and Y=□−1a (X), Z=⊞−1a (X) and x=⊞ay):

π′···
Y,Z ⊢ y ⊞aX ⊢ x

For every τ � C (Y),□aτ � C (X∪ {x}), and for every τ � C (Z∪ {y}),⊞aτ � C (X∪ {x}). But σ is
safe forX∪{x}. So for every τ � C (Y∪Z∪{y}), there is a strengthening σ ′ of σ such that either
σ ′□aτ � C or σ ′⊞aτ � C . In other words, for every τ � C (Y∪Z∪{y}), there is a strengtheningbσ ofσ⊞a such that bστ � C . Thereforeσ⊞a is safe forY∪Z∪{y}. Thus by inductionhypothesis,
y � gnσ⊞a(Y ∪ Z) ⊆ fσ⊞a(Y ∪ Z), for some n ≥ 0. Now it is immediately seen that x � gσ (X), by
definition of gσ .
Suppose π has the following form (and X= Y′ ∪ (Y′′ \ {y})):

π′···
Y′ ⊢ y

π′′···
Y′′ ⊢ x

cut
X ⊢ x

Since y � sf(X∪{x}), C (Y′∪{y})⊆ C (X∪{x}) and C (Y′′∪{x})⊆ C (X∪{x}). Thus σ is safe for
both Y′∪{y} and Y′′∪{x}. By induction hypothesis, there ism≥ 0 such that y � gmσ (Y′)⊆ gmσ (X).
ThereforeY′′ ⊆X∪{y} ⊆ gmσ (X). Also by induction hypothesis (sinceπ′′ is a smaller proof than
π), x � gnσ (Y′′) for some n≥ 0. Therefore x � gm+nσ (X).

◀
▶ Theorem . For all X⊆ Y0, fε(X) = closure(X).
Proof. On the one hand, fε(X) = gNε ⊆ closure(X) by soundness. Conversely, ε is safe for X∪{x} for
any x � closure(X), and hence there is m≤N such that x � gmε (X)⊆ fε(X), by completeness. ◀

 Complexity

Fix a set of formulas X0 and a formula x0 as before, and let Y0 to be sf(X0 ∪{x0}). LetN= |Y0|. We
focus on a call of f(ε,X0) and all the recursive invocations of f and g in the course of that computa-
tion. We use intuitive notions like parent call, later call, earlier call, which formally refer to the call
tree of the computation of f(ε,X0). We use the notation (σ ,X)→f (τ,Y) to denote that f(σ ,X) is an
earlier recursive call and f(τ,Y) is a later recursive call in the computation of f(ε,X0). The notation
(σ ,X)→g (τ,Y) has a similar interpretation.
The following lemma is the first step towards analyzing the complexity of the algorithm.

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

▶ Lemma . Suppose σ � C , and X,Y⊆ Y0.
. If (σ ,X)→f (σ ,Y) then fσ (X)⊆ Y.
. If (σ ,X)→g (σ ,Y) then gσ (X)⊆ Y.
Proof. We prove both the above statements together, by induction on |σ |. There are two cases to
consider.
Case |σ | = 0: In this case, σ = ε.

.There is only one call of fwith first argument ε. So the statement is vacuously true.
. Suppose (ε,X)→g (ε,Y). This means that X= giε(X0) and Y= gjε(X0) for some i, jwith i< j.
Thus gε(X) = gi+1ε (X0)⊆ gjε(X0) = Y.

Case |σ | > 0: We prove the statement about f assuming the statement about g for a prefix of σ ,
and then prove the statement about g assuming the statement about f (for σ).
.There are two subcases to consider.

Caseσ = τ□a: Suppose (σ ,X) →f (σ ,Y). This means that there exist X′,Y′ such that X =
□−1a (X′), Y = □−1a (Y′), and parent calls g(τ,X′),g(τ,Y′) with (τ,X′) →g (τ,Y′). Thus by
induction hypothesis gτ(X′) ⊆ Y′. But then, by definition of g, we have that □afσ (X) =
□afτ□a(□−1a (X′))⊆ gτ(X′)⊆ Y′. Therefore fσ (X)⊆□−1a (Y′) = Y.

Caseσ = τ ⊞a : Suppose (σ ,X)→f (σ ,Y). This means that there exist X′,Y′ such that X =
□−1a (X′)∪⊞−1a (X′), Y=□−1a (Y′)∪⊞−1a (Y′), and parent calls g(τ,X′) and g(τ,Y′) such that
(τ,X′)→g (τ,Y′). Thus gτ(X′)⊆ Y′. But then, by definition of g,
⊞afσ (X) =⊞afτ⊞a(□

−1
a (X

′)∪⊞−1a (X′))⊆ gτ(X′)⊆ Y.
Hence fσ (X)⊆⊞−1a (Y′)⊆ Y.

