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Abstra
tIn this thesis, we study one of the 
entral problems in the automati
 veri�
ationof se
urity proto
ols, that of verifying whether a given proto
ol leaks se
rets or not.The 
entral work in the thesis identi�es synta
ti
 sub
lasses of proto
ols for whi
hthe se
re
y problem is de
idable. The other work in the thesis 
on
erns reasoningabout proto
ols. We introdu
e a logi
 using whi
h interesting properties of proto
ols
an be spe
i�ed and reasoned about.We start the study by setting up a formal model of se
urity proto
ols, andproving several important properties about the model. Of parti
ular importan
eare the properties relating to synth and analz proofs, whi
h formalise the way theagents running a proto
ol derive new information from old.We then 
onsider the general se
re
y problem and show that it is unde
idableboth when the set of non
es is in�nite (a result �rst proved in [DLMS99℄) andwhen the length of messages is unbounded (a result proved in [HT96℄). We providerelatively simple and uniform proofs for both these results.We then 
onsider the se
re
y problem in the setting of in�nitely many non
es butbounded message length. We prove that for a 
ertain synta
ti
 sub
lass of proto
ols
alled tagged proto
ols, the se
re
y problem in this setting is de
idable.We then prove that a tagged proto
ol has a leaky run (a run that leaks a se
ret)i� it has a leaky run 
ontaining only bounded length messages. This enables us toprove that the se
re
y problem for tagged proto
ols is de
idable even in the settingwhere both message length and number of non
es is unbounded.We �nally look at reasoning about se
urity proto
ols. We de�ne a logi
 in whi
hwe 
an easily spe
ify several interesting se
urity properties like se
re
y, authenti
ity,et
. We also show some examples whi
h illustrate how to reason about proto
ols.We then extend some of the unde
idability and de
idability results of the earlier
hapters to the veri�
ation problem of the logi
.
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Chapter 1
Introdu
tion

1.1 Ba
kgroundComputer se
urity has 
ome to o

upy an in
reasingly 
entral pla
e in our livesover the past twenty years. This has been a dire
t result of the enormous in
reasein the development and use of networked and distributed systems over this period.Finan
ial transa
tions on the Internet is gaining 
urren
y now. Distributed �nan
ialtransa
tions | even if they are in the simple form of withdrawing money from anATM | have be
ome part of many peoples' lives today. Even more pervasive is theroutine use of ele
troni
 mail (whi
h is sometimes even used to share 
on�dential in-formation). The 
onsequen
es of a misuse of su
h systems are potentially disastrous.This pla
es a high premium on ensuring that su
h systems are not misused.Se
urity 
an basi
ally be 
onsidered as a study of what the potential misusesof su
h systems are and how they 
an be averted. A system may be said to bese
ure if the properties of 
on�dentiality, integrity, availability, authenti
ity, et
. ofthe various system entities are maintained. Broadly speaking, a system maintains
on�dentiality if no information 
an be a

essed ex
ept by those entities whi
h areauthorised to a

ess it. Similarly, a system maintains integrity if no information
an be altered ex
ept by those entities whi
h are authorised to alter it. Availabilitysimply means that the desired information (or resour
e) is available when desired.An entity is said to be authenti
 if its apparent identity is genuine, i.e., the entityin question does not masquerade as some other entity.1



Chapter 1: Introdu
tion 2The main 
hallenge in se
urity is to maintain some (or all) of the above attributesin the presen
e of mali
ious users, a

idental misuse or under some kinds of systemfailures.Histori
ally, many di�erent traditions have 
ontributed to developments in 
om-puter se
urity. Developments in operating systems, military se
urity, and 
ryptog-raphy have all driven advan
es in se
urity.From its early days, resear
h in se
urity has fo
used on formal methods for prov-ing systems 
orre
t. This is easily understandable, sin
e the 
onsequen
es of ase
urity-related error in a system 
ould be disastrous, and thus the utmost 
are isrequired in ensuring the se
urity of systems. Formal methods are a useful aid in thedesign and analysis of su
h systems.Resear
h on formal methods related to se
urity has grown so mu
h over theyears that it is no longer possible to 
onsider it as a uni�ed whole. Based on thedi�eren
es in the fo
us of resear
h and the te
hniques and tools used, we have severalsubdis
iplines. Our 
ontributions in this thesis lie in the area of se
urity proto
ols,whi
h we look at in detail in the following se
tions. Meanwhile, we brie
y look atsome of the other dis
iplines below.Program se
urity: This is a 
lassi
 area of study in se
urity. The fundamen-tal fo
us of resear
h in this area is to devise methods whi
h ensure that noprogram learns information that it is not authorised to know. Examples ofprograms whi
h learn information in su
h an unauthorised manner are virusesand Trojan horses. For high-se
urity systems like those used in the military,it is highly important to 
he
k all the programs to see if they have se
ureinformation 
ow. Formal methods are of immense help here. The fundamen-tal theoreti
al problem studied here is whether a given problem has se
ureinformation 
ow ([BL73℄, [Den77℄). A simple de�nition of a program havingse
ure information 
ow is as follows: if the variables used in the program arepartitioned into high-se
urity and low-se
urity variables, observations of thelow-se
urity variables do not reveal any information about the initial values ofthe high-se
urity variables. Closely related is the problem of dete
ting 
overt
ows [Lam73℄, where information is leaked indire
tly, through variations inprogram behaviour. The resear
h in this area has fo
ussed on synta
ti
 me
h-anisms (like typing, see [VSI96℄ for instan
e) and semanti
 methods (see [LJ00℄,for example), to ensure se
ure information 
ows in programs and to dete
t in-



Chapter 1: Introdu
tion 3formation leaks.Se
urity poli
y: This is another widely studied area in se
urity, whi
h has itsorigins in the a

ess 
ontrol model for 
on�dentiality used in operating systems(see [Lam74℄, for instan
e). The 
entral problem here is somewhat similar tothat in program se
urity, but is more general. The fo
us is on ensuring thatthere is no unauthorised a

ess to information. Most of the solutions depend onrestri
ting the behaviour of the system to a
hieve se
urity. A 
lassi
 example ismultilevel se
urity. Let us assume for simpli
ity that there are two user levels:high and low. Let us also assume that there are two se
urity levels for obje
ts:
on�dential and publi
. The typi
al restri
tions on su
h a system might in
ludeno read-up: a low user 
annot read a 
on�dential �le, and no write-down: ahigh user 
annot write to a publi
 �le. Note that these are restri
tions on therun-time behaviour of the systems. The fundamental theoreti
al 
hallenge isto 
ome up with good se
urity poli
y models, whi
h are formal spe
i�
ationsof the desired se
urity-related behaviour of systems. [BL73℄ and [HRU76℄are two early papers dealing with se
urity models. They propose models for
on�dentiality whi
h are dire
tly based on a

ess 
ontrol models for operatingsystems. The model proposed in [BL73℄ has features for a

ess 
ontrol as wellas multilevel se
urity. The 
urrent trend of resear
h in this area is to use moreabstra
t models based on the so 
alled interfa
e models, whi
h derive from[GM82℄. See [M
L94℄ for a good survey of se
urity models.Database se
urity: The main fo
us in this line of resear
h is the same as that ofthe above two | to ensure that every pie
e of information in a database islearnt only by users authorized to know it. This implies mu
h more than pro-te
ting data, whi
h 
an be implemented by some kind of a

ess 
ontrol me
h-anism. A simple example to illustrate this point involves a salary databasewhere salaries above a 
ertain threshold have to be kept se
ret. It is easyenough to prevent queries from dire
tly a

essing the re
ords whi
h have salaryabove the given threshold. But there are other kinds of information whi
h
ould be learned, like the average or sum of the salaries above the thresh-old. In su
h 
ases, it is possible that information about individual re
ords
an be inferred by 
leverly asking many queries. For instan
e, if S is a setof employees and S 0 = S [ fag, then by learning the sum of the salaries of



Chapter 1: Introdu
tion 4the employees in S, and the same for the employees in S 0, a's salary 
an belearned. In some 
ases, even the fa
t that there exists a re
ord of a parti
ularkind is vital information, even if the exa
t data 
annot be a

essed. In mostof these 
ases, the operation of aggregation introdu
es mu
h 
omplexity in thesystem, by introdu
ing many potential means to learn information. Mu
h ofthe resear
h has fo
ussed on statisti
al te
hniques to prevent the inferen
e ofinformation. A brief introdu
tion to the �eld (as also a general insight into
omputer se
urity) 
an be had from [Gol99℄.1.2 Se
urity proto
olsSe
urity proto
ols are spe
i�
ations of 
ommuni
ation patterns whi
h are in-tended to let agents share se
rets over a publi
 network. They are required toperform 
orre
tly even in the presen
e of mali
ious intruders who listen to the mes-sage ex
hanges that happen over the network and also manipulate the system (byblo
king or forging messages, for instan
e). Obvious 
orre
tness requirements in-
lude se
re
y: an intruder 
annot read the 
ontents of a message intended for others,and authenti
ity: if B re
eives a message that appears to be from agent A and in-tended for B, then A indeed sent the same message intended for B in the re
entpast.The presen
e of intruders ne
essitates the use of en
rypted 
ommuni
ation. Thusdevelopments in the �eld of 
ryptography provide the foundation for the designof se
urity proto
ols. Resear
h in 
ryptography has a long and glorious history.The �eld has 
ome into its own in the past 
entury, with more and more sophisti-
ated mathemati
al te
hniques used to develop more and more sophisti
ated 
ryp-tographi
 s
hemes. As a result, a wide variety of 
ryptographi
 tools are availableto the se
urity proto
ol designer: 
onventional (shared-key) 
ryptography, publi
-key
ryptography, digital signature s
hemes, et
.The operation of en
ryption typi
ally involves transforming a given plaintextto a 
iphertext with the use a key, su
h that given the key it is easy to 
omputethe 
iphertext from the plaintext and vi
e versa, and without the key it is hardto 
ompute the plaintext from the 
iphertext. The inverse operation of 
omputingthe plaintext given the 
iphertext and the key, is 
alled de
ryption. The 
iphertextis intended to be 
ommuni
ated over a possibly inse
ure network. Conventional



Chapter 1: Introdu
tion 5
ryptography uses the same key for both en
ryption and de
ryption. Publi
-key
ryptography systems ([DH76℄, [RSA78℄) use a pair of keys for ea
h user of thesystem (the user's publi
 and private keys), where messages are en
rypted using there
eiver's publi
 key and de
rypted using the re
eiver's private key. A 
omprehensiveintrodu
tion to 
ryptography 
an be had from [S
h96b℄.Resear
h in 
ryptography primarily aims at developing new 
ryptosystems withimproved mathemati
al guarantees. But the fo
us of resear
h in se
urity proto
olsis di�erent. It has been widely a
knowledged that even the use of the most perfe
t
ryptographi
 tools does not always ensure the desired se
urity goals. (See [AN95℄for an illuminating a

ount.) This situation arises primarily be
ause of logi
al 
awsin the design of proto
ols.Quite often, proto
ols are designed with features like ease of use, eÆ
ien
y et
.in mind, in addition to some notion of se
urity. For instan
e, if every message ofa proto
ol were signed in the sender's name and then en
rypted with the re
eiver'spubli
 key, it appears as if a lot of the known se
urity 
aws do not o

ur. Butit is not usual for every message of a proto
ol to be signed. This 
ould either befor reasons of eÆ
ien
y or be
ause frequent use of 
ertain long-term keys mightin
rease the 
han
e of their being broken using 
ryptanalysis. Great 
are needs tobe exer
ised in su
h situations. The following example proto
ol highlights some ofthe important issues ni
ely. It is based on a proto
ol designed by Needham andS
hroeder ([NS78℄) and is aimed at allowing two agents A and B to ex
hange twoindependent, se
ret numbers. It uses publi
-key en
ryption but does not requireagents to sign their messages.Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; ygpubkAMsg 3. A ! B : fygpubkBHere pubkA and pubkB are the publi
 keys of A and B, respe
tively, and fxgk isthe notation used to denote x en
rypted using key k. In the proto
ol, x and y areassumed to be newly generated, unguessable (with high probability, of 
ourse!), pre-viously unused numbers, also 
alled non
es (non
e stands for \number on
e used").In message 2, B in
ludes A's non
e. On seeing it A is assured that B has re
eivedmessage 1, sin
e only B 
an de
rypt the �rst message and use x in a later message.Similarly on re
eipt of the third message, B is assured of A's re
eipt of y.At the end of a session of the proto
ol, both A and B share the se
rets x and



Chapter 1: Introdu
tion 6y and both also know that the other agent knows x and y. But it has been shown([Low96℄) that x and y are not ne
essarily known only to A and B. (Su
h a propertyneeds to be satis�ed if we want to use a 
ombination of x and y as a key sharedbetween A and B, for example.) The atta
k (
alled Lowe's atta
k) is given below:Msg �.1. A ! I : fx;AgpubkIMsg �.1. (I)A ! B : fx;AgpubkBMsg �.2. B ! (I)A : fx; ygpubkAMsg �.2. I ! A : fx; ygpubkAMsg �.3. A ! I : fygpubkIMsg �.3. (I)A ! B : fygpubkBIn the above atta
k, (I)A!B :x means that the intruder is sending message x toB in A's name, whereas A!(I)B :x means that the intruder is blo
king a messagesent by A intended for B. The above atta
k 
onsists of two parallel sessions of theproto
ol, one (whose messages are labelled with �) involving A as the initiator and Ias responder, and the other (whose messages are labelled with �) involving I (in A'sname) as the initiator and B as the responder. (This shows that the names A;B; xand y mentioned in the proto
ol spe
i�
ation are just pla
eholders or abstra
t names,whi
h 
an be 
on
retely instantiated in di�erent ways when the proto
ol is run. Soa

ording to A and B, they have just had a normal proto
ol session with I andA, respe
tively. But I knows better!) After the �fth message above, the intrudergets to know y whi
h is the se
ret generated by B in a session with someone whomB believes to be A. This shows that the proto
ol does not satisfy the followingproperty: whenever an agent B engages in a session of the proto
ol as a responderand B believes that the initiator is A, then the se
ret generated by B is known onlyto A and B. The seriousness of this 
aw depends on the kinds of use the proto
olis put to. It is worth noting that this atta
k does not depend on weaknesses of theunderlying en
ryption me
hanism (nor even on some keys being guessed by 
han
e).It is also worth noting that this atta
k on the (simple enough) Needham-S
hroederproto
ol was dis
overed seventeen years after the original proto
ol was proposed.[Low96℄ also suggests a �x for the proto
ol:Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; y; BgpubkAMsg 3. A ! B : fygpubkB



Chapter 1: Introdu
tion 7It is easy to see that the above atta
k does not happen anymore, but that stilldoesn't prove that the proto
ol does not have any vulnerabilities.The following example illustrates a freshness atta
k (or replay atta
k), and alsohighlights the use of non
es. Consider the following proto
ol (whi
h is inspired bythe Denning-Sa

o proto
ol [DS81℄) whi
h uses symmetri
 (shared-key) en
ryption,where A is Aandal, B is a bank, and S is a key server. We assume that every agentC shares a key kCS with the server, whi
h only C and S know.Msg 1. A ! S : A;BMsg 2. S ! A : fB; k; fA; kgkBSgkASMsg 3. A ! B : fA; kgkBSIn message 1, A requests from the server S a key to 
ommuni
ate with B. Sgenerates k and 
reates message 2. Only A 
an de
rypt this message su

essfully andlearn k, sin
e she alone possesses kAS . She then passes on the 
omponent fA; kgkBSto B. Now B also learns k. Now A 
an enter into a session with B using the keyk. Sin
e only A and B know k, there is no danger of any information being leakedout, as long as the key k is safe. But unfortunately, there is the following atta
k:Msg �.1. A ! S : A;BMsg �.2. S ! A : fB; k; fA; kgkBSgkASMsg �.3. A ! B : fA; kgkBSMsg �.3. (I)A ! B : fA; kgkBSThe atta
k is quite simple. SuÆ
iently long after the session � has happened, theintruder masquerades as A and enters into a session with B with the same oldkey k. This is possible be
ause all the intruder has to do is to replay message 3from the old session. There might be a question as to what this a
hieves, sin
e theintruder 
annot 
ontinue the session meaningfully unless k is leaked. But this is nota s
enario whi
h 
an be ignored. It might be the 
ase that the key k has a
tuallybeen 
ompromised by long hours of 
ryptanalysis, mu
h after the original sessionwas played out. The above atta
k then gives the intruder a 
han
e for putting thiskey into use. Or it might be the 
ase that in the original session �, after setting upthe key k, A sends the following message:Msg �.4. A ! B : fDeposit Rs. 10000 from my a

ount into I'sgk(This might well be money whi
h is legitimately owed to I by A.) The intruder,who wat
hes all the 
ommuni
ation over the network, infers from the e�e
t of the
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tion 8above message (Rs. 10000 deposited into I's own a

ount) the 
ontent of message�.4, and just replays it as part of session �.Msg �.4. (I)A ! B : fDeposit Rs. 10000 from my a

ount into I'sgkSin
e the bank thinks that the request is 
oming from A, I ends up ri
her by Rs.10000.A simple solution to the problem is for A and B to generate fresh non
es at thestart of ea
h session, then obtain the key from S and 
he
k the timeliness of the keyre
eived from S as follows:Msg 1. A ! B : A;BMsg 2. B ! A : yMsg 3. A ! S : A;B; x; yMsg 2. S ! A : fx;B; k; fy; A; kgkBSgkASMsg 4. A ! B : fy; A; kgkBSThe use of the fresh non
es prevents the intruder from replaying old messages asnew. Of 
ourse, it is imperative that for ea
h session a unique, unguessable, randomnumber is 
hosen as a non
e, sin
e otherwise replay atta
ks 
annot be prevented.A di�erent kind of problem exists with type-
aw atta
ks. This is illustrated by thefollowing simple example (see [DMTY97℄ for more examples of interesting type-
awatta
ks), where A sends a fresh, random se
ret x to B and also gets an assuran
ethat B has re
eived it.Msg 1. A ! B : f(A; fxgpubkB)gpubkBMsg 2. B ! A : fxgpubkAThe intruder 
an use the stru
ture of message 1 and get the se
ret generated inpla
e of x leaked, as the following atta
k shows:Msg �.1. A ! (I)B : f(A; fmgpubkB)gpubkBMsg �.1. I ! B : f(I; f(A; fmgpubkB)gpubkB)gpubkBMsg �.2. B ! I : f(A; fmgpubkB)gpubkIMsg 
.1. I ! B : f(I; fmgpubkB)gpubkBMsg 
.2. B ! I : fmgpubkIMsg �.2. (I)B ! A : fmgpubkAThe important point about this atta
k is that in session �, the intruder is usingthe term f(A; fmgpubkB)gpubkB in pla
e of x. In the absen
e of any me
hanism to
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tion 9indi
ate the type of data being re
eived, B believes that he has re
eived a non
e.By 
leverly using the stru
ture of the proto
ol over two sessions, the intruder learnsthe se
ret m at the end of message 2 of session 
. This example also shows that thelength of messages o

urring in runs of a proto
ol 
an be mu
h more than that ofthe messages o

urring in the proto
ol spe
i�
ations. Of 
ourse, this atta
k 
an besimply thwarted by modifying the proto
ol as follows:Msg 1. A ! B : f(A; x)gpubkBMsg 2. B ! A : fxgpubkAThe above examples illustrate the kinds of atta
ks whi
h typi
ally happen. Mu
hmore details on authenti
ation proto
ols, atta
ks on them, and the te
hniques usedto ta
kle them 
an be found in the ex
ellent survey arti
le [CJ97℄.The above dis
ussion illustrates the pitfalls in se
urity proto
ol design, and alsohighlights the need for a systemati
 approa
h to proto
ol design and analysis. Thereare two possible approa
hes:� Development of a design methodology following whi
h we 
an always gener-ate provably 
orre
t proto
ols. Mu
h work in the proto
ol design 
ommunityfo
uses on this approa
h. [AN96℄ gives a 
avour of the kinds of useful heuris-ti
s whi
h improve proto
ol design. But there has not been mu
h theoreti
aldevelopment towards formally justifying these design guidelines.� Development of systemati
 means of analysing proto
ols for possible design
aws. The bulk of the work in formal methods for se
urity proto
ols fo
useson this approa
h. Here again, there are two possibilities:{ Development of methods for proving the 
orre
tness of 
ertain aspe
ts ofproto
ols.{ Development of systemati
 methods for �nding 
aws of those proto
olswhi
h are a
tually 
awed.The main 
ontributions in this thesis lie in the �eld of formal analysis methodsfor se
urity proto
ols. We now brie
y look at some of the approa
hes whi
h havebeen advo
ated in the literature for proving properties of proto
ols and dete
ting
aws in them.



Chapter 1: Introdu
tion 10An important stream of work relating to proving proto
ols right is automatedtheorem proving. The typi
al approa
h in this style of work is as follows: a for-mal proto
ol model is de�ned based on an expressive logi
 like �rst-order logi
 orhigher-order logi
. To every proto
ol, a theory in the logi
 is asso
iated. Propertiesof proto
ols are also spe
i�ed using the same logi
. A property holds of a proto
olif it 
an be derived from the theory of the proto
ol using the rules of the logi
. Es-tablished proof te
hniques and tools in the logi
 
an now be used to eÆ
iently proveproperties of proto
ols. Examples of this approa
h in
lude [Pau98℄ and [Bol97℄.The advantage of this approa
h is that the highly expressive logi
s in the framework
an 
ode up any proto
ol, and formally prove most of the desired properties. Somepossible disadvantages are that it requires expert knowledge to 
ode up a proto
olinto a theory, and that the theorem proving pro
ess is not fully automati
. Expertintervention is needed to guide the proof sear
h. The 
omplexity involved in de�n-ing the theory of a proto
ol introdu
es further 
han
es for error. Another possibledrawba
k is that the formal proofs are not intuitive, and thus hard for humans tounderstand and base further developments on them.An alternative approa
h is to use belief logi
s to prove properties of proto
ols.The pioneering work in this line is [BAN90℄, in whi
h a modal logi
 (
alled the BANlogi
) was introdu
ed as a tool to spe
ify and reason about properties of proto
ols. Itis based on modalities whi
h seek to formalise the epistemi
 reasoning of the agentsinvolved in the proto
ol. This logi
 has many attra
tive features, 
hief among thembeing that it produ
es simple and abstra
t proofs, but there are also some drawba
ks.To use the logi
, the authors propose a systemati
 idealisation step, whi
h 
onvertsea
h message of the given proto
ol into a formula whi
h represents the potentialknowledge gained after re
eipt of the message. This feature introdu
es a 
han
e forerror, sin
e there is a possibility that a wrong idealisation might be used to proveproperties of the proto
ol. [BM93℄, [GNY90℄, and [Nes90℄ are some papers whi
h
ontain a dis
ussion of this feature and suggest further improvements to the BANlogi
. [AT91℄, [Bie90℄, and [SvO94℄ are some papers whi
h attempt to improve theoriginal logi
 with either new modalities or through new semanti
 features. Whilethey address some weaknesses of BAN logi
, the simpli
ity of the original logi
 islost. More re
ently, there have been attempts to 
onne
t BAN style logi
s with otherformal models for se
urity proto
ols ([ABV02℄ and [SC01℄, for example). There havealso been attempts at automated reasoning about proto
ols using BAN-style logi
s
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tion 11([KW96℄, for instan
e). [SC01℄ provides a 
omprehensive survey of BAN-style logi
sfor authenti
ation proto
ols. The modalities whi
h these logi
s 
on
entrate on arefairly abstra
t, like belief, trust, 
ontrol et
. While it may not be diÆ
ult to formalisethese modalities, it is not 
lear whether they are fundamental to reasoning aboutse
urity. The iteration of these modalities also brings a lot of 
omplexity in itswake, 
ompli
ating many of the te
hni
al questions regarding these logi
s. Thus itis worthwhile to look at logi
s with simpler modalities.Mu
h of the literature is devoted to methods for dete
ting 
aws in proto
olsusing the so-
alled model 
he
king approa
h. The main idea is to 
onsider a �nitestate version (preferably with a small number of states) of the given proto
ol (byimposing bounds on the set of non
es and keys used) and prove that all states of the�nite state system satis�es the desired property. This does not ne
essarily mean thatthe proto
ol itself satis�es the desired property, sin
e use of unboundedly many datamight possibly introdu
e more atta
ks. But if a violation of the desired property isdis
overed using the small system, it usually means that the proto
ol is also 
awed.The fo
us of resear
h in this area is to devise methods whi
h will guarantee that a�nite state version of the proto
ol has most of the errors that the big system has,and to devise te
hniques for eÆ
iently verifying the small system.As we will see later, when we model se
urity proto
ols formally, we get in�-nite state systems. Thus there is no given �nite state system whi
h one 
an verify.The �nite model should be 
onstru
ted from the proto
ol spe
i�
ation by using ap-propriate abstra
tions. The di�erent subdivisions of resear
h in this line basi
allyre
e
t the di�erent te
hniques using whi
h the �nite state system 
an be de�ned,and the di�erent te
hniques that 
an be used to verify it. For example, [Low96℄,[LR97℄, [MMS97℄, [S
h96a℄, and [S
h98℄ advo
ate an approa
h based on pro
ess al-gebra, in whi
h important se
urity properties are de�ned using some form of pro
essequivalen
e. [Mea95℄, [Mea96a℄, [Mea96b℄ advo
ate an approa
h based on logi
 pro-gramming, where the proto
ol is modelled by a set of rules whi
h tell us how ea
ha
tion of the proto
ol 
hanges the state of the system, and several spe
ialized proofte
hniques are used to prove that a bad state 
an never be rea
hed by a proto
ol.[Bol97℄ uses standard te
hniques based on abstra
t interpretation to de�ne a �nite-state system from a proto
ol. Te
hniques based on tree automata ([Mon99℄, [GL00℄,[CC03℄, [CCM01℄) have been proposed to eÆ
iently represent and manipulate theintruder's state. Typi
ally the intruder's state is the 
ause of the in�nite state na-
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tion 12ture of proto
ols, and hen
e methods of �nitely representing the intruder state 
anhelp 
onstru
t a �nite state system from a proto
ol.The model 
he
king approa
h has enjoyed great su

ess in unearthing bugs inmany proto
ols, long after they had been put into use. [CJ97℄ is a good referen
efor the many atta
ks whi
h have been un
overed by formal veri�
ation tools. Butthe main drawba
k in this approa
h is that the use of a �nite state system is notalways justi�ed. In fa
t, the general veri�
ation problem for se
urity proto
olsis unde
idable (as we prove in later 
hapters), and therefore there exist proto
olswhi
h are not \equivalent" to any system with bounded number of states. In this
ontext, [Low99℄ proves that for a 
ertain synta
ti
 sub
lass of proto
ols and forsome parti
ular kinds of properties, 
he
king whether the proto
ol satis�es thoseproperties amounts to 
he
king whether a parti
ular small system satis�es them.This provides a justi�
ation for veri�
ation algorithms, most of whi
h de�ne a smallsystem of the above kind from a given proto
ol, and verify the small system. Thede
idability results in this thesis are in the same spirit as the results of [Low99℄.1.3 Contributions of the thesisIn 
hapter 2 of the thesis, we des
ribe our formal model for se
urity proto
olswhi
h will be used in the rest of the thesis. We also highlight the aspe
ts in whi
hthe model di�ers from other models 
urrent in the literature. We set up severalte
hni
al propositions about synth and analz proofs, whi
h formalise the way theagents running the proto
ols derive new information from old.We also introdu
e the se
re
y problem, whi
h aims to 
he
k if there is a run ofthe given proto
ol whi
h leaks a se
ret or not. Our main 
ontribution in the thesisis to identify sub
lasses of proto
ols for whi
h it is possible to automati
ally verifythis property.It turns out that when we model se
urity proto
ols pre
isely, we get in�nite statesystems. There are many sour
es of unboundedness in the model whi
h 
ontributeto this. The �rst type of unboundedness o

urs be
ause there is no a priori boundon the number of sessions o

urring in a run, and thus there is no bound on thelength of the runs of a proto
ol as well. Further, requirements su
h as freshnessmight ne
essitate the use of a fresh non
e or key for ea
h session. Sin
e the numberof sessions in a run is unbounded, it follows that there is no a priori bound on
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tion 13the number of distin
t non
es and keys used in a run of a proto
ol. Further, aseviden
ed in the type-
aw atta
k whi
h was shown earlier, messages o

urring inruns of a proto
ol 
an be longer than those o

urring in the proto
ol spe
i�
ation.Thus there is no a priori bound on the length of the messages whi
h are part of theruns as well.As su
h, it is to be expe
ted that it is not possible to verify even simple rea
ha-bility properties, and thus se
urity properties like se
re
y as well, of su
h systems. Ithas been formally proved in ([DLMS99℄, [HT96℄, [ALV02℄) that in fa
t, su
h simpleproblems are unde
idable for these systems. Of the fa
tors whi
h lead to unbound-edness of these systems, the number of non
es and the message length are of spe
ialimportan
e. It is proved in [DLMS99℄ that even when the message length is re-stri
ted to be bounded, allowing an unbounded number of non
es to o

ur in runsof a proto
ol leads to unde
idability. Dually, in [HT96℄ and [ALV02℄, it is provedthat even if the non
es and keys 
ome from a �xed �nite set, allowing arbitrarilylong messages to o

ur in proto
ol runs leads to unde
idabilty. In 
hapter 3, weprovide simple and uniform proofs for the above two unde
idability results.The literature 
onsists of many proposals to 
ope with the unde
idability results.If there is a bound on the number of non
es as well as the message length, thenevery run 
an be shown to be equivalent to a run of bounded length, in terms ofthe se
urity-relevant information learnt by the various parties at the end of the run.This has been used to prove de
idability in [DLMS99℄. Another 
ommon approa
his to pla
e bounds on the number of plays of any run of the proto
ol, e�e
tivelyyielding a �nite state system. [ALV02℄, [MS01℄ and [RT03℄ 
ontain examples ofthis approa
h. There are also approa
hes whi
h impose restri
tions on the waymessages 
an be 
onstru
ted. Examples of this in
lude [DEK82℄ and [ALV02℄ whererestri
tions are imposed on the way messages are 
on
atenated with one another toform new messages. The work in [CCM01℄ uses te
hniques from tree automata toshow de
idability for a sub
lass of proto
ols in whi
h every agent 
opies at most onepie
e of any message it re
eives into any message it sends. The survey arti
le [CS02℄gives a ni
e overview of the various approa
hes to de
idability of se
urity proto
olveri�
ation, and also the various unde
idability results. [ALV02℄ also provides ani
e perspe
tive on the various fa
tors whi
h a�e
t de
idability of se
urity proto
olveri�
ation.The literature also 
onsists of work where de
idability is obtained without pla
ing
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tion 14su
h `external' bounds. For example, the work [Sto02℄ seeks to identify some simplesemanti
 properties whi
h lead to de
idability and argue that these properties aresatis�ed by a large 
lass of proto
ols found in the literature. [AC02℄ introdu
es
he
kable synta
ti
 
onditions whi
h entail the equivalen
e of the given proto
ol toa �nite-state system, and then gives methods of 
he
king the �nite-state systemsfor se
urity brea
hes. A signi�
ant work in this line is [Low99℄, where de
idabilityis proved for a synta
ti
 sub
lass of proto
ols, under the assumption that messagelength is bounded but without any assumptions on the number of non
es. Our workin 
hapter 4 is in this spirit. Assuming that message length is bounded and the setof non
es is not, we prove de
idability of the se
re
y problem for a synta
ti
 sub
lassof proto
ols, the so 
alled tagged proto
ols. Essentially, these are proto
ols wherethe important 
omponents of ea
h message have some kind of type tags atta
hed tothem. The use of tags allows us to prove that for every tagged proto
ol, there is arun whi
h leaks a se
ret i� there is a run of bounded length whi
h leaks a se
ret.This is the key to our de
idability result.We 
ontinue the same theme in 
hapter 5, where we prove that even if we donot pla
e any bound on message length, we 
an obtain de
idability of the se
re
yproblem for the 
lass of tagged proto
ols. We a
hieve this by showing that for taggedproto
ols, every run is equivalent to a well-typed run (under a suitable notion ofequivalen
e whi
h preserves many important se
urity properties). A well-typed runis basi
ally a run in whi
h there is no type-
aw. This means that non
es o

urringin the proto
ol spe
i�
ation are only repla
ed by non
es in the di�erent sessions ofthe run, and so on for the other types of data as well. This further means that thelength of the messages o

urring in a well-typed run is bounded by the length of themessages o

urring in the proto
ol spe
i�
ation. Sin
e every run is equivalent to awell-typed run, the problem redu
es in e�e
t to the setting of 
hapter 4, and thuswe get our de
idability result.In 
hapter 5, we also 
onsider a semanti
 sub
lass of proto
ols based on anequivalen
e relation of �nite index on messages, and prove the de
idability of these
re
y problem for this semanti
 sub
lass, under the assumption that the non
esand keys 
ome from a �xed �nite set.In 
hapter 6, we look at methods for reasoning about proto
ols. We de�ne alogi
 in whi
h several important properties like se
re
y and authenti
ation 
an benaturally spe
i�ed. A major portion of the 
hapter is devoted to examples whi
h
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tion 15illustrate how to reason about proto
ols using the logi
. We then show that theunde
idability results of 
hapter 3 and the redu
tion to well-typed runs proved in
hapter 5 extend to the veri�
ation problem for the logi
 as well. Using the redu
tionto well-typed runs, we prove the de
idability of the veri�
ation problem of the logi
in a setting where there are no restri
tions on the length of messages o

urring inruns of a proto
ol, but where the non
es and keys 
ome from a �xed �nite set.The resear
h that this thesis is based on was done in 
ooperation with R. Ra-manujam. The work in 
hapter 4 is based on the papers [RS03a℄ and [RS03
℄.[RS03
℄ is also the basis for the part of 
hapter 5 whi
h deals with the redu
tion towell-typed runs. The semanti
 de
idability result in 
hapter 5 is based on [RS03b℄.



