
FOUNDATIONS OF
SECURITY PROTOCOL ANALYSIS

Thesis submitted inPartial Ful�lment of theDegree of Do
tor of Philosophy (Ph.D.)
by

S.P.SureshTheoreti
al Computer S
ien
e GroupThe Institute of Mathemati
al S
ien
esChennai 600 113.
UNIVERSITY OF MADRASChennai 600 005

November 2003

Dedi
ated to my fatherand to the memory of my mother

DECLARATIONI de
lare that the thesis entitled \Foundations of Se
urity Proto
ol Anal-ysis" submitted by me for the Degree of Do
tor of Philosophy is the re
ord of work
arried out by me during the period from August 1999 to O
tober 2003 under theguidan
e of Dr. R. Ramanujam and has not formed the basis for the award of anydegree, diploma, asso
iateship, fellowship, titles in this or any other University orother similar institution of higher learning.
November 2003 S.P.Suresh

The Institute of Mathemati
al S
ien
esC.I.T. Campus, TaramaniChennai 600 113, India.

CERTIFICATEThis is to
ertify that the Ph.D. thesis submitted by S.P.Suresh to the Universityof Madras, entitled \Foundations of Se
urity Proto
ol Analysis", is a re
ordof bona�de resear
h work done during the period 1999-2003 under my guidan
e andsupervision. The resear
h work presented in this thesis has not formed the basis forthe award of any degree, diploma, asso
iateship, fellowship, titles in this Universityor any other University or Institution of Higher Learning.It is further
erti�ed that the thesis represents independent work by the
andidateand
olloboration when existed was ne
essitated by the nature and s
ope of problemsdealt with.
R.RamanujamNovember 2003 Thesis Supervisor

The Institute of Mathemati
al S
ien
esC.I.T. Campus, TaramaniChennai 600 113, India.

Abstra
tIn this thesis, we study one of the
entral problems in the automati
 veri�
ationof se
urity proto
ols, that of verifying whether a given proto
ol leaks se
rets or not.The
entral work in the thesis identi�es synta
ti
 sub
lasses of proto
ols for whi
hthe se
re
y problem is de
idable. The other work in the thesis
on
erns reasoningabout proto
ols. We introdu
e a logi
 using whi
h interesting properties of proto
ols
an be spe
i�ed and reasoned about.We start the study by setting up a formal model of se
urity proto
ols, andproving several important properties about the model. Of parti
ular importan
eare the properties relating to synth and analz proofs, whi
h formalise the way theagents running a proto
ol derive new information from old.We then
onsider the general se
re
y problem and show that it is unde
idableboth when the set of non
es is in�nite (a result �rst proved in [DLMS99℄) andwhen the length of messages is unbounded (a result proved in [HT96℄). We providerelatively simple and uniform proofs for both these results.We then
onsider the se
re
y problem in the setting of in�nitely many non
es butbounded message length. We prove that for a
ertain synta
ti
 sub
lass of proto
ols
alled tagged proto
ols, the se
re
y problem in this setting is de
idable.We then prove that a tagged proto
ol has a leaky run (a run that leaks a se
ret)i� it has a leaky run
ontaining only bounded length messages. This enables us toprove that the se
re
y problem for tagged proto
ols is de
idable even in the settingwhere both message length and number of non
es is unbounded.We �nally look at reasoning about se
urity proto
ols. We de�ne a logi
 in whi
hwe
an easily spe
ify several interesting se
urity properties like se
re
y, authenti
ity,et
. We also show some examples whi
h illustrate how to reason about proto
ols.We then extend some of the unde
idability and de
idability results of the earlier
hapters to the veri�
ation problem of the logi
.

A
knowledgementsI would like to thank Dr. R. Ramanujam for his guidan
e and en
ouragementthrough the last six years. All the work presented herein was done with him. Hehas shown remarkable patien
e with me from the time we embarked on this worktogether, around four years ago. I have learnt a lot from him in the
ourse of thisasso
iation. I am espe
ially indebted to him for having taught me most of what Iknow about logi
, and about how to do resear
h in general. The many dis
ussions Ihave had with him were most enjoyable. I thank him also for his suggestions whi
hhave greatly improved this thesis over its earlier versions.I thank the people in the Theoreti
al Computer S
ien
e groups at IMS
 and CMIfor wel
oming me into their fold. The time I spent here during
ourse-work was oneof the most enri
hing in my life. Learning the many beautiful things in
omputers
ien
e from the people here was a highly enjoyable experien
e. I am very gratefulto all of them | R. Ramanujam, Kamal Lodaya, V. Arvind, Venkatesh Raman,Anil Seth, Meena Mahajan, Madhavan Mukund, Narayan Kumar, P.S.Thiagarajan,and K.V. Subrahmanyam.I would like to thank Dr. R. Balasubramanian, Dire
tor, IMS
, for allowing meto stay beyond my term. I also thank the oÆ
e and library sta� for their friendlyand patient help in all matters.I would also like to thank the organisers of the Marktoberdorf Summer S
hool2001, the organisers of FOSAD 2002, and the organisers of ETAPS 2003 for providing�nan
ial support for my visits to Germany, Italy, and Poland, respe
tively. I thankDr. Fabio Martinelli for supporting a visit to I.I.T., Pisa in Italy, and for theuseful dis
ussions I had with him. I also thank Dr. Ramesh Bharadwaj of NRL forproviding a major part of the �nan
ial assistan
e for my visit to ETAPS 2003.I would like to re
ord my humble namaskaarams to my father for providing mewith all the good things in life whi
h he himself
ouldn't enjoy, and for putting upwith me patiently through the years. The period of my stay at Mats
ien
e was highlyenri
hing in a di�erent way | it gave me the time to embark on a serious study ofSanskrit, along with my father. My father was mainly instrumental in my e�orts inthis dire
tion. I would like to also re
ord my salutations to my gurunaatha, VedaBhashya Ratnam Dr. R. Krishnamurthi Shastrigal, and his son Vidvat pravara Dr.K. Ramasubramaniam for introdu
ing me to the joys of
lassi
al Indian philosophyand logi
.

iiiI would like to spe
ially thank Dr. Hemalatha Thiagarajan, who has taught meso mu
h in my days I spent at the Regional Engineering College, Tiru
hi. She wasthe person who en
ouraged me most to take up a
areer in resear
h. She was oneof the few people who supported my move from the software industry to a
ademi
s.She has been a
onstant sour
e of support and en
ouragement over the years. I havealso enjoyed many a pleasant stay at her pla
e over the years.I thank the many friends at Mats
ien
e who have made my stay here enjoyable.I had lots of fun with Madhu (from Ponniyin Selvan to heated debates on G�odel'stheorem). His
ompany was very enjoyable. Meenakshi has been a
onstant
om-panion from my �rst days here, both during
ourse-work and after. I enjoyed themany dis
ussions we used to have on topi
s both a
ademi
 and nona
ademi
 (es-pe
ially her tips on
ooking). Deepak has also been a positive in
uen
e from myearly days here. I also had a lot of fun with Rahul Muthu. I thank him for themany
hess games. (Hope I am around to harass him during his �nal month atIMS
.) I also thank the other students whose
ompany I enjoyed | Gyan Prakash,S.V.Nagaraj, Vinod
handran, Srinivasa Rao, Piyush, Vijayaraghavan, Narayanan,Jayalal, M. Rajesh, Murugesh and K.R.S. Balaji.I would like to spe
ially thank the following
lose friends from my R.E.C. days,who have
ontinued to support and en
ourage me in all my endeavours, and whohave had a most positive in
uen
e on me. They would be most happy to see thefruition of my e�orts. They are | Shalini Ranganathan, P.V. Kamal Narayan, G.Ramesh, M. Narayanan, and B. Raghuram.

Contents
1 Introdu
tion 11.1 Ba
kground . 11.2 Se
urity proto
ols . 41.3 Contributions of the thesis . 122 Se
urity proto
ol modelling 162.1 Dis
ussion . 162.2 A formal model for se
urity proto
ols 262.2.1 Se
urity proto
ols and their runs 262.2.2 Well-formed proto
ols . 412.3 Properties of synth and analz . 483 Unde
idability results 573.1 Unde
idability for well-typed runs . 593.2 Unde
idability with bounded non
es 663.3 Dis
ussion . 714 De
idability with unboundedly many non
es 734.1 The bounded length
ase . 734.2 De
idability for good runs . 754.3 Redu
tion to good runs . 774.3.1 How to eliminate terms . 784.3.2 Redu
tion to good runs . 815 De
idability with unbounded message length 865.1 Redu
tion to well-typed runs . 875.1.1 Typing proofs . 875.1.2 Redu
tion to well-typed runs 915.2 An approa
h based on equivalen
e on terms 98

iv

Contents v6 Reasoning about se
urity proto
ols 1066.1 Motivation . 1066.2 A modal logi
 for se
urity proto
ols 1096.3 Examples . 1136.3.1 The Needham-S
hroeder proto
ol 1136.3.2 The Needham-S
hroeder-Lowe proto
ol 1196.4 De
idability . 1217 Con
lusions 130Publi
ations 133Bibliography 134

Chapter 1
Introdu
tion

1.1 Ba
kgroundComputer se
urity has
ome to o

upy an in
reasingly
entral pla
e in our livesover the past twenty years. This has been a dire
t result of the enormous in
reasein the development and use of networked and distributed systems over this period.Finan
ial transa
tions on the Internet is gaining
urren
y now. Distributed �nan
ialtransa
tions | even if they are in the simple form of withdrawing money from anATM | have be
ome part of many peoples' lives today. Even more pervasive is theroutine use of ele
troni
 mail (whi
h is sometimes even used to share
on�dential in-formation). The
onsequen
es of a misuse of su
h systems are potentially disastrous.This pla
es a high premium on ensuring that su
h systems are not misused.Se
urity
an basi
ally be
onsidered as a study of what the potential misusesof su
h systems are and how they
an be averted. A system may be said to bese
ure if the properties of
on�dentiality, integrity, availability, authenti
ity, et
. ofthe various system entities are maintained. Broadly speaking, a system maintains
on�dentiality if no information
an be a

essed ex
ept by those entities whi
h areauthorised to a

ess it. Similarly, a system maintains integrity if no information
an be altered ex
ept by those entities whi
h are authorised to alter it. Availabilitysimply means that the desired information (or resour
e) is available when desired.An entity is said to be authenti
 if its apparent identity is genuine, i.e., the entityin question does not masquerade as some other entity.1

Chapter 1: Introdu
tion 2The main
hallenge in se
urity is to maintain some (or all) of the above attributesin the presen
e of mali
ious users, a

idental misuse or under some kinds of systemfailures.Histori
ally, many di�erent traditions have
ontributed to developments in
om-puter se
urity. Developments in operating systems, military se
urity, and
ryptog-raphy have all driven advan
es in se
urity.From its early days, resear
h in se
urity has fo
used on formal methods for prov-ing systems
orre
t. This is easily understandable, sin
e the
onsequen
es of ase
urity-related error in a system
ould be disastrous, and thus the utmost
are isrequired in ensuring the se
urity of systems. Formal methods are a useful aid in thedesign and analysis of su
h systems.Resear
h on formal methods related to se
urity has grown so mu
h over theyears that it is no longer possible to
onsider it as a uni�ed whole. Based on thedi�eren
es in the fo
us of resear
h and the te
hniques and tools used, we have severalsubdis
iplines. Our
ontributions in this thesis lie in the area of se
urity proto
ols,whi
h we look at in detail in the following se
tions. Meanwhile, we brie
y look atsome of the other dis
iplines below.Program se
urity: This is a
lassi
 area of study in se
urity. The fundamen-tal fo
us of resear
h in this area is to devise methods whi
h ensure that noprogram learns information that it is not authorised to know. Examples ofprograms whi
h learn information in su
h an unauthorised manner are virusesand Trojan horses. For high-se
urity systems like those used in the military,it is highly important to
he
k all the programs to see if they have se
ureinformation
ow. Formal methods are of immense help here. The fundamen-tal theoreti
al problem studied here is whether a given problem has se
ureinformation
ow ([BL73℄, [Den77℄). A simple de�nition of a program havingse
ure information
ow is as follows: if the variables used in the program arepartitioned into high-se
urity and low-se
urity variables, observations of thelow-se
urity variables do not reveal any information about the initial values ofthe high-se
urity variables. Closely related is the problem of dete
ting
overt
ows [Lam73℄, where information is leaked indire
tly, through variations inprogram behaviour. The resear
h in this area has fo
ussed on synta
ti
 me
h-anisms (like typing, see [VSI96℄ for instan
e) and semanti
 methods (see [LJ00℄,for example), to ensure se
ure information
ows in programs and to dete
t in-

Chapter 1: Introdu
tion 3formation leaks.Se
urity poli
y: This is another widely studied area in se
urity, whi
h has itsorigins in the a

ess
ontrol model for
on�dentiality used in operating systems(see [Lam74℄, for instan
e). The
entral problem here is somewhat similar tothat in program se
urity, but is more general. The fo
us is on ensuring thatthere is no unauthorised a

ess to information. Most of the solutions depend onrestri
ting the behaviour of the system to a
hieve se
urity. A
lassi
 example ismultilevel se
urity. Let us assume for simpli
ity that there are two user levels:high and low. Let us also assume that there are two se
urity levels for obje
ts:
on�dential and publi
. The typi
al restri
tions on su
h a system might in
ludeno read-up: a low user
annot read a
on�dential �le, and no write-down: ahigh user
annot write to a publi
 �le. Note that these are restri
tions on therun-time behaviour of the systems. The fundamental theoreti
al
hallenge isto
ome up with good se
urity poli
y models, whi
h are formal spe
i�
ationsof the desired se
urity-related behaviour of systems. [BL73℄ and [HRU76℄are two early papers dealing with se
urity models. They propose models for
on�dentiality whi
h are dire
tly based on a

ess
ontrol models for operatingsystems. The model proposed in [BL73℄ has features for a

ess
ontrol as wellas multilevel se
urity. The
urrent trend of resear
h in this area is to use moreabstra
t models based on the so
alled interfa
e models, whi
h derive from[GM82℄. See [M
L94℄ for a good survey of se
urity models.Database se
urity: The main fo
us in this line of resear
h is the same as that ofthe above two | to ensure that every pie
e of information in a database islearnt only by users authorized to know it. This implies mu
h more than pro-te
ting data, whi
h
an be implemented by some kind of a

ess
ontrol me
h-anism. A simple example to illustrate this point involves a salary databasewhere salaries above a
ertain threshold have to be kept se
ret. It is easyenough to prevent queries from dire
tly a

essing the re
ords whi
h have salaryabove the given threshold. But there are other kinds of information whi
h
ould be learned, like the average or sum of the salaries above the thresh-old. In su
h
ases, it is possible that information about individual re
ords
an be inferred by
leverly asking many queries. For instan
e, if S is a setof employees and S 0 = S [fag, then by learning the sum of the salaries of

Chapter 1: Introdu
tion 4the employees in S, and the same for the employees in S 0, a's salary
an belearned. In some
ases, even the fa
t that there exists a re
ord of a parti
ularkind is vital information, even if the exa
t data
annot be a

essed. In mostof these
ases, the operation of aggregation introdu
es mu
h
omplexity in thesystem, by introdu
ing many potential means to learn information. Mu
h ofthe resear
h has fo
ussed on statisti
al te
hniques to prevent the inferen
e ofinformation. A brief introdu
tion to the �eld (as also a general insight into
omputer se
urity)
an be had from [Gol99℄.1.2 Se
urity proto
olsSe
urity proto
ols are spe
i�
ations of
ommuni
ation patterns whi
h are in-tended to let agents share se
rets over a publi
 network. They are required toperform
orre
tly even in the presen
e of mali
ious intruders who listen to the mes-sage ex
hanges that happen over the network and also manipulate the system (byblo
king or forging messages, for instan
e). Obvious
orre
tness requirements in-
lude se
re
y: an intruder
annot read the
ontents of a message intended for others,and authenti
ity: if B re
eives a message that appears to be from agent A and in-tended for B, then A indeed sent the same message intended for B in the re
entpast.The presen
e of intruders ne
essitates the use of en
rypted
ommuni
ation. Thusdevelopments in the �eld of
ryptography provide the foundation for the designof se
urity proto
ols. Resear
h in
ryptography has a long and glorious history.The �eld has
ome into its own in the past
entury, with more and more sophisti-
ated mathemati
al te
hniques used to develop more and more sophisti
ated
ryp-tographi
 s
hemes. As a result, a wide variety of
ryptographi
 tools are availableto the se
urity proto
ol designer:
onventional (shared-key)
ryptography, publi
-key
ryptography, digital signature s
hemes, et
.The operation of en
ryption typi
ally involves transforming a given plaintextto a
iphertext with the use a key, su
h that given the key it is easy to
omputethe
iphertext from the plaintext and vi
e versa, and without the key it is hardto
ompute the plaintext from the
iphertext. The inverse operation of
omputingthe plaintext given the
iphertext and the key, is
alled de
ryption. The
iphertextis intended to be
ommuni
ated over a possibly inse
ure network. Conventional

Chapter 1: Introdu
tion 5
ryptography uses the same key for both en
ryption and de
ryption. Publi
-key
ryptography systems ([DH76℄, [RSA78℄) use a pair of keys for ea
h user of thesystem (the user's publi
 and private keys), where messages are en
rypted using there
eiver's publi
 key and de
rypted using the re
eiver's private key. A
omprehensiveintrodu
tion to
ryptography
an be had from [S
h96b℄.Resear
h in
ryptography primarily aims at developing new
ryptosystems withimproved mathemati
al guarantees. But the fo
us of resear
h in se
urity proto
olsis di�erent. It has been widely a
knowledged that even the use of the most perfe
t
ryptographi
 tools does not always ensure the desired se
urity goals. (See [AN95℄for an illuminating a

ount.) This situation arises primarily be
ause of logi
al
awsin the design of proto
ols.Quite often, proto
ols are designed with features like ease of use, eÆ
ien
y et
.in mind, in addition to some notion of se
urity. For instan
e, if every message ofa proto
ol were signed in the sender's name and then en
rypted with the re
eiver'spubli
 key, it appears as if a lot of the known se
urity
aws do not o

ur. Butit is not usual for every message of a proto
ol to be signed. This
ould either befor reasons of eÆ
ien
y or be
ause frequent use of
ertain long-term keys mightin
rease the
han
e of their being broken using
ryptanalysis. Great
are needs tobe exer
ised in su
h situations. The following example proto
ol highlights some ofthe important issues ni
ely. It is based on a proto
ol designed by Needham andS
hroeder ([NS78℄) and is aimed at allowing two agents A and B to ex
hange twoindependent, se
ret numbers. It uses publi
-key en
ryption but does not requireagents to sign their messages.Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; ygpubkAMsg 3. A ! B : fygpubkBHere pubkA and pubkB are the publi
 keys of A and B, respe
tively, and fxgk isthe notation used to denote x en
rypted using key k. In the proto
ol, x and y areassumed to be newly generated, unguessable (with high probability, of
ourse!), pre-viously unused numbers, also
alled non
es (non
e stands for \number on
e used").In message 2, B in
ludes A's non
e. On seeing it A is assured that B has re
eivedmessage 1, sin
e only B
an de
rypt the �rst message and use x in a later message.Similarly on re
eipt of the third message, B is assured of A's re
eipt of y.At the end of a session of the proto
ol, both A and B share the se
rets x and