. Suppose (σ ,X)→g (σ ,Y). There are two cases to consider.
There is one parent call f(σ ,Z) of which g(σ ,X) is a subcall and g(σ ,Y) is a later subcall.
From the definition of f, it follows that there are i, j with i < j such that X = giσ (Z) and
Y= gjσ (Z). Thus gσ (X) = gi+1σ (Z)⊆ gjσ (Z) = Y.
There are parent calls f(σ ,X′) and f(σ ,Y′) such that (σ ,X′)→f (σ ,Y′). By induction hy-
pothesis fσ (X′) ⊆ Y′. But by definition of f it follows that there are i > 0 and j > 0 such
that X= giσ (X′) and Y= g

j
σ (Y′). Therefore

gσ (X) = g
i+1
σ (X

′)⊆ gNσ (X′) = fσ (X′)⊆ Y′ ⊆ gjσ (Y′) = Y.
◀

▶ Theorem . It can be checked in O(N3) time whether x0 � closure(X0).

Proof. For each σ � C , if gσ (X) is a recursive call and if gσ (Y) is a later recursive call, we know
that X ⊆ gσ (X) ⊆ Y. Thus the arguments to gσ (in temporal order of the calls) constitutes a non-
decreasing sequence of subsets of Y0. Such a sequence can have at most N distinct elements. But
it is possible that there are many invocations of gσ with the same argument, which constitutes
wasteful work. We thus present an improved algorithm using memoization in Algorithm 2. (We
only redefine the function f(σ , ·). The function g(σ , ·) is the same as in Algorithm 1.) In this im-
plementation, for any σ � C , the total number of calls to g(σ , ·) is N. We achieve this by storing the
last argument to gσ in the variableGσ , preserving this across invocations fromdifferent calls to fσ .

 Primal infon logic: derivability in polynomial time

Algorithm  Improved algorithm to compute closure
Initialization: for all σ � C : Gσ ←∅;

function f(σ ,X)
if σ /� C or X=∅ then

return∅;
end if

Y←X;
while Y ̸= Gσ do ▷ Gσ = g(σ ,Gσ) before the start of the loop.
Gσ ← Y;
Y← g(σ ,Y);

end while ▷ Gσ = g(σ ,Gσ) at the end of the loop.
return Gσ ;

end function

The code for fσ in Algorithm 2 reveals that across different invocations of fσ , the same argument
is never passed to subcalls of gσ . Thus there are at most N calls of gσ . Since there is only one call
of fε and since for every context σM, there is at most one subcall to fσM from each invocation of gσ ,
the total number of calls of fσ is alsoN, for any fixed σ .
Further, each invocation of g involves computing closure′(·), which takes O(N) time, and each

invocation of f involves looking up (and updating) each distinct value assumed by Gσ once. Thus
overall, there are N lookups and updates of the variable Gσ , which can each be achieved in O(N)
time. Across all contexts, there are N2 computations of closure′(·) and N2 lookups and updates.
Thus the overall time taken is O(N3).

◀

 Conclusions and FutureWork

We have provided an O(N3) algorithm for the derivability problem for propositional PIL. The in-
teresting aspects of our solution are the proof of the subformula property by going over to PILsc and
back, and exploiting the controlled change in the antecedents of sequents in a PILnd proof to derive
an efficient algorithm. We believe that these techniques are general, and not specific to author-
ization logics or PIL. We plan to adapt our techniques to many variants of intuitionistic modal
logic. One plan of study is to find (proof-theoretic) variants for other operators like disjunction,
with the view of deriving efficient algorithms. Another interesting possibility is to keep the rules
standard but restrict the structure of formulas inX∪{x} in such a way that the techniques in our
paper can be adapted to the problem of checking ifX ⊢ x. It is also essential to consider extensions
of these systems with♢-like modalities, as mentioned in Section 2.

References

 M.Abadi. Logic in access control. InProc. 18thAnnual IEEESymposium onLogic in Computer Science,
pages 228–233, 2003.

 M.Abadi,M. Burrows, B. Lampson, andG. Plotkin. A calculus for access control in distributed
systems. ACMTransactions on Programming Languages and Systems, 15(4):706–734, 1993.