Chapter 2
Se
urity proto
ol modelling

In this 
hapter, we �rst dis
uss the issues involved in modelling se
urity proto
ols.We then informally introdu
e our model and 
ompare it with some of the otherexisting models. We then present a formalization of the model. We 
lose the 
hapterwith some important properties of our models, espe
ially properties relating to thegeneration of new messages by agents from old information whi
h they possess.2.1 Dis
ussionThe formal modelling of se
urity proto
ols is a nontrivial problem in itself. Forexample, 
onsider the Needham-S
hroeder proto
ol presented in Se
tion 1.2.� The proto
ol is spe
i�ed in terms of two agents A and B and two se
rets xand y. But as eviden
ed in Lowe's atta
k, these are just abstra
t names whi
ha
t as pla
eholders and 
an be 
on
retely instantiated with di�erent values to
reate many di�erent sessions of the proto
ol.� It is also evident from Lowe's atta
k that runs typi
ally 
ontain many parallelsessions.� Further there 
ould be in�nitely many sessions of a given proto
ol and it ispossible that a run 
onsists of unboundedly many sessions.
16



Chapter 2: Se
urity proto
ol modelling 17� A further 
ompli
ation is that the abstra
t terms in the proto
ol 
an be in-stantiated with arbitrary messages (not just atomi
 messages) to 
arry out
ertain atta
ks. This was illustrated by the se
ond example of Se
tion 1.2.So we see that while proto
ol spe
i�
ations are �nite (usually quite small), thesystem whi
h generates the set of runs of the proto
ol needs to remember an un-bounded amount of information, and is thus an in�nite state system. Thus a for-mal model for se
urity proto
ols involves many details whi
h need to be got right.The large gap in 
omplexity between a proto
ol spe
i�
ation and the system whi
hgenerates the runs of the proto
ol makes the task of formally modelling proto
olsnontrivial.Further, at every step of de�ning a model, the modeller is presented with 
hoi
eswhi
h have to be resolved one way or the other. Some of the possible questions thatshe might fa
e are:� what should be the stru
ture of the messages?� how are proto
ols to be presented?� what should be the assumptions on intruders?� how do agents 
onstru
t new messages from old?� what is the underlying model of 
ommuni
ation?As always, the manner in whi
h the 
hoi
es are resolved is driven by the appli
ationin hand. Thus it is not surprising that a 
onsensus has still not been rea
hed, andthat the literature abounds with many di�erent models for se
urity proto
ols.Before a des
ription of our model, we brie
y look at some of the other popularstyles of modelling se
urity proto
ols.Pro
ess algebra models Examples of these kinds of models in
lude the CSP-based models of [Low96℄, [LR97℄, and [S
h96a℄, and the the spi 
al
ulus modelof [AG99℄. We look at the spi-
al
ulus model to provide a 
avour of thesekinds of models. It is an extension of the pi 
al
ulus [MPW92℄ with 
rypto-graphi
 primitives. The basi
 idea is that every proto
ol is represented by aspi 
al
ulus pro
ess (whi
h gives the operational semanti
s of the proto
ol, inthe sense that the pro
ess displays exa
tly the same run-time behaviour as
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urity proto
ol modelling 18the proto
ol). The pro
ess for a proto
ol is typi
ally a parallel 
ompositionof (possibly many di�erent instantiations of) a pro
ess for ea
h role of theproto
ol. The other pro
ess algebra models also model the behaviour of theintruder as an intruder pro
ess, and the pro
ess 
orresponding to a proto
olis de�ned as a parallel 
omposition of the pro
esses for the roles and the in-truder pro
ess. But the spi 
al
ulus di�ers from them in that it does not �x anintruder pro
ess. We will see a little later how intruder behaviour is modelledin the spi 
al
ulus. Se
urity properties of proto
ols 
an now be translated toproperties of the pro
ess representing the proto
ol. These are typi
ally vari-ous kinds of observational equivalen
es between pro
esses, whi
h basi
ally saythat no observer intera
ting with the two pro
esses 
an distinguish betweenthe two.For instan
e, let us say that a proto
ol whi
h uses an abstra
t term x isrepresented by a pro
ess P (x). (The notation signi�es that the de�nition of Pis parametrized by x.) Let us say that the proto
ol involves sending x from Ato B se
urely. For every 
on
rete term m, we de�ne Pspe
(m) to be a pro
esswhi
h is \obviously 
orre
t" in its behaviour with respe
t to m. (For instan
e,it might say that irrespe
tive of what happens after A sends the message m, atsome future point of time B (either normally or magi
ally) re
eives the samemessage m.) Now a possible de�nition of se
re
y is that for any two distin
tmessages m and m0, P (m) is observationally equivalent to P (m0). If the se
retis not revealed, then no external observer 
an see any di�eren
e between arun of the proto
ol whi
h uses se
ret m and one whi
h uses se
ret m0. Apossible de�nition of authenti
ation is that for all m, P (m) is observationallyequivalent to Pspe
(m). This says that if the A sends the message m, then if atall the re
eiver re
eives a message whi
h purports to be from A, the messagehas to be m.Sin
e the notion of observational equivalen
e used in the spi 
al
ulus refers toall pro
esses, there is no need to expli
itly de�ne an intruder pro
ess. If thereis an atta
k on a proto
ol, it will de�nitely manifest in the form of the tworelevant pro
esses being distinguishable by a pro
ess 
oding up the intruderbehaviour in the atta
k.The main fo
us of resear
h in spi 
al
ulus is to develop generi
 proof te
h-niques that work for 
lasses of proto
ols ([AG98℄, [Aba99℄, [AFG02℄). It is



Chapter 2: Se
urity proto
ol modelling 19also possible to use existing tools for the pro
ess algebra models and applythem to se
urity. An example is the FDR model 
he
ker for CSP, whi
h hasbeen su

essfully used in dis
overing atta
ks on proto
ols (see [Low96℄, forexample).The indu
tive approa
h This approa
h was pioneered by [Pau98℄, whi
h advo-
ates a theorem-proving approa
h to verifying 
ryptographi
 proto
ols. Thetheorem prover used in [Pau98℄ is Isabelle/HOL, whi
h works with higher-orderlogi
.A proto
ol is formalised as a set of tra
es, where ea
h tra
e is a sequen
e ofevents. Example of events in
lude Says A B X and Notes A X. Says A B X meansthat A says X to B, it does not imply that B heard what A says. Notes AX means that A learns the message X. The important point is that the setof tra
es of the proto
ol is de�ned indu
tively, starting with the empty tra
e,adding \proper" a
tions for the honest prin
ipals, and any \admissible" a
tionfor the intruder. \Proper" a
tions are those whi
h follow the proto
ol. Forinstan
e the �fth message of a role 
an be sent only after the fourth message.\Admissible" means that the message that is being 
ommuni
ated in the event
an be 
onstru
ted by the agent from the information already learnt by him.The operators synth and analz formalize the way in whi
h new messages are
onstru
ted from old.A proto
ol is said to satisfy a property if all its tra
es satisfy the property.This 
an be veri�ed by letting a theorem-prover indu
tively 
he
k that alltra
es of the proto
ol satisfy the said property. If a property does not hold ofa proto
ol, then the failed attempts at a proof lead one to an atta
k s
enario.The indu
tive approa
h has been used as a basis for proving the 
orre
tnessof some very 
ompli
ated proto
ols [Bel99℄.Strand spa
es This is a model introdu
ed in [FHG99℄. In this model, a proto
ol isassumed to be presented by set of (parametrized) strands, whi
h are sequen
esof send or re
eive a
tions. A node of a proto
ol is a pair 
onsisting of aninstantiation s of a parametrized strand and an index i whi
h is at most thelength of s. A strand spa
e 
orresponding to a proto
ol is a graph whose nodes
onsist of all the nodes of the proto
ol and whose edges re
e
t the lo
al and
ommuni
ation dependen
y between events. A very important 
omponent of



Chapter 2: Se
urity proto
ol modelling 20the model is the formalisation of the intruder behaviour in terms of penetratorstrands. Ea
h penetrator strand des
ribes an atomi
 behaviour of the intruder.Examples of su
h behaviour in
lude re
eiving a message, 
reating a 
opy ofa message that has been re
eived, splitting a message of the form (t; t0) toget t, en
rypting t using a key k to obtain ftgk, and so on. The penetratorstrands of this model, the intruder pro
ess in the pro
ess algebra models, andthe intruder theory in the multi-set rewriting model (to be des
ribed below)roughly 
orrespond to one another. A bundle of a proto
ol (whi
h basi
allystands for a run of the proto
ol) is a �nite partially ordered subgraph of thestrand spa
e of the proto
ol, with the 
ondition that for every event in thebundle, its 
ausal past is also in
luded in the bundle. The signi�
ant featureof this model is that runs of a proto
ol are formalised as partially orderedobje
ts.Signi�
ant properties of proto
ols 
an now be expressed in terms of the model.An example of an authenti
ation property is the requirement that whenevernode n1 o

urs in a bundle, node n2 should also o

ur. Se
re
y properties areformalised by saying that some kinds of nodes do not o

ur in any bundle of theproto
ol. (These are typi
ally nodes whi
h reveal some se
ret to the intruder).A signi�
ant amount of the resear
h here is devoted to developing te
hniquesfor proving general bounds on the intruder's abilities in any run of a proto
ol(or a 
lass of proto
ols). There have also been attempts at automati
 analysisof proto
ols based on the strand spa
es model (see [SBP01℄, for example).There have also been attempts to provide a semanti
s for BAN logi
 in termsof the strand spa
e model ([SC01℄, for example).Multi-set rewriting Like the spi 
al
ulus and the indu
tive model, this is also ageneral-purpose model in whi
h we 
an embed se
urity proto
ols. [DM99℄ is anintrodu
tion to the model, whereas [DLMS99℄ and [CDL+99℄ present te
hni
alresults about the framework.The basi
 idea here is that a se
urity proto
ol is given by a theory whi
h isa �nite set of rules, where ea
h rule is of the form P1(� � �); : : : ; Pk(� � �) �!~9: Q1(� � �); : : : ; Ql(� � �). The P 's and Q's are atomi
 formulas (of the predi
ate
al
ulus). The theory of a proto
ol is got by 
omposing a theory for ea
hrole with a standard intruder theory. A state is a �nite multiset of atomi
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urity proto
ol modelling 21senten
es. Rules are allowed to have free variables, but ground instantiationsof rules are applied to states to yield new states. A rule appli
ation on a states yields another state s0 i�:� all the pre
onditions of the rule all belong to s,� the pre
onditions whi
h are not post
onditions do not belong to s0,� for every 
opy of a post
ondition whi
h is not a pre
ondition, a 
opy ofit is added to s0,� the rest of s is 
opied into s0, and� ea
h existentially quanti�ed variable is instantiated by a new 
onstantnot o

urring in s.In fa
t, the semanti
s of rules has 
lose 
onne
tions with the proof theory oflinear logi
.Properties of se
urity proto
ols 
an be easily formalised in this framework. Forinstan
e, the se
re
y problem is essentially a state rea
hability problem (theinput for the problem is a theory, an initial state and an atomi
 senten
e).The problem is to determine whether there is a rea
hable state in whi
h thesaid atomi
 senten
e holds.We now des
ribe our model informally. While it does not di�er drasti
ally fromany of the models des
ribed above, still there are di�eren
es in emphasis. Our fo
usis on retaining enough distin
tions at the level of proto
ol spe
i�
ation so that it iseasy to de�ne 
ertain synta
ti
 sub
lasses, for whi
h we later prove the de
idabilityof verifying se
re
y.Proto
ol spe
i�
ations: Se
urity proto
ols are typi
ally spe
i�ed as a (�nite) setof roles (typi
ally with names like 
hallenger, responder and so on). Theseare abstra
t patterns of 
ommuni
ation whi
h spe
ify what messages are sentwhen, and how to respond to the re
eipt of any message. The 
ontent of thesemessages is (usually) not relevant, but the stru
ture is; hen
e abstra
t variablessuÆ
e to des
ribe the proto
ol. For example, the Needham-S
hroeder 
an beviewed as 
onsisting of two roles, an initiator role given byA!B:fx;AgpubkB ; A?B:fx; ygpubkA; A!B:fygpubkB
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urity proto
ol modelling 22and a responder role given byB?A:fx;AgpubkB ; B!A:fx; ygpubkA; B?A:fygpubkB :Roles are typi
ally sequen
es of a
tions, whi
h 
an either be a send a
tion ofthe form A!B: t (whi
h stands for A sending t over the network intended forB) or a re
eive a
tion of the form A?B: t (whi
h stands for A re
eiving t overthe network with some indi
ation that the sender is B).In our model, we pay 
lose attention to proto
ol spe
i�
ations. In fa
t, themajor te
hni
al results in this thesis show that the manner in whi
h proto
olsare spe
i�ed has a major bearing on problems like verifying se
re
y of a givenproto
ol. In fa
t, the negative results in Chapter 3 point out that the abovestyle of presenting proto
ols admits too many 
ompli
ated proto
ols, whi
hare not representative of the proto
ols whi
h arise in pra
ti
e ([CJ97℄). So, forour positive results we fo
us on the more manageable 
lass of proto
ols whi
hare presented as sequen
e of 
ommuni
ations of the form A!B : t. This is alsothe informal style of presenting proto
ols whi
h is popular in the literature.There are also some admissibility 
onditions here that are assumed impli
itlyin the literature. We make them expli
it and point out their 
ru
ial role inthe analysis of proto
ols. The 
lass of proto
ols whi
h satisfy these 
onditionsare 
alled well-formed proto
ols.Starting from su
h des
riptions of a proto
ol, we formally de�ne the seman-ti
s of ea
h proto
ol. This is slightly di�erent from the style 
urrent in theliterature. For instan
e, in the indu
tive model, a proto
ol is formally a set ofrules (in higher-order logi
) whi
h spe
ify the 
onditions under whi
h runs ofthe proto
ol 
an be extended by adding an event. In the spi 
al
ulus model,a proto
ol is formally a spi 
al
ulus pro
ess (whi
h 
an generate the set ofall runs of the proto
ol). The passage from an informal proto
ol spe
i�
ation(as a sequen
e of 
ommuni
ations) to the formal obje
t is not given mu
hattention (as that is usually trivially a
hieved). But formally any �nite set ofrules (or any pro
ess) 
an be a proto
ol. The advantage of su
h an approa
his the high expressive power of the model. Any proto
ol 
an be 
oded up asa formal obje
t of the model. A possible disadvantage is that it is sometimesdiÆ
ult to isolate a 
ertain (synta
ti
 or semanti
) 
lass of proto
ols that wewish to 
on
entrate on. Further, it is sometimes diÆ
ult to judge whether a
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urity proto
ol modelling 23te
hni
al result (like unde
idability of veri�
ation, for instan
e) holds be
auseof something inherent to proto
ols or be
ause it is a general result whi
h holdsof the model itself.Messages: A proto
ol as spe
i�ed above is run by a set of agents, who are of twokinds: the mali
ious intruder and the rest, who are honest. They perform mes-sage ex
hanges as pres
ribed in the proto
ol. Following the lead of Dolev andYao ([DY83℄), we will assume that the terms whi
h are 
ommuni
ated in mes-sage ex
hanges 
ome from a free algebra of terms with tupling and en
ryptionoperators. This means that we are operating on a spa
e of symboli
 terms,abstra
ting away from the fa
t that in the underlying system all messages arebit strings.We work with a simple syntax of messages whi
h allows only atomi
 keys.We disallow 
onstru
ted keys, using whi
h one 
an form messages of the formfxgfkgk0 . While this 
hoi
e 
ertainly limits the appli
ability of our model andthe results, we want to 
onsider key te
hni
al questions like the de
idabilityof the se
re
y problem in this important setting, before moving on to more
omplex settings. On the other hand we feel that some of the other extensionsto the message syntax, like hashing, 
an be easily handled and almost all ourresults will go through with minor modi�
ations.Cryptographi
 assumptions: Following the lead of Dolev and Yao ([DY83℄) wemake the perfe
t en
ryption assumption. This means that a message en
ryptedwith key k 
an be de
rypted only by an agent who has the 
orrespondinginverse k. We thus abstra
t away 
ryptographi
 
on
erns and treat en
ryp-tion and de
ryption as symboli
 operators. There is a di�erent tradition tostudying se
urity proto
ols, 
alled the \
omputational approa
h". In this ap-proa
h, proto
ols are shown 
orre
t by redu
ing the proto
ol to the underlying
ryptography, i.e., it is shown that if there exists an adversary with a signif-i
ant 
han
e of atta
king the proto
ol, there exists another adversary witha signi�
ant 
han
e of breaking the underlying 
ryptographi
 s
heme itself.The work [BR93℄ is an example of this approa
h. We have 
hosen the moreabstra
t framework whi
h is preferred by most resear
hers in formal methodsfor 
ryptographi
 proto
ols. Re
ently, there has been some important work inre
on
iling the two approa
hes to 
ryptography. (See [AR00℄, [Her02℄, [Her03℄,



Chapter 2: Se
urity proto
ol modelling 24for examples of su
h work.)We also abstra
t away the real-life phenomenon in whi
h some honest agentslose their long-term keys. This is modelled in [Pau98℄, for example, by thenotion of an Oops event. This re
e
ts the probabilisti
 nature of the underlying
ryptography, all the 
urrent s
hemes being not absolutely se
ure but onlyunbreakable with a very high probability. While we 
an model more atta
ksthis way, we opt for a more restri
ted model in whi
h de
idability questions areeasier to handle. Further our fo
us is mainly on logi
al 
aws in proto
ols whi
hexist even under the assumption that 
ryptography is absolutely unbreakable.Intruder 
apabilities: We assume an all-powerful intruder, who 
an 
opy every
ommuni
ation in the system, 
an blo
k any message and 
an pretend to beany agent. In addition he also has the message building 
apabilities availableto every agent. It is assumed that the intruder has unlimited 
omputationalresour
es and 
an keep a re
ord of every publi
 system event and utilize it atan arbitrarily later time. However, we assume that the intruder 
annot breaken
ryption. These assumptions keep the intruder model te
hni
ally simple.They are also followed widely in the literature.The di�erent models in the literature have tended to agree on most aspe
tsof the intruder modelling. Su
h an intruder is 
alled a Dolev-Yao intruder.Some variations to the above model have been tried but it has been shownthat they do not signi�
antly alter the intruder's powers. For example, wemight 
onsider a group of 
olluding intruders rather than a single intruder.But su
h a 
ollusion 
annot 
ause more atta
ks than a single intruder a
tingalone, as has been proved in [CMS00℄.Events and runs of a proto
ol: An event of a proto
ol is an a
tion of some roleof the proto
ol with a substitution whi
h supplies 
on
rete terms for the ab-stra
t pla
eholders mentioned in the roles. As observed earlier, arbitrary terms
an be substituted in pla
e of non
es. An important 
lass of events we will
onsider are the 
lass of well-typed events whi
h are obtained by substitutionswhi
h repla
e non
es only by non
es. It is 
lear that there are potentiallyin�nitely many events of a proto
ol. If the set of non
es and keys is assumedto be in�nite, it is possible that even the set of well-typed events is in�nite.A run of a proto
ol 
an informally be thought of as a sequen
e of events whi
h
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urity proto
ol modelling 25respe
ts 
ertain admissibility 
onditions, whi
h will be detailed below. Thus itis seen that we do not pla
e any bounds on the number of plays o

urringin a run, or on the number of plays whi
h are a
tive simultaneously (parallelsessions, as we 
alled them earlier). It is to be noted that in [MS01℄ and[RT03℄, 
ertain de
idability results are obtained by essentially pla
ing boundson the number of plays that 
an o

ur in any run of the proto
ol. We followan alternative approa
h by retaining the more general model and proving the
orresponding de
idability results for synta
ti
 sub
lasses of proto
ols.We 
onsider sequential runs, like most of the other models in the literature,and unlike the strand spa
es model. We 
hoose sequential runs over partiallyordered runs sin
e we �nd it is easier to present the de
idability arguments inthat setting.Admissibility: Arbitrary interleavings of plays of a proto
ol are not 
ounted asruns. They have to be realisable, in the sense that for every a
tion a o

urringin the run, if t is the term 
ommuni
ated in a and if agent A is the 
ommu-ni
ator, t 
an be 
onstru
ted from the information whi
h is presented to Ain the initial state along with the information learnt by her from the messageex
hanges pre
eding a. Another important requirement is that 
ertain se
retswhi
h are used as instantiations of new non
es (i.e., abstra
t se
ret nameswhi
h are spe
i�ed as \fresh" by the proto
ol) should satisfy the property offreshness, i.e. these se
rets have not been used before in the run. Thus a re
ordof the se
rets used so far in the run has to be ne
essarily kept. These 
on-siderations lead us to the notions of information state of an agent and message
onstru
tion rules. The agents are supposed to have learnt all the messageswhi
h have been 
ommuni
ated to them. Further they 
an 
onstru
t newmessages from old by tupling, detupling, en
ryption and de
ryption using knownkeys, and by generating new unguessable non
es whi
h have not been pre-viously used by anyone. The formal 
ounterparts of the message generationrules are the operators synth and analz whi
h are at the heart of most of thete
hni
al results in the thesis.It is to be noted that our de�nition of runs is quite 
lose to that given in[Pau98℄. At the level of de�ning runs, the admissibility 
onditions are quitestandard in the literature. The key element in our model is that we 
onsider
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urity proto
ol modelling 26in
orporating some of these 
onditions in the proto
ol spe
i�
ation itself as aformalisation of a notion of a \well-behaved proto
ol".Initial knowledge: This is another feature of se
urity proto
ol modelling in whi
hthe di�erent existing models have tended to display slight di�eren
es. Onetypi
al approa
h is to let this be part of the spe
i�
ation of proto
ols. Forinstan
e, we might say that every agent shares a key with the server in theinitial state, while the server has (or 
an generate) all the other keys, whi
h theagents 
an request and obtain. Or we might say that every agent shares a keywith every other agent in the initial state. We follow the te
hni
ally simpleapproa
h of �xing a set of keys known to ea
h of the agents in the initialstate, independent of the proto
ol. This looks restri
tive, but the model 
anbe easily adapted to in
lude su
h proto
ol spe
i�
ations. We only need to adda few 
onsisten
y 
onditions (for instan
e, at every state, if a key is availableto some agent, then its inverse is also available to some (not ne
essarily thesame) agent) for some of the te
hni
al results in Chapter 4 to go through.Closely related to this is the issue of 
onstant terms of a proto
ol. Typi
alnames o

urring in a proto
ol spe
i�
ation (like the names A, B, x, et
. ofthe Needham-S
hroeder proto
ol) are pla
eholders whi
h 
an be substitutedwith any other term to generate runs. But some proto
ols might refer to someagents like a key server, whose role 
an be played only by some designatedpro
esses. Thus we do not allow the meanings of these names to 
hange duringthe 
ourse of a proto
ol run. While we usually do not distinguish between therest of the honest agents either in terms of their initial knowledge or in terms oftheir 
omputational power, designated agents like the key server might havesome extra information in the initial state, and some added 
omputationalpower as well.2.2 A formal model for se
urity proto
ols2.2.1 Se
urity proto
ols and their runsBasi
 termsWe assume a (potentially in�nite) set of agents Ag with a spe
ial intruderI 2 Ag . The set of honest agents, denoted Ho, is de�ned to be Ag n fIg. We
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urity proto
ol modelling 27assume that the set of keys K is given by K0 [ K1 where K0 is a 
ountable setand K1 def= fkAB ; pubkA; privkA j A;B 2 Ag ; A 6= Bg. pubkA is A's publi
 key andprivkA is its private key. kAB is the (long-term) shared key of A and B. For k 2 K,k, the inverse key of k, is de�ned as follows: pubkA = privkA and privkA = pubkAfor all A 2 Ag , and k = k for all the other keys. For every agent A, the set ofkeys whi
h are assumed to be always known by A, denoted KA, is de�ned to befkAB ; kBA; pubkA; privkA; pubkB j B 2 Ag ; B 6= Ag. We also assume a 
ountableset of non
es N . (`Non
e' stands for \number on
e used"). We also assume a per-fe
t non
e generation me
hanism whi
h 
an generate a nonguessable, unique non
eon ea
h invo
ation. Finally we assume a set SN of sequen
e numbers (numberswhi
h are used to asso
iate one message with another). A me
hanism to generatesequen
e numbers is also assumed, whi
h 
an generate a unique (but not ne
essarilynonguessable) number on ea
h invo
ation. T0, the set of basi
 terms, is de�ned tobe K [N [ SN [Ag . The set K0 [N [ SN [Ag will also play a spe
ial role in thesubsequent development. We use the notation T0 to denote it.Further we �x the non
e n0, the sequen
e number m0, and the key k0 2 K0 for thewhole dis
ourse. They will essentially play the role of the intruder's initial knowledge, aswill be explained later.TermsThe set of information terms is de�ned to beT ::= m j (t1; t2) j ftgkwhere m ranges over T0 and k ranges over K. These are the terms used in themessage ex
hanges below.The notion of subterm of a term is the standard one | ST (m) = fmg form 2 T0;ST ((t1; t2)) = f(t1; t2)g[ST (t1)[ST (t2); and ST (ftgk) = fftgkg[ST (t)[ST (k).t0 is an en
rypted subterm of t if t0 2 ST (t) and t0 is of the form ft00gk. EST (t)denotes the set of en
rypted subterms of t. The size of terms is indu
tively de�nedas follows: jmj = 1 for m 2 T0; j(t1; t2)j = jt1j+ jt2j+ 1; and jftgkj = jtj+ jkj+ 1.In the rest of the thesis, we use the notation j � j in three di�erent meanings: asthe size of terms, as the size of sets, and as the length of sequen
es. It is easy toknow what is meant by looking at the 
ontext.The term ftgk is an abstra
t notation where we make no 
ryptographi
 assump-
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urity proto
ol modelling 28tions about the algorithm used to form ftgk from t and k. It 
ould stand for ten
rypted with the key k, or it 
ould stand for t appended with a signature usingthe key k. Following the lead of Dolev and Yao [DY83℄ we make the perfe
t en
ryp-tion assumption. This means that a message en
rypted with key k 
an be de
ryptedonly by an agent who has the 
orresponding inverse k. This is re
e
ted in the en
ryptand de
rypt rules below.A
tionsAn a
tion is either a send a
tion of the form A!B: (M)t or a re
eive a
tion ofthe form A?B: t where: A 2 Ho; B 2 Ag and A 6= B; t 2 T ; and M is a subsetof ST (t) \ (N [ K0 [ SN ). In a send a
tion of the form A!B: (M)t, M is the setof non
es, keys and sequen
e numbers freshly generated by A just before sendingt. For simpli
ity of notation, we write A!B: t instead of A!B: (;) t. The set of alla
tions is denoted by A
, the set of all send a
tions is denoted by Send , and theset of all re
eive a
tions is denoted by Re
. A
A, the set of A-a
tions is given byfC!D: (M)t; C?D: t 2 A
 j C = Ag.Note that we do not have expli
it intruder a
tions in the model. As will be
lear from the de�nition of updates 
aused by a
tions, every send a
tion is impli
itly
onsidered to be an instantaneous re
eive by the intruder, and similarly, every re
eivea
tion is 
onsidered to be an instantaneous send by the intruder. Thus the agent Bis (merely) the intended re
eiver in A!B: (M)t and the purported sender in A?B: t.For a of the form A!B: (M)t, term(a) def= t and NT (a) def= M . For a of the formA?B: t, term(a) def= t and NT (a) def= ;. NT (a) stands for new terms generatedduring a
tion a. ST (a) and EST (a) have the obvious meanings, ST (term(a)) andEST (term(a)) respe
tively. terms(�) def= [1�i�` term(ai) for � = a1 � � �a` 2 A
�.NT (�), ST (�) and EST (�) are similarly de�ned. ��A, A's view of �, is de�nedindu
tively as follows: "�A = "; (� � a)�A = (��A) � a if a 2 A
A and ��A otherwise.Proto
ol spe
i�
ationsDe�nition 2.2.1 An information state s is a tuple (sA)A2Ag where sA � T for ea
hagent A. S denotes the set of all information states. For a state s, we de�ne ST (s)to be [A2Ag ST (sA).



Chapter 2: Se
urity proto
ol modelling 29De�nition 2.2.2 A proto
ol is a pair Pr = (C;R) where:� C, the set of 
onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� R, the set of roles of Pr, denoted Roles(Pr), is a �nite subset of A
+ su
h thatfor ea
h � 2 R, there is an A 2 Ho with � 2 A
+A.De�nition 2.2.3 Given a proto
ol Pr = (C;R), init(Pr), the initial state of Pr isde�ned to be (TA)A2Ag where for all A 2 Ho, TA = C [ KA and TI = C [ KI [fn0;m0; k0g.This style of presentation of proto
ols is 
lose to that in the multiset rewritingframework of [CDL+99℄, [DLMS99℄, [DM99℄, et
., and the pro
ess algebra frameworkof [AG99℄, [Low96℄, et
. The more usual style of presenting proto
ols is developedin a later se
tion.As we have mentioned earlier, we do not expli
itly model intruder a
tions. Thuswe do not expli
itly model the phenomenon of the intruder generating new non
esin the 
ourse of a run, as is done in some other models (for instan
e, [DLMS99℄). Analternative would be to provide an arbitrary set of non
es and keys to the intruderin the initial state. We follow the approa
h of just providing the intruder with the�xed non
e n0, the �xed sequen
e number m0, and the �xed key k0 in the initialstate. They serve as symboli
 names for the set of new data the intruder mightgenerate in the 
ourse of a run. This suÆ
es for the analysis we perform in ourproofs later. We will ensure as we develop the model that n0, m0 and k0 are notgenerated as a fresh term by any honest agent in the 
ourse of a run of Pr.Example 2.2.4 A version of the Needham-S
hroeder proto
ol ([NS78℄) is presentedin this example. The proto
ol PrNS is given by (C;R) where� C = ;, and� R = f�1; �2g, where{ �1 is the following sequen
e:1. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkB
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urity proto
ol modelling 30{ �2 is the following sequen
e:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBThe proto
ol has two roles: we 
all �1 the initiator role and �2 the responder role.A sends the new non
e x to B as a 
hallenge to prove his (B's) identity. She thenre
eives a response to it as also a 
hallenge from B in the form of a non
e y. She�nally responds to B's 
hallenge by sending ba
k y. Sin
e only B 
an de
rypt the
ontents of the �rst message, A is at least 
onvin
ed that B is alive. Similarly,B �rstre
eives a 
hallenge from A and responds to it while issuing his own 
hallenge. He�nally re
eives the response to his 
hallenge. Sin
e only A 
ould have de
rypted the
ontents of the message sent by B, the latter is at least 
onvin
ed that A is alive. 2Example 2.2.5 Here is another example of a proto
ol, We 
all this Prut. It is givenby (C;R) where:� C = ;, and� R = f�1; �2g where{ �1 is the following sequen
e:1. A ! B : (x) fA; fxgpubkBgpubkB2. A ? B : fxgpubkA{ �2 is the following sequen
e:1. B ? A : fA; fxgpubkBgpubkB2. B ! A : fxgpubkAHere again we 
an 
all the role �1 the initiator role and the role �2 the responder role.The initiator issues a 
hallenge, response to whi
h will ensure her at least of theresponder's being alive in the network. The responder plays the passive role of justresponding to the 
hallenge. 2



Chapter 2: Se
urity proto
ol modelling 31Substitutions and events of a proto
olA substitution � is a partial map from T0 to T su
h that:� for all A 2 Ag , if �(A) is de�ned then it belongs to Ag ,� for all k 2 K0, if �(k) is de�ned then it belongs to K0, and� for all m 2 SN , if �(m) is de�ned then it belongs to SN .An important point to note about substitutions is that non
es 
an be substitutedwith arbitrary terms. Thus our formal model allows the possibility of some kinds oftype-
aw atta
ks to be 
arried out by the intruder. A substitution � is well-typedi� for all n 2 N , if �(n) is de�ned then it belongs to N . Given a set T � T0, asubstitution is said to be a T -substitution i� for all m 2 T0, if �(m) is de�ned thenit belongs to T .Substitutions are extended to terms, sets of terms, a
tions and sequen
es ofa
tions in a straightforward manner, as follows:� �(pubkA) and �(privkA) are de�ned only if �(A) is de�ned, in whi
h 
ase theyare de�ned to be pubk�(A) and privk�(A), respe
tively.� �(kAB) is de�ned only if �(A) and �(B) are de�ned and �(A) 6= �(B), inwhi
h 
ase it is de�ned to be k�(A)�(B).� �((t; t0)) is de�ned only if �(t) and �(t0) are de�ned, in whi
h 
ase it is de�nedto be (�(t); �(t0)).� �(ftgk) is de�ned only if �(t) and �(k) are de�ned, in whi
h 
ase it is de�nedto be f�(t)g�(k).� �(T ) is de�ned only if �(t) is de�ned for all t 2 T , in whi
h 
ase it is de�nedto be f�(t) j t 2 Tg.� �(A!B: (M)t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho,�(A) 6= �(B), and �(M \ N) is a subset of N , in whi
h 
ase it is de�ned tobe �(A)!�(B): (�(M))�(t).� �(A?B: t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho, and�(A) 6= �(B), in whi
h 
ase it is de�ned to be �(A)?�(B):�(t).