Chapter 1: Introdu
tion 6y and both also know that the other agent knows x and y. But it has been shown([Low96℄) that x and y are not ne
essarily known only to A and B. (Su
h a propertyneeds to be satis�ed if we want to use a
ombination of x and y as a key sharedbetween A and B, for example.) The atta
k (
alled Lowe's atta
k) is given below:Msg �.1. A ! I : fx;AgpubkIMsg �.1. (I)A ! B : fx;AgpubkBMsg �.2. B ! (I)A : fx; ygpubkAMsg �.2. I ! A : fx; ygpubkAMsg �.3. A ! I : fygpubkIMsg �.3. (I)A ! B : fygpubkBIn the above atta
k, (I)A!B :x means that the intruder is sending message x toB in A's name, whereas A!(I)B :x means that the intruder is blo
king a messagesent by A intended for B. The above atta
k
onsists of two parallel sessions of theproto
ol, one (whose messages are labelled with �) involving A as the initiator and Ias responder, and the other (whose messages are labelled with �) involving I (in A'sname) as the initiator and B as the responder. (This shows that the names A;B; xand y mentioned in the proto
ol spe
i�
ation are just pla
eholders or abstra
t names,whi
h
an be
on
retely instantiated in di�erent ways when the proto
ol is run. Soa

ording to A and B, they have just had a normal proto
ol session with I andA, respe
tively. But I knows better!) After the �fth message above, the intrudergets to know y whi
h is the se
ret generated by B in a session with someone whomB believes to be A. This shows that the proto
ol does not satisfy the followingproperty: whenever an agent B engages in a session of the proto
ol as a responderand B believes that the initiator is A, then the se
ret generated by B is known onlyto A and B. The seriousness of this
aw depends on the kinds of use the proto
olis put to. It is worth noting that this atta
k does not depend on weaknesses of theunderlying en
ryption me
hanism (nor even on some keys being guessed by
han
e).It is also worth noting that this atta
k on the (simple enough) Needham-S
hroederproto
ol was dis
overed seventeen years after the original proto
ol was proposed.[Low96℄ also suggests a �x for the proto
ol:Msg 1. A ! B : fx;AgpubkBMsg 2. B ! A : fx; y; BgpubkAMsg 3. A ! B : fygpubkB

Chapter 1: Introdu
tion 7It is easy to see that the above atta
k does not happen anymore, but that stilldoesn't prove that the proto
ol does not have any vulnerabilities.The following example illustrates a freshness atta
k (or replay atta
k), and alsohighlights the use of non
es. Consider the following proto
ol (whi
h is inspired bythe Denning-Sa

o proto
ol [DS81℄) whi
h uses symmetri
 (shared-key) en
ryption,where A is Aandal, B is a bank, and S is a key server. We assume that every agentC shares a key kCS with the server, whi
h only C and S know.Msg 1. A ! S : A;BMsg 2. S ! A : fB; k; fA; kgkBSgkASMsg 3. A ! B : fA; kgkBSIn message 1, A requests from the server S a key to
ommuni
ate with B. Sgenerates k and
reates message 2. Only A
an de
rypt this message su

essfully andlearn k, sin
e she alone possesses kAS . She then passes on the
omponent fA; kgkBSto B. Now B also learns k. Now A
an enter into a session with B using the keyk. Sin
e only A and B know k, there is no danger of any information being leakedout, as long as the key k is safe. But unfortunately, there is the following atta
k:Msg �.1. A ! S : A;BMsg �.2. S ! A : fB; k; fA; kgkBSgkASMsg �.3. A ! B : fA; kgkBSMsg �.3. (I)A ! B : fA; kgkBSThe atta
k is quite simple. SuÆ
iently long after the session � has happened, theintruder masquerades as A and enters into a session with B with the same oldkey k. This is possible be
ause all the intruder has to do is to replay message 3from the old session. There might be a question as to what this a
hieves, sin
e theintruder
annot
ontinue the session meaningfully unless k is leaked. But this is nota s
enario whi
h
an be ignored. It might be the
ase that the key k has a
tuallybeen
ompromised by long hours of
ryptanalysis, mu
h after the original sessionwas played out. The above atta
k then gives the intruder a
han
e for putting thiskey into use. Or it might be the
ase that in the original session �, after setting upthe key k, A sends the following message:Msg �.4. A ! B : fDeposit Rs. 10000 from my a

ount into I'sgk(This might well be money whi
h is legitimately owed to I by A.) The intruder,who wat
hes all the
ommuni
ation over the network, infers from the e�e
t of the

Chapter 1: Introdu
tion 8above message (Rs. 10000 deposited into I's own a

ount) the
ontent of message�.4, and just replays it as part of session �.Msg �.4. (I)A ! B : fDeposit Rs. 10000 from my a

ount into I'sgkSin
e the bank thinks that the request is
oming from A, I ends up ri
her by Rs.10000.A simple solution to the problem is for A and B to generate fresh non
es at thestart of ea
h session, then obtain the key from S and
he
k the timeliness of the keyre
eived from S as follows:Msg 1. A ! B : A;BMsg 2. B ! A : yMsg 3. A ! S : A;B; x; yMsg 2. S ! A : fx;B; k; fy; A; kgkBSgkASMsg 4. A ! B : fy; A; kgkBSThe use of the fresh non
es prevents the intruder from replaying old messages asnew. Of
ourse, it is imperative that for ea
h session a unique, unguessable, randomnumber is
hosen as a non
e, sin
e otherwise replay atta
ks
annot be prevented.A di�erent kind of problem exists with type-
aw atta
ks. This is illustrated by thefollowing simple example (see [DMTY97℄ for more examples of interesting type-
awatta
ks), where A sends a fresh, random se
ret x to B and also gets an assuran
ethat B has re
eived it.Msg 1. A ! B : f(A; fxgpubkB)gpubkBMsg 2. B ! A : fxgpubkAThe intruder
an use the stru
ture of message 1 and get the se
ret generated inpla
e of x leaked, as the following atta
k shows:Msg �.1. A ! (I)B : f(A; fmgpubkB)gpubkBMsg �.1. I ! B : f(I; f(A; fmgpubkB)gpubkB)gpubkBMsg �.2. B ! I : f(A; fmgpubkB)gpubkIMsg
.1. I ! B : f(I; fmgpubkB)gpubkBMsg
.2. B ! I : fmgpubkIMsg �.2. (I)B ! A : fmgpubkAThe important point about this atta
k is that in session �, the intruder is usingthe term f(A; fmgpubkB)gpubkB in pla
e of x. In the absen
e of any me
hanism to

Chapter 1: Introdu
tion 9indi
ate the type of data being re
eived, B believes that he has re
eived a non
e.By
leverly using the stru
ture of the proto
ol over two sessions, the intruder learnsthe se
ret m at the end of message 2 of session
. This example also shows that thelength of messages o

urring in runs of a proto
ol
an be mu
h more than that ofthe messages o

urring in the proto
ol spe
i�
ations. Of
ourse, this atta
k
an besimply thwarted by modifying the proto
ol as follows:Msg 1. A ! B : f(A; x)gpubkBMsg 2. B ! A : fxgpubkAThe above examples illustrate the kinds of atta
ks whi
h typi
ally happen. Mu
hmore details on authenti
ation proto
ols, atta
ks on them, and the te
hniques usedto ta
kle them
an be found in the ex
ellent survey arti
le [CJ97℄.The above dis
ussion illustrates the pitfalls in se
urity proto
ol design, and alsohighlights the need for a systemati
 approa
h to proto
ol design and analysis. Thereare two possible approa
hes:� Development of a design methodology following whi
h we
an always gener-ate provably
orre
t proto
ols. Mu
h work in the proto
ol design
ommunityfo
uses on this approa
h. [AN96℄ gives a
avour of the kinds of useful heuris-ti
s whi
h improve proto
ol design. But there has not been mu
h theoreti
aldevelopment towards formally justifying these design guidelines.� Development of systemati
 means of analysing proto
ols for possible design
aws. The bulk of the work in formal methods for se
urity proto
ols fo
useson this approa
h. Here again, there are two possibilities:{ Development of methods for proving the
orre
tness of
ertain aspe
ts ofproto
ols.{ Development of systemati
 methods for �nding
aws of those proto
olswhi
h are a
tually
awed.The main
ontributions in this thesis lie in the �eld of formal analysis methodsfor se
urity proto
ols. We now brie
y look at some of the approa
hes whi
h havebeen advo
ated in the literature for proving properties of proto
ols and dete
ting
aws in them.

Chapter 1: Introdu
tion 10An important stream of work relating to proving proto
ols right is automatedtheorem proving. The typi
al approa
h in this style of work is as follows: a for-mal proto
ol model is de�ned based on an expressive logi
 like �rst-order logi
 orhigher-order logi
. To every proto
ol, a theory in the logi
 is asso
iated. Propertiesof proto
ols are also spe
i�ed using the same logi
. A property holds of a proto
olif it
an be derived from the theory of the proto
ol using the rules of the logi
. Es-tablished proof te
hniques and tools in the logi

an now be used to eÆ
iently proveproperties of proto
ols. Examples of this approa
h in
lude [Pau98℄ and [Bol97℄.The advantage of this approa
h is that the highly expressive logi
s in the framework
an
ode up any proto
ol, and formally prove most of the desired properties. Somepossible disadvantages are that it requires expert knowledge to
ode up a proto
olinto a theory, and that the theorem proving pro
ess is not fully automati
. Expertintervention is needed to guide the proof sear
h. The
omplexity involved in de�n-ing the theory of a proto
ol introdu
es further
han
es for error. Another possibledrawba
k is that the formal proofs are not intuitive, and thus hard for humans tounderstand and base further developments on them.An alternative approa
h is to use belief logi
s to prove properties of proto
ols.The pioneering work in this line is [BAN90℄, in whi
h a modal logi
 (
alled the BANlogi
) was introdu
ed as a tool to spe
ify and reason about properties of proto
ols. Itis based on modalities whi
h seek to formalise the epistemi
 reasoning of the agentsinvolved in the proto
ol. This logi
 has many attra
tive features,
hief among thembeing that it produ
es simple and abstra
t proofs, but there are also some drawba
ks.To use the logi
, the authors propose a systemati
 idealisation step, whi
h
onvertsea
h message of the given proto
ol into a formula whi
h represents the potentialknowledge gained after re
eipt of the message. This feature introdu
es a
han
e forerror, sin
e there is a possibility that a wrong idealisation might be used to proveproperties of the proto
ol. [BM93℄, [GNY90℄, and [Nes90℄ are some papers whi
h
ontain a dis
ussion of this feature and suggest further improvements to the BANlogi
. [AT91℄, [Bie90℄, and [SvO94℄ are some papers whi
h attempt to improve theoriginal logi
 with either new modalities or through new semanti
 features. Whilethey address some weaknesses of BAN logi
, the simpli
ity of the original logi
 islost. More re
ently, there have been attempts to
onne
t BAN style logi
s with otherformal models for se
urity proto
ols ([ABV02℄ and [SC01℄, for example). There havealso been attempts at automated reasoning about proto
ols using BAN-style logi
s

Chapter 1: Introdu
tion 11([KW96℄, for instan
e). [SC01℄ provides a
omprehensive survey of BAN-style logi
sfor authenti
ation proto
ols. The modalities whi
h these logi
s
on
entrate on arefairly abstra
t, like belief, trust,
ontrol et
. While it may not be diÆ
ult to formalisethese modalities, it is not
lear whether they are fundamental to reasoning aboutse
urity. The iteration of these modalities also brings a lot of
omplexity in itswake,
ompli
ating many of the te
hni
al questions regarding these logi
s. Thus itis worthwhile to look at logi
s with simpler modalities.Mu
h of the literature is devoted to methods for dete
ting
aws in proto
olsusing the so-
alled model
he
king approa
h. The main idea is to
onsider a �nitestate version (preferably with a small number of states) of the given proto
ol (byimposing bounds on the set of non
es and keys used) and prove that all states of the�nite state system satis�es the desired property. This does not ne
essarily mean thatthe proto
ol itself satis�es the desired property, sin
e use of unboundedly many datamight possibly introdu
e more atta
ks. But if a violation of the desired property isdis
overed using the small system, it usually means that the proto
ol is also
awed.The fo
us of resear
h in this area is to devise methods whi
h will guarantee that a�nite state version of the proto
ol has most of the errors that the big system has,and to devise te
hniques for eÆ
iently verifying the small system.As we will see later, when we model se
urity proto
ols formally, we get in�-nite state systems. Thus there is no given �nite state system whi
h one
an verify.The �nite model should be
onstru
ted from the proto
ol spe
i�
ation by using ap-propriate abstra
tions. The di�erent subdivisions of resear
h in this line basi
allyre
e
t the di�erent te
hniques using whi
h the �nite state system
an be de�ned,and the di�erent te
hniques that
an be used to verify it. For example, [Low96℄,[LR97℄, [MMS97℄, [S
h96a℄, and [S
h98℄ advo
ate an approa
h based on pro
ess al-gebra, in whi
h important se
urity properties are de�ned using some form of pro
essequivalen
e. [Mea95℄, [Mea96a℄, [Mea96b℄ advo
ate an approa
h based on logi
 pro-gramming, where the proto
ol is modelled by a set of rules whi
h tell us how ea
ha
tion of the proto
ol
hanges the state of the system, and several spe
ialized proofte
hniques are used to prove that a bad state
an never be rea
hed by a proto
ol.[Bol97℄ uses standard te
hniques based on abstra
t interpretation to de�ne a �nite-state system from a proto
ol. Te
hniques based on tree automata ([Mon99℄, [GL00℄,[CC03℄, [CCM01℄) have been proposed to eÆ
iently represent and manipulate theintruder's state. Typi
ally the intruder's state is the
ause of the in�nite state na-

Chapter 1: Introdu
tion 12ture of proto
ols, and hen
e methods of �nitely representing the intruder state
anhelp
onstru
t a �nite state system from a proto
ol.The model
he
king approa
h has enjoyed great su

ess in unearthing bugs inmany proto
ols, long after they had been put into use. [CJ97℄ is a good referen
efor the many atta
ks whi
h have been un
overed by formal veri�
ation tools. Butthe main drawba
k in this approa
h is that the use of a �nite state system is notalways justi�ed. In fa
t, the general veri�
ation problem for se
urity proto
olsis unde
idable (as we prove in later
hapters), and therefore there exist proto
olswhi
h are not \equivalent" to any system with bounded number of states. In this
ontext, [Low99℄ proves that for a
ertain synta
ti
 sub
lass of proto
ols and forsome parti
ular kinds of properties,
he
king whether the proto
ol satis�es thoseproperties amounts to
he
king whether a parti
ular small system satis�es them.This provides a justi�
ation for veri�
ation algorithms, most of whi
h de�ne a smallsystem of the above kind from a given proto
ol, and verify the small system. Thede
idability results in this thesis are in the same spirit as the results of [Low99℄.1.3 Contributions of the thesisIn
hapter 2 of the thesis, we des
ribe our formal model for se
urity proto
olswhi
h will be used in the rest of the thesis. We also highlight the aspe
ts in whi
hthe model di�ers from other models
urrent in the literature. We set up severalte
hni
al propositions about synth and analz proofs, whi
h formalise the way theagents running the proto
ols derive new information from old.We also introdu
e the se
re
y problem, whi
h aims to
he
k if there is a run ofthe given proto
ol whi
h leaks a se
ret or not. Our main
ontribution in the thesisis to identify sub
lasses of proto
ols for whi
h it is possible to automati
ally verifythis property.It turns out that when we model se
urity proto
ols pre
isely, we get in�nite statesystems. There are many sour
es of unboundedness in the model whi
h
ontributeto this. The �rst type of unboundedness o

urs be
ause there is no a priori boundon the number of sessions o

urring in a run, and thus there is no bound on thelength of the runs of a proto
ol as well. Further, requirements su
h as freshnessmight ne
essitate the use of a fresh non
e or key for ea
h session. Sin
e the numberof sessions in a run is unbounded, it follows that there is no a priori bound on

Chapter 1: Introdu
tion 13the number of distin
t non
es and keys used in a run of a proto
ol. Further, aseviden
ed in the type-
aw atta
k whi
h was shown earlier, messages o

urring inruns of a proto
ol
an be longer than those o

urring in the proto
ol spe
i�
ation.Thus there is no a priori bound on the length of the messages whi
h are part of theruns as well.As su
h, it is to be expe
ted that it is not possible to verify even simple rea
ha-bility properties, and thus se
urity properties like se
re
y as well, of su
h systems. Ithas been formally proved in ([DLMS99℄, [HT96℄, [ALV02℄) that in fa
t, su
h simpleproblems are unde
idable for these systems. Of the fa
tors whi
h lead to unbound-edness of these systems, the number of non
es and the message length are of spe
ialimportan
e. It is proved in [DLMS99℄ that even when the message length is re-stri
ted to be bounded, allowing an unbounded number of non
es to o

ur in runsof a proto
ol leads to unde
idability. Dually, in [HT96℄ and [ALV02℄, it is provedthat even if the non
es and keys
ome from a �xed �nite set, allowing arbitrarilylong messages to o

ur in proto
ol runs leads to unde
idabilty. In
hapter 3, weprovide simple and uniform proofs for the above two unde
idability results.The literature
onsists of many proposals to
ope with the unde
idability results.If there is a bound on the number of non
es as well as the message length, thenevery run
an be shown to be equivalent to a run of bounded length, in terms ofthe se
urity-relevant information learnt by the various parties at the end of the run.This has been used to prove de
idability in [DLMS99℄. Another
ommon approa
his to pla
e bounds on the number of plays of any run of the proto
ol, e�e
tivelyyielding a �nite state system. [ALV02℄, [MS01℄ and [RT03℄
ontain examples ofthis approa
h. There are also approa
hes whi
h impose restri
tions on the waymessages
an be
onstru
ted. Examples of this in
lude [DEK82℄ and [ALV02℄ whererestri
tions are imposed on the way messages are
on
atenated with one another toform new messages. The work in [CCM01℄ uses te
hniques from tree automata toshow de
idability for a sub
lass of proto
ols in whi
h every agent
opies at most onepie
e of any message it re
eives into any message it sends. The survey arti
le [CS02℄gives a ni
e overview of the various approa
hes to de
idability of se
urity proto
olveri�
ation, and also the various unde
idability results. [ALV02℄ also provides ani
e perspe
tive on the various fa
tors whi
h a�e
t de
idability of se
urity proto
olveri�
ation.The literature also
onsists of work where de
idability is obtained without pla
ing