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

 Moritz Y. Becker. Information flow in credential systems. In Proc. 23rd IEEE Computer Secur-
ity Foundations Symposium, CSF ’10, pages 171–185, Washington, DC, USA, 2010. IEEE Computer
Society.

 Moritz Y. Becker, Cedric Fournet, and Andrew D. Gordon. SecPAL: Design and semantics of a
decentralized authorization language. Journal of Computer Security, 18(4):619–665, 2010.

 Lev Beklemishev and Yuri Gurevich. Propositional primal logic with disjunction. Journal of
Logic and Computation 22(2012),

 Carlos Cotrini and Yuri Gurevich. Basic primal infon logic. Journal of Logic and Computation,
Special issue devoted to Arnon Avron.

 JohnDeTreville. Binder, a logic-based security language. In Proc. 2002 IEEE Symposium on Security
and Privacy, 2002.

 Yuri Gurevich. Two notes on propositional primal logic. Microsoft Research Technical Report
MSR-TR-2011-70, May 2011.

 Yuri Gurevich and Itay Neeman. DKAL: Distributed-knowledge authorization language. In
CSF, pages 149–162, 2008.

 Yuri Gurevich and ItayNeeman. DKAL2 – a simplified and improved authorization language.
Microsoft Research Technical report MSR-TR-2009-11, 2009.

 Yuri Gurevich and Itay Neeman. Logic of infons: The propositional case. ACM Transactions of
Computational Logic, 12, January 2011.

 Trevor Jim. Sd3: A trust management system with certified evaluation. In IEEE Symposium on
Security and Privacy, 2001.

 B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems:
Theory and practice. ACMTransactions on Computer Systems, 10(4):265–310, 1992.

 Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based ap-
proach to distributed authorization. ACMTransactions on Information Systems Security, 6(1):128–171,
February 2003.

 Richard Statman. Intuitionistic propositional logic is polynomial-space complete. Theoretical
Computer Science, 9: 67–72, 1979.

 Primal infon logic: derivability in polynomial time

A Subformula property for cut-free PILnd

Theidea is to transformall proofs to normal proofs and showthatnormal proofshave the subformula
property. To begin with, we can restrict our attention to proofs where the premise of a weaken rule
is not a conclusion of another weaken rule, since we can collapse the two rules together. A proof is
said to be normal if none of its subproofs is of the form of either of the patterns on the left in Fig 3.
Starting from a derivation, we replace any subproof that fits either of the patterns on the left in
Figure 3 by the corresponding proof on the right. Since the transformations reduce the size of the
proof, repeatedly applying these transformations terminates in a normal proof.

π1···
X ⊢ y → i
X ⊢ x→ y
======== weaken
X,X′ ⊢ x→ y

π2···
X,X′ ⊢ x →e

X,X′ ⊢ y

=⇒

π1···
X ⊢ y
===== weaken
X,X′ ⊢ y

π0···
X ⊢ x0

π1···
X ⊢ x1 ∧i

X ⊢ x0 ∧ x1
========= weaken
X,X′ ⊢ x0 ∧ x1 ∧ei
X,X′ ⊢ xi

=⇒

πi···
X ⊢ xi
====== weaken
X,X′ ⊢ xi

Figure Transformation rules for cut-free PILnd. The double lines represent zero or one application of the
weaken rule.

The last logical rule of a proofπ is either the last rule ofπ (if it is not weaken) or the last rule of
its immediate subproof (otherwise).

▶ Theorem . Let π be a normal proof of X ⊢ x in cut-free PILnd. Then y � sf(X ∪ {x}) for all formulas y
occurring inπ. Moreover, if the last logical rule ofπ is either ax or ∧ei or→e, y � sf(X).

Proof. Weprove this by induction on the structure of proofs. Wewill use the fact that subproofs of
normal proofs are also normal. So the induction hypothesis is always available to us. We present
only some illustrative cases.

Suppose the last rule of π is ax. Then π has the following form (and x �X):

ax
X ⊢ x

Since x �X, x � sf(X).