Chapter 2: Se
urity proto
ol modelling 32� for � = a1 � � �a` 2 A
�, �(�) is de�ned only if �(ai) is de�ned for all i � `, inwhi
h 
ase it is de�ned to be �(a1) � � ��(a`).A substitution � is said to be suitable for an a
tion a i� �(a) is de�ned, andsuitable for a sequen
e of a
tions � i� �(�) is de�ned. � is said to be suitable for aproto
ol Pr if �(t) is de�ned and equal to t for all 
onstants t 2 CT(Pr).Example 2.2.6� Here are two substitutions suitable for the proto
ol PrNS, presented in Exam-ple 2.2.4:{ �1 given by: �1(x) = m, �1(y) = n, �(A) = A and �1(B) = I.{ �2 given by: �2(x) = m, �2(y) = n and �2(A) = A and �2(B) = B.Of these �1 is suitable for �1 and �2 is suitable for �2. Noti
e that �1 is notsuitable for �2 sin
e �1(B) = I and �2 2 A
�B.� Here are three substitutions suitable for the proto
ol presented in Exam-ple 2.2.5.{ &1 given by: &1(x) = m, &1(A) = A and &1(B) = B.{ &2 given by: &2(x) = (A; fmgpubkB), &2(A) = I, and &2(B) = B.{ &3 given by: &3(x) = m, &3(A) = I, and &3(B) = B.Of these &1 is suitable for �1 and &2 and &3 are suitable for �2. Noti
e that &3 isnot suitable for �1 sin
e �1 2 A
�A and &3(A) = I. &2 is not suitable for �1 forthe same reason, and also sin
e x 2 NT (�1) but &2(x) 62 T0. 2An event is a triple (�; �; lp) su
h that � 2 A
+, � is a substitution suitable for�, and 1 � lp � j�j. The set of all events is denoted Events. An event (�; �; lp) issaid to be well-typed i� � is well-typed. For a set T � T0, an event (�; �; lp) is saidto be a T -event i� � is a T -substitution. An event e = (�; �; lp) is said to be anevent of a proto
ol Pr if � 2 Roles(Pr) and � is suitable for Pr. The set of all eventsof Pr is denoted Events(Pr).
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urity proto
ol modelling 33For an event e = (�; �; lp) with � = a1 � � �a`, a
t(e) def= �(alp). If lp < j�j then(�; �; lp) !` (�; �; lp + 1). For any event e, LP(e), the lo
al past of e, is de�ned tobe the set of all events e0 su
h that e0 +!`e. For any event e, term(e) will be used todenote term(a
t(e)) and similarly for NT (e), ST (e), EST (e), et
. For any sequen
e� = e1 � � � ek of events, terms(�) def= [1�i�k term(ei). NT (�), ST (�), EST (�) et
. aresimilarly de�ned.For any sequen
e of events � = e1 � � � ek, Events(�) def= fe1; : : : ; ekg.Message generation rulesDe�nition 2.2.7 A sequent is of the form T ` t where T � T and t 2 T .An analz-proof (synth-proof) � of T ` t is an inverted tree whose nodes are la-belled by sequents and 
onne
ted by one of the analz-rules (synth-rules) in Figure 2.1,whose root is labelled T ` t, and whose leaves are labelled by instan
es of the Axarule (Axs rule). For a set of terms T , analz(T ) (synth(T )) is the set of terms t su
hthat there is an analz-proof (synth-proof) of T ` t.For ease of notation, synth(analz(T )) is denoted by T .Thus T represents the 
losure of T got by �rst \analysing" all terms in T intotheir sub
omponents, using the analz-rules, and then \synthesizing" new terms usingthe synth-rules. Later, we will prove that this de�nition is equivalent to a di�erentway of de�ning the 
losure of T , in whi
h the synth and analz-rules are applied inan arbitrary order.The analz-rule de
rypt says that if the abstra
t term ftgk and k 
an be derivedfrom T , then t 
an also be derived. This 
ould either mean de
rypting the en
ryptedterm ftgk using the inverse key k, or verifying the signed term ftgk using the 
or-responding sign veri�er k. Thus this is an abstra
t rule in whi
h, depending onthe status of k, the 
on
rete algorithm whi
h leads to the derivation of t di�ers.Similarly, the synth-rule en
rypt 
ould either denote either en
ryption or signing.The rule redu
e really says that fftgkgk is a di�erent abstra
t notation whi
h de-notes the same term denoted by t. This is again a 
onsequen
e of the fa
t thatftgk denotes di�erent 
ryptographi
 algorithms | en
ryption, de
ryption, signing,verifying signatures, et
.Example 2.2.8 Let T = ftg where t = (ff(m;n)gkgk0; (k; k0)). The analz-proofgiven in Figure 2.2 shows that m 2 analz(T ). To redu
e 
lutter, we use the notation
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urity proto
ol modelling 34AxaT [ ftg ` tT ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k de
ryptT ` tT ` fftgkgk redu
eT ` tanalz-rules

AxsT [ ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k en
ryptT ` ftgksynth-rulesFigure 2.1: analz and synth rules.
AxaT ` t split1T ` t1 AxaT ` t split2T ` t2 split2T ` k0 de
ryptT ` t3 AxaT ` t split2T ` t2 split1T ` k de
ryptT ` t4 split1T ` mFigure 2.2: An example analz-proof.t1 for ff(m;n)gkgk0, t2 for (k; k0), t3 for f(m;n)gk and t4 for (m;n). 2Example 2.2.9 Let T = fm;n; k; k0g and t = ff(m;n)gkgk0. The synth-proof givenin Figure 2.3 shows that t 2 synth(T ). For readability, we denote f(m;n)gk by t1and (m;n) by t2. 2Example 2.2.10 Note that when t0 = (ff(m;n)gkgk0; (k; k0)), m 62 analz(ft0g) un-less k = k. Also note that if T 00 = f(n;m); k; k0g and t00 = ff(m;n)gkgk0, t00 2 T 00but t00 62 synth(T 00). 2
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urity proto
ol modelling 35AxsT ` m AxsT ` n pairT ` t2 AxsT ` k en
ryptT ` t1 AxsT ` k0 en
ryptT ` tFigure 2.3: An example synth-proof.Information states and updatesDe�nition 2.2.11 The notions of an a
tion enabled at a state and update of a stateon an a
tion are de�ned as follows:� A!B: (M)t is enabled at s i� t 2 sA [M .� A?B: t is enabled at s i� t 2 sI.� update(s; A!B: (M)t) def= s0 where s0A = sA [M [ ftg, s0I = sI [ ftg, and forall C 2 Ag n fA; Ig, s0C = sC .� update(s; A?B: t) def= s0 where s0A = sA[ftg and for all C 2 AgnfAg, s0C = sC .update(s; ") = s, update(s; � � a) = update(update(s; �); a).In an a
tion of the form A!B: (M)t, M is supposed to represent the set of newterms whi
h are generated by the a
tion. For su
h an a
tion to be enabled at a states, it is natural to expe
t that a freshness 
ondition should hold, namely that noneof the terms in M belong to ST (s). We �nd it simpler to ensure this 
ondition inthe de�nition of runs (whi
h o

urs later in this se
tion) rather than here. Sin
e weusually look at states only in the 
ontext of runs, there are no te
hni
al problemsas well.Note that we have 
hosen to let I re
ord only the terms 
ommuni
ated overthe network, and not the sender and re
eiver information as well. This is a slightdeparture from the usual pra
ti
e, and also from what was said in our informaldis
ussion of the model. We 
hoose the simpler alternative, sin
e the 
hoi
e heredoes not have a bearing on our main results.Another aspe
t worth noting here is that the intruder is a
ting as an unboundedbu�er whi
h syn
hronises with ea
h send and re
eive event of the honest agents. Ine�e
t the intruder is playing the role of the network as well, but there are some vital
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urity proto
ol modelling 36di�eren
es. The intruder is assumed not to lose any message (even though it mightnot be sent to the intended re
epient). This simpli�es mu
h of our analysis sin
eat any point in time, the intruder has all the messages ex
hanged thus far. In areal-life situation the network (having �nite memory) might lose some informationand hen
e our analysis might get more 
ompli
ated due to 
onsideration of pastinformation.De�nition 2.2.12 Given an information state s and a sequen
e of events � =e1 � � � ek, infstate(s; e1 � � � ek) is de�ned to be update(s; a
t(e1) � � �a
t(ek)). An evente is said to be enabled at (s; �) i� LP(e) � fe1; : : : ; ekg and a
t(e) is enabled atinfstate(s; �).Given a proto
ol Pr and a sequen
e � = e1 � � � ek of events of Pr, infstatePr(�) isde�ned to be infstate(init(Pr); e1 � � � ek). We omit the subs
ript Pr if the 
ontext is
lear. An event e of Pr is said to be enabled at a sequen
e � of events of Pr i� e isenabled at (init(Pr); �).The following two propositions, whi
h state that if an agent A is not \involved"in an a
tion a then a does not a�e
t A's state, are easy 
onsequen
es of the de�nitionof update.Proposition 2.2.13 Suppose s is an information state, � is a �nite sequen
e ofa
tions, A 2 Ho and a 62 A
A. Then (update(s; �))A = (update(s; � � a))A. As a
onsequen
e, for all information states s, all �nite sequen
es of a
tions � and forall A 2 Ho, (update(s; �))A = (update(s; ��A))A.Proposition 2.2.14 Suppose s is an information state, � is a �nite sequen
e ofa
tions, and a is a re
eive a
tion. Then (update(s; �))I = (update(s; � � a))I.Runs of a proto
olWe isolate the sequen
es of events whi
h 
an possibly o

ur as runs of proto
olsin the following de�nition. In the next de�nition, we de�ne the set of runs of a givenproto
ol.De�nition 2.2.15 A sequen
e of events e1 � � � ek is said to be a run with respe
t toan information state s i�:� for all i : 1 � i � k, ei is enabled at (s; e1 � � � ei�1),



Chapter 2: Se
urity proto
ol modelling 37� for all i : 1 � i � k, NT (ei) \ ST (s) = ;, and for all i < j � k, NT (ei) \NT (ej) = ;. (This is the unique origination property of runs.)A run is � is said to be well-typed i� every e 2 Events(�) is well-typed. For a givenT � T0, a run � is said to be a T -run i� every e 2 Events(�) is a T -event.De�nition 2.2.16 Given a proto
ol Pr, a sequen
e � of events of Pr is said to be arun of Pr i� it is a run with respe
t to init(Pr).We let R(Pr) denote the set of all runs of Pr, Rwt(Pr) denote the set of all well-typed runs of Pr, and for any given T � T0, RT (Pr) denote the set of all T -runs ofPr.Note that in our de�nition of runs, we do not insist that every send event havea \mat
hing" re
eive event. These would be the messages whi
h are blo
ked by theintruder. There is no requirement that every re
eive should have a \mat
hing" send,as well. These would be the messages whi
h are generated and sent by the intruder(possibly under an assumed identity).Example 2.2.17� An example run of PrNS is �1, given below:(�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBHere �1 and �2 are roles of PrNS de�ned in Example 2.2.4 and �1 and �2 aresubstitutions suitable for PrNS de�ned in Example 2.2.6.� An example run of Prut is �2, given below:(�1; &1; 1) A ! B : (m) fA; fmgpubkBgpubkB(�2; &2; 1) B ? I : fI; fA; fmgpubkBgpubkBgpubkB(�2; &2; 2) B ! I : fA; fmgpubkBgpubkI(�2; &3; 1) B ? I : fI; fmgpubkBgpubkB(�2; &3; 2) B ! I : fmgpubkI(�1; &1; 2) A ? B : fmgpubkA
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urity proto
ol modelling 38Again �1 and �2 are roles of Prut de�ned in Example 2.2.5 and &1, &2 and &3 aresubstitutions suitable for Prut de�ned in Example 2.2.6.� Let us now look at some non-examples of runs. The following is not a runof PrNS sin
e the se
ond message, whi
h has been sent by the intruder to A,
annot be 
onstru
ted by I from the rest of available information. Only B 
ande
rypt the �rst message and learn m, whi
h is a fresh non
e generated by Aand so is unavailable to the intruder at any previous time.(�1; �; 1) A ! B : (m) fA;mgpubkB(�1; �; 2) A ? B : fm;mgpubkAThe following is not a run of PrNS for the simple reason that property of uniqueorigination of non
es is not maintained.(�1; �; 1) A ! B : (m) fA;mgpubkB(�2; �0; 1) B ? A : fA;mgpubkB(�2; �0; 2) B ! A : (m) fm;mgpubkA(�1; �; 2) A ? B : fm;mgpubkA 2The following is an easy 
onsequen
e of the de�nition of runs.Proposition 2.2.18 Suppose � = e1 � � � ek is a run with respe
t to a state s. Thenfor all i � k, NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;.Proof: We �rst prove that ST (infstate(s; e1 � � � ei�1)) \ T0 = (ST (s) \ T0) [NT (e1 � � � ei�1). For this it suÆ
es to prove that for any sequen
e of a
tions �,ST (update(s; �))\T0 = (ST (s)\T0)[NT (�). For this, we �rst observe that for allstates s and a
tions a, ST (update(s; a))\T0 = (ST (s)\T0)[NT (a). Now the state-ment is proved by an easy indu
tion on j�j. The statement is immediate for � = ". If� = �0 �a then we note that update(s; �) = update(s0; a) where we denote update(s; �0)by s0. Therefore ST (update(s; �)) \ T0 = (ST (s0) \ T0) [ NT (a). Now NT (�) =NT (�0) [ NT (a), and by indu
tion hypothesis, ST (s0) \ T0 = ST (s) [ NT (�0), andthus the statement immediately follows.
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urity proto
ol modelling 39Using the above fa
t, we prove the proposition. Sin
e � has the unique origina-tion property, it is 
lear that NT (ei) \ ST (s) = ; and NT (ei) \ NT (ej) = ; for allj < i. This implies that NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;. 2Another aspe
t of our de�nition of runs is worth highlighting. We allow eventsto have more than one o

urren
e in a run (as long as they do not generate freshnon
es). This is not stri
tly ne
essary, sin
e there is no information gain in re-peating the same event many times. But we retain this de�nition, as imposing a
ondition on unique o

urren
e of events would make some of our de�nitions andproofs 
onsiderably messier. The following propositions suggest a way of removingdupli
ate events from a run in su
h a manner that the redu
ed run is leaky i� theoriginal run is.De�nition 2.2.19 The fun
tion red : Events ! Events is de�ned as follows:� red(") = ".� red(� � e) = ( red(�) � e if e 62 Events(red(�))red(�) otherwisered(�) is 
alled the redu
ed form of �. We 
all � a redu
ed run i� red(�) = �.It is easy to see that for any �, Events(�) = Events(red(�)) and red(�) has atmost one o

urren
e of ea
h event.Proposition 2.2.20 Suppose � is a run with respe
t to s0. Then:1. infstate(s0; �) = infstate(s0; red(�)), and2. red(�) is also a run with respe
t to s.Proof:1. This is quite easy to prove. We prove it by indu
tion on the length of �. Thebase 
ase is trivial, sin
e red(") = ". For the indu
tion step, there are two
ases to 
onsider:� Suppose � = �0 � e and e 2 Events(red(�0)). Then red(�) = red(�0). There-fore infstate(s0; red(�)) = infstate(s0; red(�0)). Sin
e infstate(s0; �0) =infstate(s0; red(�0)), by indu
tion hypothesis, the desired result will follow



Chapter 2: Se
urity proto
ol modelling 40if we show that infstate(s0; �) = infstate(s0; �0). Denote infstate(s0; �) =s and infstate(s0; �0) = s0 for notational 
onvenien
e. Let us 
onsiderthe 
ase when a
t(e) = A!B: (M)t. The 
ase when e is a re
eive eventis similarly handled. Sin
e e 2 Events(red(�0)), e 2 Events(�0) as well.Now if M were not empty, then it would mean that two distin
t evento

urren
es of � generate the same new non
e (or key), whi
h would bea violation of the unique origination property of the run �. Thus M = ;.Further it follows from e 2 Events(�0) and the de�nition of update thatt 2 s0A\s0I . From the de�nition of update and the fa
t thatM = ;, we alsosee that sA = s0A [ftg, sI = s0I [ftg and sC = s0C for all C 2 Ag n fA; Ig.Sin
e t 2 s0A \ s0I , it is 
lear that s = s0 and we are through.� Suppose � = �0 � e and e 62 Events(red(�0)). Then red(�) = red(�0) � e. Fur-ther sin
e Events(�0) = Events(red(�0)), e 62 Events(�0) as well. Denoteinfstate(s0; �0) = s0 and infstate(s0; red(�0)) = s01 for notational 
onve-nien
e. Now infstate(s0; �) = update(s0; a
t(e). But by indu
tion hypoth-esis, s0 = s01 and therefore update(s0; a
t(e)) is equal to update(s01; a
t(e)),whi
h is the same as infstate(s0; red(�)), by de�nition.2. Sin
e Events(�) = Events(red(�)), red(�) also has the unique origination prop-erty. Further from the �rst part of the proposition, it follows that every eventof red(�) is enabled at the end of the sequen
e of events pre
eding it. 2The se
re
y problemDe�nition 2.2.21 A basi
 term m 2 T0 is said to be se
ret at state s i� there existsA 2 Ho su
h that m 2 analz(sA) n analz(sI). Given a proto
ol Pr and � 2 R(Pr), mis said to be se
ret at � if it is se
ret at infstate(�). � is leaky i� there exists a basi
term m and a pre�x �0 of � su
h that m is se
ret at �0 and not se
ret at �.The se
re
y problem is the problem of determining for a given proto
ol Pr whethersome run of Pr is leaky. The se
re
y problem for well-typed runs is the problem ofdetermining for a given proto
ol Pr whether some well-typed run of Pr is leaky. Fora given T � T0, the se
re
y problem for T -runs is the problem of determining for a
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urity proto
ol modelling 41given proto
ol Pr whether some T -run of Pr is leaky.Thus we say that a run is leaky if some atomi
 term is se
ret at some intermediatestate of the run but is revealed to the intruder at the end of the run. It is possible thatthere are proto
ols for whi
h leaks of the above form do not 
onstitute a brea
h ofse
urity. A more general notion would be to allow the user to spe
ify 
ertain se
retswhi
h should not be leaked and 
he
k for su
h leaks. In later 
hapters, we prove thede
idability of the se
re
y problem (de�ned above) for a sub
lass of proto
ols. Itis still not known whether there is a \reasonable" synta
ti
 sub
lass of proto
olsfor whi
h the more general se
re
y problem (whi
h 
he
ks for leaks of user-spe
i�edse
rets) is de
idable.Example 2.2.22� The run �1 of Example 2.2.17 is leaky. This is be
ause n is se
ret at the pre�x�01 = (�1; �1; 1) � (�2; �2; 1) � (�2; �2; 2) of �1, whereas it is not se
ret at �1.� Similarly, the run �2 of Example 2.2.17 is also leaky, for m is se
ret at thepre�x �02 = (�1; &1; 1) of �2, but it is not se
ret at �2. 22.2.2 Well-formed proto
olsIn the literature, proto
ols are informally presented as a sequen
e of 
ommuni
a-tions of the form A!B : t. There are also some other \well-formedness" 
onditionswhi
h are impli
itly assumed. In this se
tion, we formalise these 
riteria and exploretheir 
onsequen
es. The main property of well-formed proto
ols is that for ea
h oftheir roles and plays, every send a
tion in it is enabled by the previous a
tions.As a result, when we analyse well-formed proto
ols, 
he
king enabledness of senda
tions by honest agents is relatively straightforward. If e1 � � � ek is a run of a well-formed proto
ol Pr and e is a send event su
h that LP(e) � fe1; � � � ; ekg, then asa 
onsequen
e of the propositions proved in this se
tion, e is enabled at �. Hen
eif the new terms introdu
ed in e do not already o

ur in e1 � � � ek, then e1 � � � ek � eis also a run of the proto
ol. Thus the task of 
he
king whether a send event ispermissible at a given stage of a run is mu
h simpli�ed. In analysing a well-formedproto
ol, it suÆ
es to 
he
k the enabledness of the re
eive a
tions (
orresponding to
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urity proto
ol modelling 42intruder sends). This has also been the standard pra
ti
e in the analysis of se
urityproto
ols. It 
an be seen that it is the impli
it assumption of well-formedness thatjusti�es this pra
ti
e.Well-formed Proto
olsA 
ommuni
ation is of the form A!B : (M)t where A;B 2 Ho, A 6= B, t 2 T ,and M � ST (t)\ (N [SN [K0). For a 
ommuni
ation 
 = A!B : (M)t, a
t s(
) isde�ned to be A!B: (M)t and a
tr(
) is de�ned to be B?A: t. Thus a 
ommuni
ationspe
i�es a send and a 
orresponding instantaneous re
eive. Communi
ations are notne
essarily implementable (be
ause of the presen
e of the intruder), but neverthelesstheir use 
an lead to mu
h simpler spe
i�
ations of proto
ols than the role-basedspe
i�
ations.For a sequen
e of 
ommuni
ations Æ, a
tseq(Æ) is de�ned by indu
tion as follows:a
tseq(") = "; a
tseq(Æ � 
) = a
tseq(Æ) � a
ts(
) � a
tr(
). Thus from any givensequen
e of 
ommuni
ations we 
an obtain a sequen
e of a
tions by splitting ea
h
ommuni
ation into a send and a 
orresponding re
eive. These sequen
es are used toobtain the semanti
s of linear proto
ols (de�ned below), whi
h are spe
i�ed in termsof 
ommuni
ations. For any 
ommuni
ation 
, term(
) def= term(a
ts(
)). NT (
),ST (
) and EST (
) are similarly de�ned. For any sequen
e of 
ommuni
ations Æ,terms(Æ) def= terms(a
tseq(Æ)). NT (Æ), ST (Æ) and EST (Æ) are similarly de�ned.De�nition 2.2.23 A linear proto
ol is a pair Pr = (C; Æ) where:� C, the set of 
onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� Æ, the body of the proto
ol, is a nonempty sequen
e of 
ommuni
ations.Given a linear proto
ol Pr = (C; Æ), Roles(Pr), the set of roles of Pr, is de�ned to bethe set f��A j A 2 Ho and ��A 6= "g where � = a
tseq(Æ).Example 2.2.24 The proto
ol PrNS presented earlier is a linear proto
ol, with thefollowing spe
i�
ation: 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkB
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urity proto
ol modelling 43The proto
ol Prut presented earlier is also a linear proto
ol, with the followingspe
i�
ation: 1. A ! B : (x) fA; fxgpubkBgpubkB2. B ! A : fxgpubkA 2Even though the presentations look di�erent, linear proto
ols 
an in fa
t beviewed as a sub
lass of proto
ols as de�ned in De�nition 2.2.2, as the followingproposition asserts.Proposition 2.2.25 If Pr = (C; Æ) is a linear proto
ol, then (C;Roles(Pr)) is aproto
ol.The proof is by just observing the de�nitions. This proposition allows us to freelyuse the standard notions asso
iated with proto
ols (like init(Pr), for instan
e) forlinear proto
ols as well. Note that the 
onverse of the above proposition is not true.It is possible to 
ome up with proto
ols whi
h have no representation as a linearproto
ol.De�nition 2.2.26 A sequen
e of a
tions � = a1 � � �a` is said to be send-admissiblewith respe
t to a state s i� for all i � `, if ai is a send a
tion then ai is enabled atupdate(s; a1 � � �ai�1). � is said to be send-admissible with respe
t to a proto
ol Pr i�it is send-admissible with respe
t to init(Pr).De�nition 2.2.27 A well-formed proto
ol is a linear proto
ol Pr = (C; Æ) su
h thata
tseq(Æ) is send-admissible with respe
t to Pr.Proposition 2.2.28 Suppose Pr = (C; Æ) is a well-formed proto
ol. Then all itsroles are send-admissible with respe
t to Pr.Proof: For simpli
ity of notation, let s0 denote init(Pr). Let � = a
tseq(Æ). Sup-pose � = a1 � � �a` and suppose � = ai1 � � �air is a role of Pr, i.e., � = ��A forsome A 2 Ho. By Proposition 2.2.13, it is 
lear that for all j : 1 � j � r,(update(s0; a1 � � �aij ))A = (update(s0; ai1 � � �aij ))A. Sin
e Pr is a well-formed proto-
ol, � is send-admissible with respe
t to Pr. The send-admissibility of � now follows
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urity proto
ol modelling 44from the above equality. 2Proposition 2.2.29 Suppose Pr = (C; Æ) is a well-formed proto
ol, � is a role ofPr and � is a substitution suitable for Pr and �. Then �(�) is send-admissible withrespe
t to Pr.Proof: For simpli
ity of notation, let s0 denote init(Pr). Let � = a
tseq(Æ). Notethat � = ��A for some A 2 Ho. Sin
e � is suitable for Pr and �, � is de�nedon all a
tions o

urring in �, and �(m) = m for all m 2 CT(Pr). We �rst provefor all pre�xes � 0 of � that �(s0A) � (s01)�(A) by indu
tion on j� 0j (where we denoteupdate(s0; � 0) by s0 and update(s0; �(� 0)) by s01):� 0 = ": In this 
ase s0 = s01 = s0. Now it is 
lear that �(C) = C and �(KA) = K�(A).Sin
e A 2 Ho, �((s0)A) = C [ �(KA). Further (s0)�(A) � C [ K�(A) (withinequality when �(A) = I). It immediately follows that �(s0A) � (s01)�(A) inthis 
ase.� 0 = � 00 � a: Note that �(� 0) = �(� 00)��(a). For simpli
ity let us denote update(s0; � 00)by s00 and update(s0; �(� 00)) by s001. We need to prove that �(s0A) � (s01)�(A)assuming that �(s00A) � (s001)�(A).Now if a = A!B: (M)t then s0A = s00A [M [ ftg. Sin
e �(s00A) � (s001)�A , andsin
e �(s0A) = �(s00A) [ �(M) [ f�(t)g and (s01)�(A) = (s001)�A [ �(M) [ f�(t)g(be
ause �(a) = �(A)!�(B): (�(M)�(t)), it follows that �(s0A) � (s01)�(A).The 
ase when a = A?B: t is identi
ally handled. This proves the indu
tion
ase.From Proposition 2.2.28 it follows that � is send-admissible. Now 
onsider anypre�x � 0 � a of � with a 2 Send . For simpli
ity let us denote update(s0; � 0) bys0 and update(s0; �(� 0)) by s01. We know that term(a) 2 s0A [ NT (a). Thereforeterm(�(a)) = �(term(a)) 2 �(s0A [ NT (a)). But item 3 of Proposition 2.3.6 saysthat �(T ) � �(T ) for any � and T . Further �(s0A [ NT (a)) = �(s0A) [ NT (�(a))and by what has been proved above �(s0A) � (s01)�(A). Putting all this togetherwe see that term(�(a)) 2 (s01)�(A) [ NT (�(a)). This shows that �(�) is also send-admissible. 2
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urity proto
ol modelling 45Tagged Proto
olsWhile well-formed proto
ols enfor
e a reasonableness 
ondition at the level ofproto
ol spe
i�
ations, we must note that they still allow for quite unreasonablebehaviours. Substituting en
rypted terms for non
es 
an give the intruder theability to 
ir
umvent the proto
ol. For instan
e, a 
ommuni
ation of the formA!B :f(A; fxgB)gB in the proto
ol allows the intruder to 
apture it and send iton to B as: I!B :f(I; f(A; fxgB)gB)gB. On re
eipt B will interpret (A; fxgB) asa non
e and a
t a

ordingly. Depending on the situation, su
h a possibility mighthave undesirable 
onsequen
es. For example, 
onsider the following proto
ol:1. A ! B : (x) fxgpubkB2. B ! A : fxgkABB re
eives a non
e en
rypted in its own publi
 key and sends it ba
k to the senderen
rypted in the key kAB shared by them. Consider the following run now (let �1denote the initiator role, and �2 the responder role):(�1; �; 1) A ! B : (m) fmgpubkB(�2; �; 1) B ? A : fmgpubkB(�2; �; 2) B ! A : fmgkAB(�2; �0; 1) B ? A : ffmgkABgpubkB(�2; �0; 2) B ! A : ffmgkABgkABAt the end of the run above the intruder manages to learn ffmgkABgkAB . Sin
ekAB = kAB , using the redu
e rule we say that m 2 sI , where s is the state at the endof the above run. This situation arises be
ause B interprets fmgkAB as a non
e anden
rypts it and hands it over to the other party, in e�e
t de
rypting the messagefor the intruder. It is thus useful to look at ways to prevent su
h atta
ks fromhappening. Tagging is one su
h me
hanism that seeks to distinguish between termsof di�erent stru
ture and prevent atta
ks su
h as the above. More spe
i�
ally, tagsare just 
onstants whi
h a
t as message identi�ers and are atta
hed to some of theen
rypted subterms of messages whi
h are 
ommuni
ated during a run. The useof tags has the e�e
t of preventing the intruder from passing o� a term �(ftgk) as�0(ft0gk0) in some run of a proto
ol while ftgk and ft0gk0 are intended to be distin
tterms in the proto
ol spe
i�
ation. We also use tagging to asso
iate every re
eivea
tion o

urring in a run with its 
orresponding send (if there exists one).To pre
isely highlight the assumptions used in the de
idablity proofs in later
hapter, we de�ne two tagging s
hemes, one of whi
h subsumes the other.
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urity proto
ol modelling 46De�nition 2.2.30 A well-formed proto
ol Pr = (C; Æ) is 
alled a weakly taggedproto
ol i� for all t 2 EST (Æ) there exists 
t 2 C su
h that:� for all t; t0 2 EST (Æ), if 
t = 
t0 then t = t0, and� for all t 2 EST (Æ): t = f(
t; u)gk for some u and k.De�nition 2.2.31 A well-formed proto
ol Pr = (C; Æ) with Æ = 
1 � � � 
` is 
alled atagged proto
ol i� for all t 2 EST (Æ) there exists 
t 2 C, and for all i � ` thereexists ni 2 NT (
i) \ SN su
h that:� for all i; j � `, t 2 EST (
i), and t0 2 EST (
j): if 
t = 
t0 then t = t0 andi = j, and� for all i � ` and all t 2 EST (
i): t = f(
t; (ni; u))gk for some u and k.It is 
lear that every tagged proto
ol is also weakly tagged. Hen
e all the resultswhi
h we prove for weakly tagged proto
ols hold for tagged proto
ols as well.The weak tagging s
heme whi
h we have presented is essentially derived from thes
hemes presented in [HLS00℄ and [BP03℄, whereas there are some new features inthe se
ond tagging s
heme that we have presented. Most of the standard proto
olso

urring in the literature (see [CJ97℄ for example) 
an be easily tagged to obtain\equivalent proto
ols", su
h that for any run � of the original proto
ol whi
h involvesonly honest agents, the tagged version of � is a run of the transformed proto
ol, andfor all runs � of the transformed proto
ol, the untagged version of � is a run ofthe original proto
ol. (Thus the transformation does not limit the honest agents'
apabilities while at the same time not introdu
ing more atta
ks). But we shouldnote that for some proto
ols whi
h 
ontain \blind 
opies" | like the Woo-Lamproto
ol � (as presented in [CJ97℄) | the se
ond tagging s
heme 
annot be e�e
tedto get an equivalent tagged proto
ol. The problem would o

ur if an agent A 
annotde
rypt an en
rypted term whi
h it is blindly passing on. The se
ond tagging s
hemerequires a distin
t tag to be added for ea
h 
i, but A 
annot e�e
t the retagging.But on the other hand, we 
an always apply the weak tagging s
heme to any well-formed proto
ol to get an equivalent weakly tagged proto
ol. The problem of blind
opies does not arise now, be
ause the tags do not depend on the 
ommuni
ationbut only the stru
ture of the en
rypted terms. So there is no need to 
hange thetags of terms whi
h are blindly passed on.
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urity proto
ol modelling 47An important point worth noting here is that in
luding the tags in the proto
olspe
i�
ation stage rather than later, in the run generation stage, means that thelegality of the runs (with respe
t to the tagging s
heme) 
an be enfor
ed by 
he
ksperformed by the honest parti
ipants of the proto
ol.It should also be noted that sequen
e numbers are used in an essential way inthe se
ond tagging s
heme. Even though the tagging s
heme entails unboundedlymany new tags to be used in proto
ol runs, still it does not involve mu
h 
ost. Sin
esequen
e numbers are not required to be unguessable, even simple s
hemes like usinga 
ounter suÆ
e to generate an unbounded number of them. This is di�erent fromgenerating non
es, where the real hard work is in ensuring unguessability.The main purpose of the tagging s
hemes is to ensure the following properties ofruns of tagged proto
ols. These properties are easy 
onsequen
es of the de�nitionof tagged proto
ols (and weakly tagged proto
ols), and are very important for thede
idability proofs in the later 
hapters.Proposition 2.2.32� Suppose Pr = (C; Æ) is a weakly tagged proto
ol. Then for all �; �0 suitable forPr and for all t; t0 2 EST (Æ), if �(t) = �0(t0) then t = t0.� Suppose Pr = (C; 
1 � � � 
`) is a tagged proto
ol. Then the following statementshold:{ for all �; �0 suitable for Pr, for all i; j � `, for all t 2 EST (
i) and for allt0 2 EST (
j), if �(t) = �0(t0) then t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr. For all re
eive events ek(k � r),there is at most one send event ei su
h that EST (ei) \ EST (ek) 6= ;.Proof:� Suppose t; t0 2 EST (Æ) and �, �0 suitable for Pr su
h that �(t) = �0(t0).By de�nition of weakly tagged proto
ols, it follows that t = f(
t; u)gk andt0 = f(
t0 ; u0)gk0 for some u; u0; k and k0. It follows that �(
t) = �0(
t0). Butsin
e � and �0 are suitable for Pr, and sin
e 
t; 
t0 2 C, �(
t) = 
t and �0(
t0) =
t0 . Therefore 
t = 
t0 . Now it follows from the de�nition of weakly taggedproto
ols that t = t0.� We now take up the proofs of the statements relating to tagged proto
ols.
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urity proto
ol modelling 48{ Suppose i; j � `, t 2 EST (
i), t0 2 EST (
j) and �, �0 suitable for Prsu
h that �(t) = �0(t0). By de�nition of tagged proto
ols, it follows thatt = f(
t; u)gk and t0 = f(
t0 ; u0)gk0 for some u; u0; k and k0. It followsthat �(
t) = �0(
t0). But sin
e � and �0 are suitable for Pr, and sin
e
t; 
t0 2 C, �(
t) = 
t and �0(
t0) = 
t0 . Therefore 
t = 
t0 . Now it followsfrom the de�nition of tagged proto
ols that t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr and suppose there is a re
eiveevent ek and two send events ei and ej (with i 6= j) su
h that neitherEST (ei) nor EST (ej) is disjoint from EST (ek). Suppose ti 2 EST (ei) \EST (ek) and tj 2 EST (ej) \ EST (ek). From the de�nition of taggedproto
ols it is 
lear that for all events e of �, there exists a non
e n su
hthat for all t 2 EST (e), t = f(
t; (n; u))gk for some u and k. Further if e isa send event, n 2 NT (e). Thus there exist ni 2 NT (ei) and nj 2 NT (ej)su
h that ti = f(
ti ; (ni; ui))gki and tj = f(
tj ; (nj; uj))gkj for some ui, uj,ki and kj. Now both ti and tj belong to EST (ek), therefore it follows thatni = nj. But then ni 2 NT (ei) \ NT (ej), whi
h violates the property ofunique origination of non
es. This 
ontradi
ts the fa
t that � is a run.This 
ontradi
tion leads us to 
on
lude that there is at most one i su
hthat EST (ei) \ EST (ek) 6= ;. 2
2.3 Properties of synth and analzIn this se
tion, we prove several useful results about synth and analz proofs, whi
hwill be used throughout the rest of the thesis.We start o� with the following simple observation:Fa
t 2.3.1 For any set of terms T and any term t 2 synth(T ), at least one of thefollowing 
onditions holds:� t 2 T .� t is of the form (t0; t00) and ft0; t00g � synth(T ).
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urity proto
ol modelling 49� t is of the form ft0gk and ft0; kg � synth(T ).This fa
t follows immediately from the de�nition of synth-proofs. In many situ-ations, this fa
t helps us to repla
e indu
tion on synth-proofs by (the mu
h simpler)indu
tion on stru
ture of terms.Some basi
 fa
ts about the synth and analz operators are proved in the followingproposition.Proposition 2.3.2 Let T; T 0 � T and t 2 T . Then the following properties hold:1. T � analz(T ).2. T � synth(T ).3. If T � T 0, then analz(T ) � analz(T 0).4. If T � T 0, then synth(T ) � synth(T 0).5. analz(analz(T )) = analz(T ).6. synth(synth(T )) = synth(T ).7. t 2 synth(T ) i� t 2 synth(T \ ST (t)).Proof: The statements relating to analz are proved by a simple indu
tion on analz-proofs, and the statements relating to synth are proved by a simple indu
tion on thestru
ture of terms. We just prove statements 5 and 6 to give a 
avour of the proofs.Proof of statement 5: It is immediate that analz(T ) � analz(analz(T )), from state-ments 1 and 3. We prove the other in
lusion. Suppose t 2 analz(analz(T )).Suppose � is an analz-proof of analz(T ) ` t. We prove by stru
tural indu
tionthat for every subproof $ of � with root labelled analz(T ) ` r, r 2 analz(T ).From this it follows that t 2 analz(T ) as well.Suppose $ is a subproof of � with root labelled analz(T ) ` r su
h that forall proper subproofs $1 of $ with root labelled analz(T ) ` r1, r1 2 analz(T ).Then we prove that r 2 analz(T ) as well.� Suppose $ is the following proof: Axaanalz(T ) ` r



Chapter 2: Se
urity proto
ol modelling 50Then r 2 analz(T ) by de�nition and we are through.� Suppose $ is the following proof:($1)...analz(T ) ` (r; r0) split1analz(T ) ` rBy indu
tion hypothesis (r; r0) 2 analz(T ) and thus it immediately followsby de�nition of analz-proofs that r 2 analz(T ) as well.� Suppose $ is the following proof:($1)...analz(T ) ` frgk ($2)...analz(T ) ` k de
ryptanalz(T ) ` rBy indu
tion hypothesis ffrgk; kg � analz(T ) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T ).� Suppose $ is the following proof:($1)...analz(T ) ` ffrgkgk redu
eanalz(T ) ` rBy indu
tion hypothesis ffrgkgk 2 analz(T ) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T ).Proof of statement 6: It is immediate that synth(T ) � synth(synth(T )), from thestatements 2 and 4. We now prove by indu
tion on the stru
ture of termsthat if t 2 synth(synth(T )) then t 2 synth(T ). From Fa
t 2.3.1, it suÆ
es to
onsider the following three 
ases:t 2 synth(T ): Then the 
on
lusion trivially follows.t is of the form (t0; t00) and ft0; t00g � synth(synth(T )): By indu
tion hypothe-sis, it follows that ft0; t00g � synth(T ). It now immediately follows fromthe de�nition of synth-proofs that t 2 synth(T ).