Chapter 1: Introdu
tion 14su
h `external' bounds. For example, the work [Sto02℄ seeks to identify some simplesemanti
 properties whi
h lead to de
idability and argue that these properties aresatis�ed by a large
lass of proto
ols found in the literature. [AC02℄ introdu
es
he
kable synta
ti

onditions whi
h entail the equivalen
e of the given proto
ol toa �nite-state system, and then gives methods of
he
king the �nite-state systemsfor se
urity brea
hes. A signi�
ant work in this line is [Low99℄, where de
idabilityis proved for a synta
ti
 sub
lass of proto
ols, under the assumption that messagelength is bounded but without any assumptions on the number of non
es. Our workin
hapter 4 is in this spirit. Assuming that message length is bounded and the setof non
es is not, we prove de
idability of the se
re
y problem for a synta
ti
 sub
lassof proto
ols, the so
alled tagged proto
ols. Essentially, these are proto
ols wherethe important
omponents of ea
h message have some kind of type tags atta
hed tothem. The use of tags allows us to prove that for every tagged proto
ol, there is arun whi
h leaks a se
ret i� there is a run of bounded length whi
h leaks a se
ret.This is the key to our de
idability result.We
ontinue the same theme in
hapter 5, where we prove that even if we donot pla
e any bound on message length, we
an obtain de
idability of the se
re
yproblem for the
lass of tagged proto
ols. We a
hieve this by showing that for taggedproto
ols, every run is equivalent to a well-typed run (under a suitable notion ofequivalen
e whi
h preserves many important se
urity properties). A well-typed runis basi
ally a run in whi
h there is no type-
aw. This means that non
es o

urringin the proto
ol spe
i�
ation are only repla
ed by non
es in the di�erent sessions ofthe run, and so on for the other types of data as well. This further means that thelength of the messages o

urring in a well-typed run is bounded by the length of themessages o

urring in the proto
ol spe
i�
ation. Sin
e every run is equivalent to awell-typed run, the problem redu
es in e�e
t to the setting of
hapter 4, and thuswe get our de
idability result.In
hapter 5, we also
onsider a semanti
 sub
lass of proto
ols based on anequivalen
e relation of �nite index on messages, and prove the de
idability of these
re
y problem for this semanti
 sub
lass, under the assumption that the non
esand keys
ome from a �xed �nite set.In
hapter 6, we look at methods for reasoning about proto
ols. We de�ne alogi
 in whi
h several important properties like se
re
y and authenti
ation
an benaturally spe
i�ed. A major portion of the
hapter is devoted to examples whi
h

Chapter 1: Introdu
tion 15illustrate how to reason about proto
ols using the logi
. We then show that theunde
idability results of
hapter 3 and the redu
tion to well-typed runs proved in
hapter 5 extend to the veri�
ation problem for the logi
 as well. Using the redu
tionto well-typed runs, we prove the de
idability of the veri�
ation problem of the logi
in a setting where there are no restri
tions on the length of messages o

urring inruns of a proto
ol, but where the non
es and keys
ome from a �xed �nite set.The resear
h that this thesis is based on was done in
ooperation with R. Ra-manujam. The work in
hapter 4 is based on the papers [RS03a℄ and [RS03
℄.[RS03
℄ is also the basis for the part of
hapter 5 whi
h deals with the redu
tion towell-typed runs. The semanti
 de
idability result in
hapter 5 is based on [RS03b℄.

Chapter 2
Se
urity proto
ol modelling

In this
hapter, we �rst dis
uss the issues involved in modelling se
urity proto
ols.We then informally introdu
e our model and
ompare it with some of the otherexisting models. We then present a formalization of the model. We
lose the
hapterwith some important properties of our models, espe
ially properties relating to thegeneration of new messages by agents from old information whi
h they possess.2.1 Dis
ussionThe formal modelling of se
urity proto
ols is a nontrivial problem in itself. Forexample,
onsider the Needham-S
hroeder proto
ol presented in Se
tion 1.2.� The proto
ol is spe
i�ed in terms of two agents A and B and two se
rets xand y. But as eviden
ed in Lowe's atta
k, these are just abstra
t names whi
ha
t as pla
eholders and
an be
on
retely instantiated with di�erent values to
reate many di�erent sessions of the proto
ol.� It is also evident from Lowe's atta
k that runs typi
ally
ontain many parallelsessions.� Further there
ould be in�nitely many sessions of a given proto
ol and it ispossible that a run
onsists of unboundedly many sessions.
16

Chapter 2: Se
urity proto
ol modelling 17� A further
ompli
ation is that the abstra
t terms in the proto
ol
an be in-stantiated with arbitrary messages (not just atomi
 messages) to
arry out
ertain atta
ks. This was illustrated by the se
ond example of Se
tion 1.2.So we see that while proto
ol spe
i�
ations are �nite (usually quite small), thesystem whi
h generates the set of runs of the proto
ol needs to remember an un-bounded amount of information, and is thus an in�nite state system. Thus a for-mal model for se
urity proto
ols involves many details whi
h need to be got right.The large gap in
omplexity between a proto
ol spe
i�
ation and the system whi
hgenerates the runs of the proto
ol makes the task of formally modelling proto
olsnontrivial.Further, at every step of de�ning a model, the modeller is presented with
hoi
eswhi
h have to be resolved one way or the other. Some of the possible questions thatshe might fa
e are:� what should be the stru
ture of the messages?� how are proto
ols to be presented?� what should be the assumptions on intruders?� how do agents
onstru
t new messages from old?� what is the underlying model of
ommuni
ation?As always, the manner in whi
h the
hoi
es are resolved is driven by the appli
ationin hand. Thus it is not surprising that a
onsensus has still not been rea
hed, andthat the literature abounds with many di�erent models for se
urity proto
ols.Before a des
ription of our model, we brie
y look at some of the other popularstyles of modelling se
urity proto
ols.Pro
ess algebra models Examples of these kinds of models in
lude the CSP-based models of [Low96℄, [LR97℄, and [S
h96a℄, and the the spi
al
ulus modelof [AG99℄. We look at the spi-
al
ulus model to provide a
avour of thesekinds of models. It is an extension of the pi
al
ulus [MPW92℄ with
rypto-graphi
 primitives. The basi
 idea is that every proto
ol is represented by aspi
al
ulus pro
ess (whi
h gives the operational semanti
s of the proto
ol, inthe sense that the pro
ess displays exa
tly the same run-time behaviour as

Chapter 2: Se
urity proto
ol modelling 18the proto
ol). The pro
ess for a proto
ol is typi
ally a parallel
ompositionof (possibly many di�erent instantiations of) a pro
ess for ea
h role of theproto
ol. The other pro
ess algebra models also model the behaviour of theintruder as an intruder pro
ess, and the pro
ess
orresponding to a proto
olis de�ned as a parallel
omposition of the pro
esses for the roles and the in-truder pro
ess. But the spi
al
ulus di�ers from them in that it does not �x anintruder pro
ess. We will see a little later how intruder behaviour is modelledin the spi
al
ulus. Se
urity properties of proto
ols
an now be translated toproperties of the pro
ess representing the proto
ol. These are typi
ally vari-ous kinds of observational equivalen
es between pro
esses, whi
h basi
ally saythat no observer intera
ting with the two pro
esses
an distinguish betweenthe two.For instan
e, let us say that a proto
ol whi
h uses an abstra
t term x isrepresented by a pro
ess P (x). (The notation signi�es that the de�nition of Pis parametrized by x.) Let us say that the proto
ol involves sending x from Ato B se
urely. For every
on
rete term m, we de�ne Pspe
(m) to be a pro
esswhi
h is \obviously
orre
t" in its behaviour with respe
t to m. (For instan
e,it might say that irrespe
tive of what happens after A sends the message m, atsome future point of time B (either normally or magi
ally) re
eives the samemessage m.) Now a possible de�nition of se
re
y is that for any two distin
tmessages m and m0, P (m) is observationally equivalent to P (m0). If the se
retis not revealed, then no external observer
an see any di�eren
e between arun of the proto
ol whi
h uses se
ret m and one whi
h uses se
ret m0. Apossible de�nition of authenti
ation is that for all m, P (m) is observationallyequivalent to Pspe
(m). This says that if the A sends the message m, then if atall the re
eiver re
eives a message whi
h purports to be from A, the messagehas to be m.Sin
e the notion of observational equivalen
e used in the spi
al
ulus refers toall pro
esses, there is no need to expli
itly de�ne an intruder pro
ess. If thereis an atta
k on a proto
ol, it will de�nitely manifest in the form of the tworelevant pro
esses being distinguishable by a pro
ess
oding up the intruderbehaviour in the atta
k.The main fo
us of resear
h in spi
al
ulus is to develop generi
 proof te
h-niques that work for
lasses of proto
ols ([AG98℄, [Aba99℄, [AFG02℄). It is

Chapter 2: Se
urity proto
ol modelling 19also possible to use existing tools for the pro
ess algebra models and applythem to se
urity. An example is the FDR model
he
ker for CSP, whi
h hasbeen su

essfully used in dis
overing atta
ks on proto
ols (see [Low96℄, forexample).The indu
tive approa
h This approa
h was pioneered by [Pau98℄, whi
h advo-
ates a theorem-proving approa
h to verifying
ryptographi
 proto
ols. Thetheorem prover used in [Pau98℄ is Isabelle/HOL, whi
h works with higher-orderlogi
.A proto
ol is formalised as a set of tra
es, where ea
h tra
e is a sequen
e ofevents. Example of events in
lude Says A B X and Notes A X. Says A B X meansthat A says X to B, it does not imply that B heard what A says. Notes AX means that A learns the message X. The important point is that the setof tra
es of the proto
ol is de�ned indu
tively, starting with the empty tra
e,adding \proper" a
tions for the honest prin
ipals, and any \admissible" a
tionfor the intruder. \Proper" a
tions are those whi
h follow the proto
ol. Forinstan
e the �fth message of a role
an be sent only after the fourth message.\Admissible" means that the message that is being
ommuni
ated in the event
an be
onstru
ted by the agent from the information already learnt by him.The operators synth and analz formalize the way in whi
h new messages are
onstru
ted from old.A proto
ol is said to satisfy a property if all its tra
es satisfy the property.This
an be veri�ed by letting a theorem-prover indu
tively
he
k that alltra
es of the proto
ol satisfy the said property. If a property does not hold ofa proto
ol, then the failed attempts at a proof lead one to an atta
k s
enario.The indu
tive approa
h has been used as a basis for proving the
orre
tnessof some very
ompli
ated proto
ols [Bel99℄.Strand spa
es This is a model introdu
ed in [FHG99℄. In this model, a proto
ol isassumed to be presented by set of (parametrized) strands, whi
h are sequen
esof send or re
eive a
tions. A node of a proto
ol is a pair
onsisting of aninstantiation s of a parametrized strand and an index i whi
h is at most thelength of s. A strand spa
e
orresponding to a proto
ol is a graph whose nodes
onsist of all the nodes of the proto
ol and whose edges re
e
t the lo
al and
ommuni
ation dependen
y between events. A very important
omponent of

Chapter 2: Se
urity proto
ol modelling 20the model is the formalisation of the intruder behaviour in terms of penetratorstrands. Ea
h penetrator strand des
ribes an atomi
 behaviour of the intruder.Examples of su
h behaviour in
lude re
eiving a message,
reating a
opy ofa message that has been re
eived, splitting a message of the form (t; t0) toget t, en
rypting t using a key k to obtain ftgk, and so on. The penetratorstrands of this model, the intruder pro
ess in the pro
ess algebra models, andthe intruder theory in the multi-set rewriting model (to be des
ribed below)roughly
orrespond to one another. A bundle of a proto
ol (whi
h basi
allystands for a run of the proto
ol) is a �nite partially ordered subgraph of thestrand spa
e of the proto
ol, with the
ondition that for every event in thebundle, its
ausal past is also in
luded in the bundle. The signi�
ant featureof this model is that runs of a proto
ol are formalised as partially orderedobje
ts.Signi�
ant properties of proto
ols
an now be expressed in terms of the model.An example of an authenti
ation property is the requirement that whenevernode n1 o

urs in a bundle, node n2 should also o

ur. Se
re
y properties areformalised by saying that some kinds of nodes do not o

ur in any bundle of theproto
ol. (These are typi
ally nodes whi
h reveal some se
ret to the intruder).A signi�
ant amount of the resear
h here is devoted to developing te
hniquesfor proving general bounds on the intruder's abilities in any run of a proto
ol(or a
lass of proto
ols). There have also been attempts at automati
 analysisof proto
ols based on the strand spa
es model (see [SBP01℄, for example).There have also been attempts to provide a semanti
s for BAN logi
 in termsof the strand spa
e model ([SC01℄, for example).Multi-set rewriting Like the spi
al
ulus and the indu
tive model, this is also ageneral-purpose model in whi
h we
an embed se
urity proto
ols. [DM99℄ is anintrodu
tion to the model, whereas [DLMS99℄ and [CDL+99℄ present te
hni
alresults about the framework.The basi
 idea here is that a se
urity proto
ol is given by a theory whi
h isa �nite set of rules, where ea
h rule is of the form P1(� � �); : : : ; Pk(� � �) �!~9: Q1(� � �); : : : ; Ql(� � �). The P 's and Q's are atomi
 formulas (of the predi
ate
al
ulus). The theory of a proto
ol is got by
omposing a theory for ea
hrole with a standard intruder theory. A state is a �nite multiset of atomi

Chapter 2: Se
urity proto
ol modelling 21senten
es. Rules are allowed to have free variables, but ground instantiationsof rules are applied to states to yield new states. A rule appli
ation on a states yields another state s0 i�:� all the pre
onditions of the rule all belong to s,� the pre
onditions whi
h are not post
onditions do not belong to s0,� for every
opy of a post
ondition whi
h is not a pre
ondition, a
opy ofit is added to s0,� the rest of s is
opied into s0, and� ea
h existentially quanti�ed variable is instantiated by a new
onstantnot o

urring in s.In fa
t, the semanti
s of rules has
lose
onne
tions with the proof theory oflinear logi
.Properties of se
urity proto
ols
an be easily formalised in this framework. Forinstan
e, the se
re
y problem is essentially a state rea
hability problem (theinput for the problem is a theory, an initial state and an atomi
 senten
e).The problem is to determine whether there is a rea
hable state in whi
h thesaid atomi
 senten
e holds.We now des
ribe our model informally. While it does not di�er drasti
ally fromany of the models des
ribed above, still there are di�eren
es in emphasis. Our fo
usis on retaining enough distin
tions at the level of proto
ol spe
i�
ation so that it iseasy to de�ne
ertain synta
ti
 sub
lasses, for whi
h we later prove the de
idabilityof verifying se
re
y.Proto
ol spe
i�
ations: Se
urity proto
ols are typi
ally spe
i�ed as a (�nite) setof roles (typi
ally with names like
hallenger, responder and so on). Theseare abstra
t patterns of
ommuni
ation whi
h spe
ify what messages are sentwhen, and how to respond to the re
eipt of any message. The
ontent of thesemessages is (usually) not relevant, but the stru
ture is; hen
e abstra
t variablessuÆ
e to des
ribe the proto
ol. For example, the Needham-S
hroeder
an beviewed as
onsisting of two roles, an initiator role given byA!B:fx;AgpubkB ; A?B:fx; ygpubkA; A!B:fygpubkB

Chapter 2: Se
urity proto
ol modelling 22and a responder role given byB?A:fx;AgpubkB ; B!A:fx; ygpubkA; B?A:fygpubkB :Roles are typi
ally sequen
es of a
tions, whi
h
an either be a send a
tion ofthe form A!B: t (whi
h stands for A sending t over the network intended forB) or a re
eive a
tion of the form A?B: t (whi
h stands for A re
eiving t overthe network with some indi
ation that the sender is B).In our model, we pay
lose attention to proto
ol spe
i�
ations. In fa
t, themajor te
hni
al results in this thesis show that the manner in whi
h proto
olsare spe
i�ed has a major bearing on problems like verifying se
re
y of a givenproto
ol. In fa
t, the negative results in Chapter 3 point out that the abovestyle of presenting proto
ols admits too many
ompli
ated proto
ols, whi
hare not representative of the proto
ols whi
h arise in pra
ti
e ([CJ97℄). So, forour positive results we fo
us on the more manageable
lass of proto
ols whi
hare presented as sequen
e of
ommuni
ations of the form A!B : t. This is alsothe informal style of presenting proto
ols whi
h is popular in the literature.There are also some admissibility
onditions here that are assumed impli
itlyin the literature. We make them expli
it and point out their
ru
ial role inthe analysis of proto
ols. The
lass of proto
ols whi
h satisfy these
onditionsare
alled well-formed proto
ols.Starting from su
h des
riptions of a proto
ol, we formally de�ne the seman-ti
s of ea
h proto
ol. This is slightly di�erent from the style
urrent in theliterature. For instan
e, in the indu
tive model, a proto
ol is formally a set ofrules (in higher-order logi
) whi
h spe
ify the
onditions under whi
h runs ofthe proto
ol
an be extended by adding an event. In the spi
al
ulus model,a proto
ol is formally a spi
al
ulus pro
ess (whi
h
an generate the set ofall runs of the proto
ol). The passage from an informal proto
ol spe
i�
ation(as a sequen
e of
ommuni
ations) to the formal obje
t is not given mu
hattention (as that is usually trivially a
hieved). But formally any �nite set ofrules (or any pro
ess)
an be a proto
ol. The advantage of su
h an approa
his the high expressive power of the model. Any proto
ol
an be
oded up asa formal obje
t of the model. A possible disadvantage is that it is sometimesdiÆ
ult to isolate a
ertain (synta
ti
 or semanti
)
lass of proto
ols that wewish to
on
entrate on. Further, it is sometimes diÆ
ult to judge whether a

Chapter 2: Se
urity proto
ol modelling 23te
hni
al result (like unde
idability of veri�
ation, for instan
e) holds be
auseof something inherent to proto
ols or be
ause it is a general result whi
h holdsof the model itself.Messages: A proto
ol as spe
i�ed above is run by a set of agents, who are of twokinds: the mali
ious intruder and the rest, who are honest. They perform mes-sage ex
hanges as pres
ribed in the proto
ol. Following the lead of Dolev andYao ([DY83℄), we will assume that the terms whi
h are
ommuni
ated in mes-sage ex
hanges
ome from a free algebra of terms with tupling and en
ryptionoperators. This means that we are operating on a spa
e of symboli
 terms,abstra
ting away from the fa
t that in the underlying system all messages arebit strings.We work with a simple syntax of messages whi
h allows only atomi
 keys.We disallow
onstru
ted keys, using whi
h one
an form messages of the formfxgfkgk0 . While this
hoi
e
ertainly limits the appli
ability of our model andthe results, we want to
onsider key te
hni
al questions like the de
idabilityof the se
re
y problem in this important setting, before moving on to more
omplex settings. On the other hand we feel that some of the other extensionsto the message syntax, like hashing,
an be easily handled and almost all ourresults will go through with minor modi�
ations.Cryptographi
 assumptions: Following the lead of Dolev and Yao ([DY83℄) wemake the perfe
t en
ryption assumption. This means that a message en
ryptedwith key k
an be de
rypted only by an agent who has the
orrespondinginverse k. We thus abstra
t away
ryptographi

on
erns and treat en
ryp-tion and de
ryption as symboli
 operators. There is a di�erent tradition tostudying se
urity proto
ols,
alled the \
omputational approa
h". In this ap-proa
h, proto
ols are shown
orre
t by redu
ing the proto
ol to the underlying
ryptography, i.e., it is shown that if there exists an adversary with a signif-i
ant
han
e of atta
king the proto
ol, there exists another adversary witha signi�
ant
han
e of breaking the underlying
ryptographi
 s
heme itself.The work [BR93℄ is an example of this approa
h. We have
hosen the moreabstra
t framework whi
h is preferred by most resear
hers in formal methodsfor
ryptographi
 proto
ols. Re
ently, there has been some important work inre
on
iling the two approa
hes to
ryptography. (See [AR00℄, [Her02℄, [Her03℄,