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

Suppose the last rule of π is weaken. Then π has the following form (and X′ ⊆X):
π′···
X′ ⊢ x

weaken
X ⊢ x

Any y occurring inπ either occurs inπ′ or belongs toX∪{x}. But if it occurs inπ′, by induction
hypothesis, y � sf(X′ ∪{x})⊆ sf(X∪{x}).
Further, if the last rule of π′ is ax or ∧ei or→ e, by induction hypothesis we know that y �
sf(X′) ⊆ sf(X) for any y occurring in π′. Since x also occurs in π′, x � sf(X′) ⊆ sf(X) as well.
Hence if the last logical rule of π is ax or ∧ei or→e, for any y occurring in π, y � sf(X).
Suppose the last rule of π is ∧i. Then π has the following form (and x= x0 ∧ x1):

π0···
X ⊢ x0

π1···
X ⊢ x1 ∧i

X ⊢ x
Any y occurring in π either occurs in π0 or occurs in π1 or is the same as x. Therefore (by
induction hypothesis), y � sf(X ∪ {x0}) or y � sf(X ∪ {x1}) or y = x. But x0 and x1 are in sf(x).
Therefore, for any y occurring in π, y � sf(X∪{x}).
Suppose the last rule of π is→e. Then π has the following form:

π′···
X ⊢ z→ x

π′′···
X ⊢ z →e

X ⊢ x
Any y occurring inπ either occurs inπ′ or occurs inπ′′ or is the same as x. Note that becauseπ
is a normal proof, it cannot be the case that→ i is the last logical rule ofπ′. It cannot be one of
the other introduction rules either, because of the form of the conclusion. Thus by induction
hypothesis, if y occurs inπ′, y � sf(X). In particular, z→ x � sf(X). By induction hypothesis, if y
occurs inπ′′, y � sf(X∪{z})⊆ sf(X∪{z→ x})⊆ sf(X). Further x � sf(z→ x) and sf(z→ x)⊆ sf(X).
Thus for any y occurring in π, y � sf(X).

◀

B Cut elimination for PILsc

We prove cut elimination for PILsc in this section. This is already proved asTheorem 5.1 in [5] in a
more general setting. We prove it here for ease of reference.
Throughout this section, we use |x| to denote the size of a formula x, i.e. the number of symbols

in x, and ∥π∥ to denote the size of a proof π, i.e. the number of nodes in π viewed as a tree.
The rank of a proof π is defined as follows:
If the last rule of π is ax, then rank(π) = 0.
If the last rule of π is cut, with immediate subproofs π′ and π′′, and if x is the cut formula,
then rank(π) =max(|x|, rank(π′), rank(π′′)).
If the last rule of π is neither ax nor cut and the immediate subproofs of π are π1, . . . ,πi,
rank(π) =max(rank(π1, . . . , rank(πi)).

 Primal infon logic: derivability in polynomial time

Clearly a cut-free proof is a proof of rank 0.
The following proposition is the heart of the weak normalization theorem.

▶ Proposition . Let d > 0. Suppose that π is a proof of rank d, and all proper subproofs of π are of rank
strictly smaller than d. Then there exists a proofϖ of rank strictly smaller than d, whose conclusion is the same
as that ofπ.

Proof. We argue by induction on ∥π∥. Since all proper subproofs ofπ are of strictly smaller rank,
itmeans that the last rule ofπ is cut. Let the cut formula be x, with |x|= d. Letπ have the following
form:

π′···
r′

X ⊢ x

π′′···
r′′

Y ⊢ y
cut

X,Y− x ⊢ y
We have the following cases to consider:
. x /� Y. In this casewe get the desired proofϖ by using theweaken rule onπ′′. Clearly rank(ϖ)<
d. In all the succeeding cases, we will assume that x � Y.

. r′ introduces x on the right, r′′ introduces x on the left, and x does not occur on the left in the
premises of r′′. The following combinations can arise.

r′ is ∧r and r′′ is ∧ℓi. In this case π has the following form (x= x0 ∧ x1 and Y′ = Y− x):
π′0···
X ⊢ x0

π′1···
X ⊢ x1 ∧r

X ⊢ x0 ∧ x1

π′′i···
Y′,xi ⊢ y ∧ℓiY′,x0 ∧ x1 ⊢ y cut

X,Y′ ⊢ y
The desiredϖ is the following proof:

π′i···
X ⊢ xi

π′′i···
Y′,xi ⊢ y cut

X,Y′ ⊢ y
Clearly rank(ϖ)< d, since the size of the new cut formula xi is smaller than d.
r′ is→r and r′′ is→ℓ. This is handled similar to the above subcase.
r′ is□a and r′′ is□a. This is handled similar to the next subcase.
r′ is □a and r′′ is ⊞a. In this case π has the following form, with x = □ax′, X = □aX′, Y =
□aY′0,⊞aY′1, and y=⊞ay′):

π′1···
X′ ⊢ x′ □aX ⊢ x

π′′1···
Y′0,Y′1 ⊢ y′ ⊞aY ⊢ y

cut
X,Y− x ⊢ y

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

The desiredϖ is the following proof:

π′1···
X′ ⊢ x′

π′′1···
Y′0,Y′1 ⊢ y′ cut

X′,Y′0− x′,Y′1 ⊢ y′ ⊞aX,Y− x ⊢ y
Clearly rank(ϖ)< d, since the size of the new cut formula x′ is smaller than d.
r′ is⊞a and r′′ is⊞a. This is handled similar to the above subcase.