Chapter 2: Se
urity proto
ol modelling 51t is of the form ft0gk and ft0; kg � synth(T ): By indu
tion hypothesis, it fol-lows that ft0; kg � synth(T ). It now immediately follows from the de�ni-tion of synth-proofs that t 2 synth(T ). 2It immediately follows from the above proposition that T = synth(analz(T )) is
losed under synth. The following proposition says that it is 
losed under analz aswell, thus immediately implying the important statement that T = T for all sets ofterms T .Proposition 2.3.3 For all T � T , analz(T ) = T .Proof: From item 1 of Proposition 2.3.2, T � analz(T ). We prove the otherin
lusion now. Suppose t 2 analz(T ). Suppose � is an analz-proof of T ` t. Weprove by stru
tural indu
tion that for every subproof $ of � with root labelledT ` r, r 2 T . From this it follows that t 2 T as well.Suppose $ is a subproof of � with root labelled T ` r su
h that for all propersubproofs $1 of $ with root labelled T ` r1, r1 2 T . Then we prove that r 2 Tas well. We only 
onsider the 
ase when the rule applied at the root of $ is Axa orde
rypt. The other 
ases 
an be similarly handled.� Suppose $ is the following proof: AxaT ` rThen r 2 T by de�nition and we are through.� Suppose $ is the following proof:($1)...T ` frgk ($2)...T ` k de
ryptT ` r
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urity proto
ol modelling 52T ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k de
ryptT ` tT ` fftgkgk redu
eT ` t
AxT [ ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k en
ryptT ` ftgkFigure 2.4: yields-rules.By indu
tion hypothesis ffrgk; kg � T . From the de�nition of synth-proofsit follows that for all atomi
 terms m, if m 2 T = synth(analz(T )), thenm 2 analz(T ). Sin
e k is an atomi
 term, it follows that k 2 analz(T ). Sin
efrgk 2 synth(analz(T )), it follows by Fa
t 2.3.1 that either frgk 2 analz(T ) orfr; kg � synth(analz(T )). In the �rst 
ase, sin
e k 2 analz(T ), it follows thatr 2 analz(T ) � T . In the se
ond 
ase also r 2 T and we are through. 2Following [Pau98℄, we have taken synth(analz(T )) as the set of terms whi
h 
anbe built from T . This means that we are 
onsidering only \normal proofs" | inwhi
h all the analysis rules are applied before the synth rules | in building up newterms from old. An alternate approa
h would be to 
onsider proofs whi
h involvesynth and analz rules applied in an arbitrary order. This approa
h is also 
ommon inthe se
urity proto
ol literature. (For example, [FHG99℄ and [DLMS99℄ follow thisapproa
h.) We now show that both the approa
hes are equivalent.De�nition 2.3.4 An yields-proof � of T ` t is an inverted tree whose nodes arelabelled by sequents and 
onne
ted by one of the yields-rules in Figure 2.4, whoseroot is labelled T ` t, and whose leaves are labelled by instan
es of the Ax rule. Fora set of terms T , bT is the set of terms t su
h that there is a yields-proof of T ` t.Proposition 2.3.5 For all sets of terms T , T = bT .
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urity proto
ol modelling 53Proof: The in
lusion from left to right is trivial, sin
e both the analz-rules and thesynth-rules are in
luded in the yields-rules.We 
onsider the in
lusion from right to left now. From item 6 of Proposition 2.3.2it follows that synth(T ) � T . Proposition 2.3.3 says that analz(T ) � T . It followsas an immediate 
onsequen
e of this that bT � T . 2Proposition 2.3.6 Suppose T is a set of terms and � is a substitution su
h that�(t) is de�ned for all t 2 T . Then1. �(analz(T )) � analz(�(T )).2. �(synth(T )) � synth(�(T )).3. �(T ) � �(T ).Proof: We �rst note the following simple fa
ts: if t 2 T then �(t) 2 �(T );�((t; t0)) = (�(t); �(t0)); �(ftgk) = f�(t)g�(k); �(fftgkgk) = ff�(t)g�(k)g�(k).From these it follows that if T ` tT ` t is a analz-rule, so is �(T ) ` �(t)�(T ) ` �(t0) .A similar statement holds for binary analz-rules and for synth-rules as well (bothunary and binary). Statements 1 and 2 immediately follow from these observa-tions. Statement 3 
an now be proved as follows: �(T ) = �(synth(analz(T ))) �synth(�(analz(T ))) � synth(analz(�(T ))) = �(T ). 2Proposition 2.3.7 For all sets of terms T and terms t, if t 2 ST (synth(T )) theneither t 2 ST (T ) or t 2 synth(T ).Proof: Suppose t 2 ST (synth(T )). We prove by indu
tion on the stru
ture of termsthat for all r, if r 2 synth(T ) and t 2 ST (r) then either t 2 ST (T ) or t 2 synth(T ).Bt Fa
t 2.3.1, it suÆ
es to 
onsider the following three 
ases:r 2 T : Then 
learly t 2 ST (T ).r is of the form (r0; r00) and fr0; r00g � synth(T ): There are two 
ases to 
onsider. Ift = r = (r0; r00) then 
learly t 2 synth(T ). Otherwise t 2 ST (r) = ST (r0) [ST (r00) and now we 
an apply to the indu
tion hypothesis and 
on
lude thatt 2 ST (T ) or t 2 synth(T ).
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urity proto
ol modelling 54r = fr0gk and fr0; kg � synth(T ): This 
ase is handled the same way as the previousone. 2Proposition 2.3.8 For all sets of terms T and terms ftgk, if ftgk 2 ST (synth(T ))then either ftgk 2 ST (T ) or ft; kg � synth(T ).Proof: Suppose ftgk 2 ST (synth(T )). From Proposition 2.3.7 we 
on
lude thateither ftgk 2 ST (T ) or ftgk 2 synth(T ). But if ftgk 2 synth(T ) then eitherftgk 2 T � ST (T ) or ft; kg � synth(T ), from Fa
t 2.3.1. 2Proposition 2.3.9 Suppose T � T0. Then ST (synth(T )) � synth(T ).Proof: From Proposition 2.3.7 it follows that ST (synth(T )) � ST (T ) [ synth(T ).But sin
e T 
onsists only of atomi
 terms, ST (T ) = T � synth(T ) and hen
e theresult follows. 2De�nition 2.3.10 A term t is a minimal term of a set T of terms i� t 2 T andt 62 synth(T nftg), i.e. t 
annot be \built" from the other terms in T . min(T ) denotesthe set of minimal terms of T .The following fa
t follows immediately from the de�nition of minimal terms.Proposition 2.3.11 Suppose T is a set of terms and t 2 min(T ). Then the follow-ing 
onditions hold:� If t is of the form (t0; t00) then either t0 62 T or t00 62 T .� If t is of the form ft0gk then either t0 62 T or k 62 T .Proposition 2.3.12 Suppose T is a set of terms and t 2 min(analz(T )). Then oneof the following 
onditions hold:� t 2 T0.� t = ft0gk for some t0; k su
h that either t0 62 analz(T ) or k 62 analz(T ).



Chapter 2: Se
urity proto
ol modelling 55Proof: Suppose t 2 min(analz(T )) is of the form (t0; t00). Sin
e t 2 analz(T ),ft0; t00g � analz(T ). But this 
ontradi
ts item 1 of Proposition 2.3.11. 2Proposition 2.3.13 For any set of terms T , the following properties hold:1. T � synth(min(T )).2. synth(T ) = synth(min(T )).3. T = synth(min(analz(T ))).Proof: We prove by indu
tion on the stru
ture of terms that for all t 2 T , t belongsto synth(min(T )). If t 2 T\T0 then 
learly t 2 min(T ) � synth(min(T )). If t = (t0; t00)belongs to min(T ) then we are through. Otherwise ft0; t00g � T and by indu
tionhypothesis ft0; t00g � synth(min(T )) and therefore t = (t0; t00) 2 synth(min(T )) aswell. A similar argument works for the 
ase when t = ft0gk.Now it is 
lear that min(T ) � T and thus synth(min(T )) � synth(T ). On theother hand, it follows from item 1 above that synth(T ) � synth(synth(min(T ))) =synth(min(T )). Thus synth(T ) = synth(min(T )). Substituting analz(T ) in pla
e of Tin the above equation, it follows that T = synth(analz(T )) = synth(min(analz(T ))).2We introdu
e the following bit of terminology before we get to our next propo-sition.De�nition 2.3.14 A set of terms T is said to unravel another set of terms T 0 i�there exists a term t and a key k su
h that ftgk 2 analz(T 0) and k 2 analz(T ). Twosets T and T 0 are said to be mutually independent if neither T nor T 0 unravels theother.Proposition 2.3.15 Suppose T and T 0 are two mutually independent sets of terms.Then analz(T [ T 0) = analz(T ) [ analz(T 0).Proof: The in
lusion from right to left is obvious. We now 
onsider an arbitraryt 2 analz(T [T 0) and show that t 2 analz(T )[analz(T 0). Suppose � is an analz-proofof T [ T 0 ` t. We prove by stru
tural indu
tion that for every subproof $ of � with
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urity proto
ol modelling 56root labelled T [T 0 ` r, r 2 analz(T )[ analz(T 0). Therefore t 2 analz(T )[ analz(T 0)as well.Suppose $ is a subproof of � with root labelled T [ T 0 ` r su
h that for allproper subproofs $1 of $ with root labelled T [ T 0 ` r1, r1 2 analz(T ) [ analz(T 0).Then we prove that r 2 analz(T )[analz(T 0) as well. We only 
onsider the 
ase whenthe rule applied at the root of $ is Axa or de
rypt. The other 
ases 
an be handledsimilarly.� Suppose $ is the following proof: AxaT [ T 0 ` rThen r 2 T [ T 0 � analz(T ) [ analz(T 0).� Suppose $ is the following proof:($1)...T [ T 0 ` frgk ($2)...T [ T 0 ` k de
ryptT [ T 0 ` rBy indu
tion hypothesis ffrgk; kg � analz(T ) [ analz(T 0). Sin
e T and T 0 areindependent, it 
an neither be the 
ase that frgk 2 analz(T ) and k 2 analz(T 0),nor 
an it be the 
ase that frgk 2 analz(T 0) and k 2 analz(T ). Hen
e eitherffrgk; kg � analz(T ) or ffrgk; kg � analz(T 0). It follows immediately thatr 2 analz(T ) [ analz(T 0). 2



Chapter 3
Unde
idability results

In this 
hapter we prove that the se
re
y problem for se
urity proto
ols is ingeneral unde
idable. In fa
t we prove that the se
re
y problem is unde
idable evenwhen we 
onsider only well-typed runs or when we 
onsider only boundedly manynon
es and keys.It might be surprising at �rst glan
e that a simple property like se
re
y (whi
his only slightly more 
omplex than rea
hability) should turn out to be unde
idable.It is all the more surprising sin
e proto
ol spe
i�
ations pres
ribe set patterns of
ommuni
ation for the di�erent agents. Even though fa
tors like unbounded non
esor unbounded message length enter the pi
ture, it seems unlikely at �rst glan
e thatthe proto
ol spe
i�
ations 
an for
e su
h unbounded behaviour. If that was possi-ble, it would mean that our \language" for spe
ifying proto
ols has a 
onsiderableamount of inherent programming ability.We will see in this 
hapter that one 
an a
tually de�ne proto
ols whose runs
an 
ode up an unbounded amount of information. We will see that the style ofpresenting a proto
ol as a set of roles hides a lot of programming ability. The
ru
ial point about this style of presentation is that in some situations, the questionof whether an instan
e of a parti
ular a
tion (whi
h o

urs in the spe
i�
ation ofa proto
ol) o

urs in any run of the proto
ol 
an be determined only by run-time
onsiderations (in 
ontrast to well-formed proto
ols, where we know that for everyproto
ol a
tion, there is always one s
enario in whi
h some instan
e of the a
tion isenabled). This 
ontributes primarily to unde
idability.57



Chapter 3: Unde
idability results 58In fa
t, in the literature, we have found that the unde
idability results are usu-ally proved using a syntax of proto
ols 
lose to the set-of-roles style of presentation,whereas the linear style of presentation is favoured in work on de
idability, or anal-ysis of proto
ols. Thus the unde
idability results provide us with mu
h insight intothe modelling of proto
ols.The unde
idability result for well-typed runs was �rst proved by [CDL+99℄ (seealso [DLMS99℄) in the setting of multi-set rewriting. We use a di�erent redu
tionfrom that used in [CDL+99℄. Our redu
tion is mu
h simpler than the ones 
urrentlyfound in the literature. To our knowledge, ours is also the �rst detailed proof ofthis result, a fa
t whi
h 
an be attributed to the simpli
ity of our redu
tion. Theunde
idability result for unbounded length of messages has been proved in variouspla
es, in
luding for instan
e, [HT96℄ and [ALV02℄.Two-
ounter ma
hinesOur unde
idability results use a redu
tion from the rea
hability problem fortwo-
ounter ma
hines. We re
all the relevant de�nitions below:A two-
ounter ma
hine is a tuple M = (Q;F; q0; Æ) where:� Q is a �nite set of states,� F � Q is the set of �nal states,� q0 2 Q is the initial state,� Æ � Q� f0; 1g2 �Q� f�1; 0; 1g2 is the transition relation with the 
onditionthat whenever (q; i1; i2; q0; j1; j2) 2 Æ then jk = �1 implies ik = 1, for k = 1; 2(we 
an de
rement a positive 
ounter only).The other standard notions relating to two-
ounter ma
hines are de�ned below:� A 
on�guration of a two-
ounter ma
hineM = (Q;F; q0; Æ) is a triple (q; n1; n2)with q 2 Q; nk 2 N (the nk's are 
ounters).� For a 
on�guration (q; n1; n2) of M and a transition t = (q; i1; i2; q0; j1; j2) 2 Æ,t is enabled at (q; n1; n2) i� for k = 1; 2, ik = 0 i� nk = 0. Whenever t isenabled at (q; n1; n2) we have the redu
tion (q; n1; n2) t�!(q0; n1 + j1; n2 + j2).� A 
on�guration (q; n1; n2) is rea
hable if (q0; 0; 0) ��!(q; n1; n2) .



Chapter 3: Unde
idability results 59� A 
on�guration (q; n1; n2) is �nal if q 2 F .� The rea
hability problem for two-
ounter ma
hines is the problem of deter-mining for a given two-
ounter ma
hine M = (Q;F; q0; Æ) whether a �nal
on�guration of M is rea
hable.We assume the well-known fa
t that the rea
hability problem for two-
ounterma
hines is unde
idable.3.1 Unde
idability for well-typed runsLet M = (Q;F; q0; Æ) be an arbitrary two-
ounter ma
hine. We will de�ne aproto
ol PrM = (C;R) su
h that a �nal 
on�guration of M is rea
hable i� there isa well-typed leaky run � of PrM . As we will see in the proofs whi
h follow, 
ru
ialuse is made of the fa
t that there are unboundedly many non
es in N .Before de�ning the a
tual redu
tion, we set up some basi
 notation: For sim-pli
ity, assume Q � N . Let z and d be �xed non
es from N . We �x honest agentsA;B (and therefore the shared key kAB .) Then we de�ne the following terms:for any u; u0 2 N , and q 2 Q; [q; u; u0℄ def= f(q; (u; u0))gkAB .for any u; u0 2 N; [u; u0℄ def= f(u; u0)gkAB .The proto
ol PrM is de�ned as follows:De�nition 3.1.1 PrM def= (C;R) where:� C = Q [ fA;B; z; dg and� R = f�0g [ f�t j t 2 Æg [ f�f j f 2 Fg where:{ �0 def= A!B: [d; d℄; [q0; z; z℄; [d; d℄.{ for ea
h transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:a = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄where M = fv0k j k 2 f1; 2g and jk = 1g, and the following 
onditionshold for k 2 f1; 2g:



Chapter 3: Unde
idability results 60if ik = 0 and jk = 0 thenwk = w0k = z and uk = vk = u0k = v0k = d;if ik = 0 and jk = 1 thenu0k = wk = z, uk = vk = d, v0k = w0k, andv0k does not belong to C;if ik = 1 and jk = 0 thenw0k = wk = vk, u0k = v0k = d, anduk and vk are distin
t non
es not belonging to C;if ik = 1 and jk = 1 thenwk = vk = u0k, w0k = v0k, anduk, vk and v0k are distin
t non
es not belonging to C;if ik = 1 and jk = �1 thenwk = vk, w0k = uk, u0k = v0k = d, anduk and vk are distin
t non
es not belonging to C.For any �t as given above, and k 2 f1; 2g, the notation in
trk(�t) is usedto denote wk and the notation out
trk(�t) is used to denote w0k.{ For ea
h f 2 F , �f def= a � a0 � a00 where:a = A?B: [f; w1; w2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:xwhere x, w1 and w2 are distin
t non
es not o

urring in C.The role 
orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [d; d℄; [q; z; v2℄; [u2; v2℄;A!B: (fv01g) [z; v01℄; [q0; v01; u2℄; [d; d℄.The role 
orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [u1; v1℄; [q; v1; v2℄; [u2; v2℄;A!B: (fv01; v02g) [v1; v01℄; [q0; v01; v02℄; [v2; v02℄.The role �0 starts o� the simulation of the two-
ounter ma
hine. The role �f
he
ks if a �nal 
on�guration with state f is rea
hed and if so signals it by 
ontrivingto \leak" a fresh non
e. The role �t simulates the transition t 2 Æ.
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idability results 61Lemma 3.1.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hen
e kAB 62 sI as well).Proof: The proof is by indu
tion on j�j. For � = ", by de�nition sI = (init(Pr))I =KI [ C [ fn0;m0; k0g and thus it is 
lear that kAB 62 analz(sI). Suppose � = �0 � ewith s0 denoting infstate(�0). By indu
tion hypothesis kAB 62 analz(s0I). FurthersI � s0I [ fterm(e)g. But term(e) is a tuple of terms of the form [q; u; u0℄ or [u; u0℄or fxgkAB or x (with x 2 N). Thus it is 
lear that s0I and fterm(e)g are mutuallyindependent sets of terms (sin
e kAB 62 analz(s0I) and analz(term(e))\K = ;). By ap-plying Proposition 2.3.15 and using the fa
t that kAB 62 analz(s0I)[analz(fterm(e)g),we 
on
lude that kAB 62 analz(sI). 2De�nition 3.1.31. We say that a number n is represented in an information state s by a non
e uif there exist distin
t non
es u0; : : : ; un su
h that u0 = z, un = u, and for alli < n, [ui; ui+1℄ 2 sI.2. We say that a 
on�guration (q; n; n0) is represented in an information state s bythe term [q; u; u0℄ if u represents n in s, u0 represents n0 in s, and [q; u; u0℄ 2 sI.3. We say that a number n is represented in a run � of PrM by a non
e u if n isrepresented in infstate(�) by u.4. We say that a 
on�guration (q; n; n0) is represented in a run � of PrM by theterm [q; u; u0℄ i� (q; n; n0) is represented in infstate(�) by [q; u; u0℄.From the de�nition it follows that in all states s, z represents only 0 and 0 isrepresented only by z.The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.1.4 Suppose � is a run of PrM with s = infstate(�), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0, and (q; n1; n2) is a 
on�guration of M representedin s.1. If t is enabled at (q; n1; n2) then there is a well-typed substitution � suitablefor PrM and �t su
h that:� �(in
trk(�t)) represents nk in s (for k = 1; 2),
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idability results 62� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(out
trk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).2. If there is a substitution � suitable for PrM and �t su
h that �(in
trk(�t))represents nk in s (for k = 1; 2) and �(a) is enabled in s, then t is enabled at(q; n1; n2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄1. Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i�nk = 0. Let rk be a non
e whi
h represents nk in s. We de�ne a substitution� suitable for PrM and �t as follows:� for k = 1; 2, �(wk) = rk,� � is identity on C,� for ea
h distin
t m 2M , �(m) is a distin
t non
e not o

urring in ST (s)(Note that here we are 
ru
ially using the fa
t that N is an in�nite set.),� for k = 1; 2, if ik = 1 then �(uk) = r0k where r0k is some non
e representingnk � 1 in s su
h that [r0k; rk℄ 2 sI (sin
e nk 6= 0 and sin
e rk representsnk in s, there has to exist at least one su
h r0k).It is 
lear that � is a well-typed substitution suitable for PrM and �t. Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� From the de�nition it is immediate that �(in
trk(�t)), whi
h is the sameas �(wk), represents nk at s, for k = 1; 2.� We now prove that �(a) is enabled at s and �(a0) is enabled at s0. Sin
e[q; r1; r2℄ represents (q; n1; n2) in s, [q; r1; r2℄ 2 sI . For k = 1; 2, if ik = 0then uk = vk = d and so [�(uk); �(vk)℄ = [�(d); �(d)℄ = [d; d℄. Nowfrom the de�nition of PrM it follows that the �rst event of any run 
anonly be of the form (�0; �; 1) for some substitution �. Call this evente. But e is a send event and [d; d℄ 2 analz(fterm(e)g). Hen
e it followsthat [�(uk; �(vk)℄ = [d; d℄ 2 sI . Otherwise, ik = 1 and now wk = vk



Chapter 3: Unde
idability results 63by the de�nition of PrM , and therefore [�(uk); �(vk)℄ = [�(uk); �(wk)℄ =[r0k; rk℄ 2 sI (by de�nition of �). From this it follows that a is enabled at s.Also by de�nition of �, �(M)\ ST (s) = ;. Also it is quite easy to verifythat term(a0) 2 term(a) [M [ fkABg. But term(a) [M [ fkABg � s0Aand thus a0 is enabled in s0.� Now we prove that �(out
trk(�t)) = �(w0k) represents nk + jk in s00 (fork = 1; 2). If jk = 0 then wk = w0k, for k = 1; 2 (by de�nition of PrM).Hen
e it follows that �(w0k) represents nk + jk in s0. If jk = �1 thenby de�nition of �, �(uk) represents nk � 1 = nk + jk in s. By de�nitionof PrM , w0k = uk and thus it follows that �(w0k) represents nk + jk in sand hen
e in s00 as well. If jk = 1 then observe that [�(u0k); �(v0k)℄ 2 s00I ,w0k = v0k, wk = u0k, and �(wk) represents nk in s and hen
e in s00 as well.Therefore �(w0k) represents nk + jk = nk + 1 in s00.2. Suppose � is a substitution suitable for PrM and �t su
h that for k = 1; 2,�(in
trk(�t)) = �(wk) represents nk at s, and su
h that �(a) is enabled at s.We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hen
e �(wk) = z.Sin
e z represents only 0 in any state and we are given �(wk) represents nk ats, nk = 0.Suppose ik = 1. Then by de�nition of PrM , we have that wk = vk anduk 6= vk. Also sin
e �(a) is enabled at s, it follows that [�(uk); �(vk)℄ 2 sI andthat [q; �(w1); �(w2)℄ 2 sI . It 
an be easily seen (from the de�nition of PrMand from Lemma 3.1.2) that for all terms of the form [q; t; t0℄ 2 ST (s), t 6= dand t0 6= d. It 
an also be seen that if [t; t0℄ 2 ST (s) su
h that t = t0 thent = d. From these fa
ts and the fa
t that �(vk) = �(wk), we 
on
lude that�(uk) 6= �(vk). Again it 
an be easily 
he
ked that for all terms [t; t0℄ 2 ST (s),t0 6= z. Thus it follows that �(vk) 6= z and hen
e �(wk) 6= z. But we are giventhat �(wk) represents nk in s. Sin
e only z represents 0 in any state, it has tobe the 
ase that nk 6= 0. 2
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idability results 64Theorem 3.1.51. (q0; 0; 0) ��!(q; n1; n2) i� (q; n1; n2) is represented in some run of PrM i� it isrepresented in some well-typed run of PrM .2. A �nal 
on�guration is rea
hable in M i� there is a leaky run of PrM i� thereis a well-typed leaky run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a well-typed run ofPrM in whi
h (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indu
tion on m. The base 
ase is when m = 0 in whi
h 
ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any well-typed substitution � whi
h is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is 
lear that there is a run � ofPrM in whi
h (q; n1; n2) is represented, by the indu
tion hypothesis. Let s =infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.1.4, there isa well-typed substitution � suitable for PrM and �t su
h that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(out
trk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sin
e [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is 
lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whi
h (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indu
tion on j�j, where �is a run of PrM .The base 
ase is when j�j = 0 and then the statement is va
uously true sin
eno 
on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respe
tively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.1.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indu
tion hypothesis (q0; n01; n02)is rea
hable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I ). Sin
e a term of the form [q; w01; w02℄ does not o

ur inside an en
ryp-tion in any event of the proto
ol, it follows from the above fa
t that in fa
t
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idability results 65[q0; w01; w02℄ 2 analz(fterm(e0)g). It is also 
lear that e0 is a send event, so wehave to 
onsider only the following two 
ases:e0 = (�0; �; 1): Then it is 
lear that (q0; n01; n02) = (q0; 0; 0) and hen
e that(q0; n01; n02) is va
uously rea
hable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It is
lear that �(out
trk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(in
trk(�t)) represents nk in infstate(�00). Sin
e e0is enabled at �00, it has to be that e = (�t; �; 1) o

urs in �00. Further(sin
e �(out
trk(�t)) represents nk + jk in s0 for k = 1; 2) it is 
lear that�(in
trk(�t)) represents nk in s00 for k = 1; 2. In fa
t, there is a properpre�x �1 of �00 su
h that (q; n1; n2) is represented in infstate(�1), and a
t(e)is enabled at infstate(�1). By indu
tion hypothesis we have that (q; n1; n2)is a rea
hable 
on�guration and by lemma 3.1.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a rea
hable 
on�guration.2. We �rst prove that if a �nal 
on�guration is rea
hable inM then there is a well-typed leaky run of PrM . Suppose a �nal 
on�guration (f; n1; n2) is rea
hablein M . Then there is a well-typed run � of PrM representing (f; n1; n2). Thus[f; r1; r2℄ 2 (infstate(�))I for some non
es r1 and r2, and hen
e e1 � e2 � e3 isenabled at �, where ei = (�f ; �; i) for i = 1; 2; 3 and some well-typed � su
hthat �(x) 6= �(y) for all y 6= x. It then follows that � � e1 � e2 � e3 is also awell-typed run of PrM , and by de�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal 
on�gurationis rea
hable in M . Suppose there is a leaky run � of PrM . A

ording tothe de�nition of PrM , this means that some instan
e of �f for f 2 F hasbeen played out as part of �. But this means that some 
on�guration of theform (f; n1; n2) is represented in � whi
h implies that a �nal 
on�guration isrea
hable in M . 2The main 
on
lusion of this se
tion is stated below.
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idability results 66Theorem 3.1.6 The general se
re
y problem and the se
re
y problem for well-typedruns are unde
idable.Proof: The statement immediately follows from item 2 of Theorem 3.1.5 and thefa
t that the rea
hability problem for two-
ounter ma
hines is unde
idable. 2
3.2 Unde
idability with bounded non
esIn this se
tion we prove that for any �xed (even �nite) T � T0, the se
re
y prob-lem for T -runs is unde
idable. The proof is again a redu
tion from the rea
habilityproblem for two-
ounter ma
hines. For the purposes of 
oding up arbitrary two-
ounter ma
hines, we assume that x; z; u1 and u2 are �xed, distin
t non
es whi
hbelong to T \N .Let M = (Q;F; q0; Æ) be a two-
ounter ma
hine. For simpli
ity we assume thatQ � N . We will de�ne a proto
ol PrM = (C;R) su
h that a �nal 
on�guration ofM is rea
hable i� there is a leaky T -run of PrM . As we will see in the proofs whi
hfollow, 
ru
ial use is made of ill-typed substitutions.Before de�ning the a
tual redu
tion, we set up some basi
 notation: We �xhonest agents A;B and the long-term shared key kAB . Then we de�ne the followingterms (
oding up natural numbers):0 = z.i+ 1 = (i; z).for any terms t1; t2; t3; [t1; t2; t3℄ def= f(t1; (t2; t3))gkAB .The proto
ol PrM is de�ned as follows:De�nition 3.2.1 PrM def= (C;R) where:� C = fA;B; zg and� R = f�0g [ f�t j t 2 Æg [ f�f j f 2 Fg where:{ �0 def= A!B: [q0; z; z℄,{ for ea
h transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:A?B: [q; w1; w2℄;A!B: [q0; w01; w02℄
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idability results 67where, for k 2 f1; 2g, the following 
onditions hold:if ik = 0 and jk = 0 then wk = w0k = z;if ik = 0 and jk = 1 then wk = z and w0k = (z; z);if ik = 1 and jk = 0 then wk = w0k = (uk; z);if ik = 1 and jk = 1 then wk = (uk; z) and w0k = ((uk; z); z);if ik = 1 and jk = �1 then wk = (uk; z) and w0k = uk.For any �t as given above, and k 2 f1; 2g, the notation in
trk(�t) is usedto denote the term wk and the notation out
trk(�t) is used to denote theterm w0k.{ For ea
h f 2 F , �f def= a � a0 � a00 with:a = A?B: [f ; u1; u2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:x.The role 
orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [q; z; (u2; z)℄;A!B: [q0; (z; z); u2℄.The role 
orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [q; (u1; z); (u2; z)℄;A!B: [q0; ((u1; z); z); ((u2; z); z)℄.The role �0 starts o� the simulation of the two-
ounter ma
hine. The role �f
he
ks if a �nal 
on�guration with state f is rea
hed and if so signals it by 
ontrivingto \leak"a freshly minted non
e. The role �t simulates the transition t 2 Æ.Lemma 3.2.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hen
e kAB 62 sI as well).The proof is on the same lines as the proof of Lemma 3.1.2.De�nition 3.2.31. We say that a 
on�guration (q; n; n0) is represented in an information state sif the term [q; n; n0℄ 2 sI.
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idability results 682. We say that a 
on�guration (q; n; n0) is represented in a run � of PrM if(q; n; n0) is represented in infstate(�).The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.2.4 Suppose � is a run of PrM , s = infstate(s0; �), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0 and (q; n1; n2) is a 
on�guration of M representedin s. Then t is enabled at (q; n1; n2) i� there is a T -substitution � suitable for PrMand �t su
h that:� �(in
trk(�t)) represents nk in s (for k = 1; 2),� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(out
trk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [q; w1; w2℄;a0 = A!B: [q0; w01; w02℄Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i� nk = 0.We de�ne a substitution � as follows:for k = 1; 2 �(uk) = ( z if ik = 0nk � 1 if ik = 1Further we let � be identity on C. It is easily seen that � is a T -substitutionsuitable for PrM and �t. (Note that in general � will be an ill-typed substitution.) Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� If ik = 0 then wk = z, and sin
e in this 
ase nk = 0 as well it is immediatethat �(in
trk(�t)) represents nk in s. If ik = 1 then wk = (uk; z), and sin
e�(uk) = nk � 1 it is 
lear that �(in
trk(�t)) represents nk in s.� We are given that (q; n1; n2) is represented in s, i.e., [q; n1; n2℄ 2 sI . Butsin
e �(wk) = nk for k = 1; 2, it is easy to see that �(a) is enabled at s. Sin
e�(term(a0)) 2 fz; kABg, it is immediate that �(a0) is enabled at update(s; �(a)).� If jk = 0 then out
trk(�t) = in
trk(�t) and thus �(out
trk(�t)) represents nk =nk+jk in s00. If jk = 1 then out
trk(�t) = (in
trk(�t); z) and thus �(out
trk(�t))represents nk + 1 = nk + jk in s00. If jk = �1 then in
trk(�t) = (out
trk(�t); z)and thus �(out
trk(�t)) represents nk � 1 = nk + jk in s00.
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idability results 69Suppose � is a substitution suitable for PrM and �t su
h that for k = 1; 2,�(in
trk(�t)) = �(wk) represents nk at s. We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hen
e �(wk) = z. Sin
ez represents only 0 in any state and we are given �(wk) represents nk at s, nk = 0.Suppose nk = 0. Sin
e �(wk) represents nk = 0 at s and sin
e only z represents0 in any state, �(wk) = z. But a