Chapter 2: Se
urity proto
ol modelling 24for examples of su
h work.)We also abstra
t away the real-life phenomenon in whi
h some honest agentslose their long-term keys. This is modelled in [Pau98℄, for example, by thenotion of an Oops event. This re
e
ts the probabilisti
 nature of the underlying
ryptography, all the
urrent s
hemes being not absolutely se
ure but onlyunbreakable with a very high probability. While we
an model more atta
ksthis way, we opt for a more restri
ted model in whi
h de
idability questions areeasier to handle. Further our fo
us is mainly on logi
al
aws in proto
ols whi
hexist even under the assumption that
ryptography is absolutely unbreakable.Intruder
apabilities: We assume an all-powerful intruder, who
an
opy every
ommuni
ation in the system,
an blo
k any message and
an pretend to beany agent. In addition he also has the message building
apabilities availableto every agent. It is assumed that the intruder has unlimited
omputationalresour
es and
an keep a re
ord of every publi
 system event and utilize it atan arbitrarily later time. However, we assume that the intruder
annot breaken
ryption. These assumptions keep the intruder model te
hni
ally simple.They are also followed widely in the literature.The di�erent models in the literature have tended to agree on most aspe
tsof the intruder modelling. Su
h an intruder is
alled a Dolev-Yao intruder.Some variations to the above model have been tried but it has been shownthat they do not signi�
antly alter the intruder's powers. For example, wemight
onsider a group of
olluding intruders rather than a single intruder.But su
h a
ollusion
annot
ause more atta
ks than a single intruder a
tingalone, as has been proved in [CMS00℄.Events and runs of a proto
ol: An event of a proto
ol is an a
tion of some roleof the proto
ol with a substitution whi
h supplies
on
rete terms for the ab-stra
t pla
eholders mentioned in the roles. As observed earlier, arbitrary terms
an be substituted in pla
e of non
es. An important
lass of events we will
onsider are the
lass of well-typed events whi
h are obtained by substitutionswhi
h repla
e non
es only by non
es. It is
lear that there are potentiallyin�nitely many events of a proto
ol. If the set of non
es and keys is assumedto be in�nite, it is possible that even the set of well-typed events is in�nite.A run of a proto
ol
an informally be thought of as a sequen
e of events whi
h

Chapter 2: Se
urity proto
ol modelling 25respe
ts
ertain admissibility
onditions, whi
h will be detailed below. Thus itis seen that we do not pla
e any bounds on the number of plays o

urringin a run, or on the number of plays whi
h are a
tive simultaneously (parallelsessions, as we
alled them earlier). It is to be noted that in [MS01℄ and[RT03℄,
ertain de
idability results are obtained by essentially pla
ing boundson the number of plays that
an o

ur in any run of the proto
ol. We followan alternative approa
h by retaining the more general model and proving the
orresponding de
idability results for synta
ti
 sub
lasses of proto
ols.We
onsider sequential runs, like most of the other models in the literature,and unlike the strand spa
es model. We
hoose sequential runs over partiallyordered runs sin
e we �nd it is easier to present the de
idability arguments inthat setting.Admissibility: Arbitrary interleavings of plays of a proto
ol are not
ounted asruns. They have to be realisable, in the sense that for every a
tion a o

urringin the run, if t is the term
ommuni
ated in a and if agent A is the
ommu-ni
ator, t
an be
onstru
ted from the information whi
h is presented to Ain the initial state along with the information learnt by her from the messageex
hanges pre
eding a. Another important requirement is that
ertain se
retswhi
h are used as instantiations of new non
es (i.e., abstra
t se
ret nameswhi
h are spe
i�ed as \fresh" by the proto
ol) should satisfy the property offreshness, i.e. these se
rets have not been used before in the run. Thus a re
ordof the se
rets used so far in the run has to be ne
essarily kept. These
on-siderations lead us to the notions of information state of an agent and message
onstru
tion rules. The agents are supposed to have learnt all the messageswhi
h have been
ommuni
ated to them. Further they
an
onstru
t newmessages from old by tupling, detupling, en
ryption and de
ryption using knownkeys, and by generating new unguessable non
es whi
h have not been pre-viously used by anyone. The formal
ounterparts of the message generationrules are the operators synth and analz whi
h are at the heart of most of thete
hni
al results in the thesis.It is to be noted that our de�nition of runs is quite
lose to that given in[Pau98℄. At the level of de�ning runs, the admissibility
onditions are quitestandard in the literature. The key element in our model is that we
onsider

Chapter 2: Se
urity proto
ol modelling 26in
orporating some of these
onditions in the proto
ol spe
i�
ation itself as aformalisation of a notion of a \well-behaved proto
ol".Initial knowledge: This is another feature of se
urity proto
ol modelling in whi
hthe di�erent existing models have tended to display slight di�eren
es. Onetypi
al approa
h is to let this be part of the spe
i�
ation of proto
ols. Forinstan
e, we might say that every agent shares a key with the server in theinitial state, while the server has (or
an generate) all the other keys, whi
h theagents
an request and obtain. Or we might say that every agent shares a keywith every other agent in the initial state. We follow the te
hni
ally simpleapproa
h of �xing a set of keys known to ea
h of the agents in the initialstate, independent of the proto
ol. This looks restri
tive, but the model
anbe easily adapted to in
lude su
h proto
ol spe
i�
ations. We only need to adda few
onsisten
y
onditions (for instan
e, at every state, if a key is availableto some agent, then its inverse is also available to some (not ne
essarily thesame) agent) for some of the te
hni
al results in Chapter 4 to go through.Closely related to this is the issue of
onstant terms of a proto
ol. Typi
alnames o

urring in a proto
ol spe
i�
ation (like the names A, B, x, et
. ofthe Needham-S
hroeder proto
ol) are pla
eholders whi
h
an be substitutedwith any other term to generate runs. But some proto
ols might refer to someagents like a key server, whose role
an be played only by some designatedpro
esses. Thus we do not allow the meanings of these names to
hange duringthe
ourse of a proto
ol run. While we usually do not distinguish between therest of the honest agents either in terms of their initial knowledge or in terms oftheir
omputational power, designated agents like the key server might havesome extra information in the initial state, and some added
omputationalpower as well.2.2 A formal model for se
urity proto
ols2.2.1 Se
urity proto
ols and their runsBasi
 termsWe assume a (potentially in�nite) set of agents Ag with a spe
ial intruderI 2 Ag . The set of honest agents, denoted Ho, is de�ned to be Ag n fIg. We

Chapter 2: Se
urity proto
ol modelling 27assume that the set of keys K is given by K0 [K1 where K0 is a
ountable setand K1 def= fkAB ; pubkA; privkA j A;B 2 Ag ; A 6= Bg. pubkA is A's publi
 key andprivkA is its private key. kAB is the (long-term) shared key of A and B. For k 2 K,k, the inverse key of k, is de�ned as follows: pubkA = privkA and privkA = pubkAfor all A 2 Ag , and k = k for all the other keys. For every agent A, the set ofkeys whi
h are assumed to be always known by A, denoted KA, is de�ned to befkAB ; kBA; pubkA; privkA; pubkB j B 2 Ag ; B 6= Ag. We also assume a
ountableset of non
es N . (`Non
e' stands for \number on
e used"). We also assume a per-fe
t non
e generation me
hanism whi
h
an generate a nonguessable, unique non
eon ea
h invo
ation. Finally we assume a set SN of sequen
e numbers (numberswhi
h are used to asso
iate one message with another). A me
hanism to generatesequen
e numbers is also assumed, whi
h
an generate a unique (but not ne
essarilynonguessable) number on ea
h invo
ation. T0, the set of basi
 terms, is de�ned tobe K [N [SN [Ag . The set K0 [N [SN [Ag will also play a spe
ial role in thesubsequent development. We use the notation T0 to denote it.Further we �x the non
e n0, the sequen
e number m0, and the key k0 2 K0 for thewhole dis
ourse. They will essentially play the role of the intruder's initial knowledge, aswill be explained later.TermsThe set of information terms is de�ned to beT ::= m j (t1; t2) j ftgkwhere m ranges over T0 and k ranges over K. These are the terms used in themessage ex
hanges below.The notion of subterm of a term is the standard one | ST (m) = fmg form 2 T0;ST ((t1; t2)) = f(t1; t2)g[ST (t1)[ST (t2); and ST (ftgk) = fftgkg[ST (t)[ST (k).t0 is an en
rypted subterm of t if t0 2 ST (t) and t0 is of the form ft00gk. EST (t)denotes the set of en
rypted subterms of t. The size of terms is indu
tively de�nedas follows: jmj = 1 for m 2 T0; j(t1; t2)j = jt1j+ jt2j+ 1; and jftgkj = jtj+ jkj+ 1.In the rest of the thesis, we use the notation j � j in three di�erent meanings: asthe size of terms, as the size of sets, and as the length of sequen
es. It is easy toknow what is meant by looking at the
ontext.The term ftgk is an abstra
t notation where we make no
ryptographi
 assump-

Chapter 2: Se
urity proto
ol modelling 28tions about the algorithm used to form ftgk from t and k. It
ould stand for ten
rypted with the key k, or it
ould stand for t appended with a signature usingthe key k. Following the lead of Dolev and Yao [DY83℄ we make the perfe
t en
ryp-tion assumption. This means that a message en
rypted with key k
an be de
ryptedonly by an agent who has the
orresponding inverse k. This is re
e
ted in the en
ryptand de
rypt rules below.A
tionsAn a
tion is either a send a
tion of the form A!B: (M)t or a re
eive a
tion ofthe form A?B: t where: A 2 Ho; B 2 Ag and A 6= B; t 2 T ; and M is a subsetof ST (t) \ (N [K0 [SN). In a send a
tion of the form A!B: (M)t, M is the setof non
es, keys and sequen
e numbers freshly generated by A just before sendingt. For simpli
ity of notation, we write A!B: t instead of A!B: (;) t. The set of alla
tions is denoted by A
, the set of all send a
tions is denoted by Send , and theset of all re
eive a
tions is denoted by Re
. A
A, the set of A-a
tions is given byfC!D: (M)t; C?D: t 2 A
 j C = Ag.Note that we do not have expli
it intruder a
tions in the model. As will be
lear from the de�nition of updates
aused by a
tions, every send a
tion is impli
itly
onsidered to be an instantaneous re
eive by the intruder, and similarly, every re
eivea
tion is
onsidered to be an instantaneous send by the intruder. Thus the agent Bis (merely) the intended re
eiver in A!B: (M)t and the purported sender in A?B: t.For a of the form A!B: (M)t, term(a) def= t and NT (a) def= M . For a of the formA?B: t, term(a) def= t and NT (a) def= ;. NT (a) stands for new terms generatedduring a
tion a. ST (a) and EST (a) have the obvious meanings, ST (term(a)) andEST (term(a)) respe
tively. terms(�) def= [1�i�` term(ai) for � = a1 � � �a` 2 A
�.NT (�), ST (�) and EST (�) are similarly de�ned. ��A, A's view of �, is de�nedindu
tively as follows: "�A = "; (� � a)�A = (��A) � a if a 2 A
A and ��A otherwise.Proto
ol spe
i�
ationsDe�nition 2.2.1 An information state s is a tuple (sA)A2Ag where sA � T for ea
hagent A. S denotes the set of all information states. For a state s, we de�ne ST (s)to be [A2Ag ST (sA).

Chapter 2: Se
urity proto
ol modelling 29De�nition 2.2.2 A proto
ol is a pair Pr = (C;R) where:� C, the set of
onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� R, the set of roles of Pr, denoted Roles(Pr), is a �nite subset of A
+ su
h thatfor ea
h � 2 R, there is an A 2 Ho with � 2 A
+A.De�nition 2.2.3 Given a proto
ol Pr = (C;R), init(Pr), the initial state of Pr isde�ned to be (TA)A2Ag where for all A 2 Ho, TA = C [KA and TI = C [KI [fn0;m0; k0g.This style of presentation of proto
ols is
lose to that in the multiset rewritingframework of [CDL+99℄, [DLMS99℄, [DM99℄, et
., and the pro
ess algebra frameworkof [AG99℄, [Low96℄, et
. The more usual style of presenting proto
ols is developedin a later se
tion.As we have mentioned earlier, we do not expli
itly model intruder a
tions. Thuswe do not expli
itly model the phenomenon of the intruder generating new non
esin the
ourse of a run, as is done in some other models (for instan
e, [DLMS99℄). Analternative would be to provide an arbitrary set of non
es and keys to the intruderin the initial state. We follow the approa
h of just providing the intruder with the�xed non
e n0, the �xed sequen
e number m0, and the �xed key k0 in the initialstate. They serve as symboli
 names for the set of new data the intruder mightgenerate in the
ourse of a run. This suÆ
es for the analysis we perform in ourproofs later. We will ensure as we develop the model that n0, m0 and k0 are notgenerated as a fresh term by any honest agent in the
ourse of a run of Pr.Example 2.2.4 A version of the Needham-S
hroeder proto
ol ([NS78℄) is presentedin this example. The proto
ol PrNS is given by (C;R) where� C = ;, and� R = f�1; �2g, where{ �1 is the following sequen
e:1. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkB

Chapter 2: Se
urity proto
ol modelling 30{ �2 is the following sequen
e:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBThe proto
ol has two roles: we
all �1 the initiator role and �2 the responder role.A sends the new non
e x to B as a
hallenge to prove his (B's) identity. She thenre
eives a response to it as also a
hallenge from B in the form of a non
e y. She�nally responds to B's
hallenge by sending ba
k y. Sin
e only B
an de
rypt the
ontents of the �rst message, A is at least
onvin
ed that B is alive. Similarly,B �rstre
eives a
hallenge from A and responds to it while issuing his own
hallenge. He�nally re
eives the response to his
hallenge. Sin
e only A
ould have de
rypted the
ontents of the message sent by B, the latter is at least
onvin
ed that A is alive. 2Example 2.2.5 Here is another example of a proto
ol, We
all this Prut. It is givenby (C;R) where:� C = ;, and� R = f�1; �2g where{ �1 is the following sequen
e:1. A ! B : (x) fA; fxgpubkBgpubkB2. A ? B : fxgpubkA{ �2 is the following sequen
e:1. B ? A : fA; fxgpubkBgpubkB2. B ! A : fxgpubkAHere again we
an
all the role �1 the initiator role and the role �2 the responder role.The initiator issues a
hallenge, response to whi
h will ensure her at least of theresponder's being alive in the network. The responder plays the passive role of justresponding to the
hallenge. 2

Chapter 2: Se
urity proto
ol modelling 31Substitutions and events of a proto
olA substitution � is a partial map from T0 to T su
h that:� for all A 2 Ag , if �(A) is de�ned then it belongs to Ag ,� for all k 2 K0, if �(k) is de�ned then it belongs to K0, and� for all m 2 SN , if �(m) is de�ned then it belongs to SN .An important point to note about substitutions is that non
es
an be substitutedwith arbitrary terms. Thus our formal model allows the possibility of some kinds oftype-
aw atta
ks to be
arried out by the intruder. A substitution � is well-typedi� for all n 2 N , if �(n) is de�ned then it belongs to N . Given a set T � T0, asubstitution is said to be a T -substitution i� for all m 2 T0, if �(m) is de�ned thenit belongs to T .Substitutions are extended to terms, sets of terms, a
tions and sequen
es ofa
tions in a straightforward manner, as follows:� �(pubkA) and �(privkA) are de�ned only if �(A) is de�ned, in whi
h
ase theyare de�ned to be pubk�(A) and privk�(A), respe
tively.� �(kAB) is de�ned only if �(A) and �(B) are de�ned and �(A) 6= �(B), inwhi
h
ase it is de�ned to be k�(A)�(B).� �((t; t0)) is de�ned only if �(t) and �(t0) are de�ned, in whi
h
ase it is de�nedto be (�(t); �(t0)).� �(ftgk) is de�ned only if �(t) and �(k) are de�ned, in whi
h
ase it is de�nedto be f�(t)g�(k).� �(T) is de�ned only if �(t) is de�ned for all t 2 T , in whi
h
ase it is de�nedto be f�(t) j t 2 Tg.� �(A!B: (M)t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho,�(A) 6= �(B), and �(M \ N) is a subset of N , in whi
h
ase it is de�ned tobe �(A)!�(B): (�(M))�(t).� �(A?B: t) is de�ned only if �(A), �(B) and �(t) are de�ned, �(A) 2 Ho, and�(A) 6= �(B), in whi
h
ase it is de�ned to be �(A)?�(B):�(t).

Chapter 2: Se
urity proto
ol modelling 32� for � = a1 � � �a` 2 A
�, �(�) is de�ned only if �(ai) is de�ned for all i � `, inwhi
h
ase it is de�ned to be �(a1) � � ��(a`).A substitution � is said to be suitable for an a
tion a i� �(a) is de�ned, andsuitable for a sequen
e of a
tions � i� �(�) is de�ned. � is said to be suitable for aproto
ol Pr if �(t) is de�ned and equal to t for all
onstants t 2 CT(Pr).Example 2.2.6� Here are two substitutions suitable for the proto
ol PrNS, presented in Exam-ple 2.2.4:{ �1 given by: �1(x) = m, �1(y) = n, �(A) = A and �1(B) = I.{ �2 given by: �2(x) = m, �2(y) = n and �2(A) = A and �2(B) = B.Of these �1 is suitable for �1 and �2 is suitable for �2. Noti
e that �1 is notsuitable for �2 sin
e �1(B) = I and �2 2 A
�B.� Here are three substitutions suitable for the proto
ol presented in Exam-ple 2.2.5.{ &1 given by: &1(x) = m, &1(A) = A and &1(B) = B.{ &2 given by: &2(x) = (A; fmgpubkB), &2(A) = I, and &2(B) = B.{ &3 given by: &3(x) = m, &3(A) = I, and &3(B) = B.Of these &1 is suitable for �1 and &2 and &3 are suitable for �2. Noti
e that &3 isnot suitable for �1 sin
e �1 2 A
�A and &3(A) = I. &2 is not suitable for �1 forthe same reason, and also sin
e x 2 NT (�1) but &2(x) 62 T0. 2An event is a triple (�; �; lp) su
h that � 2 A
+, � is a substitution suitable for�, and 1 � lp � j�j. The set of all events is denoted Events. An event (�; �; lp) issaid to be well-typed i� � is well-typed. For a set T � T0, an event (�; �; lp) is saidto be a T -event i� � is a T -substitution. An event e = (�; �; lp) is said to be anevent of a proto
ol Pr if � 2 Roles(Pr) and � is suitable for Pr. The set of all eventsof Pr is denoted Events(Pr).