. r′ introduces x on the right, r′′ introduces x on the left, and x occurs on the left in the premises
of r′′. There are only two subcases:

r′ is ∧r and r′′ is ∧ℓi. In this case π has the following form (and x= x0 ∧ x1):
π′0···
X ⊢ x0

π′1···
X ⊢ x1 ∧r

X ⊢ x0 ∧ x1

π′′i···
Y,xi ⊢ y ∧ℓiY ⊢ y

cut
X,Y− x ⊢ y

Consider the following proof bπ:
π′0···
X ⊢ x0

π′1···
X ⊢ x1 ∧r

X ⊢ x0 ∧ x1

π′′i···
Y,xi ⊢ y cut

X,Y− x,xi ⊢ y
Now ∥bπ∥= ∥π′∥+ ∥π′′i ∥+ 1< ∥π′∥+ ∥π′′∥+ 1= ∥π∥. Further, rank(bπ) = d and all proper
subproofs have rank strictly smaller than d. Thus by induction hypothesis, there is a proofÒϖ of rank smaller than dwith the same conclusion as bπ. Now the desiredϖ is the following
proof:

π′i···
X ⊢ xi

Òϖ···
X,Y− x,xi ⊢ y cut

X,Y− x ⊢ y
Clearly rank(ϖ)< d, since the size of the new cut formula xi is smaller than d.
r′ is→r and r′′ is→ℓ. This is handled similar to the above subcase.

. r′ introduces x on the right, and r′′ is an application of ax. If y= x, we obtain our desired proof
by applying weaken on the conclusion of π′. If y ̸= x, we obtain our desired proof by applying
weaken on the conclusion of π′′.

. r′ introduces x on the right, and r′′ is not ax and does not introduce x on the left. There aremany
subcases here but they are similarly handled. We look at just one subcase. Suppose π has the

 Primal infon logic: derivability in polynomial time

following form (and Y= Y0,Y1− z):

π′···
r′

X ⊢ x

π′′0···
Y0 ⊢ z

π′′1···
Y1 ⊢ y cut

Y0,Y1− z ⊢ y cut
X,Y0− x,Y1−{z,x} ⊢ y

Clearly |z| < d since it is a cut formula appearing in π′′, whose rank is strictly smaller than d.
Now consider the following proof π0:

π′···
r′

X ⊢ x

π′′0···
Y0 ⊢ z cut

X,Y0− x ⊢ z
and the following proof π1:

π′···
r′

X ⊢ x

π′′1···
Y1 ⊢ y cut

X,Y1− x ⊢ x
Clearly since ∥π0∥< ∥π∥ and ∥π1∥< ∥π∥, by induction hypothesis, there are proofsϖ0 and
ϖ1 of rank strictly smaller than d, with the same conclusions as π0 and π1, respectively. Now
the desired proofϖ is as follows:

ϖ0···
X,Y0− x ⊢ z

ϖ1···
X,Y1− x ⊢ y cut

X,Y0− x,Y1−{x, z} ⊢ x
Since rank(ϖi)< d and since |z|< d, rank(ϖ)< d, as desired.

. r′ is an axiom. This is handled similar to item 4 above.
. r′ is not an axiomanddoes not introduce x on the right. This is handled similar to item5 above.

◀

▶ Theorem  (Weak normalization). For all X,x, if there is a proof of X ⊢ x, then there is a cut-free proof of
X ⊢ x.
Proof. For every proof π, define µ(π) to be the pair (d,n) where d = rank(π), and n is the number
of subproofs of π of rank d. If rank(π) = 0, π is already normal. If not, let rank(π) = d > 0 and
letϖ be a subproof of π such that rank(ϖ) = d and no proper subproof ofϖ is of rank ≥ d. By
Proposition 13, there is another proofϖ′ with rank(ϖ′) < d and whose conclusion is the same as
that ofϖ. Replaceϖ byϖ′ in π to get the proof π′. Clearly µ(π′) < µ(π). Since lexicographic
ordering on pairs of natural numbers is a well order, by repeating the above process we eventually
reach a proof of rank 0 – a cut-free proof, in other words.