ording to de�nition of PrM , either wk = z orwk = (uk; z). So �(wk) = z only when wk = z, and this happens only when ik = 0.2Theorem 3.2.51. (q0; 0; 0) ��!(q; n1; n2) i� there is a T -run � of PrM in whi
h (q; n1; n2) is rep-resented.2. A �nal 
on�guration is rea
hable in M i� there is a leaky T -run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a T -run of PrM inwhi
h (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indu
tion on m. The base 
ase is when m = 0 in whi
h 
ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any T -substitution � whi
h is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is 
lear that there is a run� of PrM in whi
h (q; n1; n2) is represented, by indu
tion hypothesis. Lets = infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.2.4,there is a T -substitution � suitable for PrM and �t su
h that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(out
trk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sin
e [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is 
lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whi
h (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indu
tion on j�j, where �is a run of PrM .
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idability results 70The base 
ase is when j�j = 0 and then the statement is va
uously true sin
eno 
on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respe
tively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.2.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indu
tion hypothesis (q0; n01; n02)is rea
hable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I ). Thus it must be the 
ase that [q0; w01; w02℄ 2 analz(fterm(e0)g). It isalso 
lear that e0 is a send event, so we have to 
onsider only the following two
ases:e0 = (�0; �; 1): Then it is 
lear that (q0; n01; n02) = (q0; 0; 0) and hen
e that(q0; n01; n02) is va
uously rea
hable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It is
lear that �(out
trk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(in
trk(�t)) represents nk in infstate(�00). Sin
e e0is enabled at �00, it has to be that e = (�t; �; 1) o

urs in �00. Further(sin
e �(out
trk(�t)) represents nk + jk in s0 for k = 1; 2) it is 
lear that�(in
trk(�t)) represents nk in s00 for k = 1; 2. In fa
t, there is a properpre�x �1 of �00 su
h that (q; n1; n2) is represented in infstate(�1), and a
t(e)is enabled at infstate(�1). By indu
tion hypothesis we have that (q; n1; n2)is a rea
hable 
on�guration and by lemma 3.2.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a rea
hable 
on�guration.2. We �rst prove that if a �nal 
on�guration is rea
hable in M then there is aleaky T -run of PrM . Suppose a �nal 
on�guration (f; n1; n2) is rea
hable inM . Then there is a T -run � of PrM representing (f; n1; n2). Thus [f; r1; r2℄ 2(infstate(�))I for some non
es r1 and r2, and hen
e e1 � e2 � e3 is enabled at�, where ei = (�f ; �; i) for i = 1; 2; 3 and some T -substitution � su
h that�(x) 62 C. It then follows that � � e1 � e2 � e3 is also a T -run of PrM , and byde�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal 
on�gurationis rea
hable in M . Suppose there is a leaky run � of PrM . A

ording tothe de�nition of PrM , this means that some instan
e of �f for f 2 F has
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idability results 71been played out as part of �. But this means that some 
on�guration of theform (f; n1; n2) is represented in � whi
h implies that a �nal 
on�guration isrea
hable in M . 2The main 
on
lusion of this se
tion is stated below.Theorem 3.2.6The se
re
y problem for T -runs is unde
idable.Proof: This immediately follows from item 2 of Theorem 3.2.5 and the fa
t thatthe rea
hability problem for two-
ounter ma
hines is unde
idable. 2
3.3 Dis
ussionThe idea of using two-
ounter ma
hines in the unde
idability results is from[ALV02℄, where the unde
idability result for unbounded message length is provedusing them. The redu
tion used in our proof is slightly di�erent | we 
ode up num-bers using repeated tupling, whereas in [ALV02℄, they are 
oded up using repeateden
ryption.The use of two-
ounter ma
hines in the other unde
idability result is a new idea.Existing proofs of this result use redu
tions from Turing ma
hines or some problemsin logi
, and the redu
tions in those proofs are 
onsiderably harder than ours.An interesting point about the proofs in this 
hapter is that the proto
ols whi
hwere used to 
ode up two-
ounter ma
hines do not use our de�nition of se
re
y inan essential manner. Rea
hability is all that really matters. Let us formally de�nethe rea
hability problem for se
urity proto
ols:De�nition 3.3.1 (The rea
hability problem) Given a proto
ol Pr = (C;R) andan a
tion a, we say that a is rea
hable in Pr i� there is a role � of Pr, a substitution� suitable for Pr and �, a number lp � j�j, and a run � of Pr su
h that �(lp) = aand (�; �; lp) 2 Events(�).
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idability results 72The rea
hability problem is to determine whether a is rea
hable in Pr, given aproto
ol Pr and an a
tion a.The rea
hability problem for well-typed runs (T -runs for a �xed T ) is de�nedsimilarly by restri
ting the set of runs under 
onsideration.The rea
hability problem for well-typed runs (as well as that for all runs, andall T -runs for �xed T ) is unde
idable. The same redu
tion used earlier suÆ
es toprove the unde
idability of this problem as well. We only have to appeal to the fa
tthat the following problem is unde
idable: Given a two-
ounter ma
hine M and astate q of M , determine whether a 
on�guration with state q is rea
hable in M .In fa
t, for any logi
 whi
h is powerful enough to express the rea
hability prop-erty, its veri�
ation problem is unde
idable in the same settings 
onsidered in this
hapter.



Chapter 4
De
idability with unboundedlymany non
es
In this 
hapter, we deal with the problem of unbounded non
es. We prove thatthe tagging s
heme introdu
ed in De�nition 2.2.31 ensures the de
idability of these
re
y problem for well-typed runs, even in the presen
e of unboundedly manynon
es.4.1 The bounded length 
aseWe �rst prove the de
idability of a restri
ted se
re
y problem | that of 
he
kingfor a given proto
ol Pr and a number r whether there is some well-typed leaky runof Pr of length bounded by r. The trouble is that the set of su
h runs is still in�nite.We show that we 
an always suitably rename non
es and keys o

urring in runswith non
es and keys from a �xed �nite set. Sin
e there 
an only be �nitely manywell-typed runs whi
h 
an be thus formed, we get the desired de
idability result.Fix a tagged proto
ol Pr = (C; Æ) for the rest of the se
tion. For any number r,Rr(Pr) def= f� is a well-typed run of Pr j j�j � rg. For any T � T0 and any numberr, we de�ne RTr (Pr) to be f� j � is a well-typed T -run of Pr of length at most rg.Suppose we �x a �nite T � T0 and a number r. It is 
lear that there are atmost b1 = (jT j)jEST(Æ)\T0j T -substitutions suitable for Pr. jEST (Æ)\ T0j is an upperbound on the number of basi
 terms whi
h o

ur in a role and hen
e are in the73
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idability with unboundedly many non
es 74domain of some T -substitution suitable for Pr. It now follows that there are at mostb2 = 2 � ` � b1 T -events, where ` is the length of Æ. This bound easily follows from thefa
t that the set of distin
t (�; i) pairs where � is a role of Pr and 1 � jij � j�j is 2 �`.This 
oupled with the number of T -substitutions gives us b2. From this it easilyfollows that there are at most (b2 +1)r runs in RTr (Pr). Thus we see that RTr (Pr) isa �nite, e�e
tively 
onstru
tible set, and therefore the problem of 
he
king whetherthere is a leaky run in RTr (Pr) is de
idable.Below we explain how to de�ne a �nite set T (r) for any given number r su
h thatRr(Pr) has a leaky run i�RT (r)r (Pr) has a leaky run. Suppose w is the maximum sizeof any term o

urring in the spe
i�
ation of Pr, and suppose p is the maximum lengthof any role of Pr. Given r, �x four sets NT (r) � NnC, SN (r) � SN nC,K0(r) � K0nCand Ag(r) � Ag nC su
h that jN(r)j = jSN (r)j = jK0(r)j = jAg(r)j = r � p � (w+2).(The reason for 
hoosing this spe
i�
 number will be
ome 
lear as we develop theproof of the following lemma.) T (r) is de�ned to be N(r)[SN (r)[K0(r)[Ag(r)[CT(Pr).Lemma 4.1.1 For any r 2 N, if Rr(Pr) has a leaky run then so does RT (r)r (Pr).Proof: We �rst set up some notation whi
h we use lo
ally in this proof: for anya
tion a of the form A!B: (M)t or A?B: t, parties(a) (the set of apparent (not a
tual)parti
ipants in the a
tion a), is de�ned to be fA;Bg. For any sequen
e of a
tions� = a1 � � �a`, parties(�) = [1�i�` parties(ai). Let us de�ne the domain of � for any� 2 Pr to be (ST (�) [ parties(�)) \ T0. Note that for all � 2 R, the domain of �
ontains at most p � (w + 2) terms. It 
learly suÆ
es to 
onsider events of Pr of theform (�; �; lp) where the domain of � is restri
ted to the domain of �. Let us 
allsu
h events as domain-restri
ted events. A run 
omposed only of bounded-domainevents is 
alled a domain-restri
ted run.Let us de�ne the range of a run � to be the union of the ranges of all substitutions� su
h that (�; �; lp) 2 Events(�) for some � and lp. (Note that by range of asubstitution �, we mean the set f�(x) j x 2 T0 and �(x) is de�nedg.) If we 
onsidera domain-restri
ted well-typed run � of length at most r, then it is 
lear that therange of � has at most r � p � (w+ 2) terms. Now T (r) 
ontains r � p � (w+ 2) non
esand the same number of sequen
e numbers, keys and agent names. Therefore thereexists at least one inje
tive, well-typed substitution from the range of � to T (r).Fix one su
h substitution �� for ea
h su
h bounded-domain run � 2 Rr(Pr).
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idability with unboundedly many non
es 75(It is the renaming map asso
iated with �.) For any su
h run � = e1 � � � ek withei = (�i; �i; lpi) for ea
h i � k, de�ne ��(�) to be the run ��(e1) � � � ��(ek) where��(ei) = (�i; �� Æ �i; lpi) for ea
h i � k (for ea
h x 2 T0, (�� Æ �i)(x) is de�ned to be��(�i(x))).Now for every bounded-domain run � 2 Rr(Pr), it is a simple matter to 
he
kthat for any pre�x �0 of �, A 2 Ag and t 2 T , we have t 2 (infstate(�0))A i���(t) 2 (infstate(��(�0)))A. Also t is leaked in � i� ��(t) is leaked in ��(�). From thisit easily follows that ��(�) is in fa
t a run of Pr (and so belongs to RT (r)r (Pr)) andthat it is leaky if and only if � is leaky.Thus we have shown that if there is a leaky run in Rr(Pr), then there is also aleaky run in RT (r)r (Pr). 2From the above dis
ussion we 
on
lude the following:Theorem 4.1.2 The problem of 
he
king for a given proto
ol Pr and a given boundr whether there is a well-typed leaky run of Pr of length bounded by r, is de
idable.Note that we 
an also take p = ` in the above proof. So if we �x Pr with itsparameters ` and w, and if we �x an r, then the size of jT (r)j is 4 � r � ` � (w + 2) +jCT(Pr)j. If we now let b1 = (jT (r)j)jEST(Æ)\T0j and b2 = 2 � ` � b1, then it suÆ
es tosear
h at most (b2 + 1)r runs to see if there is a leak. Letting 
Pr be the maximumof jEST (Æ) \ T0j, w and jCT(Pr)j, we see that it suÆ
es to sear
h O((` � r � 
Pr)r�
Pr)runs for a leak.4.2 De
idability for good runsIn this se
tion, we de�ne the notion of a good run and prove some basi
 propertiesof good runs. We also prove that the problem of 
he
king whether there is a goodleaky run of a given tagged proto
ol is de
idable.De�nition 4.2.1 Suppose Pr = (C; Æ) is a tagged proto
ol and � = e1 � � � ek is awell-typed run of Pr. For i; j � k, ej is 
alled a good su

essor of ei (and ei a goodprede
essor of ej) i� i < j and at least one of the following 
onditions holds:� ei !` ej.� ei is a send event, ej is a re
eive event, and EST (ei) \ EST (ej) 6= ;.
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idability with unboundedly many non
es 76For i � k, ei is 
alled a good event in � i� either i = k or there is some j > i su
hthat ej is a good su

essor of ei. ei is 
alled a bad event i� it is not a good event. Arun � is 
alled a good run i� all its events are good. A subsequen
e e1 � � � er of � is
alled a good path i� for all j < r, ej+1 is a good su

essor of ej.Note that a good su

essor of a send event need not ne
essarily be a \mat
hing"re
eive event. Also note that there might be multiple o

urren
es of the same eventin a good run. This might look a bit strange at �rst glan
e. But the right way toview this de�nition is that a bad event de�nitely signi�es something \bad" in termsof the intruder behaviour. In parti
ular, it means that the intruder is playing ana
tive role (generating a new message, or tampering with some earlier message) withregard to that parti
ular event, and is not simply relaying it from someone else tothe re
eiver. Su
h bad behaviour on the part of the intruder also makes it hard to
ompute bounds on the length of runs. While good runs do not ne
essarily eliminateall su
h \bad" behaviour, enough bad behaviour is eliminated so as to ease the taskof 
omputing bounds on the length of good runs, as we will see in the rest of these
tion.Note that all good runs are well-typed by diktat. In a later se
tion we will provethat if a tagged proto
ol has a well-typed leaky run then it has a good leaky run.The following propositions list some useful properties of good runs.Proposition 4.2.2 Suppose Pr = (C; 
1 � � � 
`) is a tagged proto
ol and � is a well-typed run of Pr. Then all good paths in � are of length at most 2 � `.Proof: For 
onvenien
e, de�ne the following notation: for all i : 1 � i � `,a2�i�1 def= a
t s(
i) and a2�i def= a
tr(
i). Note that a
tseq(
1 � � � 
`) = a1 � � �a2�`. Sup-pose e1 � � � er is a good path in � with ei = (�i; �i; lpi) for all i � r. Sin
e for allj � r, ej is an event of Pr, it is 
lear that there exists some ij � 2 � ` su
h that�j(lpj) = aij .We now show that for all j < r, ij < ij+1, using the fa
t that ej+1 is a goodsu

essor of ej. There are two 
ases to 
onsider:ej !` ej+1: In this 
ase it is 
lear that �j = �j+1, �j = �j+1 and lpj+1 = lpj + 1.Now �j is a role of Pr and hen
e a subsequen
e of a1 � � �a2�`. Thus aij o

ursearlier in a1 � � �a2�` than aij+1 and hen
e ij < ij+1.a
t(ej) 2 Send, a
t(ej+1) 2 Re
 and EST (ej) \ EST (ej+1) 6= ;: It is 
lear now that
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es 77aij is a send a
tion and aij+1 is a re
eive a
tion, and also that aij+1�1 is asend a
tion with term(aij+1�1) = term(aij+1). Thus it follows that there existt 2 EST (aij ) and t0 2 EST (aij+1�1) su
h that �j(t) = �j+1(t0). But from item1 of Proposition 2.2.32, it follows that t = t0 and bij
 = bij+1� 1
. Sin
e bothaij and aij+1�1 are send a
tions, both the indi
es are odd. Hen
e it followsthat ij = ij+1 � 1. This shows that ij < ij+1.From this it follows that there is a sequen
e i1 < � � � < ir � 2 � ` su
h that for allj � r, �j(lpj) = aij . This suÆ
es to prove that r � 2 � `. 2Lemma 4.2.3 Suppose Pr = (C; 
1 � � � 
`) is a tagged proto
ol and � is a good runof Pr. Then j�j � 22�`+1 � 1.Proof: Suppose � = e1 � � � ek. Sin
e � is a good run of Pr, all the events ei (i � k)are good. This means that for all i < k, there is some j : i < j � k su
h that ejis a good su

essor of ei. It easily follows that for all i < k, there is a good pathfrm ei to ek. For all i : 0 � i � 2 � `, de�ne the set Ei to be the set of events eo

urring in � su
h that the shortest good path from e to ek is of length i. FromProposition 4.2.2 we know that all good paths of � are of length at most 2 � `. Thusthe set of events o

urring in � is partitioned by the sets E0; : : : ; E2�`. Now sin
eevery good run is also a well-typed run by de�nition, we 
an apply item 2 of Propo-sition 2.2.32 and 
on
lude that for every re
eive event e o

urring in � there is atmost one send event e0 in � su
h that EST (e) \ EST (e0) 6= ;. Further for everyevent e there is at most one e0 su
h that e0 !` e. Thus every event o

urring in �has at most two good prede
essors, and thus for all i < 2 �`, jEi+1j � 2 � jEij. Thus itis easy to see by indu
tion that for all i � 2�`, jEij � 2i, and that j�j � 22�`+1�1. 2Lemma 4.2.3 and Theorem 4.1.2 immediately imply the following theorem.Theorem 4.2.4 The problem of 
he
king for a given tagged proto
ol Pr whetherthere is a good leaky run of Pr is de
idable.4.3 Redu
tion to good runsIn this se
tion we prove that if a tagged proto
ol has a well-typed leaky run thenit has a good leaky run. As proved in the previous se
tion, 
he
king whether a tagged
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es 78proto
ol has a good leaky run is de
idable, and hen
e the redu
tion presented inthis se
tion yields the de
idability of 
he
king whether a tagged proto
ol has a well-typed leaky run. In the next 
hapter we prove that if a tagged proto
ol has a leakyrun then it has a well-typed leaky run, thus proving the de
idability of the se
re
yproblem for tagged proto
ols.Suppose � is a well-typed bad run of a tagged proto
ol Pr and e is a bad event.The key to eliminating this event is to prove that, under 
ertain 
onditions, themessages of � whi
h 
ome after e 
an be 
onstru
ted by the intruder using just thebasi
 terms learned from e instead of term(e). Therefore we �rst look at how terms
an be eliminated appropriately.4.3.1 How to eliminate termsSuppose T is a set of terms and u is a term su
h that u 2 T . Can we removea term t (with the property that EST (t) \ EST (u) = ;) from T but add a set ofatomi
 terms T 0 su
h that it is still the 
ase that u 2 (T n ftg) [ T 0? The followinglemmas show that under some additional assumptions this is possible. They willbe 
ru
ially used later in the redu
tion to good runs. We split the task mentionedabove into two parts, �rst handling the 
ase when u 2 analz(T ) and then 
onsideringwhat happens when u 2 T . The additional assumptions in the following lemmas arenot strong enough to prove that if u 2 analz(T ) then u 2 analz((T n ftg) [ T 0), butwe 
an still prove that either u 2 analz((T n ftg) [ T 0) or u 2 ST (t). Fortunatelythis suÆ
es to prove that whenever u 2 T , u 2 (T n ftg) [ T 0.Lemma 4.3.1 Suppose T = (analz(S1 [ ftg) n analz(S1)) \ T0 for some S1; S2 � Tand t 2 T .1. Let u be a term and let � be an analz-proof of S1[S2[ftg ` u su
h that for allk 2 ST (S1[ftg)\K for whi
h k labels a non-root node of �, k 2 analz(S1[ftg).Then u 2 (analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T ).2. Let u be a term su
h that u 2 synth((analz(S1[ftg)\ST (t))[analz(S1[S2[T ))and EST (u) \ EST (t) = ;. Then u 2 S1 [ S2 [ T .Proof:1. Suppose � is an analz-proof of S1 [ S2 [ ftg ` u. We prove by stru
turalindu
tion that for every subproof $ of � with root labelled S1 [ S2 [ ftg ` w,
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es 79we have w 2 (analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T ). Suppose $ is asubproof of � with root labelled S1 [ S2 [ ftg ` w su
h that for all propersubproofs $1 of $ the statement of the lemma holds. Then we prove thatit holds for $ as well. We only 
onsider the 
ases when the rule applied atthe root of $ is Axa or de
rypt. The other 
ases 
an be handled by a routineappli
ation of the indu
tion hypothesis.� Suppose $ is the following proof: AxaS1 [ S2 [ ftg ` wThen w 2 S1 [ S2 [ ftg. If w = t then w 2 analz(S1 [ ftg) \ ST (t). Ifw 2 S1 [ S2 then w 2 analz(S1 [ S2 [ T ).� Suppose $ is the following proof:($1)...S1 [ S2 [ ftg ` fwgk ($2)...S1 [ S2 [ ftg ` k de
ryptS1 [ S2 [ ftg ` wBy indu
tion hypothesis fwgk 2 analz(S1 [ ftg) [ analz(S1 [ S2 [ T ) andk 2 analz(S1 [ ftg) [ analz(S1 [ S2 [ T ).fwgk 2 analz(S1 [ S2 [ T ): If k 2 analz(S1[S2[T ) then w is in the sameset as well and we are done. If on the other hand k 2 analz(S1[ftg),then k 2 K \ (analz(S1) [ (analz(S1 [ ftg) n analz(S1))). But thisimplies that k 2 analz(S1 [ T ) � analz(S1 [ S2 [ T ) and hen
e w isalso in the same set.fwgk 2 analz(S1 [ ftg) \ ST (t): It is evident that k 2 ST (S1 [ ftg).Thus by assumption k 2 analz(S1 [ ftg) and hen
e w is also in thesame set. Clearly w 2 ST (t) as well.2. Let us denote by W the set ((analz(S1 [ ftg) \ ST (t)) [ analz(S1 [ S2 [ T )) \ST (u). It is 
lear that u 2 synth(W ). Now w 2 ST (u) for every w 2 W , andsin
e EST (u)\EST (t) = ; it is also the 
ase that EST (w)\EST (t) = ;. Weprove below thatW � S1 [ S2 [ T ; this suÆ
es to prove that u 2 S1 [ S2 [ T .So suppose w 2 W . Then w 2 analz(S1[S2[T )[ (analz(S1[ftg)\ST (t)). Ifw 2 analz(S1[S2[T ) we are done. Suppose w 2 analz(S1[ftg)\ST (t). In this
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ase, as observed above EST (w) \ EST (t) = ;, and hen
e from w 2 ST (t)it follows that EST (w) = ;. This means that w is just a tuple of atomi
terms. In this 
ase it is 
lear that w 2 synth(analz(fwg) \ T0). But thenanalz(fwg) \ T0 � analz(S1 [ ftg) \ T0 � analz(S1 [ T ). This implies thatw 2 S1 [ S2 [ T and the proof is done. 2The following lemma is vital in proving that if m is se
ret at a run � of aproto
ol Pr, then m is also se
ret at �0, where �0 is got by eliminating some eventsand renaming some atomi
 terms of �.Lemma 4.3.2 Suppose S is a set of terms and T � analz(S) \ T0. Suppose � is awell-typed substitution with the property that for all x 2 T0 nT , �(x) = x and for allx 2 T , �(x) 2 S. Then for all t 2 analz(�(S)), there exists r 2 analz(S) su
h that�(r) = t.Proof: Suppose � is an analz-proof of �(S) ` t. We prove by stru
tural indu
tionthat for every subproof $ of � with root labelled �(S) ` w, there exists r 2 analz(S)su
h that �(r) = w. Suppose $ is a subproof of � with root labelled �(S) ` w su
hthat for all proper subproofs $1 of $ the statement of the lemma holds. Then weprove that it holds for $ as well. We only 
onsider the 
ases when the rule appliedat the root of $ is Axa or de
rypt. The other 
ases 
an be handled by a routineappli
ation of the indu
tion hypothesis.� Suppose $ is the following proof: Axa�(S) ` wThen w 2 �(S) whi
h means that there exists r 2 S � analz(S) su
h that�(r) = w.� Suppose $ is the following proof:($1)...�(S) ` fwgk ($2)...�(S) ` k de
rypt�(S) ` w
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es 81By indu
tion hypothesis there exist r0; r00 2 analz(S) su
h that �(r0) = fwgkand r00 = k. Sin
e � is well-typed, r0 is of the form frgk0 with �(r) = w and�(k0) = k, and r00 is of the form k00. We need to prove that r 2 analz(S).{ Suppose k0 2 T . It then follows that k0 2 K0 and hen
e it follows thatk0 = k0 and that k0 2 analz(S) (sin
e T � analz(S)). Coupled with thefa
t that frgk0 2 analz(S), we have that r 2 analz(S).{ Suppose k0 62 T . From the de�nition of � we see that k0 = k. Thusfrgk 2 analz(S).If k00 2 T , then sin
e �(T ) � S � analz(S) it follows that k 2 analz(S).If k00 62 T , from the de�nition of � it follows that k00 = k, and thus it isagain 
lear that k 2 analz(S).Coupled with frgk 2 analz(S), this implies that r 2 analz(S), as desired.24.3.2 Redu
tion to good runsIn this subse
tion we pro
eed to prove the redu
tion to good runs using theproperties proved in the previous subse
tion.Lemma 4.3.3 Suppose Pr = (C; 
1 � � � 
`) is a tagged proto
ol whi
h has a well-typedleaky run. Then it also has a good leaky run.Proof: We �x the following notation for the rest of the proof. Fix a well-typed leakyrun � = e1 � � � ek of Pr, none of whose proper pre�xes is leaky. Let ej = (�j; �j; lpj)for j � k. For any j � k, tj = term(ej). For any j : 1 � j � k, �j denotese1 � � � ej, sj denotes infstate(�j) and Tj denotes (sj)I. For i; j : 1 � i � j � k, ��ijdenotes e1 � � � ei�1ei+1 � � � ej if i < j and �i�1 if i = j, s�ij denotes infstate(��ij ) andT�ij denotes (s�ij )I . We also denote init(Pr) by s0 and (s0)I by T0.Suppose � is not a good run. This means that there is a bad event in �. Letr = max(fi � k j ei is a bad event of �g); that is, r is the index of the latest badevent in �. Noti
e that by de�nition ek is a good event, and hen
e r < k. De�ne Tto be (analz(Tr) n analz(Tr�1)) \ T0. Sin
e �r is not leaky, it follows that no m 2 Tis se
ret at �r�1. Thus it has to be the 
ase that T � NT (er) � N [ SN [K0.
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idability with unboundedly many non
es 82Let � be a substitution whi
h maps every n 2 T \ N to n0, every m 2 T \ SNto m0 and every k 2 T \ K0 to k0 and is identity on all the other terms. (Re
allthat n0, m0, and k0 are �xed 
onstants in the intruder's initial state.) For all j � k,we de�ne e0j to be (�j; � Æ �j; lpj), where (� Æ �j)(t) = �(�j(t)) for all t. We de�ne�0 = e01 � � � e0k. Analogous to the notations based on �, we de�ne the notations t0j, �0j,s0j, T 0j, (�0)�ij , (s0)�ij and (T 0)�ij based on �0.We now show that (�0)�rk ) is a (well-typed) run of Pr and that it is leaky; butthe index of the latest bad event (if any) in (�0)�rk is less than r, and hen
e we 
anrepeat the pro
ess on the new run, eventually obtaining a good run.We now prove that (�0)�rk is a run of Pr and that it is leaky, thus 
on
luding theproof of the theorem.Claim: (�0)�rk is a run of Pr:Proof of Claim: Sin
e � is a run, it follows that NT (ei) \ ST (init(Pr)) = ; for alli � k, and that NT (ei)\NT (ej) = ; for all i < j � k. Sin
e T � NT (er) it followsthat T \ NT (eq) = ; for all q 6= r. It thus follows that NT (e0q) = NT (eq) for allq 6= r. It is now easy to see that for all i � k; i 6= r, NT (e0i) \ ST (init(Pr)) = ; andthat for all i < j � k; i; j 6= r, NT (e0i)\NT (e0j) = ;. Thus (�0)�rk satis�es the uniqueorigination property. We 
on
entrate on proving that all its events are enabled atthe end of the pre
eding events.By de�nition of bad events it follows that er 6= ek and for all q : r < q � k, eqis not a good su

essor of er. This implies in parti
ular that for all q : r < q � k,:(er !` eq). From this it also follows that for all q : r < q � k, :(er +!`eq), i.e.,er 62 LP(eq).� We �rst 
onsider the 
ase when er is a re
eive event. Then by Proposi-tion 2.2.14, Tr = Tr�1 and thus T = ;. Then it is 
lear that � is the identitymap on terms. Hen
e �0 = �. It suÆ
es to prove that ��rk is a run of Pr. Firstlyit is 
lear that �r�1 is a run of Pr. Consider a q su
h that r < q � k. Sin
eall events in LP(eq) o

ur in �q�1 and er 62 LP(eq), it follows that all eventsin LP(eq) o

ur in ��rq�1.Now if eq is a re
eive event, then sin
e Tr = Tr�1 it is 
lear that T�rq�1 = Tq�1and hen
e tq 2 T�rq�1. This suÆ
es to show that eq is enabled at ��rq�1. If eq isa send event, then sin
e plays of Pr are send-admissible, eq is enabled at ��rq�1.� Let us now 
onsider the 
ase when er is a send event. We �rst show that �0r�1
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es 83is a run of Pr. Sin
e T � NT (er) and sin
e NT (er)\ST (sr�1) = ;, � does nota�e
t any term o

urring in �r�1. Hen
e it follows that for all q < r, tq = t0q,sq = s0q, and Tq = T 0q. Thus for all q < r, e0q is enabled at �0q�1. This meansthat �0r�1 is a run of Pr.We now show that for all q : r < q � k, e0q is enabled at (�0)�rq�1). We �rstnote that for any i < j � k, ei !` ej i� e0i !` e0j, ei 2 LP(ej) i� e0i 2 LP(e0j),and EST (ei) \ EST (ej) 6= ; i� EST (e0i) \ EST (e0j) 6= ;. These statementsimmediately follow from the de�nitions.Fix a q su
h that r < q � k. There are two 
ases to 
onsider:{ If eq is a re
eive event, then it is 
lear that tq 2 synth(U) where U =analz(Tq�1) \ ST (tq). Consider some u 2 U and an analz-proof � ofTq�1 ` u. It is 
lear that for all keys k, if k 2 (s0)A for some A 2 Ag thenk 2 (s0)B for some B 2 Ag . Further for any index i, if k 2 NT (ei), thenk 2 K0 and hen
e k = k. So we 
an say that for any k 2 K, if k 2 (si)Afor some A 2 Ag then k 2 (si)B for some B 2 Ag . Further note that if k 2ST (si) then k 2 (si)A for some A 2 Ag , and therefore k 2 (si)A as well.Now sin
e �q�1 is not leaky, it follows that whenever k 2 ST (sr) for somer < q and k 2 analz(Tq�1) then k 2 analz(Tr). Thus Tr�1, Tq�1 nTr, tr, T ,u and � play the role of S1, S2, t, T , u, and � respe
tively in item 4.3.1of Lemma 4.3.1 and we get u 2 (analz(Tr) \ ST (tr)) [ analz(T�rq�1). Thustq 2 synth((analz(Tr) \ ST (tr)) [ analz(T�rq�1 [ T )). Now sin
e er is not agood prede
essor of eq, EST (tq) \ EST (tr) = ;. Thus the 
onditions ofitem 2 of Lemma 4.3.1 are ful�lled, and hen
e tq 2 T�rq�1 [ T . ApplyingProposition 2.3.2 and using the fa
t that �(T ) � T0, we 
on
lude thatt0q = �(tq) 2 �(T�rq�1) [ �(T ) = (T 0)�rq�1. Hen
e e0q is enabled at (�0)�rq�1.{ If eq is a send event then e0q is also a send event. Now sin
e plays of Prare send-admissible it immediately follows that t0q 2 (T 0)�rq�1. Hen
e e0q isenabled at (�0)�rq�1.This proves that (�0)�rk is a run of Pr.Claim: (�0)�rk is leaky.Proof of Claim: We �rst prove that some m whi
h is se
ret at �k�1 belongs toanalz(T�rk [ T ). If er is a re
eive event, then by Proposition 2.2.14 it follows thatTk = T�rk and hen
e there is some m whi
h is se
ret at �k�1 and whi
h belongs to
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es 84analz(T�rk ). (This follows from the fa
t that � is itself leaky). Suppose now thater is a send event. Consider an analz-proof of Tk ` m0 for some m0 whi
h is se
retat �k�1. Let � be a subproof of this proof with the property that the root of � islabelled by some m whi
h is se
ret at �k�1 and none of the m00 labelling the nonrootnodes of � is se
ret at �k�1. Then it is 
lear that Tr�1, Tk n Tr, tr, T , m and �play the role of S1, S2, t, T , u and � respe
tively in item 4.3.1 of Lemma 4.3.1 (ifk labels a node of � and if k 2 ST (sr) then sin
e k is not se
ret at �k�1 it followsthat k 2 analz(Tr)) and we get m 2 (analz(Tr)\ST (tr))[ analz(T�rk [T ). But sin
e�r is not leaky, m 62 analz(Tr). Thus m 2 analz(T�rk [ T ). From this it follows that�(m) 2 analz((T 0)�rk ).We now prove that �(m) is se
ret at (�0)�rk�1. Sin
e m is se
ret at �k�1 andT � analz(Tr) � analz(Tk�1), it follows that m 62 T . Therefore �(m) = m. Sin
em is se
ret at �k�1, it is 
lear that m 62 analz(Tk�1). Now we observe that T �analz(Tr) \ T0 � analz(Tk�1) \ T0. Further � is a well-typed substitution su
h thatfor all x 2 T0 n T , �(x) = x and for all x 2 T , �(x) 2 Tk�1. Thus Tk�1, T and �satisfy the 
onditions of Lemma 4.3.2, and we thus see that whenever t 2 analz(T 0k�1)there exists r 2 analz(Tk�1) with �(r) = t. When t = m, it immediately follows thatr = m as well. This 
oupled with the fa
t that m 62 analz(Tk�1) implies thatm 62 analz(T 0k�1). From this it follows that m 62 analz((T 0)�rk�1) as well, and thus that�(m) = m is se
ret at (�0)�rk�1. This 
on
ludes the proof that (�0)�rk is leaky.We have thus proved the redu
tion to good runs. 2Lemma 4.3.3 and Theorem 4.2.4 immediately yield us the following theorem.Theorem 4.3.4 The problem of 
he
king for a given tagged proto
ol Pr whetherthere is a well-typed leaky run of Pr is de
idable.We 
on
lude this se
tion by some remarks on the 
omplexity of the problem andon the generalisability of the result.We saw that the length of a good run of a proto
ol Pr = (C; Æ) with jÆj = `is 22�`+1 � 1. Further at the end of Se
tion 4.1 we saw that for 
he
king a leak inwell-typed runs of Pr of length bounded by r, we have to sear
h O((`�r �
Pr)r�
Pr) runsfor a leak, where 
Pr is a 
onstant depending on the proto
ols. (We 
an assume thatit is at most `, for simpli
ity). From this we see that the 
omplexity of the se
re
yproblem for tagged proto
ols is 22O(`). Thus we see that a naive implementation of
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es 85the above de
ision pro
edure gives a double exponential algorithm.When the se
re
y problem was de�ned in Se
tion 2.2, it was remarked that amore general notion of se
re
y is to allow the user to spe
ify the se
ret whi
h shouldnot be leaked. In fa
t, in Chapter 6 we de�ne a logi
 using whi
h we 
an spe
ify su
ha more general notion of se
re
y, and other interesting properties like authenti
ationas well. We also prove in Se
tion 6.4 that some of the results proved in Se
tion 5.1(whi
h are spe
i�
 to the se
re
y problem as de�ned in Se
tion 2.2) generalise tothe logi
 introdu
ed in Chapter 6.We would ideally like to similarly extend the results of this 
hapter. But not allthe proofs in this 
hapter 
an be adapted to the generalised situation. For instan
e,the proof of Lemma 4.3.3 
ru
ially uses the fa
t that we start out with a leaky well-typed run of the given proto
ol, none of whose proper pre�xes is leaky. We thenshow that if this is not a good run, we 
an do some transformations to eliminatea bad event and still have a leaky run. Among the many se
rets whi
h are leakedin the original run, it is possible that some are not leaked in the new run. This
an happen espe
ially if its being leaked depends on an eliminated bad event. Weare only assured that at least one se
ret is leaked in the new run as well. So if weallow the user to spe
ify the se
ret whi
h should not be leaked, it is possible thatthere is some bad run whi
h leaks the se
ret but on eliminating some bad events,the new run no longer leaks that parti
ular se
ret (even though it is guaranteed toleak some other se
ret). A further diÆ
ulty is that even the proof whi
h shows thatwe 
an eliminate a bad event to form a new run of the proto
ol depends on ourstarting out with a run none of whose proper pre�xes are leaky. Notwithstandingthese diÆ
ulties, we still believe that the de
idability result of this 
hapter 
an begeneralised appropriately, and that the ideas introdu
ed in this 
hapter will lead usto new insights whi
h will help solve the generalised problem.