Chapter 2: Se
urity proto
ol modelling 33For an event e = (�; �; lp) with � = a1 � � �a`, a
t(e) def= �(alp). If lp < j�j then(�; �; lp) !` (�; �; lp + 1). For any event e, LP(e), the lo
al past of e, is de�ned tobe the set of all events e0 su
h that e0 +!`e. For any event e, term(e) will be used todenote term(a
t(e)) and similarly for NT (e), ST (e), EST (e), et
. For any sequen
e� = e1 � � � ek of events, terms(�) def= [1�i�k term(ei). NT (�), ST (�), EST (�) et
. aresimilarly de�ned.For any sequen
e of events � = e1 � � � ek, Events(�) def= fe1; : : : ; ekg.Message generation rulesDe�nition 2.2.7 A sequent is of the form T ` t where T � T and t 2 T .An analz-proof (synth-proof) � of T ` t is an inverted tree whose nodes are la-belled by sequents and
onne
ted by one of the analz-rules (synth-rules) in Figure 2.1,whose root is labelled T ` t, and whose leaves are labelled by instan
es of the Axarule (Axs rule). For a set of terms T , analz(T) (synth(T)) is the set of terms t su
hthat there is an analz-proof (synth-proof) of T ` t.For ease of notation, synth(analz(T)) is denoted by T .Thus T represents the
losure of T got by �rst \analysing" all terms in T intotheir sub
omponents, using the analz-rules, and then \synthesizing" new terms usingthe synth-rules. Later, we will prove that this de�nition is equivalent to a di�erentway of de�ning the
losure of T , in whi
h the synth and analz-rules are applied inan arbitrary order.The analz-rule de
rypt says that if the abstra
t term ftgk and k
an be derivedfrom T , then t
an also be derived. This
ould either mean de
rypting the en
ryptedterm ftgk using the inverse key k, or verifying the signed term ftgk using the
or-responding sign veri�er k. Thus this is an abstra
t rule in whi
h, depending onthe status of k, the
on
rete algorithm whi
h leads to the derivation of t di�ers.Similarly, the synth-rule en
rypt
ould either denote either en
ryption or signing.The rule redu
e really says that fftgkgk is a di�erent abstra
t notation whi
h de-notes the same term denoted by t. This is again a
onsequen
e of the fa
t thatftgk denotes di�erent
ryptographi
 algorithms | en
ryption, de
ryption, signing,verifying signatures, et
.Example 2.2.8 Let T = ftg where t = (ff(m;n)gkgk0; (k; k0)). The analz-proofgiven in Figure 2.2 shows that m 2 analz(T). To redu
e
lutter, we use the notation

Chapter 2: Se
urity proto
ol modelling 34AxaT [ftg ` tT ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k de
ryptT ` tT ` fftgkgk redu
eT ` tanalz-rules

AxsT [ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k en
ryptT ` ftgksynth-rulesFigure 2.1: analz and synth rules.
AxaT ` t split1T ` t1 AxaT ` t split2T ` t2 split2T ` k0 de
ryptT ` t3 AxaT ` t split2T ` t2 split1T ` k de
ryptT ` t4 split1T ` mFigure 2.2: An example analz-proof.t1 for ff(m;n)gkgk0, t2 for (k; k0), t3 for f(m;n)gk and t4 for (m;n). 2Example 2.2.9 Let T = fm;n; k; k0g and t = ff(m;n)gkgk0. The synth-proof givenin Figure 2.3 shows that t 2 synth(T). For readability, we denote f(m;n)gk by t1and (m;n) by t2. 2Example 2.2.10 Note that when t0 = (ff(m;n)gkgk0; (k; k0)), m 62 analz(ft0g) un-less k = k. Also note that if T 00 = f(n;m); k; k0g and t00 = ff(m;n)gkgk0, t00 2 T 00but t00 62 synth(T 00). 2

Chapter 2: Se
urity proto
ol modelling 35AxsT ` m AxsT ` n pairT ` t2 AxsT ` k en
ryptT ` t1 AxsT ` k0 en
ryptT ` tFigure 2.3: An example synth-proof.Information states and updatesDe�nition 2.2.11 The notions of an a
tion enabled at a state and update of a stateon an a
tion are de�ned as follows:� A!B: (M)t is enabled at s i� t 2 sA [M .� A?B: t is enabled at s i� t 2 sI.� update(s; A!B: (M)t) def= s0 where s0A = sA [M [ftg, s0I = sI [ftg, and forall C 2 Ag n fA; Ig, s0C = sC .� update(s; A?B: t) def= s0 where s0A = sA[ftg and for all C 2 AgnfAg, s0C = sC .update(s; ") = s, update(s; � � a) = update(update(s; �); a).In an a
tion of the form A!B: (M)t, M is supposed to represent the set of newterms whi
h are generated by the a
tion. For su
h an a
tion to be enabled at a states, it is natural to expe
t that a freshness
ondition should hold, namely that noneof the terms in M belong to ST (s). We �nd it simpler to ensure this
ondition inthe de�nition of runs (whi
h o

urs later in this se
tion) rather than here. Sin
e weusually look at states only in the
ontext of runs, there are no te
hni
al problemsas well.Note that we have
hosen to let I re
ord only the terms
ommuni
ated overthe network, and not the sender and re
eiver information as well. This is a slightdeparture from the usual pra
ti
e, and also from what was said in our informaldis
ussion of the model. We
hoose the simpler alternative, sin
e the
hoi
e heredoes not have a bearing on our main results.Another aspe
t worth noting here is that the intruder is a
ting as an unboundedbu�er whi
h syn
hronises with ea
h send and re
eive event of the honest agents. Ine�e
t the intruder is playing the role of the network as well, but there are some vital

Chapter 2: Se
urity proto
ol modelling 36di�eren
es. The intruder is assumed not to lose any message (even though it mightnot be sent to the intended re
epient). This simpli�es mu
h of our analysis sin
eat any point in time, the intruder has all the messages ex
hanged thus far. In areal-life situation the network (having �nite memory) might lose some informationand hen
e our analysis might get more
ompli
ated due to
onsideration of pastinformation.De�nition 2.2.12 Given an information state s and a sequen
e of events � =e1 � � � ek, infstate(s; e1 � � � ek) is de�ned to be update(s; a
t(e1) � � �a
t(ek)). An evente is said to be enabled at (s; �) i� LP(e) � fe1; : : : ; ekg and a
t(e) is enabled atinfstate(s; �).Given a proto
ol Pr and a sequen
e � = e1 � � � ek of events of Pr, infstatePr(�) isde�ned to be infstate(init(Pr); e1 � � � ek). We omit the subs
ript Pr if the
ontext is
lear. An event e of Pr is said to be enabled at a sequen
e � of events of Pr i� e isenabled at (init(Pr); �).The following two propositions, whi
h state that if an agent A is not \involved"in an a
tion a then a does not a�e
t A's state, are easy
onsequen
es of the de�nitionof update.Proposition 2.2.13 Suppose s is an information state, � is a �nite sequen
e ofa
tions, A 2 Ho and a 62 A
A. Then (update(s; �))A = (update(s; � � a))A. As a
onsequen
e, for all information states s, all �nite sequen
es of a
tions � and forall A 2 Ho, (update(s; �))A = (update(s; ��A))A.Proposition 2.2.14 Suppose s is an information state, � is a �nite sequen
e ofa
tions, and a is a re
eive a
tion. Then (update(s; �))I = (update(s; � � a))I.Runs of a proto
olWe isolate the sequen
es of events whi
h
an possibly o

ur as runs of proto
olsin the following de�nition. In the next de�nition, we de�ne the set of runs of a givenproto
ol.De�nition 2.2.15 A sequen
e of events e1 � � � ek is said to be a run with respe
t toan information state s i�:� for all i : 1 � i � k, ei is enabled at (s; e1 � � � ei�1),

Chapter 2: Se
urity proto
ol modelling 37� for all i : 1 � i � k, NT (ei) \ ST (s) = ;, and for all i < j � k, NT (ei) \NT (ej) = ;. (This is the unique origination property of runs.)A run is � is said to be well-typed i� every e 2 Events(�) is well-typed. For a givenT � T0, a run � is said to be a T -run i� every e 2 Events(�) is a T -event.De�nition 2.2.16 Given a proto
ol Pr, a sequen
e � of events of Pr is said to be arun of Pr i� it is a run with respe
t to init(Pr).We let R(Pr) denote the set of all runs of Pr, Rwt(Pr) denote the set of all well-typed runs of Pr, and for any given T � T0, RT (Pr) denote the set of all T -runs ofPr.Note that in our de�nition of runs, we do not insist that every send event havea \mat
hing" re
eive event. These would be the messages whi
h are blo
ked by theintruder. There is no requirement that every re
eive should have a \mat
hing" send,as well. These would be the messages whi
h are generated and sent by the intruder(possibly under an assumed identity).Example 2.2.17� An example run of PrNS is �1, given below:(�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBHere �1 and �2 are roles of PrNS de�ned in Example 2.2.4 and �1 and �2 aresubstitutions suitable for PrNS de�ned in Example 2.2.6.� An example run of Prut is �2, given below:(�1; &1; 1) A ! B : (m) fA; fmgpubkBgpubkB(�2; &2; 1) B ? I : fI; fA; fmgpubkBgpubkBgpubkB(�2; &2; 2) B ! I : fA; fmgpubkBgpubkI(�2; &3; 1) B ? I : fI; fmgpubkBgpubkB(�2; &3; 2) B ! I : fmgpubkI(�1; &1; 2) A ? B : fmgpubkA

Chapter 2: Se
urity proto
ol modelling 38Again �1 and �2 are roles of Prut de�ned in Example 2.2.5 and &1, &2 and &3 aresubstitutions suitable for Prut de�ned in Example 2.2.6.� Let us now look at some non-examples of runs. The following is not a runof PrNS sin
e the se
ond message, whi
h has been sent by the intruder to A,
annot be
onstru
ted by I from the rest of available information. Only B
ande
rypt the �rst message and learn m, whi
h is a fresh non
e generated by Aand so is unavailable to the intruder at any previous time.(�1; �; 1) A ! B : (m) fA;mgpubkB(�1; �; 2) A ? B : fm;mgpubkAThe following is not a run of PrNS for the simple reason that property of uniqueorigination of non
es is not maintained.(�1; �; 1) A ! B : (m) fA;mgpubkB(�2; �0; 1) B ? A : fA;mgpubkB(�2; �0; 2) B ! A : (m) fm;mgpubkA(�1; �; 2) A ? B : fm;mgpubkA 2The following is an easy
onsequen
e of the de�nition of runs.Proposition 2.2.18 Suppose � = e1 � � � ek is a run with respe
t to a state s. Thenfor all i � k, NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;.Proof: We �rst prove that ST (infstate(s; e1 � � � ei�1)) \ T0 = (ST (s) \ T0) [NT (e1 � � � ei�1). For this it suÆ
es to prove that for any sequen
e of a
tions �,ST (update(s; �))\T0 = (ST (s)\T0)[NT (�). For this, we �rst observe that for allstates s and a
tions a, ST (update(s; a))\T0 = (ST (s)\T0)[NT (a). Now the state-ment is proved by an easy indu
tion on j�j. The statement is immediate for � = ". If� = �0 �a then we note that update(s; �) = update(s0; a) where we denote update(s; �0)by s0. Therefore ST (update(s; �)) \ T0 = (ST (s0) \ T0) [NT (a). Now NT (�) =NT (�0) [NT (a), and by indu
tion hypothesis, ST (s0) \ T0 = ST (s) [NT (�0), andthus the statement immediately follows.

Chapter 2: Se
urity proto
ol modelling 39Using the above fa
t, we prove the proposition. Sin
e � has the unique origina-tion property, it is
lear that NT (ei) \ ST (s) = ; and NT (ei) \ NT (ej) = ; for allj < i. This implies that NT (ei) \ ST (infstate(s; e1 � � � ei�1)) = ;. 2Another aspe
t of our de�nition of runs is worth highlighting. We allow eventsto have more than one o

urren
e in a run (as long as they do not generate freshnon
es). This is not stri
tly ne
essary, sin
e there is no information gain in re-peating the same event many times. But we retain this de�nition, as imposing a
ondition on unique o

urren
e of events would make some of our de�nitions andproofs
onsiderably messier. The following propositions suggest a way of removingdupli
ate events from a run in su
h a manner that the redu
ed run is leaky i� theoriginal run is.De�nition 2.2.19 The fun
tion red : Events ! Events is de�ned as follows:� red(") = ".� red(� � e) = (red(�) � e if e 62 Events(red(�))red(�) otherwisered(�) is
alled the redu
ed form of �. We
all � a redu
ed run i� red(�) = �.It is easy to see that for any �, Events(�) = Events(red(�)) and red(�) has atmost one o

urren
e of ea
h event.Proposition 2.2.20 Suppose � is a run with respe
t to s0. Then:1. infstate(s0; �) = infstate(s0; red(�)), and2. red(�) is also a run with respe
t to s.Proof:1. This is quite easy to prove. We prove it by indu
tion on the length of �. Thebase
ase is trivial, sin
e red(") = ". For the indu
tion step, there are two
ases to
onsider:� Suppose � = �0 � e and e 2 Events(red(�0)). Then red(�) = red(�0). There-fore infstate(s0; red(�)) = infstate(s0; red(�0)). Sin
e infstate(s0; �0) =infstate(s0; red(�0)), by indu
tion hypothesis, the desired result will follow

Chapter 2: Se
urity proto
ol modelling 40if we show that infstate(s0; �) = infstate(s0; �0). Denote infstate(s0; �) =s and infstate(s0; �0) = s0 for notational
onvenien
e. Let us
onsiderthe
ase when a
t(e) = A!B: (M)t. The
ase when e is a re
eive eventis similarly handled. Sin
e e 2 Events(red(�0)), e 2 Events(�0) as well.Now if M were not empty, then it would mean that two distin
t evento

urren
es of � generate the same new non
e (or key), whi
h would bea violation of the unique origination property of the run �. Thus M = ;.Further it follows from e 2 Events(�0) and the de�nition of update thatt 2 s0A\s0I . From the de�nition of update and the fa
t thatM = ;, we alsosee that sA = s0A [ftg, sI = s0I [ftg and sC = s0C for all C 2 Ag n fA; Ig.Sin
e t 2 s0A \ s0I , it is
lear that s = s0 and we are through.� Suppose � = �0 � e and e 62 Events(red(�0)). Then red(�) = red(�0) � e. Fur-ther sin
e Events(�0) = Events(red(�0)), e 62 Events(�0) as well. Denoteinfstate(s0; �0) = s0 and infstate(s0; red(�0)) = s01 for notational
onve-nien
e. Now infstate(s0; �) = update(s0; a
t(e). But by indu
tion hypoth-esis, s0 = s01 and therefore update(s0; a
t(e)) is equal to update(s01; a
t(e)),whi
h is the same as infstate(s0; red(�)), by de�nition.2. Sin
e Events(�) = Events(red(�)), red(�) also has the unique origination prop-erty. Further from the �rst part of the proposition, it follows that every eventof red(�) is enabled at the end of the sequen
e of events pre
eding it. 2The se
re
y problemDe�nition 2.2.21 A basi
 term m 2 T0 is said to be se
ret at state s i� there existsA 2 Ho su
h that m 2 analz(sA) n analz(sI). Given a proto
ol Pr and � 2 R(Pr), mis said to be se
ret at � if it is se
ret at infstate(�). � is leaky i� there exists a basi
term m and a pre�x �0 of � su
h that m is se
ret at �0 and not se
ret at �.The se
re
y problem is the problem of determining for a given proto
ol Pr whethersome run of Pr is leaky. The se
re
y problem for well-typed runs is the problem ofdetermining for a given proto
ol Pr whether some well-typed run of Pr is leaky. Fora given T � T0, the se
re
y problem for T -runs is the problem of determining for a

Chapter 2: Se
urity proto
ol modelling 41given proto
ol Pr whether some T -run of Pr is leaky.Thus we say that a run is leaky if some atomi
 term is se
ret at some intermediatestate of the run but is revealed to the intruder at the end of the run. It is possible thatthere are proto
ols for whi
h leaks of the above form do not
onstitute a brea
h ofse
urity. A more general notion would be to allow the user to spe
ify
ertain se
retswhi
h should not be leaked and
he
k for su
h leaks. In later
hapters, we prove thede
idability of the se
re
y problem (de�ned above) for a sub
lass of proto
ols. Itis still not known whether there is a \reasonable" synta
ti
 sub
lass of proto
olsfor whi
h the more general se
re
y problem (whi
h
he
ks for leaks of user-spe
i�edse
rets) is de
idable.Example 2.2.22� The run �1 of Example 2.2.17 is leaky. This is be
ause n is se
ret at the pre�x�01 = (�1; �1; 1) � (�2; �2; 1) � (�2; �2; 2) of �1, whereas it is not se
ret at �1.� Similarly, the run �2 of Example 2.2.17 is also leaky, for m is se
ret at thepre�x �02 = (�1; &1; 1) of �2, but it is not se
ret at �2. 22.2.2 Well-formed proto
olsIn the literature, proto
ols are informally presented as a sequen
e of
ommuni
a-tions of the form A!B : t. There are also some other \well-formedness"
onditionswhi
h are impli
itly assumed. In this se
tion, we formalise these
riteria and exploretheir
onsequen
es. The main property of well-formed proto
ols is that for ea
h oftheir roles and plays, every send a
tion in it is enabled by the previous a
tions.As a result, when we analyse well-formed proto
ols,
he
king enabledness of senda
tions by honest agents is relatively straightforward. If e1 � � � ek is a run of a well-formed proto
ol Pr and e is a send event su
h that LP(e) � fe1; � � � ; ekg, then asa
onsequen
e of the propositions proved in this se
tion, e is enabled at �. Hen
eif the new terms introdu
ed in e do not already o

ur in e1 � � � ek, then e1 � � � ek � eis also a run of the proto
ol. Thus the task of
he
king whether a send event ispermissible at a given stage of a run is mu
h simpli�ed. In analysing a well-formedproto
ol, it suÆ
es to
he
k the enabledness of the re
eive a
tions (
orresponding to