◀

A Baskar, Prasad Naldurg, K R Raghavendra, and S P Suresh 

C Linear time algorithm for computing closure′

Fix a set of formulas Y0 such that sf(Y0) ⊆ Y0. Let |Y0| be N. Recall that closure′(X) is the set of all
x � Y0 that can be derived from Xwithout using the□ rule or the⊞ rule. We describe below how
to compute, for any X ⊆ Y0, the set closure′(X), in O(N) time. The algorithm is basically the one
described inTheorem 6.1 of [11].
For a formula x, define the notions left(x), right(x), and op(x) as follows:
If x �P , left(x), right(x) and op(x) are all undefined.
If x= y∧ z, left(x) = y, right(x) = z, and op(x) = ∧.
If x= y→ z, left(x) = y, right(x) = z, and op(x) =→.
If x=□ay, left(x) = y, right(x) is undefined, and op(x) =□a.
If x=⊞ay, left(x) = y, right(x) is undefined, and op(x) =⊞a.

For every x � Y0, define the following four sets:
Aℓ(x) = {y � Y0 | op(y) = ∧ and left(y) = x}.
Ar(x) = {y � Y0 | op(y) = ∧ and right(y) = x}.
Iℓ(x) = {y � Y0 | op(y) =→ and left(y) = x}.
Ir(x) = {y � Y0 | op(y) =→ and right(y) = x}.
The algorithm to compute closure′(X) is given in Algorithm 3. For each x � Y0, we keep track of

its status, whichwe denote status(x). It takes one of the values raw, pending, or processed. We also use
a queue Q of formulas, with the corresponding enqueue and dequeue functions. It is easy to argue
that whenever status(x) becomes pending, it is the case that x � closure′(X). It is also the case that
all pending formulas become processed once the algorithm terminates (if it does). Further, one can
argue by induction on the size of proofs that for every formula x � closure′(X), eventually status(x)
becomes pending.
One can argue that the algorithm terminates inO(N) time as follows. Each element entersQ at

most once (when it is raw, and it becomes pending just before enteringQ). We process each element
of Q exactly once and mark it processed and dequeue it from the queue. For each element u of the
queue, we spending constant time setting the status of left(u) and right(u) and perhaps enqueuing
them. The sets Aℓ(u), Ar(u), Iℓ(u), and Ir(u) have no bound on their size, but for distinct u and u′, the
sets Aℓ(u) and Aℓ(u′) are disjoint, and similarly for the sets Ar, Iℓ, and Ir. So across all elements in
Y0, the total time consumed in each of the for all blocks inside the while loop is O(N). This gives us
a linear time algorithm to compute closure′(X) for any given X⊆ Y0.

 Primal infon logic: derivability in polynomial time

Algorithm  Linear time algorithm for closure′(X)
Q←∅;
for all x �X : status(x)← pending; enqueue(Q,x);
for all x � Y0 \X : status(x)← raw;
while Q ̸=∅ do

u← dequeue(Q);
if op(u) = ∧ and status(left(u)) = raw then ▷ u is the premise of the ∧e0 rule.
status(left(u))← pending; enqueue(Q, left(u));

end if

if op(u) = ∧ and status(right(u)) = raw then ▷ u is the premise of the ∧e1 rule.
status(right(u))← pending; enqueue(Q, right(u));

end if

if op(u) =→ and status(left(u)) ̸= raw and status(right(u)) = raw then
status(right(u))← pending; ▷ u is the major premise of the→e rule.
enqueue(Q, right(u));

end if

for all v � Aℓ(u) such that status(right(v)) ̸= raw and status(v) = raw do
status(v)← pending; ▷ u is the left premise of the ∧i rule.
enqueue(Q, v);

end for

for all v � Ar(u) such that status(left(v)) ̸= raw and status(v) = raw do
status(v)← pending; ▷ u is the right premise of the ∧i rule.
enqueue(Q, v);

end for

for all v � Iℓ(u) such that status(v) ̸= raw and status(right(v)) = raw do
status(right(v))← pending; ▷ u is the minor premise of the→e rule.
enqueue(Q, right(v));

end for

for all v � Ir(u) such that status(v) = raw do ▷ u is the premise of the→ i rule.
status(v)← pending;
enqueue(Q, v);

end for

status(u)← processed;
end while

closure′(X) = {u � Y0 | status(u) = processed};