Chapter 5
De
idability with unboundedmessage length

In this 
hapter, we deal with the problem of unbounded message length, whi
h
auses unde
idability even if we assume a �xed �nite set of non
es, as proved inSe
tion 3.2. Even though proto
ol spe
i�
ations 
ontain only messages of boundedlength, still the intruder 
an for
e runs to 
ontain unboundedly long messages byrepeated use of ill-typed substitutions. This is the heart of the problem.In the �rst se
tion, we prove that the tagging s
heme whi
h we have introdu
edearlier ensures that we 
an work only with well-typed runs. Spe
i�
ally, we provethat every run of a tagged proto
ol has an \equivalent" well-typed run, with theproperty that the original run is leaky i� its well-typed 
ounterpart is leaky. Thisproves that the general se
re
y problem (with no restri
tions on the set of runs
onsidered) is de
idable for the 
lass of tagged proto
ols.In the se
ond se
tion, we approa
h the problem of unbounded message lengthfrom a di�erent angle. We de�ne a semanti
ally motivated equivalen
e relation onthe set of terms, with the property that it is of �nite index if we assume only a �xed�nite set of non
es and keys. The 
ru
ial property of the equivalen
e relation is thatif two terms are equivalent then the set of basi
 terms whi
h 
an be \learnt" fromeither of them is the same. The equivalen
e also leads to a notion of normal terms,and then
e to a notion of normal runs. We then prove the following semanti
 result:if every run of Pr is equivalent to a normal run of Pr, then we need only 
onsidera �nite set of runs of Pr to 
he
k for leakiness. This yields the de
idability of the86
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idability with unbounded message length 87se
re
y problem for the semanti
 sub
lass of proto
ols whose set of runs has thiskind of 
losure property.5.1 Redu
tion to well-typed runsWe prove in this se
tion (in Subse
tion 5.1.2, to be more spe
i�
) that if a taggedproto
ol has a leaky run then it has a well-typed leaky run.We use the following basi
 de�nition throughout this se
tion. For any substitu-tion � and any non
e z, de�ne �z (whi
h is easily seen to be well-typed) as follows:8x 2 T0 : �z(x) = ( z if x 2 N and �(x) 62 N�(x) otherwise5.1.1 Typing proofsIn this subse
tion, we introdu
e a notion of type for analz-proofs and prove somebasi
 properties of them. Of spe
ial interest are the so-
alled well-typed proofs. Theyprove useful in 
oming up with a well-typed run \equivalent" to a given run of atagged proto
ol.De�nition 5.1.1 A type is a pair of the form (�; r) where r is a term and � is asubstitution suitable for r. Given a set of types P , terms(P ) def= f�(r) j (�; r) 2 Pgand for any z 2 N , termsz(P ) def= f�z(r) j (�; r) 2 Pg.By de�nition, � is suitable for r i� �(r) is de�ned. Throughout this se
tion,we will impli
itly use the fa
t that if �(r) is de�ned, then �(r1) is de�ned for anyr1 2 ST (r).De�nition 5.1.2 A type (�; r) mat
hes a term t at the outermost level i� �(r) = tand r 2 N ) t 2 N .The following lemma is a trivial observation whi
h follows from the de�nitionabove and the de�nition of substitutions:Lemma 5.1.3 Let (�; r) mat
h t at the outermost level. Then the following 
ondi-tions hold:� if t 2 K then r 2 K,
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idability with unbounded message length 88� if t 2 SN then r 2 SN ,� if t is of the form (t0; t00) then r is of the form (r0; r00), and� if t is of the form ft0gk0 then r is of the form fr00gk00.De�nition 5.1.4 Suppose P is a set of types and � is an analz-proof of terms(P ) ` tfor some term t. We de�ne typesP (�) (the types of � with respe
t to P ) by indu
tionas follows.We also observe the following properties whi
h 
an be trivially 
he
ked by follow-ing the de�nition: for all (�; r) 2 typesP (�):1. �(r) = t,2. there exists a term u su
h that r 2 ST (u) and (�; u) 2 P , and3. for all z 2 N , �z(r) 2 analz(termsz(P )).� Suppose � is the following proof: Axaterms(P ) ` tThen (�; r) 2 typesP (�) i� (�; r) 2 P and �(r) = t.� Suppose � is the following proof: (�1)...terms(P ) ` (t; t0) split1terms(P ) ` tThen (�; r) 2 typesP (�) i� there exists r0 su
h that (�; (r; r0)) 2 typesP (�1).� Suppose � is the following proof:(�1)...terms(P ) ` ftgk (�2)...terms(P ) ` k de
ryptterms(P ) ` t
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idability with unbounded message length 89Then (�; r) 2 typesP (�) i� there exist keys k0; k00 and a substitution �00 su
hthat (�; frgk0) 2 typesP (�1) and (�00; k00) 2 typesP (�2)� Suppose � is the following proof: (�1)...terms(P ) ` fftgkgk redu
eterms(P ) ` tThen (�; r) 2 typesP (�) i� there exists a key k0 su
h that (�; ffrgk0gk0 2typesP (�1).� is said to be well-typed with respe
t to P if there exists a type (�; r) 2 typesP (�)su
h that r mat
hes t at the outermost level.We note the following trivially provable 
onsequen
e of the de�nition of types.Lemma 5.1.5 Suppose that P and P 0 are sets of types su
h that P � P 0 and t is aterm su
h that there exists a proof of terms(P ) ` t whi
h is well-typed with respe
tto P . Then there exists a proof of terms(P 0) ` t whi
h is well-typed with respe
t toP 0. (We will refer to this as the upward 
losure property of well-typed proofs).Lemma 5.1.6 Suppose P is a set of types, and u1 2 analz(termsz(P )) for somez 2 N . Then there exists (�; r) 2 P and r1 2 ST (r) su
h that �z(r1) = u1 and�(r1) 2 analz(terms(P )).Proof: Letting T denote terms(P ) and Tz denote termsz(P ), we prove by indu
tionon analz-proofs that for any analz-proof � whose root is labelled Tz ` u1 there exists(�; r) 2 P and r1 2 ST (r) su
h that �(r1) 2 analz(T ) and �z(r1) = u1. We onlylook at the 
ases when the rule applied at the root of � is Axa and de
rypt. Theother 
ases are handled by a routine appli
ation of the indu
tion hypothesis.� Suppose � is the following proof: AxaTz ` u1Then it follows that u1 2 Tz, i.e., there exists (�; r1) 2 P su
h that �z(r1) = u1.But (�; r1) 2 P implies that �(r1) 2 T � analz(T ), and we are through.
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idability with unbounded message length 90� Suppose � is the following proof:(�1)...Tz ` fu1gk (�2)...Tz ` k de
ryptTz ` u1By indu
tion hypothesis there exists (�; r) 2 P and r2 2 ST (r) su
h that�(r2) 2 analz(T ) and �z(r2) = fu1gk. From this it 
lear that r2 is of theform fr1gk0. Therefore �(r2) = �(fr1gk0) = f�(r1)g�(k0). It is also 
lear thatthere exists (�0; r0) 2 P and r01 2 ST (r0) su
h that �(r01) 2 analz(T ) and�0z(r01) = k. From this and the de�nition of �z it follows that �(r01) = k. Alsofrom the fa
t that �z(k0) = k it follows that �(k0) = k. Thus we have thatf�(r1)gk 2 analz(T ) and k 2 analz(T ) and it follows that �(r1) 2 analz(T ).Sin
e �z(r2) = fugk it also follows that �z(r1) = u1. 2De�nition 5.1.7 A set of types P is said to be 
onfusion-free i� for all (�; r) and(�0; r0) belonging to P and for all r1 2 EST (r) and r01 2 EST (r0), �(r1) = �0(r01))r1 = r01.Lemma 5.1.8 Suppose P [ f(&; u)g is a 
onfusion-free set of types su
h that everyt belonging to min(analz(terms(P ))) has an analz-proof that is well-typed with re-spe
t to P. Suppose further that &(u) 2 terms(P ). Then for any z 2 N , &z(u) 2termsz(P ) [ fzg.Proof: We �x a z and let T denote terms(P ) and Tz denote termsz(P ) throughoutthis proof. Note that &(u) 2 T = synth(min(analz(T ))). We now prove that forall t1 2 synth(min(analz(T ))) su
h that t1 = &(u1) for some u1 2 ST (u), &z(u1) 2Tz [ fzg. Now we do an indu
tion on the stru
ture of terms, based on Fa
t 2.3.1.(We re
all that a

ording to Fa
t 2.3.1, whenever t 2 synth(T ) then t 2 T , ort = (t0; t00) and ft0; t00g � synth(T ), or t = ft0gk and ft0; kg � synth(T ).)We �rst 
onsider the 
ase when t1 2 min(analz(T )). For any su
h t1, it follows byassumption that there is an analz-proof $ of T ` t1 that is well-typed with respe
t
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idability with unbounded message length 91to P . Let (�; r1) 2 typesP ($) be a type whi
h mat
hes t1 at the outermost level.It follows from the de�nition of types that �z(r1) 2 analz(Tz) � Tz [ fzg. It is also
lear from the de�nition of types that �(r1) = t1 = &(u1). Now there are two 
ases to
onsider, by Proposition 2.3.12 (whi
h, we may re
all, says that if t 2 min(analz(T ))then t 2 T0 or t is an en
rypted term):t1 2 T0: It has to be the 
ase that r1 2 T0. Sin
e (�; r1) mat
hes t1 at the outermostlevel, it follows that r1 2 N ) t1 2 N . Thus it follows that �z(r1) = t1.Now either &z(u1) = z or &z(u1) = &(u1) = t = �z(r1). So in either 
ase&z(u1) 2 Tz [ fzg.t1 2 EST (T ): Here there are two 
ases to 
onsider:u1 2 N : Then it is 
lear that &z(u1) = z. It immediately follows that &z(u1) =z 2 Tz [ fzg.u1 2 EST (u): Sin
e (�; r1) mat
hes t1 at the outermost level, it follows thatr1 is of the form fr2gk, from Lemma 5.1.3. From the de�nition of typesit follows that there exists r su
h that (�; r) 2 P and r1 2 EST (r). Nowsin
e the set P [ f(&; u)g is 
onfusion-free and �(r1) = &(u1), it followsthat r1 = u1. It is thus 
lear that for all x 2 ST (r1)\T0, �(x) = &(x), andtherefore �z(x) = &z(x). From this it follows that &z(u1) = &z(r1) = �z(r1).Therefore &z(u1) 2 Tz [ fzg.Now we 
onsider the 
ase when t1 is of the form (t01; t001) and t01and t001 belongto synth(min(analz(T ))). Now either u 2 N or u is of the form (u0; u00). If u 2 Nthen &z(u) = z 2 Tz [ fzg. Otherwise &(u0) = t01 and &(u00) = t001, and by indu
tionhypothesis both &z(u0) and &(u00) belong to Tz [ fzg. But now it immediately followsthat &(u) = (&(u0); &(u00)) 2 Tz [ fzg.The 
ase when t1 is of the form ft01gk is identi
ally handled. This 
on
ludes theindu
tion step and the proof. 25.1.2 Redu
tion to well-typed runsWe prove the following lemma in this subse
tion.
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idability with unbounded message length 92Lemma 5.1.9 If a weakly tagged proto
ol Pr has a leaky run, then it has a well-typedleaky run.For the rest of this se
tion, we �x a weakly tagged proto
ol Pr = (C; Æ) and arun � = e1 � � � ek of Pr with ei = (�i; �i; lpi) for all i � k. We also �x the followingnotations related to � for the rest of the dis
ussion. For any j : 1 � j � k,�j denotes e1 � � � ej, sj denotes infstate(�j), Tj denotes (sj)I, aj denotes �j(lpj),rj denotes term(aj), and tj denotes �j(rj). Similarly (ej)n0 denotes (�j; (�j)n0 ; lpj),(�j)n0 denotes (e1)n0 � � � (ej)n0 , (sj)n0 denotes infstate((�j)n0), (Tj)n0 denotes ((sj)n0)I ,and (tj)n0 denotes (�j)n0(rj). T0 and (T0)n0 denote (s0(Pr))I ; and �0 and (�0)n0denote the identity substitution. Further, for ea
h i : 0 � i � k, we de�ne a set oftypes Pi as follows: P0 = f(�0; m) j m 2 T0g; for i : 1 � i � k, Pi = Pi�1[f(�i; ri)g.Proof: We aim to prove that the sequen
e (�)n0 def= (�k)n0 is a run of Pr whi
h isleaky i� � is leaky. It is well-typed by 
onstru
tion. We only have to prove that itis a run of Pr and it is leaky if and only if � is leaky.Claim: (�)n0 is a run of Pr.Proof of Claim: Firstly we observe that the run � has the unique originationproperty. Further NT (ei) = NT ((ei)n0) for all i � k. Thus it immediatelyfollows that (�)n0 also has the unique origination property. We now 
on
entrateon proving the enabledness of the events in (�)n0.It is 
lear that for all i � k, (ei)n0 is an event of Pr, sin
e it is 
lear fromthe de�nitions that (�i)n0 is suitable for Pr and �i. We only have to provethat for all i � k, (ei)n0 is enabled at (e1)n0 � � � (ei�1)n0 . Suppose ei is a sendevent. Send-admissibility of plays of well-formed proto
ols ensures that (ei)n0is enabled at (�i�1)n0 .So we only need to 
onsider the 
ase when ei is a re
eive event. We needto prove that (ti)n0 2 (Ti�1)n0 . For this, observe that �i(ri) = ti 2 Ti�1.Now it follows from Proposition 2.2.32 (an immediate 
onsequen
e of the weaktagging s
heme) that Pi is a 
onfusion-free set of types. Further it follows fromLemma 5.1.10 (to be proved later) that for all t belonging to min(analz(Ti�1)),there is an analz-proof of Ti�1 ` t that is well-typed with respe
t to Pi. Thus we
an apply Lemma 5.1.8 and it follows that (ti)n0 = (�i)n0(ri) 2 (Ti�1)n0 [ fn0g.But n0 2 T0 and hen
e n0 2 (Ti�1)n0 . Thus it follows that (ti)n0 2 (Ti�1)n0 .
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idability with unbounded message length 93Claim: (�)n0 is leaky i� � is leaky.Proof of Claim: We prove this by showing that for all i : 1 � i � k,Ti \ T0 = (Ti)n0 \ T0. Sin
e the initial states of both runs and the new non
esgenerated at ea
h event of both runs are the same, it immediately follows that�n0 is leaky i� � is.Suppose m 2 Ti \ T0. Then it is 
lear that m 2 min(analz(Ti)). FromLemma 5.1.10 it is 
lear that there is an analz-proof � of Ti ` m that iswell-typed with respe
t to Pi. Let (�; r) 2 typesPi(�). It is 
lear that r 2 Nas well and that �n0(r) = m. But now it follows from the de�nition of typesthat m 2 analz(Tn0). This shows that Ti \ T0 � (Ti)n0 \ T0.Now supposem 2 analz((Ti)n0)\T0. By Lemma 5.1.6 it follows that there exists(�; r) 2 Pi and r1 2 ST (r) su
h that �(r1) 2 analz(Ti) and �n0(r1) = m. Nowif m = n0 then m 2 T0. If m 6= n0 then it follows that �(r1) = �n0(r1) = m.But then we have that m 2 analz(Ti). This shows that (Ti)n0 \ T0 � Ti \ T0and hen
e the 
laim follows.This 
ompletes the proof of the lemma, assuming Lemma 5.1.10. 2Lemma 5.1.10 For all i : 1 � i � k and for all t 2 min(analz(Ti)), there is ananalz-proof of Ti ` t that is well-typed with respe
t to Pi.Proof: The proof is by indu
tion on i.Base 
ase: i = 0: If t 2 analz(T0) then for any analz-proof � of T0 ` t, (�0; t) belongsto typesP0(�). Clearly (�0; t) mat
hes t at the outermost level and thus � isan analz-proof of T0 ` t that is well-typed with respe
t to P0.Indu
tion 
ase: Assume that i > 0 and that for all j < i and t 2 min(analz(Tj)),there is an analz-proof of Tj ` t that is well-typed with respe
t to Pj. By theupward 
losure property of well-typed proofs, we see that for all su
h t, thereis an analz-proof of Ti ` t that is well-typed with respe
t to Pi. Now supposet 2 min(analz(Ti)) n analz(Ti�1) and � is an analz-proof of Ti ` t. Then weprove by indu
tion on proofs that for all subproofs $ of � with root labelledTi ` u, either u 2 Ti�1 or there is an analz-proof of Ti ` u that is well-typedwith respe
t to Pi. For this we assume that for all proper subproofs $0 of
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idability with unbounded message length 94$ with root labelled Ti ` u0, u0 has this property and use it to prove that uitself has this property. On
e we prove this the desired result follows, sin
e it
annot be the 
ase that t, whi
h is assumed to be a minimal term in analz(T ),belongs to synth(analz(Ti�1)) � synth(analz(Ti) n ftg).� Suppose $ is the following proof: AxaTi ` uThen u 2 Ti. By de�nition of types , typesPi($) 6= ;. By Lemma 5.1.11(whi
h is proved next) it follows that either u 2 Ti�1 or $ is well-typedwith respe
t to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` (u; u0) split1Ti ` uBy indu
tion hypothesis either (u; u0) 2 Ti�1 or there is an analz-proof�1 of Ti ` (u; u0) that is well-typed with respe
t to Pi. In the �rst 
aseu 2 analz(Ti�1) = Ti�1 and we are done. In the se
ond 
ase, we have thefollowing proof � of Ti ` u: (�1)...Ti ` (u; u0) split1Ti ` uBy de�nition of types, typesPi(�) 6= ;. It follows from Lemma 5.1.11 thateither u 2 Ti�1 or � is well-typed with respe
t to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` fugk ($2)...Ti ` k de
ryptTi ` u
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idability with unbounded message length 95By indu
tion hypothesis either there is an analz-proof of Ti ` k thatis well-typed with respe
t to Pi or k 2 Ti�1. In the �rst 
ase we aredone. In the se
ond 
ase, we note that k is a basi
 term, and hen
ek 2 Ti�1 ) k 2 min(analz(Ti�1)). The indu
tion hypothesis (on i � 1)and the upward 
losure property of well-typed proofs assure us that thereis an analz-proof �2 of Ti ` k that is well-typed with respe
t to Pi in this
ase also. Similarly, by indu
tion hypothesis either fugk 2 Ti�1 or thereis an analz-proof �1 of Ti ` fugk that is well-typed with respe
t to Pi.In the 
ase where fugk 2 Ti�1, if u 2 Ti�1 we are done. Otherwisefugk 2 min(analz(Ti�1)), and the indu
tion hypothesis (on i� 1) and theupward 
losure property of well-typed proofs assure us that there is ananalz-proof �1 of Ti ` fugk that is well-typed with respe
t to Pi. Given�1 and �2, we 
an build the proof � as follows:(�1)...Ti ` fugk (�2)...Ti ` k de
ryptTi ` uBy de�nition of types it is 
lear that typesPi(�) 6= ;. It follows fromLemma 5.1.11 that either u 2 Ti�1 or � is well-typed with respe
t to Pi,and we are through.� Suppose $ is the following proof:($1)...Ti ` ffugkgk redu
eTi ` uBy indu
tion hypothesis either ffugkgk 2 Ti�1 or there is an analz-proof�1 of Ti ` ffugkgk that is well-typed with respe
t to Pi. In the �rst 
ase,it is 
lear that u 2 analz(Ti�1) = Ti�1. We now show that the se
ond
ase 
annot arise at all for the following reason: by indu
tion hypothesisthere exists (�; r) 2 typesPi(�1) whi
h mat
hes ffugkgk at the outermostlevel. So r is of the form fr0gk0. But then sin
e Pr is a tagged proto
oland fr0gk0 2 EST (Æ), r0 is of the form (
; r00) for some 
 2 C and some r00.It also follows from the de�nition of types that �(r) = ffugkgk, but this
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; r00) = fugk, an impossibility. Thus the se
ond 
ase
annot arise at all and we are done.This 
on
ludes the indu
tion step and the proof. The lemma is thus proved, assum-ing Lemma 5.1.11. 2Lemma 5.1.11 Suppose 1 � i � k and t 2 analz(Ti) su
h that there is an analz-proof � of Ti ` t with typesPi(�) 6= ;. Then either � is well-typed with respe
t to Pior t 2 Ti�1.Proof: Suppose (�; r) 2 typesPi(�). If (�; r) mat
hes t at the outermost level, then� is well-typed with respe
t to Pi. Otherwise it has to be the 
ase that r 2 N andt 62 N . Sin
e �(r) = t and r 6= t, it 
annot be the 
ase that � = �0. Hen
e � = �jfor some j � 1. It is 
lear from the de�nition of types that there exists u su
h thatr 2 ST (u) and (�; u) 2 Pi. Sin
e � = �j, u = rj. But now r 2 ST (rj) \ Nand �j(r) 62 N , so it follows from Lemma 5.1.15 (whi
h is proved later) thatt = �j(r) 2 Tj�1 � Ti�1. Thus the lemma is proved, assuming Lemma 5.1.15.2The following de�nition and the next two lemmas are preparatory to provingLemma 5.1.15.De�nition 5.1.12 We say that a term t originates at i � k in � i� t 2 ST (ei) andfor all j < i, t 62 ST (ej).Lemma 5.1.13 Suppose ei is a send event for some i : 1 � i � k and there existsn 2 ST (ri)\N su
h that �i(n) 62 N . Then i > 1 and there exists j : 1 � j < i su
hthat n 2 ST (rj) and �i(n) = �j(n).Proof: Sin
e �i(n) 62 N , it follows from de�nitions that n 62 NT (ai) (otherwise�i would not be suitable for ai and hen
e ei would not be an event). Also therun � has the property of unique origination of non
es, and hen
e, it follows thatn 62 CT(Pr). But the fa
t that n 2 ST (ri) implies (again by the send-admissibiltyof roles of well-formed proto
ols) that n 2 ST (�i(lp)) for some lp < lpi. But then,sin
e LP(ei) � fe1; : : : ; ei�1g, it follows that e = (�i; �i; lp) 2 fe1; : : : ; ei�1g and thusthere exists j : 1 � j < i su
h that n 2 ST (rj) and �i(n) = �j(n). 2
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idability with unbounded message length 97Lemma 5.1.14 Suppose a term t originates at a re
eive event ei for some i � k.Then t 2 Ti�1, and further, if t = fugk for some u and k then fu; kg � Ti�1.Proof: It is 
lear from the de�nition of runs that sin
e ei is a re
eive event,ti 2 Ti�1. It is also 
lear that t 2 ST (ti) � ST (Ti�1) and therefore by Proposi-tion 2.3.7 it follows that t 2 ST (analz(Ti�1)) or t 2 Ti�1. (Re
all that a

ording toProposition 2.3.7, whenever r 2 ST (synth(T )) then r 2 synth(T ) [ ST (T ).) Nowanalz(T ) � ST (T ) (and hen
e ST (analz(T )) = ST (T )) for any set of terms T , andtherefore it follows that either t 2 ST (Ti�1) ot t 2 Ti�1. Now sin
e t originatesat ei, it 
annot be the 
ase that t 2 ST (Ti�1). Therefore t 2 Ti�1. Further ift = fugk we 
an apply Proposition 2.3.8 to t and analz(Ti�1) and 
on
lude thatfu; kg � synth(analz(Ti�1)) = Ti�1. (Re
all that a

ording to Proposition 2.3.8,whenever frgk 2 ST (synth(T )) then r 2 ST (T ) or fr; kg � synth(T ). Further, inthe present 
ase t 62 ST (Ti�1) = ST (analz(Ti�1)). Hen
e the 
on
lusion.) 2Lemma 5.1.15 If �i(n) 62 N for some i : 1 � i � k and n 2 ST (ri) \ N , then�i(n) 2 Ti�1.Proof: The proof is by indu
tion on i.Base 
ase: i = 1: Suppose there exists n 2 ST (ri) \ N su
h that �i(n) 62 N . We�rst note that ei 
annot be a send event for then, by Lemma 5.1.13, it wouldfollow that i > 1, 
ontradi
ting the fa
t that i = 1. Thus ei is a re
eive event,and hen
e ti 2 Ti�1 and sin
e Ti�1 = T0 � T0 it follows from Proposition 2.3.9that t 2 Ti�1 for all t 2 ST (ti) and in parti
ular �i(n) 2 Ti�1. (Re
all thata

ording to Proposition 2.3.9, whenever T � T0, ST (synth(T )) � synth(T ).)Indu
tion 
ase: Suppose i > 1 and the statement of the lemma holds for all j < i.Suppose there exists an n 2 ST (ri) \ N su
h that �i(n) 62 N . There are two
ases to 
onsider here:ei is a re
eive event: In this 
ase it is 
lear that ti = �i(ri) 2 Ti�1. Now ifn o

urs unen
rypted in ri, �i(n) 2 Ti�1 as well and the indu
tion 
aseis through. Otherwise let fugk be the smallest en
rypted subterm of ri
ontaining n. Let �i(fugk) originate at some j � i. There are two 
asesto 
onsider here:
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idability with unbounded message length 98ej is a re
eive event: In this 
ase, it follows from Lemma 5.1.14 that�i(u) 2 Tj�1 and sin
e fugk is a minimum en
rypted term 
ontainingn as a subterm, n 2 analz(u) and hen
e �i(n) 2 Tj�1 � Ti�1.ej is a send event: Now it 
annot be the 
ase that �i(fugk) 2 ST (�j(m))for some m 2 ST (rj)\N , sin
e it is in violation of Lemma 5.1.13. Italso 
annot be the 
ase that there is some fu0gk0 2 ST (rj) su
h thatfu0gk0 6= fugk and �i(fugk) = �j(fu0gk0), sin
e it is in violation ofProposition 2.2.32. The only remaining 
ase is that fugk 2 ST (rj)and �i(fugk) = �j(fugk) in whi
h 
ase it follows that �i(n) = �j(n).Also note that sin
e ei is a re
eive event, j < i. Hen
e by indu
tionhypothesis �i(n) 2 Tj�1 � Ti�1.ei is a send event: Sin
e �i(n) 62 N , it follows from Lemma 5.1.13 that thereis a j < i su
h that n 2 ST (rj) and �j(n) = �i(n). Thus it follows byindu
tion hypothesis that �i(n) 2 Tj�1 � Ti�1.This 
ompletes the proof of the lemma. 2Of 
ourse the statement of Lemma 5.1.9 holds for tagged proto
ols as well. This
ombined with Theorem 4.3.4 leads to the following result, whi
h is the 
entral resultof the thesis.Theorem 5.1.16 . The general se
re
y problem (with no restri
tion on the set ofruns 
onsidered) is de
idable for the 
lass of tagged proto
ols.5.2 An approa
h based on equivalen
e on termsAs mentioned earlier, we approa
h the problem of unbounded message lengthin a di�erent manner in this se
tion. We de�ne an equivalen
e relation on termsbased on whi
h we obtain a sub
lass of proto
ols for whi
h the se
re
y problem isde
idable, under the assumption that the keys and non
es used 
ome from a �xed�nite set.The equivalen
e relation is based on the following semanti
 motivations: Intypi
al proto
ols the term (t; t) is not 
onstrued as 
onveying more informationthan the term t alone. Even in the rare 
ase where it 
onveys more information, itdoes so only in an indire
t manner. For instan
e, the same term repeated twi
e in a
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idability with unbounded message length 99message might signify some 
ontrol information. In that 
ase, we 
an use some moredire
t s
heme to 
onvey that information. A similar argument holds for repeateden
ryptions with the same key as well. Extending this line of thinking, we see thata term of the form ff(fm;ngk; m)gk0gk 
onveys really the same information thatffm;ngk0gk does. It 
an be seen that it is reasonable to equate the two terms, sin
ean agent with a given set of keys learns the same basi
 terms from both these terms.These 
onsiderations lead us to our de�nition of the equivalen
e relation, whi
his meant to enfor
e a reasonableness 
ondition on the kinds of messages that 
an be
onstru
ted. We leave open the question of how these rules 
an be implemented sothat only reasonable messages are used. Even if we restri
t the proto
ol spe
i�
a-tions to refer only to normal terms (whi
h formally stand for \reasonable messages"),the runs of the proto
ol might not 
ontain only normal terms. It 
an be seen thatsu
h a situation might arise only due to the a
tions of an unrestri
ted intruder. Onepossible way of enfor
ing the use of normal terms in all the runs is to o�er only somerestri
ted kinds of message building 
apabilities to the users of the proto
ol, at theimplementation level. There are many other ways of a
hieving the same result, andthe de
idability result that we prove in this se
tion applies irrespe
tive of the spe
i�
s
heme used to implement this. The result is proved for a general semanti
 
lass ofproto
ols (informally, these are proto
ols whi
h have \normal representatives" forany of their runs).We set up the following notation and terminology for this se
tion: We say thata key k en
rypts in a term t if 9t0 : ft0gk 2 ST (t).Given a term t and a key k de�ne t�k by indu
tion as follows: for m 2 T0,m�k = m; (t; t0)�k = (t�k; t0�k); and (ftgk0)�k is de�ned to be t�k if k = k0, andft�kgk0 otherwise. Thus t�k is the term t with all en
ryptions by key k removed.The en
ryption depth of a term is de�ned by indu
tion as follows:en
depth(m) = 0 for m 2 T0;en
depth((t; t0)) = max(en
depth(t); en
depth(t0)); anden
depth(ftgk) = en
depth(t) + 1.We also �x a �nite set T � T0 of size B. Throughout this se
tion we will only
onsider terms t with the property that ST (t) � T .De�nition 5.2.1 An �-proof is an inverted tree whose nodes are labelled by equa-tions of the form r � r0 and 
onne
ted by one of the rules in Figure 5.1 and whose
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idability with unbounded message length 100AxiomsA1t � t A2(t; t) � t A3(t; t0) � (t0; t) A4(t; (t0; t00)) � ((t; t0); t00)A5ftgk � ft�kgk