Chapter 2: Se
urity proto
ol modelling 42intruder sends). This has also been the standard pra
ti
e in the analysis of se
urityproto
ols. It
an be seen that it is the impli
it assumption of well-formedness thatjusti�es this pra
ti
e.Well-formed Proto
olsA
ommuni
ation is of the form A!B : (M)t where A;B 2 Ho, A 6= B, t 2 T ,and M � ST (t)\ (N [SN [K0). For a
ommuni
ation
 = A!B : (M)t, a
t s(
) isde�ned to be A!B: (M)t and a
tr(
) is de�ned to be B?A: t. Thus a
ommuni
ationspe
i�es a send and a
orresponding instantaneous re
eive. Communi
ations are notne
essarily implementable (be
ause of the presen
e of the intruder), but neverthelesstheir use
an lead to mu
h simpler spe
i�
ations of proto
ols than the role-basedspe
i�
ations.For a sequen
e of
ommuni
ations Æ, a
tseq(Æ) is de�ned by indu
tion as follows:a
tseq(") = "; a
tseq(Æ �
) = a
tseq(Æ) � a
ts(
) � a
tr(
). Thus from any givensequen
e of
ommuni
ations we
an obtain a sequen
e of a
tions by splitting ea
h
ommuni
ation into a send and a
orresponding re
eive. These sequen
es are used toobtain the semanti
s of linear proto
ols (de�ned below), whi
h are spe
i�ed in termsof
ommuni
ations. For any
ommuni
ation
, term(
) def= term(a
ts(
)). NT (
),ST (
) and EST (
) are similarly de�ned. For any sequen
e of
ommuni
ations Æ,terms(Æ) def= terms(a
tseq(Æ)). NT (Æ), ST (Æ) and EST (Æ) are similarly de�ned.De�nition 2.2.23 A linear proto
ol is a pair Pr = (C; Æ) where:� C, the set of
onstants of Pr, denoted CT(Pr), is a subset of T0 with the propertythat fn0;m0; k0g \ C = ;, and� Æ, the body of the proto
ol, is a nonempty sequen
e of
ommuni
ations.Given a linear proto
ol Pr = (C; Æ), Roles(Pr), the set of roles of Pr, is de�ned to bethe set f��A j A 2 Ho and ��A 6= "g where � = a
tseq(Æ).Example 2.2.24 The proto
ol PrNS presented earlier is a linear proto
ol, with thefollowing spe
i�
ation: 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkB

Chapter 2: Se
urity proto
ol modelling 43The proto
ol Prut presented earlier is also a linear proto
ol, with the followingspe
i�
ation: 1. A ! B : (x) fA; fxgpubkBgpubkB2. B ! A : fxgpubkA 2Even though the presentations look di�erent, linear proto
ols
an in fa
t beviewed as a sub
lass of proto
ols as de�ned in De�nition 2.2.2, as the followingproposition asserts.Proposition 2.2.25 If Pr = (C; Æ) is a linear proto
ol, then (C;Roles(Pr)) is aproto
ol.The proof is by just observing the de�nitions. This proposition allows us to freelyuse the standard notions asso
iated with proto
ols (like init(Pr), for instan
e) forlinear proto
ols as well. Note that the
onverse of the above proposition is not true.It is possible to
ome up with proto
ols whi
h have no representation as a linearproto
ol.De�nition 2.2.26 A sequen
e of a
tions � = a1 � � �a` is said to be send-admissiblewith respe
t to a state s i� for all i � `, if ai is a send a
tion then ai is enabled atupdate(s; a1 � � �ai�1). � is said to be send-admissible with respe
t to a proto
ol Pr i�it is send-admissible with respe
t to init(Pr).De�nition 2.2.27 A well-formed proto
ol is a linear proto
ol Pr = (C; Æ) su
h thata
tseq(Æ) is send-admissible with respe
t to Pr.Proposition 2.2.28 Suppose Pr = (C; Æ) is a well-formed proto
ol. Then all itsroles are send-admissible with respe
t to Pr.Proof: For simpli
ity of notation, let s0 denote init(Pr). Let � = a
tseq(Æ). Sup-pose � = a1 � � �a` and suppose � = ai1 � � �air is a role of Pr, i.e., � = ��A forsome A 2 Ho. By Proposition 2.2.13, it is
lear that for all j : 1 � j � r,(update(s0; a1 � � �aij))A = (update(s0; ai1 � � �aij))A. Sin
e Pr is a well-formed proto-
ol, � is send-admissible with respe
t to Pr. The send-admissibility of � now follows

Chapter 2: Se
urity proto
ol modelling 44from the above equality. 2Proposition 2.2.29 Suppose Pr = (C; Æ) is a well-formed proto
ol, � is a role ofPr and � is a substitution suitable for Pr and �. Then �(�) is send-admissible withrespe
t to Pr.Proof: For simpli
ity of notation, let s0 denote init(Pr). Let � = a
tseq(Æ). Notethat � = ��A for some A 2 Ho. Sin
e � is suitable for Pr and �, � is de�nedon all a
tions o

urring in �, and �(m) = m for all m 2 CT(Pr). We �rst provefor all pre�xes � 0 of � that �(s0A) � (s01)�(A) by indu
tion on j� 0j (where we denoteupdate(s0; � 0) by s0 and update(s0; �(� 0)) by s01):� 0 = ": In this
ase s0 = s01 = s0. Now it is
lear that �(C) = C and �(KA) = K�(A).Sin
e A 2 Ho, �((s0)A) = C [�(KA). Further (s0)�(A) � C [K�(A) (withinequality when �(A) = I). It immediately follows that �(s0A) � (s01)�(A) inthis
ase.� 0 = � 00 � a: Note that �(� 0) = �(� 00)��(a). For simpli
ity let us denote update(s0; � 00)by s00 and update(s0; �(� 00)) by s001. We need to prove that �(s0A) � (s01)�(A)assuming that �(s00A) � (s001)�(A).Now if a = A!B: (M)t then s0A = s00A [M [ftg. Sin
e �(s00A) � (s001)�A , andsin
e �(s0A) = �(s00A) [�(M) [f�(t)g and (s01)�(A) = (s001)�A [�(M) [f�(t)g(be
ause �(a) = �(A)!�(B): (�(M)�(t)), it follows that �(s0A) � (s01)�(A).The
ase when a = A?B: t is identi
ally handled. This proves the indu
tion
ase.From Proposition 2.2.28 it follows that � is send-admissible. Now
onsider anypre�x � 0 � a of � with a 2 Send . For simpli
ity let us denote update(s0; � 0) bys0 and update(s0; �(� 0)) by s01. We know that term(a) 2 s0A [NT (a). Thereforeterm(�(a)) = �(term(a)) 2 �(s0A [NT (a)). But item 3 of Proposition 2.3.6 saysthat �(T) � �(T) for any � and T . Further �(s0A [NT (a)) = �(s0A) [NT (�(a))and by what has been proved above �(s0A) � (s01)�(A). Putting all this togetherwe see that term(�(a)) 2 (s01)�(A) [NT (�(a)). This shows that �(�) is also send-admissible. 2

Chapter 2: Se
urity proto
ol modelling 45Tagged Proto
olsWhile well-formed proto
ols enfor
e a reasonableness
ondition at the level ofproto
ol spe
i�
ations, we must note that they still allow for quite unreasonablebehaviours. Substituting en
rypted terms for non
es
an give the intruder theability to
ir
umvent the proto
ol. For instan
e, a
ommuni
ation of the formA!B :f(A; fxgB)gB in the proto
ol allows the intruder to
apture it and send iton to B as: I!B :f(I; f(A; fxgB)gB)gB. On re
eipt B will interpret (A; fxgB) asa non
e and a
t a

ordingly. Depending on the situation, su
h a possibility mighthave undesirable
onsequen
es. For example,
onsider the following proto
ol:1. A ! B : (x) fxgpubkB2. B ! A : fxgkABB re
eives a non
e en
rypted in its own publi
 key and sends it ba
k to the senderen
rypted in the key kAB shared by them. Consider the following run now (let �1denote the initiator role, and �2 the responder role):(�1; �; 1) A ! B : (m) fmgpubkB(�2; �; 1) B ? A : fmgpubkB(�2; �; 2) B ! A : fmgkAB(�2; �0; 1) B ? A : ffmgkABgpubkB(�2; �0; 2) B ! A : ffmgkABgkABAt the end of the run above the intruder manages to learn ffmgkABgkAB . Sin
ekAB = kAB , using the redu
e rule we say that m 2 sI , where s is the state at the endof the above run. This situation arises be
ause B interprets fmgkAB as a non
e anden
rypts it and hands it over to the other party, in e�e
t de
rypting the messagefor the intruder. It is thus useful to look at ways to prevent su
h atta
ks fromhappening. Tagging is one su
h me
hanism that seeks to distinguish between termsof di�erent stru
ture and prevent atta
ks su
h as the above. More spe
i�
ally, tagsare just
onstants whi
h a
t as message identi�ers and are atta
hed to some of theen
rypted subterms of messages whi
h are
ommuni
ated during a run. The useof tags has the e�e
t of preventing the intruder from passing o� a term �(ftgk) as�0(ft0gk0) in some run of a proto
ol while ftgk and ft0gk0 are intended to be distin
tterms in the proto
ol spe
i�
ation. We also use tagging to asso
iate every re
eivea
tion o

urring in a run with its
orresponding send (if there exists one).To pre
isely highlight the assumptions used in the de
idablity proofs in later
hapter, we de�ne two tagging s
hemes, one of whi
h subsumes the other.

Chapter 2: Se
urity proto
ol modelling 46De�nition 2.2.30 A well-formed proto
ol Pr = (C; Æ) is
alled a weakly taggedproto
ol i� for all t 2 EST (Æ) there exists
t 2 C su
h that:� for all t; t0 2 EST (Æ), if
t =
t0 then t = t0, and� for all t 2 EST (Æ): t = f(
t; u)gk for some u and k.De�nition 2.2.31 A well-formed proto
ol Pr = (C; Æ) with Æ =
1 � � �
` is
alled atagged proto
ol i� for all t 2 EST (Æ) there exists
t 2 C, and for all i � ` thereexists ni 2 NT (
i) \ SN su
h that:� for all i; j � `, t 2 EST (
i), and t0 2 EST (
j): if
t =
t0 then t = t0 andi = j, and� for all i � ` and all t 2 EST (
i): t = f(
t; (ni; u))gk for some u and k.It is
lear that every tagged proto
ol is also weakly tagged. Hen
e all the resultswhi
h we prove for weakly tagged proto
ols hold for tagged proto
ols as well.The weak tagging s
heme whi
h we have presented is essentially derived from thes
hemes presented in [HLS00℄ and [BP03℄, whereas there are some new features inthe se
ond tagging s
heme that we have presented. Most of the standard proto
olso

urring in the literature (see [CJ97℄ for example)
an be easily tagged to obtain\equivalent proto
ols", su
h that for any run � of the original proto
ol whi
h involvesonly honest agents, the tagged version of � is a run of the transformed proto
ol, andfor all runs � of the transformed proto
ol, the untagged version of � is a run ofthe original proto
ol. (Thus the transformation does not limit the honest agents'
apabilities while at the same time not introdu
ing more atta
ks). But we shouldnote that for some proto
ols whi
h
ontain \blind
opies" | like the Woo-Lamproto
ol � (as presented in [CJ97℄) | the se
ond tagging s
heme
annot be e�e
tedto get an equivalent tagged proto
ol. The problem would o

ur if an agent A
annotde
rypt an en
rypted term whi
h it is blindly passing on. The se
ond tagging s
hemerequires a distin
t tag to be added for ea
h
i, but A
annot e�e
t the retagging.But on the other hand, we
an always apply the weak tagging s
heme to any well-formed proto
ol to get an equivalent weakly tagged proto
ol. The problem of blind
opies does not arise now, be
ause the tags do not depend on the
ommuni
ationbut only the stru
ture of the en
rypted terms. So there is no need to
hange thetags of terms whi
h are blindly passed on.

Chapter 2: Se
urity proto
ol modelling 47An important point worth noting here is that in
luding the tags in the proto
olspe
i�
ation stage rather than later, in the run generation stage, means that thelegality of the runs (with respe
t to the tagging s
heme)
an be enfor
ed by
he
ksperformed by the honest parti
ipants of the proto
ol.It should also be noted that sequen
e numbers are used in an essential way inthe se
ond tagging s
heme. Even though the tagging s
heme entails unboundedlymany new tags to be used in proto
ol runs, still it does not involve mu
h
ost. Sin
esequen
e numbers are not required to be unguessable, even simple s
hemes like usinga
ounter suÆ
e to generate an unbounded number of them. This is di�erent fromgenerating non
es, where the real hard work is in ensuring unguessability.The main purpose of the tagging s
hemes is to ensure the following properties ofruns of tagged proto
ols. These properties are easy
onsequen
es of the de�nitionof tagged proto
ols (and weakly tagged proto
ols), and are very important for thede
idability proofs in the later
hapters.Proposition 2.2.32� Suppose Pr = (C; Æ) is a weakly tagged proto
ol. Then for all �; �0 suitable forPr and for all t; t0 2 EST (Æ), if �(t) = �0(t0) then t = t0.� Suppose Pr = (C;
1 � � �
`) is a tagged proto
ol. Then the following statementshold:{ for all �; �0 suitable for Pr, for all i; j � `, for all t 2 EST (
i) and for allt0 2 EST (
j), if �(t) = �0(t0) then t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr. For all re
eive events ek(k � r),there is at most one send event ei su
h that EST (ei) \ EST (ek) 6= ;.Proof:� Suppose t; t0 2 EST (Æ) and �, �0 suitable for Pr su
h that �(t) = �0(t0).By de�nition of weakly tagged proto
ols, it follows that t = f(
t; u)gk andt0 = f(
t0 ; u0)gk0 for some u; u0; k and k0. It follows that �(
t) = �0(
t0). Butsin
e � and �0 are suitable for Pr, and sin
e
t;
t0 2 C, �(
t) =
t and �0(
t0) =
t0 . Therefore
t =
t0 . Now it follows from the de�nition of weakly taggedproto
ols that t = t0.� We now take up the proofs of the statements relating to tagged proto
ols.

Chapter 2: Se
urity proto
ol modelling 48{ Suppose i; j � `, t 2 EST (
i), t0 2 EST (
j) and �, �0 suitable for Prsu
h that �(t) = �0(t0). By de�nition of tagged proto
ols, it follows thatt = f(
t; u)gk and t0 = f(
t0 ; u0)gk0 for some u; u0; k and k0. It followsthat �(
t) = �0(
t0). But sin
e � and �0 are suitable for Pr, and sin
e
t;
t0 2 C, �(
t) =
t and �0(
t0) =
t0 . Therefore
t =
t0 . Now it followsfrom the de�nition of tagged proto
ols that t = t0 and i = j.{ Suppose e1 � � � er is a well-typed run of Pr and suppose there is a re
eiveevent ek and two send events ei and ej (with i 6= j) su
h that neitherEST (ei) nor EST (ej) is disjoint from EST (ek). Suppose ti 2 EST (ei) \EST (ek) and tj 2 EST (ej) \ EST (ek). From the de�nition of taggedproto
ols it is
lear that for all events e of �, there exists a non
e n su
hthat for all t 2 EST (e), t = f(
t; (n; u))gk for some u and k. Further if e isa send event, n 2 NT (e). Thus there exist ni 2 NT (ei) and nj 2 NT (ej)su
h that ti = f(
ti ; (ni; ui))gki and tj = f(
tj ; (nj; uj))gkj for some ui, uj,ki and kj. Now both ti and tj belong to EST (ek), therefore it follows thatni = nj. But then ni 2 NT (ei) \ NT (ej), whi
h violates the property ofunique origination of non
es. This
ontradi
ts the fa
t that � is a run.This
ontradi
tion leads us to
on
lude that there is at most one i su
hthat EST (ei) \ EST (ek) 6= ;. 2
2.3 Properties of synth and analzIn this se
tion, we prove several useful results about synth and analz proofs, whi
hwill be used throughout the rest of the thesis.We start o� with the following simple observation:Fa
t 2.3.1 For any set of terms T and any term t 2 synth(T), at least one of thefollowing
onditions holds:� t 2 T .� t is of the form (t0; t00) and ft0; t00g � synth(T).

Chapter 2: Se
urity proto
ol modelling 49� t is of the form ft0gk and ft0; kg � synth(T).This fa
t follows immediately from the de�nition of synth-proofs. In many situ-ations, this fa
t helps us to repla
e indu
tion on synth-proofs by (the mu
h simpler)indu
tion on stru
ture of terms.Some basi
 fa
ts about the synth and analz operators are proved in the followingproposition.Proposition 2.3.2 Let T; T 0 � T and t 2 T . Then the following properties hold:1. T � analz(T).2. T � synth(T).3. If T � T 0, then analz(T) � analz(T 0).4. If T � T 0, then synth(T) � synth(T 0).5. analz(analz(T)) = analz(T).6. synth(synth(T)) = synth(T).7. t 2 synth(T) i� t 2 synth(T \ ST (t)).Proof: The statements relating to analz are proved by a simple indu
tion on analz-proofs, and the statements relating to synth are proved by a simple indu
tion on thestru
ture of terms. We just prove statements 5 and 6 to give a
avour of the proofs.Proof of statement 5: It is immediate that analz(T) � analz(analz(T)), from state-ments 1 and 3. We prove the other in
lusion. Suppose t 2 analz(analz(T)).Suppose � is an analz-proof of analz(T) ` t. We prove by stru
tural indu
tionthat for every subproof $ of � with root labelled analz(T) ` r, r 2 analz(T).From this it follows that t 2 analz(T) as well.Suppose $ is a subproof of � with root labelled analz(T) ` r su
h that forall proper subproofs $1 of $ with root labelled analz(T) ` r1, r1 2 analz(T).Then we prove that r 2 analz(T) as well.� Suppose $ is the following proof: Axaanalz(T) ` r

Chapter 2: Se
urity proto
ol modelling 50Then r 2 analz(T) by de�nition and we are through.� Suppose $ is the following proof:($1)...analz(T) ` (r; r0) split1analz(T) ` rBy indu
tion hypothesis (r; r0) 2 analz(T) and thus it immediately followsby de�nition of analz-proofs that r 2 analz(T) as well.� Suppose $ is the following proof:($1)...analz(T) ` frgk ($2)...analz(T) ` k de
ryptanalz(T) ` rBy indu
tion hypothesis ffrgk; kg � analz(T) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T).� Suppose $ is the following proof:($1)...analz(T) ` ffrgkgk redu
eanalz(T) ` rBy indu
tion hypothesis ffrgkgk 2 analz(T) and thus it immediatelyfollows by de�nition of analz-proofs that r 2 analz(T).Proof of statement 6: It is immediate that synth(T) � synth(synth(T)), from thestatements 2 and 4. We now prove by indu
tion on the stru
ture of termsthat if t 2 synth(synth(T)) then t 2 synth(T). From Fa
t 2.3.1, it suÆ
es to
onsider the following three
ases:t 2 synth(T): Then the
on
lusion trivially follows.t is of the form (t0; t00) and ft0; t00g � synth(synth(T)): By indu
tion hypothe-sis, it follows that ft0; t00g � synth(T). It now immediately follows fromthe de�nition of synth-proofs that t 2 synth(T).

Chapter 2: Se
urity proto
ol modelling 51t is of the form ft0gk and ft0; kg � synth(T): By indu
tion hypothesis, it fol-lows that ft0; kg � synth(T). It now immediately follows from the de�ni-tion of synth-proofs that t 2 synth(T). 2It immediately follows from the above proposition that T = synth(analz(T)) is
losed under synth. The following proposition says that it is
losed under analz aswell, thus immediately implying the important statement that T = T for all sets ofterms T .Proposition 2.3.3 For all T � T , analz(T) = T .Proof: From item 1 of Proposition 2.3.2, T � analz(T). We prove the otherin
lusion now. Suppose t 2 analz(T). Suppose � is an analz-proof of T ` t. Weprove by stru
tural indu
tion that for every subproof $ of � with root labelledT ` r, r 2 T . From this it follows that t 2 T as well.Suppose $ is a subproof of � with root labelled T ` r su
h that for all propersubproofs $1 of $ with root labelled T ` r1, r1 2 T . Then we prove that r 2 Tas well. We only
onsider the
ase when the rule applied at the root of $ is Axa orde
rypt. The other
ases
an be similarly handled.� Suppose $ is the following proof: AxaT ` rThen r 2 T by de�nition and we are through.� Suppose $ is the following proof:($1)...T ` frgk ($2)...T ` k de
ryptT ` r

Chapter 2: Se
urity proto
ol modelling 52T ` (t1; t2) spliti(i = 1; 2)T ` tiT ` ftgk T ` k de
ryptT ` tT ` fftgkgk redu
eT ` t
AxT [ftg ` tT ` t1 T ` t2 pairT ` (t1; t2)T ` t T ` k en
ryptT ` ftgkFigure 2.4: yields-rules.By indu
tion hypothesis ffrgk; kg � T . From the de�nition of synth-proofsit follows that for all atomi
 terms m, if m 2 T = synth(analz(T)), thenm 2 analz(T). Sin
e k is an atomi
 term, it follows that k 2 analz(T). Sin
efrgk 2 synth(analz(T)), it follows by Fa
t 2.3.1 that either frgk 2 analz(T) orfr; kg � synth(analz(T)). In the �rst
ase, sin
e k 2 analz(T), it follows thatr 2 analz(T) � T . In the se
ond
ase also r 2 T and we are through. 2Following [Pau98℄, we have taken synth(analz(T)) as the set of terms whi
h
anbe built from T . This means that we are
onsidering only \normal proofs" | inwhi
h all the analysis rules are applied before the synth rules | in building up newterms from old. An alternate approa
h would be to
onsider proofs whi
h involvesynth and analz rules applied in an arbitrary order. This approa
h is also
ommon inthe se
urity proto
ol literature. (For example, [FHG99℄ and [DLMS99℄ follow thisapproa
h.) We now show that both the approa
hes are equivalent.De�nition 2.3.4 An yields-proof � of T ` t is an inverted tree whose nodes arelabelled by sequents and
onne
ted by one of the yields-rules in Figure 2.4, whoseroot is labelled T ` t, and whose leaves are labelled by instan
es of the Ax rule. Fora set of terms T , bT is the set of terms t su
h that there is a yields-proof of T ` t.Proposition 2.3.5 For all sets of terms T , T = bT .

Chapter 2: Se
urity proto
ol modelling 53Proof: The in
lusion from left to right is trivial, sin
e both the analz-rules and thesynth-rules are in
luded in the yields-rules.We
onsider the in
lusion from right to left now. From item 6 of Proposition 2.3.2it follows that synth(T) � T . Proposition 2.3.3 says that analz(T) � T . It followsas an immediate
onsequen
e of this that bT � T . 2Proposition 2.3.6 Suppose T is a set of terms and � is a substitution su
h that�(t) is de�ned for all t 2 T . Then1. �(analz(T)) � analz(�(T)).2. �(synth(T)) � synth(�(T)).3. �(T) � �(T).Proof: We �rst note the following simple fa
ts: if t 2 T then �(t) 2 �(T);�((t; t0)) = (�(t); �(t0)); �(ftgk) = f�(t)g�(k); �(fftgkgk) = ff�(t)g�(k)g�(k).From these it follows that if T ` tT ` t is a analz-rule, so is �(T) ` �(t)�(T) ` �(t0) .A similar statement holds for binary analz-rules and for synth-rules as well (bothunary and binary). Statements 1 and 2 immediately follow from these observa-tions. Statement 3
an now be proved as follows: �(T) = �(synth(analz(T))) �synth(�(analz(T))) � synth(analz(�(T))) = �(T). 2Proposition 2.3.7 For all sets of terms T and terms t, if t 2 ST (synth(T)) theneither t 2 ST (T) or t 2 synth(T).Proof: Suppose t 2 ST (synth(T)). We prove by indu
tion on the stru
ture of termsthat for all r, if r 2 synth(T) and t 2 ST (r) then either t 2 ST (T) or t 2 synth(T).Bt Fa
t 2.3.1, it suÆ
es to
onsider the following three
ases:r 2 T : Then
learly t 2 ST (T).r is of the form (r0; r00) and fr0; r00g � synth(T): There are two
ases to
onsider. Ift = r = (r0; r00) then
learly t 2 synth(T). Otherwise t 2 ST (r) = ST (r0) [ST (r00) and now we
an apply to the indu
tion hypothesis and
on
lude thatt 2 ST (T) or t 2 synth(T).

Chapter 2: Se
urity proto
ol modelling 54r = fr0gk and fr0; kg � synth(T): This
ase is handled the same way as the previousone. 2Proposition 2.3.8 For all sets of terms T and terms ftgk, if ftgk 2 ST (synth(T))then either ftgk 2 ST (T) or ft; kg � synth(T).Proof: Suppose ftgk 2 ST (synth(T)). From Proposition 2.3.7 we
on
lude thateither ftgk 2 ST (T) or ftgk 2 synth(T). But if ftgk 2 synth(T) then eitherftgk 2 T � ST (T) or ft; kg � synth(T), from Fa
t 2.3.1. 2Proposition 2.3.9 Suppose T � T0. Then ST (synth(T)) � synth(T).Proof: From Proposition 2.3.7 it follows that ST (synth(T)) � ST (T) [synth(T).But sin
e T
onsists only of atomi
 terms, ST (T) = T � synth(T) and hen
e theresult follows. 2De�nition 2.3.10 A term t is a minimal term of a set T of terms i� t 2 T andt 62 synth(T nftg), i.e. t
annot be \built" from the other terms in T . min(T) denotesthe set of minimal terms of T .The following fa
t follows immediately from the de�nition of minimal terms.Proposition 2.3.11 Suppose T is a set of terms and t 2 min(T). Then the follow-ing
onditions hold:� If t is of the form (t0; t00) then either t0 62 T or t00 62 T .� If t is of the form ft0gk then either t0 62 T or k 62 T .Proposition 2.3.12 Suppose T is a set of terms and t 2 min(analz(T)). Then oneof the following
onditions hold:� t 2 T0.� t = ft0gk for some t0; k su
h that either t0 62 analz(T) or k 62 analz(T).

Chapter 2: Se
urity proto
ol modelling 55Proof: Suppose t 2 min(analz(T)) is of the form (t0; t00). Sin
e t 2 analz(T),ft0; t00g � analz(T). But this
ontradi
ts item 1 of Proposition 2.3.11. 2Proposition 2.3.13 For any set of terms T , the following properties hold:1. T � synth(min(T)).2. synth(T) = synth(min(T)).3. T = synth(min(analz(T))).Proof: We prove by indu
tion on the stru
ture of terms that for all t 2 T , t belongsto synth(min(T)). If t 2 T\T0 then
learly t 2 min(T) � synth(min(T)). If t = (t0; t00)belongs to min(T) then we are through. Otherwise ft0; t00g � T and by indu
tionhypothesis ft0; t00g � synth(min(T)) and therefore t = (t0; t00) 2 synth(min(T)) aswell. A similar argument works for the
ase when t = ft0gk.Now it is
lear that min(T) � T and thus synth(min(T)) � synth(T). On theother hand, it follows from item 1 above that synth(T) � synth(synth(min(T))) =synth(min(T)). Thus synth(T) = synth(min(T)). Substituting analz(T) in pla
e of Tin the above equation, it follows that T = synth(analz(T)) = synth(min(analz(T))).2We introdu
e the following bit of terminology before we get to our next propo-sition.De�nition 2.3.14 A set of terms T is said to unravel another set of terms T 0 i�there exists a term t and a key k su
h that ftgk 2 analz(T 0) and k 2 analz(T). Twosets T and T 0 are said to be mutually independent if neither T nor T 0 unravels theother.Proposition 2.3.15 Suppose T and T 0 are two mutually independent sets of terms.Then analz(T [T 0) = analz(T) [analz(T 0).Proof: The in
lusion from right to left is obvious. We now
onsider an arbitraryt 2 analz(T [T 0) and show that t 2 analz(T)[analz(T 0). Suppose � is an analz-proofof T [T 0 ` t. We prove by stru
tural indu
tion that for every subproof $ of � with

Chapter 2: Se
urity proto
ol modelling 56root labelled T [T 0 ` r, r 2 analz(T)[analz(T 0). Therefore t 2 analz(T)[analz(T 0)as well.Suppose $ is a subproof of � with root labelled T [T 0 ` r su
h that for allproper subproofs $1 of $ with root labelled T [T 0 ` r1, r1 2 analz(T) [analz(T 0).Then we prove that r 2 analz(T)[analz(T 0) as well. We only
onsider the
ase whenthe rule applied at the root of $ is Axa or de
rypt. The other
ases
an be handledsimilarly.� Suppose $ is the following proof: AxaT [T 0 ` rThen r 2 T [T 0 � analz(T) [analz(T 0).� Suppose $ is the following proof:($1)...T [T 0 ` frgk ($2)...T [T 0 ` k de
ryptT [T 0 ` rBy indu
tion hypothesis ffrgk; kg � analz(T) [analz(T 0). Sin
e T and T 0 areindependent, it
an neither be the
ase that frgk 2 analz(T) and k 2 analz(T 0),nor
an it be the
ase that frgk 2 analz(T 0) and k 2 analz(T). Hen
e eitherffrgk; kg � analz(T) or ffrgk; kg � analz(T 0). It follows immediately thatr 2 analz(T) [analz(T 0). 2

Chapter 3
Unde
idability results

In this
hapter we prove that the se
re
y problem for se
urity proto
ols is ingeneral unde
idable. In fa
t we prove that the se
re
y problem is unde
idable evenwhen we
onsider only well-typed runs or when we
onsider only boundedly manynon
es and keys.It might be surprising at �rst glan
e that a simple property like se
re
y (whi
his only slightly more
omplex than rea
hability) should turn out to be unde
idable.It is all the more surprising sin
e proto
ol spe
i�
ations pres
ribe set patterns of
ommuni
ation for the di�erent agents. Even though fa
tors like unbounded non
esor unbounded message length enter the pi
ture, it seems unlikely at �rst glan
e thatthe proto
ol spe
i�
ations
an for
e su
h unbounded behaviour. If that was possi-ble, it would mean that our \language" for spe
ifying proto
ols has a
onsiderableamount of inherent programming ability.We will see in this
hapter that one
an a
tually de�ne proto
ols whose runs
an
ode up an unbounded amount of information. We will see that the style ofpresenting a proto
ol as a set of roles hides a lot of programming ability. The
ru
ial point about this style of presentation is that in some situations, the questionof whether an instan
e of a parti
ular a
tion (whi
h o

urs in the spe
i�
ation ofa proto
ol) o

urs in any run of the proto
ol
an be determined only by run-time
onsiderations (in
ontrast to well-formed proto
ols, where we know that for everyproto
ol a
tion, there is always one s
enario in whi
h some instan
e of the a
tion isenabled). This
ontributes primarily to unde
idability.57

Chapter 3: Unde
idability results 58In fa
t, in the literature, we have found that the unde
idability results are usu-ally proved using a syntax of proto
ols
lose to the set-of-roles style of presentation,whereas the linear style of presentation is favoured in work on de
idability, or anal-ysis of proto
ols. Thus the unde
idability results provide us with mu
h insight intothe modelling of proto
ols.The unde
idability result for well-typed runs was �rst proved by [CDL+99℄ (seealso [DLMS99℄) in the setting of multi-set rewriting. We use a di�erent redu
tionfrom that used in [CDL+99℄. Our redu
tion is mu
h simpler than the ones
urrentlyfound in the literature. To our knowledge, ours is also the �rst detailed proof ofthis result, a fa
t whi
h
an be attributed to the simpli
ity of our redu
tion. Theunde
idability result for unbounded length of messages has been proved in variouspla
es, in
luding for instan
e, [HT96℄ and [ALV02℄.Two-
ounter ma
hinesOur unde
idability results use a redu
tion from the rea
hability problem fortwo-
ounter ma
hines. We re
all the relevant de�nitions below:A two-
ounter ma
hine is a tuple M = (Q;F; q0; Æ) where:� Q is a �nite set of states,� F � Q is the set of �nal states,� q0 2 Q is the initial state,� Æ � Q� f0; 1g2 �Q� f�1; 0; 1g2 is the transition relation with the
onditionthat whenever (q; i1; i2; q0; j1; j2) 2 Æ then jk = �1 implies ik = 1, for k = 1; 2(we
an de
rement a positive
ounter only).The other standard notions relating to two-
ounter ma
hines are de�ned below:� A
on�guration of a two-
ounter ma
hineM = (Q;F; q0; Æ) is a triple (q; n1; n2)with q 2 Q; nk 2 N (the nk's are
ounters).� For a
on�guration (q; n1; n2) of M and a transition t = (q; i1; i2; q0; j1; j2) 2 Æ,t is enabled at (q; n1; n2) i� for k = 1; 2, ik = 0 i� nk = 0. Whenever t isenabled at (q; n1; n2) we have the redu
tion (q; n1; n2) t�!(q0; n1 + j1; n2 + j2).� A
on�guration (q; n1; n2) is rea
hable if (q0; 0; 0) ��!(q; n1; n2) .

Chapter 3: Unde
idability results 59� A
on�guration (q; n1; n2) is �nal if q 2 F .� The rea
hability problem for two-
ounter ma
hines is the problem of deter-mining for a given two-
ounter ma
hine M = (Q;F; q0; Æ) whether a �nal
on�guration of M is rea
hable.We assume the well-known fa
t that the rea
hability problem for two-
ounterma
hines is unde
idable.3.1 Unde
idability for well-typed runsLet M = (Q;F; q0; Æ) be an arbitrary two-
ounter ma
hine. We will de�ne aproto
ol PrM = (C;R) su
h that a �nal
on�guration of M is rea
hable i� there isa well-typed leaky run � of PrM . As we will see in the proofs whi
h follow,
ru
ialuse is made of the fa
t that there are unboundedly many non
es in N .Before de�ning the a
tual redu
tion, we set up some basi
 notation: For sim-pli
ity, assume Q � N . Let z and d be �xed non
es from N . We �x honest agentsA;B (and therefore the shared key kAB .) Then we de�ne the following terms:for any u; u0 2 N , and q 2 Q; [q; u; u0℄ def= f(q; (u; u0))gkAB .for any u; u0 2 N; [u; u0℄ def= f(u; u0)gkAB .The proto
ol PrM is de�ned as follows:De�nition 3.1.1 PrM def= (C;R) where:� C = Q [fA;B; z; dg and� R = f�0g [f�t j t 2 Æg [f�f j f 2 Fg where:{ �0 def= A!B: [d; d℄; [q0; z; z℄; [d; d℄.{ for ea
h transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:a = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄where M = fv0k j k 2 f1; 2g and jk = 1g, and the following
onditionshold for k 2 f1; 2g:

Chapter 3: Unde
idability results 60if ik = 0 and jk = 0 thenwk = w0k = z and uk = vk = u0k = v0k = d;if ik = 0 and jk = 1 thenu0k = wk = z, uk = vk = d, v0k = w0k, andv0k does not belong to C;if ik = 1 and jk = 0 thenw0k = wk = vk, u0k = v0k = d, anduk and vk are distin
t non
es not belonging to C;if ik = 1 and jk = 1 thenwk = vk = u0k, w0k = v0k, anduk, vk and v0k are distin
t non
es not belonging to C;if ik = 1 and jk = �1 thenwk = vk, w0k = uk, u0k = v0k = d, anduk and vk are distin
t non
es not belonging to C.For any �t as given above, and k 2 f1; 2g, the notation in
trk(�t) is usedto denote wk and the notation out
trk(�t) is used to denote w0k.{ For ea
h f 2 F , �f def= a � a0 � a00 where:a = A?B: [f; w1; w2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:xwhere x, w1 and w2 are distin
t non
es not o

urring in C.The role
orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [d; d℄; [q; z; v2℄; [u2; v2℄;A!B: (fv01g) [z; v01℄; [q0; v01; u2℄; [d; d℄.The role
orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [u1; v1℄; [q; v1; v2℄; [u2; v2℄;A!B: (fv01; v02g) [v1; v01℄; [q0; v01; v02℄; [v2; v02℄.The role �0 starts o� the simulation of the two-
ounter ma
hine. The role �f
he
ks if a �nal
on�guration with state f is rea
hed and if so signals it by
ontrivingto \leak" a fresh non
e. The role �t simulates the transition t 2 Æ.