Rulest � t0 R1t0 � tt � t0 t0 � t00 R2t � t00t1 � t01 t2 � t02 R3(t1; t2) � (t01; t02)t � t0 R4ftgk � ft0gkFigure 5.1: Axioms and rules for �-proofs.leaves are labelled by instan
es of the axioms in Figure 5.1.We say that t � t0 i� there is an �-proof whose root is labelled by t � t0. Wesay that t �1 t0 i� there is an �-proof whose root is labelled by t � t0, and none ofwhose leaves are labelled by the axioms A2 and A5.De�nition 5.2.2 Any term whi
h has a subterm of the form (r; r) or of the formfrgk with k en
rypting in r is said to be a redex. A term t is said to be normal ifthere is no t0 su
h that t �1 t0 and t0 is a redex. A substitution � is normal i� forall x 2 T0: if �(x) is de�ned then it is normal. An event e = (�; �; lp) is normal if� is normal, and a sequen
e of events � is normal i� all the events o

urring in itare normal.The main fun
tion of the equivalen
e relation is to ensure two things: the tuplingoperator works with sets of terms now rather than lists, whi
h is ensured by AxiomsA2 to A4; the depth of the en
ryption operator is bounded. The latter is a
hievedby the axiom A5, whi
h ensures that if we 
onsider a basi
 term m o

urring in twoequivalent terms t and t0, the same keys en
rypt m in both t and t0. Thus it easilyfollows that for any set of terms T , analz(T [ ftg) \ T0 = analz(T [ ft0g) \ T0. Thisproperty is 
ru
ial for our later development.We �rst observe the following property whi
h follows immediately from the def-
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idability with unbounded message length 101initions.Proposition 5.2.3 For any two terms t and t0, if t �1 t0 then t is normal i� t0 isnormal.Lemma 5.2.4 For any normal term t, en
depth(t) � B.Proof: This is quite easy to see. Firstly note there are at most B keys in T . Nowthe result 
an be proved by a a trivial indu
tion on the stru
ture of terms as follows:If t 2 T then of 
ourse en
depth(t) = 0 � B.Suppose t is of the form (r; r0). We �rst 
laim that r and r0 are normal terms.For, suppose r were not a normal term, for example. Then there is a redex u su
hthat r �1 u. But now (r; r0) �1 (u; r0). Sin
e u is a redex, (u; r0) is also a redex, andhen
e t would itself be a nonnormal term. This 
ontradi
tion leads us to the fa
tthat r and r0 are normal terms. Therefore en
depth(r) � B and en
depth(r0) � B,by indu
tion hypothesis. Thus en
depth(t) = max(en
depth(r); en
depth(r0)) � B.Suppose t is of the form frgk. Then as before we 
an show that r is a normalterm. So en
depth(r) � B. But sin
e t is a normal term, it follows that it is not aredex. From this it follows that k does not en
rypt in r. Thus en
depth(r) is stri
tlyless than B. From this it follows that en
depth(t) � B. 2Lemma 5.2.5 The equivalen
e relation � on terms is of �nite index. Further thereis a bound on the size of normal terms.Proof: It is easy to see that every term is equivalent to a normal term. Wenow show that the set of normal terms is �nite, whi
h will immediately imply thestatement of the proposition. We will also simultaneously prove that ea
h normalterm is of bounded size (whi
h depends only on T .)Re
all that jT j = B. Let us denote by Ni the set of normal terms of en
ryptiondepth i. We show below that there is a bound fi on the size of the terms in Ni.Sin
e all normal terms are en
ryption depth at most B, the number fB is a boundon the size of normal terms.Consider a term t in N0. Clearly t is built up using only the pairing 
onstru
t,with no basi
 term having more than one o

urren
e. Thus t 
an be viewed as abinary tree with at most B leaves. The size of su
h a tree 
an be at most 2 � B.Thus we 
an let f0 = 2 �B.
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idability with unbounded message length 102Consider a term t in Ni. Suppose the set Ni�1 is of size at most gi�1. Now wenote that any term in Ni 
an be built from terms of the form frgk (with r 2 Ni�1)using the pairing 
onstru
t repeatedly. The number of terms of the form frgk withr 2 Ni�1 is at most B � gi�1 (sin
e any of at most B keys 
an be used to en
rypt anyof the at most gi�1 terms from Ni�1). Now sin
e t is normal, it follows that there isat most one o

urren
e of ea
h of the above B � gi�1 terms in t. Thus t 
an againbe viewed as a binary tree with at most B � gi�1 leaves. The size of t 
annot ex
eed2 �B � gi�1. This number 
an be 
hosen as fi.We now show how to determine gi from fi, for ea
h i. We �rst look at thedi�erent \stru
tures" of size fi that 
an o

ur. A loose upper bound is the numberof binary trees with at most fi leaves. This gives us a bound of fO(fi)i . Now we 
anmap ea
h of the leaves of these trees to any one of the B basi
 terms to form termsin Ni, so we get an estimate of BfO(fi)i for gi.This 
ompletes the proof of this lemma. 2While the bounds arrived at in the above lemma suÆ
e for our de
idabilityresults, they are 
learly not pra
ti
al. More work needs to be done in 
oming upwith proto
ol-spe
i�
 equivalen
es whi
h yield pra
ti
al bounds.We now 
ome to the se
ond part of our endeavour, whi
h is to prove that if �and �0 are equivalent runs, then � is leaky i� �0 is. We say that � � �0 for twosubstitutions � and �0 i� their domains of de�nition are the same and for all x 2 T0,if �(x) is de�ned then �0(x) � �(x). We say that (�; �; lp) � (�0; �0; lp 0) i� � = �0,lp = lp0, and � � �0. Given two sequen
es of events � = e1 � � � ek and �0 = e01 � � � e0k,we say that � � �0 i� for all i � k, ei � e0i.We now prove the 
ru
ial semanti
 property of the equivalen
e on runs. Prepara-tory to that is the following property of equivalent terms.Proposition 5.2.6 Suppose t and t0 are two terms with t � t0. Suppose U is a setof basi
 terms. Then analz(U [ ftg) \ T = analz(U [ ft0g) \ T .Proof: We note that it suÆ
es to prove the statement when t is of the form frgkand t0 is of the form fr�kgk. Then a trivial indu
tion on �-proofs yields the desiredresult.We now pro
eed to prove that analz(U [ffrgkg)\T = analz(U [ffr�kgkg)\T .At the outset there are two 
ases to be 
onsidered:
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idability with unbounded message length 103� Suppose k 62 U . Then analz(U [ffrgkg) = analz(U [ffr�kgkg) = ;, so we getour result.� Suppose k 2 U . We now prove by indu
tion on the stru
ture of terms thatanalz(U [frg)\T = analz(U [fr�kg)\T . The desired result follows sin
e thepresen
e of k in U ensures that analz(U[fr�kg)\T = analz(U [ffr�kgkg)\T .When r 2 T then r�k = r, so it immediately follows that analz(U [ frg) =analz(U [ ffr�kgkg).When r = (u; u0) then r�k = (u�k; u0�k). By indu
tion hypothesis we knowthat analz(U [ fug) \ T = analz(U [ fu�kg) \ T , and that a similar propertyholds for u0. The result now follows by noting that analz(U [ f(u; u0)g) \ T =(analz(U [ fug) [ analz(U [ fu0g)) \ T , and that a similar property holds for(u�k; u0�k).When r = fugk0, there are two 
ases to 
onsider. If k0 = k then r�k = u�k.By indu
tion hypothesis analz(U [ fug)\ T = analz(U [ fu�kg) \ T . But thepresen
e of k in U ensures that analz(U [fugk)\T = analz(U[fug)\T . Fromthis the desired result follows. If k0 6= k then r�k = fu�kgk0. By indu
tionhypothesis analz(U [ fug) \ T = analz(U [ fu�kg) \ T . Again a 
ase analysisbased on whether k0 belongs to U or not yields the desired result. 2Proposition 5.2.7 Suppose Pr is a proto
ol and � and �0 are runs of Pr su
h that� � �0. Then (infstate(�))A \ T = (infstate(�0))A \ T for all A 2 Ag. Further � isleaky i� �0 is leaky.Proof: We prove the proposition by indu
tion on the length of the runs. In thebase 
ase � = �0 = " and therefore 
learly infstate(�) = infstate(�0) = init(Pr) andthe proposition is true. For the indu
tion step suppose that � = �1 � e and �0 = �01 � e0with e � e0 and �1 � �01. Fix an A 2 Ag . By indu
tion hypothesis we see that(infstate(�1))A \ T = (infstate(�01))A \ T . Let this set be denoted by U . Now weonly 
onsider the 
ase when e is a re
eive event by A. Let t = a
t(e) and t0 = a
t(e0).Clearly t � t0. Then we note that (infstate(�))A \ T = analz(U [ ftg)\ T , and that
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idability with unbounded message length 104a similar property holds for �0. It immediately follows from Proposition 5.2.6 that(infstate(�))A \ T = (infstate(�0))A \ T .We now 
laim that if e1 � � � ek � e01 � � � e0k then for all i � k, NT (ei) = NT (e0i).This is easy to see. If we let ei = (�i; �i; lpi) and e0i = (�0i; �0i; lp 0i), then for allm 2 NT (�i(lpi)), �(m) 2 T . But �(m) � �0(m) and, sin
e m 2 T0, it 
an only bethe 
ase that �(m) is the same as �0(m). This shows that NT (ei) = NT (e0i).The above two fa
ts immediately imply that � is leaky i� �0 is leaky. 2We now de�ne a semanti
 sub
lass of proto
ols, the 
lass of �-invariant proto-
ols.De�nition 5.2.8 A proto
ol Pr is said to be �-invariant i� for all runs � of Pr,there is a normal run of �0 of Pr su
h that � � �0.It immediately follows that, given an �-invariant proto
ol Pr, 
he
king whetherthere is a leaky run of Pr boils down to 
he
king whether there is a normal leakyrun of Pr. Now the set of normal events of Pr is bounded in number (the bounddepending on the number fB derived in Lemma 5.2.5 and the spe
i�
ation of Pr).But this does not mean that the set of normal runs of Pr is a �nite set. The problemarises be
ause the same event may o

ur many times in a run (as long as it doesnot generate any new non
es), and so there is no bound on the length of the runsthat we have to 
onsider. A solution to this problem is provided in the proof of thefollowing theorem.Theorem 5.2.9 The problem of 
he
king whether a given �-invariant proto
ol hasa leaky run is de
idable.Proof: Given an �-invariant proto
ol Pr, it suÆ
es to 
he
k whether there is anormal leaky run of Pr or not. We now show that this is equivalent to 
he
kingwhether there is a redu
ed normal leaky run of Pr or not. We re
all that a redu
edrun is a run with all dupli
ate o

urren
es of events removed. Sin
e there are onlyboundedly many normal events, and sin
e there is at most one o

urren
e of anyevent in a redu
ed run, the set of redu
ed normal runs of Pr is �nite, and thus weobtain de
idability.It follows from Proposition 2.2.20 that if � is a run of Pr so is red(�). Wenow prove that � is leaky i� red(�) is leaky. Suppose � is leaky. This means that
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idability with unbounded message length 105there is a basi
 term m and a pre�x �0 of � su
h that m is se
ret at �0 and notse
ret at �. From Proposition 2.2.20 we see that infstate(�) = infstate(red(�)) andinfstate(�0) = infstate(red(�0)). Thus it follows that m is se
ret at red(�0) and notse
ret at red(�). Further it is 
lear from the de�nitions that red(�0) is a pre�x ofred(�). Thus red(�) is also leaky.Suppose on the other hand that red(�) is leaky. This means that there is a basi
term m whi
h is se
ret at some pre�x of red(�) but not se
ret at red(�). We nowuse the fa
t (whi
h immediately follows from de�nitions) that any pre�x of red(�)is of the form red(�0) for some pre�x �0 of �. Thus we see that m is se
ret at red(�0)and not se
ret at red(�). From Proposition 2.2.20, it follows that m is se
ret at �0but not se
ret at �. This means that � is leaky.So we see that there is a normal leaky run of Pr i� there is a redu
ed normalleaky run of Pr, and this 
ompletes the proof of the theorem. 2The work in this se
tion suggests an approa
h to the veri�
ation of se
urityproto
ols. To make this relevant to pra
ti
e, mu
h more work needs to be done toyield better bounds on the size of terms. This might entail 
hanging the de�nitionof the equivalen
e relation suitably (perhaps with some spe
i�
 
lasses of proto
olsin mind). Further we need to 
ome up with synta
ti
 
onditions on proto
ols whi
hensure that they are �-invariant. It is needed be
ause as of now we do not haveany method of e�e
tively 
he
king whether a given proto
ol is �-invariant or not.We 
on
lude by saying that the development in this se
tion sets up a framework forthe veri�
ation of se
urity proto
ols, and that there is still some way to go beforewe obtain results whi
h are relevant to pra
ti
e.



Chapter 6
Reasoning about se
urityproto
ols

In this 
hapter, we develop a logi
 for spe
ifying interesting properties of proto-
ols and reasoning about them. We also show that some of the de
idability resultsof the earlier 
hapters extend to the veri�
ation problem for the logi
.6.1 MotivationIn 
hapter 1, we brie
y saw some of the approa
hes to logi
al reasoning of se
urityproto
ols: namely, automated theorem proving and belief logi
s. We also pointedout some of the strengths and drawba
ks of ea
h approa
h. We take a fresh lookat these approa
hes in the light of the developments and results of the pre
eding
hapters.We saw in Chapter 2 that modelling se
urity proto
ols is fairly intri
ate. Thete
hni
al results proved in the other 
hapters also rest on some nontrivial analysisbased on the model. In su
h a situation, an automati
 
hoi
e for reasoning aboutproto
ols is a highly expressive logi
 like �rst-order logi
 or higher-order logi
 (whi
hare typi
ally used by automated theorem provers). But as was already pointed out,it requires expert knowledge to work with these logi
s. A further drawba
k is thatthe added expressive power usually brings unde
idability in its wake, and thus afully automated approa
h to proto
ol veri�
ation 
annot be based on su
h a logi
.106
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urity proto
ols 107On the other hand, as we already pointed out, belief logi
s work with fairlyabstra
t modalities like knowledge, belief, awareness, et
. It is not 
lear whetherthese are at the 
ore of reasoning about se
urity proto
ols. The analysis involvedin the proofs of the various te
hni
al results that we saw earlier suggest that theexpli
it information present in the agents' state is 
ru
ial to mu
h of the reasoningabout proto
ols. We base our logi
 on this. Thus ours is an expli
it-informationbased logi
 in that we fo
us on the expli
it information available in ea
h agent'sstate at any point of a proto
ol run, rather than on the epistemi
 attitudes of thedi�erent agents. The 
ru
ial se
urity properties also involve a notion of time, sothe logi
 needs some way of referring to the future and past. Here again, we seethat temporal modalities like the nexttime and until modalities of LTL, and 
omplextemporal reasoning involving them are not 
ru
ial to the analysis of proto
ols. Wethus 
hoose to endow the logi
 with the simple tense logi
 modailties F (referring tosome time in the future) and P (referring to some time in the past).[RS01℄ is an attempt to develop a simple modal logi
 along these lines. Themain feature of the logi
 is the modality has, whi
h refers to the expli
it informationavailable to an agent at a state. For instan
e, the formula A has m says that theterm m is in A's database in the 
urrent state. More interestingly, the formulaA has (B has m) says that A has expli
it information about B having a

ess to m.But the te
hni
al treatment in [RS01℄ is unne
essarily 
ompli
ated be
ause has istreated as a modality, and 
an thus be iterated. It is also not 
lear whether iteratingthe has modality lies at the 
ore of reasoning about se
urity proto
ols.The logi
 whi
h we des
ribe in this 
hapter follows the information based ap-proa
h, but does not treat has as a modality. Instead it is a spe
ial kind of atomi
proposition. Our aim in de�ning this logi
 is to 
ome up with a 
ore logi
 for se
urityproto
ols with the property that most of the te
hni
al results proved in the earlier
hapters (about the se
re
y problem) generalise to the logi
. But at the same timethe logi
 should have enough expressive power su
h that the basi
 se
urity prop-erties 
an be naturally expressed in it. The di�erent 
hoi
es made in de�ning theelements of the logi
 have the above two requirements in mind.Before we de�ne the logi
 proper (in the next se
tion), we motivate it by des
rib-ing a mu
h simpler logi
 whi
h helps us understand the issues involved. The syntaxof the logi
 has basi
 propositions of the form A has m and a where A 2 Ag , m 2 T0and a 2 A
. Further the set of formulas is 
losed under the usual boolean operators,
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urity proto
ols 108the future modality F, and the past modality P. The formulas are interpreted overinstants of runs of a proto
ol, i.e., (�; i) where � is a run of a proto
ol and 0 � i � j�j.We say that the formula A has m is satis�ed at (�; i) i� m 2 (infstate(�i))A (where�i is the pre�x of � of length i). (�; i) satis�es a i� a
t(ei) = a (ei being the ith eventof �). The formula F� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i.Similarly, P� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i. The dualmodalities G and H are de�ned by: G� def= :F:� and H� def= :P:�. A proto
olPr satis�es a formula � if (�; 0) satis�es � for all runs � of Pr. This is basi
ally atense logi
 with the past operator and some spe
ialised atomi
 propositions to talkabout se
urity.Several basi
 se
urity properties 
an be spe
i�ed in this logi
. The formula:F(I hasm) says that the basi
 termm is never learnt by the intruder in the 
ourse ofa run. This is a rudimentary form of se
re
y. A rudimentary form of authenti
ationis spe
i�ed by the formula G(A?B: t � P(B!A: t)). This says that if A re
eives tpurportedly from B at some point of a run, then B a
tually sent it intended for A atsome time in the past. We 
an even de�ne more 
ompli
ated forms of authenti
ationin the logi
. With respe
t to the Needham-S
hroeder proto
ol PrNS the followingformula � says that if some instantiation of the responder role is played, then anappropriate instantiation of the initiator role has also been played to 
ompletion.� def= G[B?A:fngpubkB �P(A!B:fngpubkB ^ P(A?B:fm;ngpubkA ^ P(A!B: (m)fmgpubkB)))℄This is just representative of the kind of properties that 
an be spe
i�ed. Otherforms of proto
ol-spe
i�
 authenti
ation properties 
an be spe
i�ed using the logi
.But the main drawba
k of the logi
 is that the formulas mention 
on
rete termsa
tually 
ommuni
ated during a run. This makes the task of spe
ifying abstra
tse
urity properties in the logi
 mu
h harder. Further, sin
e there are potentially in-�nitely many 
on
rete terms, we need a logi
al devi
e like quanti�
ation over termsto express properties about all terms. In the logi
 that we introdu
e next, we solvethese problems by mentioning only abstra
t terms mentioned in the proto
ol spe
i-�
ation. Further, instead of a quanti�
ation on terms we have a quanti�
ation oversubstitutions. Re
all that substitutions are the unknown elements at the level ofproto
ol spe
i�
ations, sin
e they serve to introdu
e di�erent terms in the proto
olruns. These features enable the proposed logi
 to naturally spe
ify abstra
t prop-erties of proto
ols with referen
e to the runs of the proto
ol. Thus our approa
h
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ombines some of the advantages of BAN-style logi
s (ability to spe
ify abstra
tproperties) with some of the advantages of the logi
 presented above (formulas 
anbe easily and naturally interpreted over runs of a proto
ol, even though 
on
reteterms not in mentioned in the formula (or the proto
ol spe
i�
ation) o

ur in therun).6.2 A modal logi
 for se
urity proto
olsIn this se
tion, we develop a logi
 keeping the points raised in the above dis
us-sion in mind. The logi
 is designed to spe
ify abstra
t properties of proto
ols. Thusthe formulas need to talk about terms, a
tions, et
. but in an abstra
t way.SyntaxWe assume a 
ountable set AS of abstra
t substitution names. For a term m 2 T0,we de�ne type(m) to be non
e if m 2 N , sequen
e-number if m 2 SN , key if m 2 Kand agent if m 2 Ag .The set of formulas � is given by:� ::= ��A has �0 �m (A 2 Ag ; m 2 T0; �; �0 2 AS)j ��a (a 2 A
; � 2 AS)j ��x = �0 �x0 (x; x0 2 T0; type(x) = type(x0); �; �0 2 AS)j :�j � _ �j F�j P�j (9�)�We introdu
e the other standard operators as follows: � ^ � def= :(:� _ :�),� � � def= :�_�, � � � def= (� � �)^(� � �), G� def= :F:�, H� def= :P:�,(8�)� def= :(9�):�.The set of subformulas, the set of free substitution names, and the set of \sub-terms" of a formula are all easily de�ned:� SF (��A has �0 �m) = f��A has �0 �mg;FSN (��A has �0 �m) = f�; �0g;
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ols 110ST (��A has �0 �m) = f��A; �0 �mg;� SF (��a) = f��ag;FSN (��a) = f�g;ST (��a) = f��m j m 2 ST (a) \ T0g;� SF (��x = �0 �x0) = f��x = �0 �x0g;FSN (��x = �0 �x0) = f�; �0g;ST (��x = �0 �x0) = f��x; ��x0g;� SF (:�) = f:�g [ SF (�);FSN (:�) = FSN (�);ST (:�) = ST (�);� SF (� _ �) = f� _ �g [ SF (�) [ SF (�);FSN (� _ �) = FSN (�) [ FSN (�);ST (� _ �) = ST (�) [ ST (�);� SF (F�) = fF�g [ SF (�);FSN (F�) = FSN (�);ST (F�) = ST (�);� SF (P�) = fP�g [ SF (�);FSN (P�) = FSN (�);ST (P�) = ST (�);� SF ((9�)�) = f(9�)�g [ SF (�);FSN ((9�)�) = FSN (�) n f�g;ST ((9�)�) = ST (�).A formula � is said to be 
losed i� FSN (�) = ;.Semanti
sA stru
ture is a pair A = (Pr; S) where Pr is a proto
ol and S is a set of substitu-tions suitable for Pr. (Note that S need not ne
essarily be the set of all substitutions� suitable for Pr.) An A-run � is a run of Pr su
h that for all (�; �; lp) 2 Events(�),� 2 S. An A-assignment � is a map whi
h asso
iates ea
h substitution name � inAS to a substitution �� 2 S. (Note that for ease of notation we write �� rather than
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ture A = (Pr; S), an A-assignment � and a substitution � 2 S wede�ne �[� := �℄ to be the assignment �0 with the property that �0� = � and �0�0 = ��0for �0 6= �.Amodel is a pairM = (A; �) where A is a stru
ture and � is anA-assignment. Wesay that � is anM-run if it is an A-run. A modelM = (A; �) is said to be 
ompatiblewith a formula � i� for all ��m 2 ST (�), ��(m) is de�ned and type(��(m)) = type(m).Given a sequen
e of events �, an instant in � is a number i su
h that 0 � i � j�j.Given a formula �, a modelM = ((Pr; S); �) 
ompatible with �, an M-run � andan instant i in �, we de�ne the satisfa
tion relation M; (�; i) j= �. Suppose that� = e1 � � � ek, where for ea
h i � k, ei = (�i; �i; lpi). Let si denote infstate(e1 � � � ei),for any i � k. We now give the indu
tive de�nition of M; (�; i) j= �.� M; (�; i) j= ��A has �0 �m i� n 2 (si)C (where ��0(m) = n and ��(A) = C);� M; (�; i) j= ��a i� i > 0, �i(lpi) = a and ��(a) = �i(a);� M; (�; i) j= ��x = �0 �x0 i� ��(x) = ��0(x0);� M; (�; i) j= :� i� M; (�; i) 6j= �;� M; (�; i) j= � _ � i� M; (�; i) j= � or M; (�; i) j= �;� M; (�; i) j= F� i� there exists j � i su
h that M; (�; j) j= �;� M; (�; i) j= P� i� there exists j � i su
h that M; (�; j) j= �;� M; (�; i) j= (9�)� i� M0; (�; i) j= �, where M0 = (A; �[� := �℄) for some substi-tution � 2 S and M0 is 
ompatible with �.A formula � is satis�able i� there exists a modelM 
ompatible with �, anM-run�, and an instant i in � su
h thatM; (�; i) j= �. A formula � is valid i�M; (�; i) j= �for all models M 
ompatible with �, all M-runs �, and all instants i in �.Note that a formula � is valid i� :� is not satis�able.The interesting validities involve intera
tion of the quanti�ers and modalities.Note that (8�)G� � G(8�)� and (9�)F� � F(9�)� are validities. Similarly for the pastmodalities. On the other hand note that (9�)G� � G(9�)� and F(8�)� � (8�)F�are validities, but the impli
ations do not hold the other way. A similar statement
an be made about the past modalities. This behaviour is typi
al of the intera
tionof the quanti�ers and the modalities.
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 has both quanti�ers and modalities, the seman-ti
s is more restri
ted than that of �rst-order modal logi
. The typi
al feature of�rst-order modal logi
 is that the possible worlds are di�erent �rst-order stru
tures(even under the so-
alled 
onstant-domain semanti
s, the di�erent worlds only sharethe domain while the interpretations of the relations and 
onstants usually vary).In our framework, a single stru
ture remains 
onstant a
ross many worlds. In thisrespe
t, the logi
 presented here 
an be thought of as a kind of quanti�ed proposi-tional logi
 with modalities. The quanti�
ation over substitutions 
an be 
onsideredas a spe
ial form of quanti�
ation over propositions.For a stru
ture A = (Pr; S) and a formula �, we say that A j= � i�M; (�; 0) j= �for all A-assignments � su
h thatM = (A; �) is 
ompatible with �, and all A-runs �.Suppose � is a formula, A is a stru
ture, and M = (A; �) and M0 = (A; �0) are twomodels 
ompatible with � su
h that for all � 2 FSN (�), �� = �0�. Then M; (�; i) j= �i� M0; (�; i) j= � for all M-runs � and all instants i in �. It follows from this thatgiven a stru
ture A and a formula �, to 
he
k whether A j= �, it suÆ
es to 
onsiderA-assignments restri
ted to FSN (�).We now de�ne several notions of validity with respe
t to a �xed proto
ol Pr.We say that Pr j= � i� (Pr; SPr) j= �, where SPr is the set of all substitutions �suitable for Pr.We say that Pr j=wt � i� (Pr; SPr;wt) j= �, where SPr;wt is the set of all well-typedsubstitutions � suitable for Pr.For a �xed set T � T0, we say that Pr j=T � i� (Pr; SPr;T ) j= �, where SPr;T isthe set of all T -substitutions suitable for Pr.We say that Pr j=Twt � i� (Pr; SPr;wt;T ) j= �, where SPr;wt;T is the set of all well-typed T -substitutions suitable for Pr.A feature of the semanti
s that needs a little dis
ussion is that the satisfa
tionrelationM; (�; i) j= � is de�ned only ifM is 
ompatible with �. Re
all that the 
orelogi
 that we presented in Se
tion 6.1 works with formulas of the form A has m,where m 2 T0. The logi
 we are working with is supposed to be an abstra
tion of the
ore logi
. Consider a formula of the form ��A has �0 �m. If we interpret this formulaon some model (A; �) su
h that ��0(m) 62 T0, then we would be indire
tly referring toa nonatomi
 term t using our formula. The de�nition of M being 
ompatible with� disallows su
h an indire
t referen
e to nonatomi
 terms.Note that the logi
 has both quanti�
ation over substitution names and equality.
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ols 113As the examples in the next se
tion show, a 
ombination of these two features of thelogi
 is 
ru
ially used in spe
ifying properties of and reasoning about proto
ols. Thelogi
 would not be as e�e
tive even if one of the two features were not present. In theabsen
e of the equality operator, there would be no means of relating substitutionnames with one another. In the absen
e of quanti�
ation, the logi
 would not havethe ability to refer to all the substitutions of the model (there might possibly bein�nitely many of them). For instan
e, a typi
al authenti
ation requirement wouldbe that for any instantiation of a responder role o

urring in a run with A as thepurported initiator and B as the responder, there is an instantiation of the initiatorrole in the same run with A as the initiator and B as the intended responder. Notethe 
ru
ial use of the of quanti�ers (for every responder role, there is an initiator role)and of equality (whi
h 
onstrain the initiator role to 
orrespond to the responderrole).6.3 ExamplesLet us look at some examples whi
h illustrate the use of the logi
. Without lossof generality we assume that for all modelsM = (A; �) 
ompatible with a formula �,��(I) = I for all ��I 2 ST (�). This means that we 
an use the name I in formulaswithout pre�xing it with any substitution name.6.3.1 The Needham-S
hroeder proto
olWe look at the Needham-S
hroeder proto
ol in detail now, stating several of itsproperties in our logi
, demonstrating that some of them are true in all runs of theproto
ol, and also showing that some 
ru
ial properties fail.The proto
ol is given by (C; Æ) where C = ; and Æ is the following sequen
e of
ommuni
ations. 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkBThere are two roles in this proto
ol. The initiator role �1 is given below:
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ols 1141. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBWe will use the notation ai to denote �1(i) and bi to denote �2(i), for 1 � i � 3.The following is an immediate and trivial validity for this proto
ol, whi
h justsays that any event in a run is pre
eded by its lo
al past.(8�)G[^i=2;3((��ai � P(��ai�1)) ^ (��bi � P(��bi�1)))℄:Example spe
i�
ationsOne of the most immediate properties that we desire of this proto
ol is that ofse
re
y. There are two desirable se
re
y requirements in this 
ase. Se
re
y for theinitiator says that all fresh non
es that are instantiated for x and not intended forthe intruder are not leaked to the intruder. It is expressed by the following formula:se
re
y init def= (8�)G[(��a1 ^ :(��B = I)) � G:I has ��x℄:Se
re
y for the responder says that all fresh non
es that are instantiated for yand are not intended for the intruder are not leaked to the intruder. It is expressedby the following formula:se
re
yresp def= (8�)G[(��b2 ^ :(��A = I)) � G:I has ��y℄:Authenti
ation for the initiator says that for every play of the initiator role (withan apparently honest responder) in a run of the proto
ol, there is a 
orrespondingplay of the responder role in that run.auth init def= (8�)G[(��a2 ^ :(��B = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �b2)℄℄:Authenti
ation for the responder says that for every play of the responder role(with an apparently honest initiator) in a run of the proto
ol, there is a 
orrespond-ing play of the initiator role in that run.
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ols 115authresp def= (8�)G[(��b3 ^ :(��A = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �a3)℄℄:The notable feature of the formulas is that they are quite simple and intuitiveto write, not requiring us to name any a
tual terms that are substituted.Lowe's atta
kOf the above properties, se
re
y for the responder is not guaranteed by theproto
ol, i.e., PrNS 6j= se
re
y resp . This 
an be eviden
ed by the following run �. Inthe following, �1 is a substitution su
h that �1(A) = A, �1(B) = I, �1(x) = m, and�1(y) = n; and �2 is a substitution su
h that �2(A) = A, �2(B) = B, �2(x) = m,and �2(y) = n. (�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBSuppose A = (Pr; SPr) and � is an A-assignment su
h that �� = �2. SupposeM = (A; �). Then it is 
lear that M; (�; 3) j= ��b2 ^ :(��A = I). But on the otherhand it 
an be easily seen thatM; (�; 5) j= I has ��y. This is easy to see sin
e n 2 sI ,where s is the information state at the end of the �rst �ve events of �. From thesetwo fa
ts it follows thatM; (�; 0) 6j= se
re
yresp and hen
e that PrNS 6j= se
re
yresp aswell. In fa
t, this also shows that PrNS 6j=wt se
re
y resp . This is the famous Lowe'satta
k on the Needham-S
hroeder proto
ol.The above atta
k also shows that PrNS 6j=wt authresp . It is 
lear that M; (�; 6) j=��b3 ^ :(��A = I). But it is also true that M; (�; 0) j= (8�0)G[�0 �a3 � �0 �B 6= ��B℄.This shows that M; (�; 0) 6j= authresp and hen
e that PrNS 6j=wt authresp .Se
re
y for the initiatorEven though PrNS 6j=wt se
re
yresp , it 
an be argued that PrNS j=wt se
re
y init .The reasoning is as follows: We assume that PrNS 6j=wt se
re
y init and arrive at a
ontradi
tion. The assumption means that M; (�; 0) 6j= se
re
y init for some M =
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ols 116((Pr; SPrNS;wt); �) 
ompatible with se
re
y init , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.1. We are given that M; (�; 0) 6j= se
re
y init . This means that there exist i � 0and � 2 AS su
h thatM; (�; i) j= ��a1^:(��B = I) andM; (�; i) j= F(I has ��x).2. Sin
e M; (�; i) j= ��a1, it follows that �i(lpi) = a1 and �i(a1) = ��(a1).3. Sin
e x 2 NT (�1(1)), it is 
lear that ��(x) 2 NT (ei), and hen
e it follows fromthe unique origination property of runs that M; (�; i0) j= :(I has ��x) for alli0 < i. Sin
e only f��(A); ��(x)gpubk��(B) is added to the intruder's state by ei,and sin
e ��(B) 6= I, it follows that M; (�; i) j= :(I has ��x) as well.4. Sin
e M; (�; i) j= F(I has ��x), there is a least j � i su
h that M; (�; j) j=I has ��x. Clearly j > i and M; (�; j 0) j= :(I has ��x) for all j 0 < j.5. Sin
e there is a 
hange in the intruder's state at the jth instant, it must bethe 
ase that ej is a send event. A further perusal of the proto
ol spe
i�
ationtells us that ej 
an only take one of the following forms:(a) (�1; �; 1) with �(x) = ��(x) and �(B) = I.This means that ��(x) 2 NT (ej) but that 
annot happen be
ause of theproperty of unique origination. Hen
e this 
ase 
annot arise at all.(b) (�1; �; 3) with �(y) = ��(x) and �(B) = I.In this 
ase it is 
lear that there exists ` < j su
h that e` = (�1; �; 2).Suppose �(x) = n and �(y) = m. Then term(e`) = fn;mgpubk�(A). Sin
ee` is a re
eive event, fn;mgpubk�(A) 2 (s`�1)I . It should be noted thatm 2 NT (ei) and term(ei) = f��(A); mgpubk��(B) , and therefore by theunique origination property of �, it is not possible that there is a sendevent e with term(e) = fn;mgpubk�(A) (sin
e m 2 NT (e) would hold inthat 
ase). Thus fn;mgpubk�(A) 62 analz((s`�1)I), in parti
ular. But thisterm belongs to (s`�1)I , and hen
e it follows that m 2 (s`�1)I . But thenM; (�; ` � 1) j= I has ��x. Sin
e ` � 1 < j, this is a 
ontradi
tion tothe fa
t that j is the least instant in � su
h that M; (�; j) j= I has ��x.Therefore this 
ase is also not possible.(
) (�2; �; 2) with (�(y) = ��(x) or �(x) = ��(x)) and �(A) = I.
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urity proto
ols 117If �(y) = ��(x) then it means that ��(x) 2 NT (ej) but that 
annot happenbe
ause of the property of unique origination. Hen
e it has to be the 
asethat �(x) = ��(x).In this 
ase it is 
lear that there exists ` < j su
h that e` = (�2; �; 1).Suppose �(x) = m. Then term(e`) = fI;mgpubk�(B) . Sin
e e` is a re-
eive event, fI;mgpubk�(B) 2 (s`�1)I . It should be noted that m 2 NT (ei)and term(ei) = f��(A); mgpubk��(B) with ��(A) 2 Ho, and therefore bythe unique origination property of �, it is not possible that there isa send event e with term(e) = fI;mgpubk�(B). Thus fI;mgpubk�(B) 62analz((s`�1)I), in parti
ular. But this term belongs to (s`�1)I, and hen
eit follows that m 2 (s`�1)I . But then M; (�; ` � 1) j= I has ��x. Sin
e`� 1 < j, this is a 
ontradi
tion to the fa
t that j is the least instant in� su
h thatM; (�; j) j= I has ��x. Therefore this 
ase is also not possible.This 
on
ludes the proof that PrNS j=wt se
re
y init .Se
re
y for the responderEven though PrNS 6j=wt se
re
yresp , it 
an be shown that the following slightlyweaker guarantee holds for the responder:se
re
y 0resp def= (8�)[(8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)) �G[(��b2 ^ :(��A = I)) � G:I has ��y℄℄:The proof is as before. We assume that PrNS 6j=wt se
re
y 0resp and arrive at a
ontradi
tion. The assumption means that M; (�; 0) 6j= se
re
y 0resp for some M =((Pr; SPrNS;wt); �) 
ompatible with se
re
y 0resp , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.Reasoning along the lines of items 1 to 4 in the previous proof, we 
an show thatthere exists � 2 AS su
h that M; (�; 0) j= (8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)),i � 0 su
h that M; (�; i) j= ��b2 ^:(��A = I) and M; (�; i) j= F(I has ��y), and j > isu
h that M; (�; j) j= I has ��y and M; (�; j 0) j= :(I has ��y) for all j 0 < j.Reasoning along the lines of item 5, we see that ej 
an only be one of the followingforms:(a) (�1; �; 1) with �(x) = ��(y) and �(B) = I.It 
an be shown that this 
ase 
annot arise, reasoning along the lines ofitem 5(a) of the previous proof.
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ols 118(b) (�1; �; 3) with �(y) = ��(y) and �(B) = I.In this 
ase it is 
lear that there exists ` < j su
h that e` = (�1; �; 1). ThusM; (�; 0) j= (9�0)(��y = �0 �y ^ ��B = I ^ F(�0 �a1)), whi
h is a 
ontradi
tionto our assumption. Therefore this 
ase 
annot arise. Note that this 
ase isa
tually the problem with Lowe's atta
k. If it is possible for honest agents toinitiate sessions with the intruder (this is not an improbable situation), thenLowe's atta
k exists. If we rule out this possibility (whi
h is what the extraassumptions in se
re
y 0resp do), then Lowe's atta
k does not exist any more.(
) (�2; �; 2) with (�(y) = ��(y) or �(x) = ��(y)) and �(A) = I.It 
an be shown that this 
ase 
annot arise as well, reasoning along the linesof item 5(
) of the previous proof.Authenti
ation for the initiatorWe now show that PrNS j=wt auth init . Consider some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi) for i � k.Consider a modelM = ((PrNS; SPrNS;wt); �) 
ompatible with auth init . We prove belowthat M; (�; 0) j= auth init .1. Suppose now that there exists � 2 AS and i � 0 su
h that M; (�; i) j= ��a2 ^:(��B = I).2. It easily follows that there exists an i0 < i su
h thatM; (�; i0) j= ��a1. Using thefa
t that PrNS j=wt se
re
y init , we 
an 
on
lude thatM; (�; i0) j= G:(I has ��x).3. Sin
e x 2 NT (�1(1)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��x) for all i00 < i0. Thus we 
an 
on
lude thatM; (�; 0) j= G:(I has ��x).4. Let ��(A) = C, ��(x) = m and ��(y) = n. Then term(ei) = fm;ngpubkC .Clearly fm;ngpubkC 2 (si�1)I . But sin
e m 62 (si�1)I , it has to be the 
asethat there is some send event ej (j < i) with term(ej) = term(ei). But thenej is of the form (�2; �; 2) with �(A) = ��(A), �(x) = ��(x) and �(y) = ��(y).Our proof would be 
omplete if we showed that �(B) = ��(B). Suppose�(B) = D. It is 
lear that there exists ` < j su
h that e` = (�2; �; 1).Here again term(e`) = fC;mgpubkD . This term belongs to (s`�1)I , but sin
e
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urity proto
ols 119m 62 (s`�1)I it follows that there is a send event e`0 with term(e`0) = term(e`).Then it would be the 
ase that m 2 NT (e`0), and by the unique originationproperty of �, it follows that i0 = `0. From this it follows that �(B) = ��(B),and we are through.6.3.2 The Needham-S
hroeder-Lowe proto
olThis is a slight modi�
ation of the Needham-S
hroeder proto
ol, with a 
orre
-tion proposed by Gavin Lowe. The 
hange in this proto
ol is that the responder'sidentity is in
luded in the message sent by the responder.The proto
ol is given by PrNSL = (C; Æ) where C = ; and Æ is the followingsequen
e of 
ommuni
ations.1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. A ! B : fygpubkBThere are two roles in this proto
ol. The initiator role �1 is given below:1. A ! B : (x) fA; xgpubkB2. A ? B : fB; x; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. B ? A : fygpubkBAs before, we will use the notation ai to denote �1(i) and bi to denote �2(i), for1 � i � 3.Se
re
y for the initiator and responder, and authenti
ation for the initiator andresponder, are given by the four formulas se
re
y init , se
re
yresp , auth init and authresprespe
tively. These formulas have the same de�nitions as earlier, ex
ept for the
hange in the a
tions a2 and b2. It 
an be seen that the atta
k whi
h leads to theviolation of se
re
y resp and authresp does not work anymore, with the addition of theresponder's name in the a
tion b2, but we have to still prove that no other atta
ksare possible.
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ols 120One 
an prove that PrNSL j=wt se
re
y init and PrNSL j=wt auth init in exa
tly thesame manner as before. The ni
e thing is that PrNSL j=wt se
re
yresp also holds now.The proof is exa
tly along the lines of the proof of se
re
y for the initiator in theNeedham-S
hroeder proto
ol.Authenti
ation for responderWe now show that PrNSL j=wt authresp as well. Consider some well-typed run � =e1 � � � ek of PrNSL. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi)for i � k. Consider a modelM = ((PrNSL; SPrNSL;wt); �) 
ompatible with authresp . Weprove below that M; (�; 0) j= authresp .1. Suppose now that there exists � 2 AS and i � 0 su
h that M; (�; i) j= ��b3 ^:(��A = I).2. It easily follows that there exists an i0 < i su
h thatM; (�; i0) j= ��b2. Using thefa
t that PrNS j=wt se
re
yresp , we 
an 
on
lude thatM; (�; i0) j= G:(I has ��y).3. Sin
e y 2 NT (�2(2)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��y) for all i00 < i0. Thus we 
an 
on
lude thatM; (�; 0) j= G:(I has ��y).4. Arguing in the lines of item 4 of the proof of authenti
ation for the initiatorin the Needham-S
hroeder proto
ol, we 
an show that there exists some j 0 < iand �0 2 AS su
h that M; (�; j 0) j= �0 �a3 ^ �0 �B = ��B ^ �0 �y = ��y. It followsimmediately from this that there exists j < j 0 su
h thatM; (�; j) j= �0 �a2. Nowwe note that ��(B) 6= I, sin
e a
t(ei) 2 A
��(B), and by de�nition ��(B) 2 Ho.Thus M; (�; j) j= :(��B = I). Now we use the fa
t that PrNSL j=wt auth init .Thus there exists �00 2 AS su
h that M; (�; j) j= �0 �A = �00 �A ^ �0 �B =�00 �B ^ �0 �x = �00 �x ^ �0 �y = �00 �y ^ P(�00 �b2). Let ` < j be su
h thatM; (�; `) j= �00 �b2. It is 
lear that ��(y) 2 NT (e`). But re
all that ei0 = (�2; ��; 2)and thus ��(y) 2 NT (ei0) as well. By the unique origination of �, it followsthat ` = i0, and thus it also follows that �� = �00� . This proves the desiredresult.
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idabilityIn this se
tion we study the veri�
ation problem of the logi
 in di�erent settingsand see that all the unde
idability results and some of the de
idability results whi
hwe saw in the earlier 
hapters go through for the logi
 as well.The unde
idability results are easy to show, sin
e the rea
hability property (de-�ned at the end of Chapter 3) 
an be trivially expressed in our logi
. Suppose weare given a proto
ol Pr = (C;R), and an a
tion a. Consider the following formula:�rea
h def= :(9�)F(��a):Then it is 
lear that Pr 6j=wt �rea
h i� Pr and a form a positive instan
e of therea
hability problem for well-typed runs. From this it follows that the problem of
he
king whether Pr j=wt � is unde
idable. Reasoning on exa
tly the same lines, we
an 
on
lude that the problem of 
he
king whether Pr j=T � is unde
idable, evenfor �nite T (of some reasonable size | the proof in Se
tion 3.2 requires T to be ofsize at least 6). We summarize the results in the following theorem.Theorem 6.4.1 The problem of 
he
king whether Pr j=wt � given a proto
ol Pr anda formula � is unde
idable.For a �xed T � T0 (whi
h might even be �nite), the problem of 
he
king whetherPr j=T � given a proto
ol Pr and a formula � is unde
idable.We now prove that the redu
tion to well-typed runs des
ribed in Se
tion 5.1extends to our logi
 as well. In the proof we 
ru
ially use the following fa
t provedin Se
tion 5.1, in the proof of Lemma 5.1.9: if � = e1 � � � ek is a run of a weakly-taggedproto
ol, then for all i � k, (si)I \ T0 = (s0i)I \ T0 (where si = infstate(e1 � � � ei)and s0i = infstate((e1)n0 � � � (ei)n0)). We 
laim that it 
an be proved along the samelines that (si)A \ T0 = (s0i)A \ T0 for all A 2 Ag, provided that n0 is added to all theagents' initial states. We therefore make the assumption that for all proto
ols Prand for all A 2 Ag , n0 2 (init(Pr))A.Lemma 6.4.2 For any �xed T � T0 su
h that n0 2 T , for any weakly tagged proto
olPr = (C; Æ) su
h that C � T , and for any formula � 2 �, Pr j=T � i� Pr j=Twt �.Proof: Fix a set T � T0 su
h that n0 2 T . Fix a weakly tagged proto
ol Pr = (C; Æ)su
h that C � T , and �x a formula �0. Fix a T -run � = e1 � � � ek of Pr with ei =(�i; �i; lpi) for all i : 1 � i � k. Let si = infstate(e1 � � � ei), for i � k. It is 
lear that
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ols 122�n0 = (e1)n0 � � � (ek)n0 is a well-typed T -run. Let us denote infstate((e1)n0 � � � (ei)n0)by (si)n0 , for all i � k. Let A = (Pr; SPr;T ) and Awt = (Pr; SPr;wt;T ). (Note that wework with only well-typed substitutions in Awt .) For every A-assignment �, let �n0be a map su
h that �n0(�) = (�(�))n0 for all � 2 AS. Sin
e �n0(�) is a well-typedsubstitution for all � 2 AS, it is 
lear that �n0 is anAwt -assignment. It is also 
learthat a model M = (A; �) is 
ompatible with a formula � i� Mn0 = (Awt ; �n0) is
ompatible with �. Throughout the proof we will also use the fa
t that any model
ompatible with � is also 
ompatible with any subformula of �.We now prove by indu
tion that for all subformulas � of �0, and for all A-assignments � su
h that M = (A; �) is 
ompatible with �, for all A-runs �, and forall instants i in �: M; (�; i) j= � i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��A has �0 �m. Suppose �(�0) = �. Then �n0(�0) =�n0 . Sin
e M is 
ompatible with �0, and sin
e ��m 2 ST (�0), it follows thattype(�(m)) = type(m). Hen
e it follows that �(m) = �n0(m) 2 T0. Finallynote that (si)A \ T0 = ((si)n0)A \ T0 (as explained in the dis
ussion pre
edingthis lemma).Now M; (�; i) j= � i� �(m) 2 (si)A \ T0 i� �n0(m) 2 ((si)n0)A \ T0 i�Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��a. Suppose �(�) = �. Then �n0(�) = �n0 . Sin
eM is 
ompatible with �0 and sin
e f��m j m 2 ST (a) \ T0g � ST (�0), itfollows that type(�(m)) = type(m) for all m 2 ST (a) \ T0. Hen
e it followsthat �(a) = �n0(a). It also follows that for all j � k, �j(a) = (�j)n0(a).Now M; (�; i) j= � i� �i(lpi) = a and �i(a) = �(a) i� �n0(a) = (�i)n0(a) and�i(lpi) = a i� Mn0 ; (�n0 ; i) j= �.� Suppose � is of the form ��x = �0 �x0. Suppose �(�) = � and �(�0) = �0. Then�n0(�) = �n0 and �n0(�0) = �0n0 . Also note that type(�(x)) = type(x) andtype(�0(x0)) = type(x0). Therefore �n0(x) = �(x) and �0n0(x0) = �0(x0).Now M; (�; i) j=� � i� �(x) = �0(x0) i� �n0(x) = �0n0(x0) i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form :�. NowM; (�; i) j= � i� (by semanti
s)M; (�; i) 6j= �i� (by indu
tion hypothesis)Mn0 ; (�n0; i) 6j= � i� (by semanti
s)Mn0 ; (�n0 ; i) j=�.
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ols 123� Suppose � is of the form � _ 
. Now by semanti
s M; (�; i) j= � i�M; (�; i) j=� or M; (�; i) j= 
. By indu
tion hypothesis, this happens exa
tly whenMn0 ; (�n0; i) j= � or Mn0 ; (�n0; i) j= 
. But by semanti
s this happens exa
tlywhen Mn0 ; (�n0; i) j= �.� Suppose � is of the form F�.If M; (�; i) j= � then (by semanti
s) there exists j � i su
h that M; (�; j) j=�. This implies (by indu
tion hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semanti
s) Mn0 ; (�n0; i) j= �. In a similar manner we 
an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form P�.If M; (�; i) j= � then (by semanti
s) there exists j � i su
h that M; (�; j) j=�. This implies (by indu
tion hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semanti
s) Mn0 ; (�n0; i) j= �. In a similar manner we 
an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form (9�)�.If M; (�; i) j= � then (by semanti
s) there exists � 2 SPr;T su
h that M0 =(A; �[� := �℄) is 
ompatible with � and M0; (�; i) j= �. This implies (byindu
tion hypothesis) that M0n0 ; (�n0 ; i) j= �. But now it is 
lear that �n0 2SPr;wt;T and thus (by semanti
s and the fa
t that M0n0 = (Awt ; �n0 [� := �n0 ℄)),itfollows that Mn0 ; (�n0 ; i) j= �.If Mn0 ; (�n0 ; i) j= � then (by semanti
s) there exists � 2 SPr;wt;T su
h thatM00 = (Awt ; �[� := �℄) is 
ompatible with � and M00; (�n0; i) j= �. But �� forall � 2 AS and � are well-typed substitutions, whi
h implies that � = �n0and � = �n0 . Thus, letting M0 = (A; �[� := �℄), we see that M00 = M0n0 .Thus we have that M0n0 ; (�n0 ; i) j= �. By indu
tion hypothesis it follows thatM0; (�; i) j= �. Thus by semanti
s it follows that M; (�; i) j= �.Suppose now that Pr j=Twt � for some formula �. We 
laim that Pr j=T � as well.Let A = (Pr; SPr;T ) and let � be an A-run. Consider any A-assignment � and letM = (A; �) be 
ompatible with �. By what has been proved above M; (�; 0) j= �i� Mn0 ; (�n0 ; 0) j= �. Sin
e Pr j=Twt �, Mn0 ; (�n0; 0) j= �. Therefore M; (�; 0) j= � aswell. Sin
e � is an arbitrary A-run and � is an arbitrary A-assignment, this provesthat Pr j=T �.
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ols 124Suppose now that Pr j=T � for some formula �. We 
laim that Pr j=Twt � aswell. Let A0 = (Pr; SPr;wt;T )and let � be an A0-run. Of 
ourse A0 = Awt whereA = (Pr; SPr;T ). Further � = �n0 . Let � be a A0-assignment and let M0 = (A0; �)be 
ompatible with �. Again it is obvious that � = �n0 and thus M0 = Mn0 whereM = (A; �). By what has been proved above M; (�; 0) j= � i� Mn0 ; (�n0; 0) j= �.Sin
e Pr j=T �, M; (�; 0) j= �. Therefore it follows that Mn0 ; (�; 0) j= � as well.Sin
e � is an arbitrary A0-run and � is an arbitrary A0-assignment, this proves thatPr j=Twt �.This 
ompletes the proof of the lemma. 2The above lemma shows that on
e we �x a T � T0, it suÆ
es to 
onsider well-typed T runs of any given proto
ol. Of 
ourse, if we �x a �nite T � T0, then forany proto
ol Pr, there are only �nite many well-typed T -events. But there mightstill be in�nitely many well-typed T -runs of Pr, sin
e the same event may repeatmany times in a run. To get de
idability in su
h a setting, we show that for everyproto
ol Pr and formula �, there is a �nite-state automaton APr;� with alphabetEvents(Pr) su
h that � 2 L (APr;�) i� there is some (Pr; SPr;wt;T )-assignment � su
hthat M = ((Pr; SPr;wt;T ); �) is 
ompatible with � and M; (�; 0) j= �.We now �x a �nite set T � T0, a weakly tagged proto
ol Pr (and therefore thestru
ture A0 = (Pr; SPr;wt;T )), and a formula �0 for the rest of the se
tion, and takeup the 
onstru
tion of the automaton APr;�0 . As observed earlier, given a stru
tureA and a formula �, to see whether A j= �, it suÆ
es to 
onsider A-assignmentsrestri
ted to FSN (�). In the 
ase of A0, we need to 
onsider only �nitely many su
hA0-assignments (sin
e SPr;wt;T and FSN (�0) are �nite sets, whose sizes depend onlyon the sizes of Pr, �0 and T ). For the rest of the se
tion we assume that �1; : : : ; �r isan enumeration of all the A0-assignments � restri
ted to FSN (�0) su
h that (A0; �)is 
ompatible with �0. We let Mi = (A0; �i), for all i � r.Let SF denote SF (�0). We de�ne :SF to be the set f� j :� 2 SFg[f:� j � 2SF and � is not of the form :�g. We de�ne CL to be SF [ :SF .An atom 	 is any subset of CL whi
h satis�es the following 
onditions:� for all :� 2 CL, :� 2 	 i� � 62 	;� for all � _ � 2 CL, � _ � 2 	 i� � 2 	 or � 2 	;� for all F� 2 CL, if � 2 	 then F� 2 	;
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ols 125� for all P� 2 CL, if � 2 	 then P� 2 	.Given two atoms 	1 and 	2, we say that 	1�!	2 i�:� for all F� 2 CL:{ if F� 2 	2 then F� 2 	1, and{ if F� 2 	1 and � 62 	1 then F� 2 	2;� for all P� 2 CL:{ if P� 2 	1 then P� 2 	2, and{ if P� 2 	2 and � 62 	2 then P� 2 	1.An atom 	1 is an initial atom i�:� for all P� 2 CL, if P� 2 	 then � 2 	, and� for all formula � 2 CL of the form ��a, � 62 	.(The last 
lause re
e
ts the fa
t that a formula of the form ��a is true only at positiveinstants.)An atom 	1 is a �nal atom i� for all F� 2 CL, if F� 2 	 then � 2 	.For i; j � r and � 2 FSN (�0), we say that �i and �j are �-variants if for all�0 2 FSN (�0) su
h that �0 6= �: �i(�0) = �j(�0).A mole
ule is a tuple of the form (�;	1; � � � ;	r) su
h that:� � is a redu
ed well-typed T -run of Pr;� for all i � r, 	i is an atom su
h that for all atomi
 formulas � 2 CL of theform ��A has �0 �m and ��x = �0 �x0: � 2 	i i� Mi; (�; j�j) j= �;� for all i � r and for all (9�)� 2 CL, (9�)� 2 	i i� there exists j � r su
h that�i and �j are �-variants and � 2 	j.Note that sin
e there are only �nitely many redu
ed well-typed T -runs of Pr,and sin
e CL is a �nite set, there are only �nitely many mole
ules. We denote theset of mole
ules by M .Given two mole
ules � = (�;	1; � � � ;	r) and �0 = (�0;	01; � � � ;	0r), and an evente 2 Events(Pr), we say that � e�!�0 i�:
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urity proto
ols 126� �0 = red(� � e);� for all i � r, 	i�!	0i;� for all i � r and all atomi
 formulas � 2 CL of the form ��a, � 2 	0i i�Mi; (� � e; j� � ej) j= �.A mole
ule � = (�;	1; � � � ;	r) is said to be an initial mole
ule i�:� � = ",� for all i � r, 	i is an initial atom, and� there exists i � r su
h that �0 2 	i.The set of initial mole
ules is denoted by I .A mole
ule � = (�;	1; � � � ;	r) is said to be a �nal mole
ule i� for all i � r, 	iis a �nal atom. The set of �nal mole
ules is denoted by F .We are now all set to de�ne the automaton.De�nition 6.4.3 (The automaton APr;�0) The automaton APr;�0 is given by thetuple (M ;�!;I ;F ) where:� M , the set of mole
ules, forms the �nite set of states of the automaton,� The relation �! de�ned on mole
ules forms the transition relation of theautomaton, and� I forms the set of initial states and F forms the set of �nal states of theautomaton.An a

epting run of the automaton on a sequen
e � = e1 � � � ek from (Events(Pr))�is a sequen
e of mole
ules �0 � � ��k su
h that:� �0 is an initial mole
ule and �k is a �nal mole
ule, and� for all i : 1 � i � k, �i�1 ei�!�i.The language a

epted by APr;�0 , denoted L (APr;�0) is the set of � 2 (Events(Pr))�su
h that there is an a

epting run of the automaton on �.The following te
hni
al lemma shows the 
orre
tness of the automaton 
onstru
-tion and immediately implies Theorem 6.4.5.
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ols 127Lemma 6.4.4 For any sequen
e � 2 (Events(Pr))�, � 2 L (APr;�0) i� � is an A0-run and there exists i � r su
h that Mi; (�; 0) j= �0.Proof: Fix a � = e0 � � � ek 2 (Events(Pr))�. For all j � k, let �j denote e1 � � � ej.()) :We �rst prove that if � is in the language of the automaton then � is a run of Pr andfor some i � r, Mi; (�; 0) j= �. Suppose � 2 L (APr;�0). This means that there is ana

epting run of the automaton of the form �0 � � ��k. Let �j = (�j;	j1; � � � ;	jr), forall j � k.Claim: � is an A0-run.Proof of Claim: We now prove that for all j � k, �j = red(�j). From this itwould follow that red(�) = �k, and sin
e �k is a run, it is easy to see that � isa run as well.Sin
e �0 = �0 = ", red(�0) = �0. Suppose �j�1 = redj�1 for some j : 1 � j � k.Now �j = �j�1 � ej. But sin
e �j�1 ej�!�j, it follows from the de�nitions that�j = red(�j�1 � ej). But it is an easy 
onsequen
e of the de�nition of red thatred(� � e) = red(red(�) � e), and from this it follows that red(�j) = �j. This
ompletes the indu
tion step and the proof of the 
laim as well.Claim: Mi; (�; 0) j= �0 for some i � r.Proof of Claim: We now prove that for all j � k, all � 2 CL and all i � r,� 2 	ji i�Mi; (�; j) j= �. Sin
e �0 is an initial mole
ule, by de�nition �0 2 	0ifor some i � r, and it immediately follows that Mi; (�; 0) j= �0.Fix j � k and i � r. We prove by indu
tion on the stru
ture of formulas that� 2 	ji i� Mi; (�; j) j= �.� If � is of the form ��A has �0 �m or ��x = �0 �x0 then it follows from thede�nition of mole
ules that � 2 	ji i� Mi; (�j; j�jj) j= �. But sin
e �j =red(�j), it follows that infstate(�j) = infstate(�j). It now immediatelyfollows that � 2 	ji i� Mi; (�; j) j= �.� Suppose � is of the form ��a. If j = 0 then it follows from the semanti
sthat Mi; (�; j) 6j= �, and it follows from the de�nition of initial atomsthat � 62 	ji . If j � 1, then it follows from �j�1 ej�!�j that � 2 	ji i�Mi; (�j�1 � ej; j�j�1 � ejj) j= �. But the semanti
s of a formula of this kind
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ols 128depends only on the last event ej and not on the other events in �j. Itthus immediately follows that � 2 	ji i� Mi; (�; j) j= �.� The boolean 
ases are handled by a routine appli
ation of the indu
tionhypothesis, using the fa
t that atoms are propositionally 
onsistent.� Suppose � is of the form F�. We prove by indu
tion on k�j that if � 2 	jithen Mi; (�; j) j= �. Suppose � = F� 2 	ki . Then by de�nition of �nalatom, � 2 	ki . By indu
tion hypothesis (on the formulas)Mi; (�; k) j= �,and hen
e Mi; (�; k) j= �. Suppose j < k and � 2 	ji . If � 2 	ji ,then by indu
tion hypothesis (on the formulas) Mi; (�; j) j= � and hen
eMi; (�; j) j= �. If � 62 	ji , then sin
e 	ji�!	j+1i , it follows that � 2 	j+1i .By indu
tion hypothesis (on k� j), it follows thatMi; (�; j+1) j= �, andhen
e Mi; (�; j) j= � as well.We now prove by indu
tion on k � j that if Mi; (�; j) j= � then � 2 	ji .If Mi; (�; k) j= �, then by semanti
s Mi; (�; k) j= � as well. Thereforeby indu
tion hypothesis (on formulas), it follows that � 2 	ki , and byde�nition of atoms it follows that � 2 	ki as well. Suppose j < k andMi; (�; j) j= �. IfMi; (�; j) j= � then � 2 	ji (by indu
tion hypothesis onformulas). It follows from the de�nition of atoms that � 2 	ji as well. IfMi; (�; j) 6j= � then Mi; (�; j+1) j= � and hen
e by indu
tion hypothesison k� j, � 2 	j+1i . Sin
e 	ji�!	j+1i , it follows from the de�nitions that� 2 	ji as well.� The 
ase when � is of the form P� is handled similarly as above.� Suppose � is of the form (9�)�. Then � 2 	ji i� (by de�nition ofmole
ules) there is i0 � r su
h that �i and �i0 are �-variants and � 2 	ji0 i�(by indu
tion hypothesis) there is i0 � r su
h that �i and �i0 are �-variantsand Mi0; (�; j) j= � i� (by semanti
s) Mi; (�; j) j= �.(() :We now prove that if � is an A0-run and Mi; (�; 0) j= �0 for some i � r, then� 2 L (APr;�0). For all i � r and j � k, let 	ji = f� 2 CL j Mi; (�; j) j= �g. Forall j � k, let �j = red(�j). Let �j = (�j;	j1; � � � ;	jr). We 
laim that �0 � � ��k is ana

epting run of APr;�0 on the sequen
e �.It is straightforward to 
he
k that for all i � r and j � k, 	ji is an atom. Furtherfrom the fa
t that � is a run, �j is a redu
ed run for all j � k. It now follows by
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ols 129the semanti
s that �j is a mole
ule for all j � k. From the semanti
s it also followsthat �j�1 ej�!�j for all j : 1 � j � k, and it also follows that �0 is an initial mole
uleand �k is a �nal mole
ule. Thus �0 � � ��k is an a

epting run of the automaton on�. Therefore � 2 L (APr;�0).This 
ompletes the proof of the lemma. 2Thus we see that 
he
king whether Pr j=Twt �0 redu
es to 
he
king whetherL (APr;:�0) is empty. Sin
e the emptiness problem for �nite state automata isde
idable, it follows that 
he
king whether Pr j=Twt � is de
idable. This 
oupledwith Lemma 6.4.2 yields the following theorem, the main te
hni
al result of this
hapter.Theorem 6.4.5 For a �xed �nite T � T0, the problem of 
he
king whether Pr j=T �given a weakly tagged proto
ol and a formula � is de
idable.



Chapter 7
Con
lusions

We summarise the work done in the thesis below:� We introdu
ed a model for se
urity proto
ols in Chapter 2, where we high-lighted the role of properties like send admissibility in analysis of proto
ols. Wealso introdu
ed the important notions of well-formed proto
ols and tagged pro-to
ols, and proved some important 
onsequen
es of our tagging s
heme. Wealso looked at important properties of the synth and analz operators.� We gave proofs of the unde
idability of the se
re
y problem, both under thesetting of unboundedly many non
es but bounded message length, and bound-edly many non
es but unbounded message length, in Chapter 3. We providedsimple and uniform proofs for both the resuts.� In Chapter 4, we proved that the se
re
y problem for tagged proto
ols isde
idable, when we 
onsider only well-typed runs. We also saw a de
isionpro
edure for solving the problem with a double exponential upper bound (interms of the number of 
ommuni
ations in the proto
ol spe
i�
ation).� In Chapter 5, we proved that for weakly tagged proto
ols, presen
e of a leakyrun implies the presen
e of a well-typed leaky run. We derived the fa
t thatthe general se
re
y problem for tagged proto
ols is de
idable as a 
onsequen
eof the above result. We also looked at a semanti
 approa
h to de
idabilitybased on an equivalen
e relation on terms.130



Chapter 7: Con
lusions 131� In Chapter 6, we introdu
ed a logi
 using whi
h we 
ould express many in-teresting se
urity properties. We saw many examples of reasoning using thelogi
. We then extended some of the results of Chapter 5 to the logi
.Future dire
tionsThe most immediate improvement over the work in this thesis involves extendingthe de
idability result in Chapter 4 to 
over other notions of se
re
y and authenti
a-tion. We feel that obtaining a de
idable logi
 in the presen
e of unbounded non
eswill be a signi�
ant result and that it will provide signi�
ant insight into the natureof the problem itself. We believe that su
h a result is eminently possible, if the logi
itself does not for
e unde
idability. This is be
ause the unde
idability results haveto do with the inherent power of proto
ols to 
ode up 
omputations and do nothave mu
h to do with the properties we are 
he
king for. Sin
e the well-formedness
onditions and other restri
tions on tagged proto
ols restri
t the intruder's powerto 
ode up su
h 
omputations, we believe that the de
idability result will extend tothe logi
. But more insight needs to be developed before we 
an ta
kle the problemformally.Another important dire
tion of work is to 
onvert the de
ision pro
edure ofChapter 4 into a pra
ti
al veri�
ation algorithm whi
h is eÆ
ient in pra
ti
e. It ispossible that some notions introdu
ed in Chapter 6 like abstra
t substitution namesmight be of help in this endeavour.Mu
h more work needs to be done on formal reasoning about proto
ols. Theexamples whi
h we presented in Chapter 6 involved semanti
 reasoning. In futurework, we aim to formalise this pro
ess by introdu
ing axioms and (probably proto
ol-spe
i�
) rules using whi
h we 
an 
arry out the reasoning in the logi
. There arefurther interseting te
hni
al questions like formally 
hara
terising 
lasses of proto
olsin the logi
, various axiomatisability questions, de
idability of satis�ability et
.An important extension would involve extending some of the features of ourbasi
 model. The most important of these is to 
onsider 
onstru
ted keys. In thepresen
e of 
onstru
ted keys, synth(analz(T )) no longer represents the 
losure ofthe set of terms T . For instan
e, letting T = ffmgfngk ; n; kg, m does not belongto synth(analz(T )) but (on
e we set up the synth and analz-rules for 
onstru
tedkeys properly) it 
an be seen that fngk belongs to synth(T ) and that m belongs to
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lusions 132analz(synth(T )). The usual style in su
h a setting is to use a 
ombined proof systemwhi
h in
orporate both synthesis and analysis rules. Several of our proofs have to bemodi�ed 
onsiderably in this new setting. We believe that the results of Chapter 5
an be easily extended in this new setting as well. But the redu
tion to good runshas to be reworked to an extent. The key to proving these results would be to derivesome normal forms for these new proofs.We hope that the ideas and results presented in this thesis will form a basisfor further improvements and eventually �nd their use in pra
ti
al veri�
ation ofse
urity proto
ols.
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