Chapter 3: Unde
idability results 61Lemma 3.1.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hen
e kAB 62 sI as well).Proof: The proof is by indu
tion on j�j. For � = ", by de�nition sI = (init(Pr))I =KI [C [fn0;m0; k0g and thus it is
lear that kAB 62 analz(sI). Suppose � = �0 � ewith s0 denoting infstate(�0). By indu
tion hypothesis kAB 62 analz(s0I). FurthersI � s0I [fterm(e)g. But term(e) is a tuple of terms of the form [q; u; u0℄ or [u; u0℄or fxgkAB or x (with x 2 N). Thus it is
lear that s0I and fterm(e)g are mutuallyindependent sets of terms (sin
e kAB 62 analz(s0I) and analz(term(e))\K = ;). By ap-plying Proposition 2.3.15 and using the fa
t that kAB 62 analz(s0I)[analz(fterm(e)g),we
on
lude that kAB 62 analz(sI). 2De�nition 3.1.31. We say that a number n is represented in an information state s by a non
e uif there exist distin
t non
es u0; : : : ; un su
h that u0 = z, un = u, and for alli < n, [ui; ui+1℄ 2 sI.2. We say that a
on�guration (q; n; n0) is represented in an information state s bythe term [q; u; u0℄ if u represents n in s, u0 represents n0 in s, and [q; u; u0℄ 2 sI.3. We say that a number n is represented in a run � of PrM by a non
e u if n isrepresented in infstate(�) by u.4. We say that a
on�guration (q; n; n0) is represented in a run � of PrM by theterm [q; u; u0℄ i� (q; n; n0) is represented in infstate(�) by [q; u; u0℄.From the de�nition it follows that in all states s, z represents only 0 and 0 isrepresented only by z.The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.1.4 Suppose � is a run of PrM with s = infstate(�), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0, and (q; n1; n2) is a
on�guration of M representedin s.1. If t is enabled at (q; n1; n2) then there is a well-typed substitution � suitablefor PrM and �t su
h that:� �(in
trk(�t)) represents nk in s (for k = 1; 2),

Chapter 3: Unde
idability results 62� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(out
trk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).2. If there is a substitution � suitable for PrM and �t su
h that �(in
trk(�t))represents nk in s (for k = 1; 2) and �(a) is enabled in s, then t is enabled at(q; n1; n2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [u1; v1℄; [q; w1; w2℄; [u2; v2℄;a0 = A!B: (M) [u01; v01℄; [q0; w01; w02℄; [u02; v02℄1. Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i�nk = 0. Let rk be a non
e whi
h represents nk in s. We de�ne a substitution� suitable for PrM and �t as follows:� for k = 1; 2, �(wk) = rk,� � is identity on C,� for ea
h distin
t m 2M , �(m) is a distin
t non
e not o

urring in ST (s)(Note that here we are
ru
ially using the fa
t that N is an in�nite set.),� for k = 1; 2, if ik = 1 then �(uk) = r0k where r0k is some non
e representingnk � 1 in s su
h that [r0k; rk℄ 2 sI (sin
e nk 6= 0 and sin
e rk representsnk in s, there has to exist at least one su
h r0k).It is
lear that � is a well-typed substitution suitable for PrM and �t. Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� From the de�nition it is immediate that �(in
trk(�t)), whi
h is the sameas �(wk), represents nk at s, for k = 1; 2.� We now prove that �(a) is enabled at s and �(a0) is enabled at s0. Sin
e[q; r1; r2℄ represents (q; n1; n2) in s, [q; r1; r2℄ 2 sI . For k = 1; 2, if ik = 0then uk = vk = d and so [�(uk); �(vk)℄ = [�(d); �(d)℄ = [d; d℄. Nowfrom the de�nition of PrM it follows that the �rst event of any run
anonly be of the form (�0; �; 1) for some substitution �. Call this evente. But e is a send event and [d; d℄ 2 analz(fterm(e)g). Hen
e it followsthat [�(uk; �(vk)℄ = [d; d℄ 2 sI . Otherwise, ik = 1 and now wk = vk

Chapter 3: Unde
idability results 63by the de�nition of PrM , and therefore [�(uk); �(vk)℄ = [�(uk); �(wk)℄ =[r0k; rk℄ 2 sI (by de�nition of �). From this it follows that a is enabled at s.Also by de�nition of �, �(M)\ ST (s) = ;. Also it is quite easy to verifythat term(a0) 2 term(a) [M [fkABg. But term(a) [M [fkABg � s0Aand thus a0 is enabled in s0.� Now we prove that �(out
trk(�t)) = �(w0k) represents nk + jk in s00 (fork = 1; 2). If jk = 0 then wk = w0k, for k = 1; 2 (by de�nition of PrM).Hen
e it follows that �(w0k) represents nk + jk in s0. If jk = �1 thenby de�nition of �, �(uk) represents nk � 1 = nk + jk in s. By de�nitionof PrM , w0k = uk and thus it follows that �(w0k) represents nk + jk in sand hen
e in s00 as well. If jk = 1 then observe that [�(u0k); �(v0k)℄ 2 s00I ,w0k = v0k, wk = u0k, and �(wk) represents nk in s and hen
e in s00 as well.Therefore �(w0k) represents nk + jk = nk + 1 in s00.2. Suppose � is a substitution suitable for PrM and �t su
h that for k = 1; 2,�(in
trk(�t)) = �(wk) represents nk at s, and su
h that �(a) is enabled at s.We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hen
e �(wk) = z.Sin
e z represents only 0 in any state and we are given �(wk) represents nk ats, nk = 0.Suppose ik = 1. Then by de�nition of PrM , we have that wk = vk anduk 6= vk. Also sin
e �(a) is enabled at s, it follows that [�(uk); �(vk)℄ 2 sI andthat [q; �(w1); �(w2)℄ 2 sI . It
an be easily seen (from the de�nition of PrMand from Lemma 3.1.2) that for all terms of the form [q; t; t0℄ 2 ST (s), t 6= dand t0 6= d. It
an also be seen that if [t; t0℄ 2 ST (s) su
h that t = t0 thent = d. From these fa
ts and the fa
t that �(vk) = �(wk), we
on
lude that�(uk) 6= �(vk). Again it
an be easily
he
ked that for all terms [t; t0℄ 2 ST (s),t0 6= z. Thus it follows that �(vk) 6= z and hen
e �(wk) 6= z. But we are giventhat �(wk) represents nk in s. Sin
e only z represents 0 in any state, it has tobe the
ase that nk 6= 0. 2

Chapter 3: Unde
idability results 64Theorem 3.1.51. (q0; 0; 0) ��!(q; n1; n2) i� (q; n1; n2) is represented in some run of PrM i� it isrepresented in some well-typed run of PrM .2. A �nal
on�guration is rea
hable in M i� there is a leaky run of PrM i� thereis a well-typed leaky run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a well-typed run ofPrM in whi
h (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indu
tion on m. The base
ase is when m = 0 in whi
h
ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any well-typed substitution � whi
h is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is
lear that there is a run � ofPrM in whi
h (q; n1; n2) is represented, by the indu
tion hypothesis. Let s =infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.1.4, there isa well-typed substitution � suitable for PrM and �t su
h that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(out
trk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sin
e [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is
lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whi
h (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indu
tion on j�j, where �is a run of PrM .The base
ase is when j�j = 0 and then the statement is va
uously true sin
eno
on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respe
tively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.1.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indu
tion hypothesis (q0; n01; n02)is rea
hable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I). Sin
e a term of the form [q; w01; w02℄ does not o

ur inside an en
ryp-tion in any event of the proto
ol, it follows from the above fa
t that in fa
t

Chapter 3: Unde
idability results 65[q0; w01; w02℄ 2 analz(fterm(e0)g). It is also
lear that e0 is a send event, so wehave to
onsider only the following two
ases:e0 = (�0; �; 1): Then it is
lear that (q0; n01; n02) = (q0; 0; 0) and hen
e that(q0; n01; n02) is va
uously rea
hable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It is
lear that �(out
trk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(in
trk(�t)) represents nk in infstate(�00). Sin
e e0is enabled at �00, it has to be that e = (�t; �; 1) o

urs in �00. Further(sin
e �(out
trk(�t)) represents nk + jk in s0 for k = 1; 2) it is
lear that�(in
trk(�t)) represents nk in s00 for k = 1; 2. In fa
t, there is a properpre�x �1 of �00 su
h that (q; n1; n2) is represented in infstate(�1), and a
t(e)is enabled at infstate(�1). By indu
tion hypothesis we have that (q; n1; n2)is a rea
hable
on�guration and by lemma 3.1.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a rea
hable
on�guration.2. We �rst prove that if a �nal
on�guration is rea
hable inM then there is a well-typed leaky run of PrM . Suppose a �nal
on�guration (f; n1; n2) is rea
hablein M . Then there is a well-typed run � of PrM representing (f; n1; n2). Thus[f; r1; r2℄ 2 (infstate(�))I for some non
es r1 and r2, and hen
e e1 � e2 � e3 isenabled at �, where ei = (�f ; �; i) for i = 1; 2; 3 and some well-typed � su
hthat �(x) 6= �(y) for all y 6= x. It then follows that � � e1 � e2 � e3 is also awell-typed run of PrM , and by de�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal
on�gurationis rea
hable in M . Suppose there is a leaky run � of PrM . A

ording tothe de�nition of PrM , this means that some instan
e of �f for f 2 F hasbeen played out as part of �. But this means that some
on�guration of theform (f; n1; n2) is represented in � whi
h implies that a �nal
on�guration isrea
hable in M . 2The main
on
lusion of this se
tion is stated below.

Chapter 3: Unde
idability results 66Theorem 3.1.6 The general se
re
y problem and the se
re
y problem for well-typedruns are unde
idable.Proof: The statement immediately follows from item 2 of Theorem 3.1.5 and thefa
t that the rea
hability problem for two-
ounter ma
hines is unde
idable. 2
3.2 Unde
idability with bounded non
esIn this se
tion we prove that for any �xed (even �nite) T � T0, the se
re
y prob-lem for T -runs is unde
idable. The proof is again a redu
tion from the rea
habilityproblem for two-
ounter ma
hines. For the purposes of
oding up arbitrary two-
ounter ma
hines, we assume that x; z; u1 and u2 are �xed, distin
t non
es whi
hbelong to T \N .Let M = (Q;F; q0; Æ) be a two-
ounter ma
hine. For simpli
ity we assume thatQ � N . We will de�ne a proto
ol PrM = (C;R) su
h that a �nal
on�guration ofM is rea
hable i� there is a leaky T -run of PrM . As we will see in the proofs whi
hfollow,
ru
ial use is made of ill-typed substitutions.Before de�ning the a
tual redu
tion, we set up some basi
 notation: We �xhonest agents A;B and the long-term shared key kAB . Then we de�ne the followingterms (
oding up natural numbers):0 = z.i+ 1 = (i; z).for any terms t1; t2; t3; [t1; t2; t3℄ def= f(t1; (t2; t3))gkAB .The proto
ol PrM is de�ned as follows:De�nition 3.2.1 PrM def= (C;R) where:� C = fA;B; zg and� R = f�0g [f�t j t 2 Æg [f�f j f 2 Fg where:{ �0 def= A!B: [q0; z; z℄,{ for ea
h transition t = (q; i1; i2; q0; j1; j2) 2 Æ, �t def= a � a0 with:A?B: [q; w1; w2℄;A!B: [q0; w01; w02℄

Chapter 3: Unde
idability results 67where, for k 2 f1; 2g, the following
onditions hold:if ik = 0 and jk = 0 then wk = w0k = z;if ik = 0 and jk = 1 then wk = z and w0k = (z; z);if ik = 1 and jk = 0 then wk = w0k = (uk; z);if ik = 1 and jk = 1 then wk = (uk; z) and w0k = ((uk; z); z);if ik = 1 and jk = �1 then wk = (uk; z) and w0k = uk.For any �t as given above, and k 2 f1; 2g, the notation in
trk(�t) is usedto denote the term wk and the notation out
trk(�t) is used to denote theterm w0k.{ For ea
h f 2 F , �f def= a � a0 � a00 with:a = A?B: [f ; u1; u2℄;a0 = A!B: (fxg) fxgkAB ;a00 = A!B:x.The role
orresponding to the transition (q; 0; 1; q0; 1;�1) is presented by way ofexample:A?B: [q; z; (u2; z)℄;A!B: [q0; (z; z); u2℄.The role
orresponding to the transition (q; 1; 1; q0; 1; 1) is another example:A?B: [q; (u1; z); (u2; z)℄;A!B: [q0; ((u1; z); z); ((u2; z); z)℄.The role �0 starts o� the simulation of the two-
ounter ma
hine. The role �f
he
ks if a �nal
on�guration with state f is rea
hed and if so signals it by
ontrivingto \leak"a freshly minted non
e. The role �t simulates the transition t 2 Æ.Lemma 3.2.2 Suppose � is a run of PrM and s = infstate(�). Then kAB 62 analz(sI)(and hen
e kAB 62 sI as well).The proof is on the same lines as the proof of Lemma 3.1.2.De�nition 3.2.31. We say that a
on�guration (q; n; n0) is represented in an information state sif the term [q; n; n0℄ 2 sI.

Chapter 3: Unde
idability results 682. We say that a
on�guration (q; n; n0) is represented in a run � of PrM if(q; n; n0) is represented in infstate(�).The following lemma states that the role �t faithfully simulates the transition t.Lemma 3.2.4 Suppose � is a run of PrM , s = infstate(s0; �), t = (q; i1; i2; q0; j1; j2)is a transition of M , �t = a � a0 and (q; n1; n2) is a
on�guration of M representedin s. Then t is enabled at (q; n1; n2) i� there is a T -substitution � suitable for PrMand �t su
h that:� �(in
trk(�t)) represents nk in s (for k = 1; 2),� �(a) is enabled in s and �(a0) is enabled at update(s; �(a)), and� �(out
trk(�t)) represents nk + jk in update(s; �(�t)) (for k = 1; 2).Proof: Suppose t = (q; i1; i2; q0; j1; j2) and supposea = A?B: [q; w1; w2℄;a0 = A!B: [q0; w01; w02℄Suppose t is enabled at (q; n1; n2). This means that for k = 1; 2, ik = 0 i� nk = 0.We de�ne a substitution � as follows:for k = 1; 2 �(uk) = (z if ik = 0nk � 1 if ik = 1Further we let � be identity on C. It is easily seen that � is a T -substitutionsuitable for PrM and �t. (Note that in general � will be an ill-typed substitution.) Lets0 = update(s; �(a)) and s00 = update(s0; �(a0)).� If ik = 0 then wk = z, and sin
e in this
ase nk = 0 as well it is immediatethat �(in
trk(�t)) represents nk in s. If ik = 1 then wk = (uk; z), and sin
e�(uk) = nk � 1 it is
lear that �(in
trk(�t)) represents nk in s.� We are given that (q; n1; n2) is represented in s, i.e., [q; n1; n2℄ 2 sI . Butsin
e �(wk) = nk for k = 1; 2, it is easy to see that �(a) is enabled at s. Sin
e�(term(a0)) 2 fz; kABg, it is immediate that �(a0) is enabled at update(s; �(a)).� If jk = 0 then out
trk(�t) = in
trk(�t) and thus �(out
trk(�t)) represents nk =nk+jk in s00. If jk = 1 then out
trk(�t) = (in
trk(�t); z) and thus �(out
trk(�t))represents nk + 1 = nk + jk in s00. If jk = �1 then in
trk(�t) = (out
trk(�t); z)and thus �(out
trk(�t)) represents nk � 1 = nk + jk in s00.

Chapter 3: Unde
idability results 69Suppose � is a substitution suitable for PrM and �t su
h that for k = 1; 2,�(in
trk(�t)) = �(wk) represents nk at s. We need to show that ik = 0 i� nk = 0.Suppose ik = 0. Then by de�nition of PrM , wk = z, and hen
e �(wk) = z. Sin
ez represents only 0 in any state and we are given �(wk) represents nk at s, nk = 0.Suppose nk = 0. Sin
e �(wk) represents nk = 0 at s and sin
e only z represents0 in any state, �(wk) = z. But a

ording to de�nition of PrM , either wk = z orwk = (uk; z). So �(wk) = z only when wk = z, and this happens only when ik = 0.2Theorem 3.2.51. (q0; 0; 0) ��!(q; n1; n2) i� there is a T -run � of PrM in whi
h (q; n1; n2) is rep-resented.2. A �nal
on�guration is rea
hable in M i� there is a leaky T -run of PrM .Proof:1. We �rst prove that if (q0; 0; 0) ��!(q; n1; n2) then there is a T -run of PrM inwhi
h (q; n1; n2) is represented.Let m be the length of the derivation (q0; 0; 0) ��!(q; n1; n2). We prove theresult by indu
tion on m. The base
ase is when m = 0 in whi
h
ase q = q0and n1 = n2 = 0. Then the run (�0; �; 1) satis�es the statement of the theorem,for any T -substitution � whi
h is identity on C.Suppose (q0; 0; 0) ��!(q; n1; n2) t�!(q0; n01; n02). It is
lear that there is a run� of PrM in whi
h (q; n1; n2) is represented, by indu
tion hypothesis. Lets = infstate(�). Let t = (q; i1; i2; q0; j1; j2) and �t = a � a0. By lemma 3.2.4,there is a T -substitution � suitable for PrM and �t su
h that �(a) is enabled ats, �(a0) is enabled at update(s; �(a)), and �(out
trk(�t)) represents nk+jk = n0kin update(s; �(�t)). Letting e = (�t; �; 1) and e0 = (�t; �; 2) it is easy to seethat � � e � e0 is a well-typed run of PrM . Further, sin
e [q0; �(w01); �(w02)℄ 2(infstate(� � e � e0))I , it is
lear that (q0; n01; n02) is represented in � � e � e0.We now prove that if there is a run of PrM in whi
h (q; n1; n2) is representedthen (q0; 0; 0) ��!(q; n1; n2). We prove the result by indu
tion on j�j, where �is a run of PrM .

Chapter 3: Unde
idability results 70The base
ase is when j�j = 0 and then the statement is va
uously true sin
eno
on�guration is represented in �.Suppose (q0; n01; n02) is represented in a run �0 = �00 � e of PrM . Let s00 ands0 denote infstate(�00) and infstate(�0), respe
tively. Let [q0; w01; w02℄ represent(q0; n01; n02) in �0. By Lemma 3.2.2 we see that [q0; w01; w02℄ 2 analz(s0I). If(q0; n01; n02) is already represented in �00 then by indu
tion hypothesis (q0; n01; n02)is rea
hable from (q0; 0; 0). Otherwise it follows that [q; w01; w02℄ 2 analz(s0I) nanalz(s00I). Thus it must be the
ase that [q0; w01; w02℄ 2 analz(fterm(e0)g). It isalso
lear that e0 is a send event, so we have to
onsider only the following two
ases:e0 = (�0; �; 1): Then it is
lear that (q0; n01; n02) = (q0; 0; 0) and hen
e that(q0; n01; n02) is va
uously rea
hable from (q0; 0; 0).e0 = (�t; �; 2) for some t 2 Æ: Let t = (q; i1; i2; q0; j1; j2) and let �t = a �a0. It is
lear that �(out
trk(�t)) represents n0k for k = 1; 2. Further for k = 1; 2,n0k = nk + jk where �(in
trk(�t)) represents nk in infstate(�00). Sin
e e0is enabled at �00, it has to be that e = (�t; �; 1) o

urs in �00. Further(sin
e �(out
trk(�t)) represents nk + jk in s0 for k = 1; 2) it is
lear that�(in
trk(�t)) represents nk in s00 for k = 1; 2. In fa
t, there is a properpre�x �1 of �00 su
h that (q; n1; n2) is represented in infstate(�1), and a
t(e)is enabled at infstate(�1). By indu
tion hypothesis we have that (q; n1; n2)is a rea
hable
on�guration and by lemma 3.2.4, we know that t is enabledat (q; n1; n2). Therefore (q; n1; n2) t�!(q0; n1 + j1; n2 + j2) = (q0; n01; n02).Thus (q0; n01; n02) is also a rea
hable
on�guration.2. We �rst prove that if a �nal
on�guration is rea
hable in M then there is aleaky T -run of PrM . Suppose a �nal
on�guration (f; n1; n2) is rea
hable inM . Then there is a T -run � of PrM representing (f; n1; n2). Thus [f; r1; r2℄ 2(infstate(�))I for some non
es r1 and r2, and hen
e e1 � e2 � e3 is enabled at�, where ei = (�f ; �; i) for i = 1; 2; 3 and some T -substitution � su
h that�(x) 62 C. It then follows that � � e1 � e2 � e3 is also a T -run of PrM , and byde�nition of PrM this run is patently leaky.We now prove that if there is a leaky run of PrM then a �nal
on�gurationis rea
hable in M . Suppose there is a leaky run � of PrM . A

ording tothe de�nition of PrM , this means that some instan
e of �f for f 2 F has

Chapter 3: Unde
idability results 71been played out as part of �. But this means that some
on�guration of theform (f; n1; n2) is represented in � whi
h implies that a �nal
on�guration isrea
hable in M . 2The main
on
lusion of this se
tion is stated below.Theorem 3.2.6The se
re
y problem for T -runs is unde
idable.Proof: This immediately follows from item 2 of Theorem 3.2.5 and the fa
t thatthe rea
hability problem for two-
ounter ma
hines is unde
idable. 2
3.3 Dis
ussionThe idea of using two-
ounter ma
hines in the unde
idability results is from[ALV02℄, where the unde
idability result for unbounded message length is provedusing them. The redu
tion used in our proof is slightly di�erent | we
ode up num-bers using repeated tupling, whereas in [ALV02℄, they are
oded up using repeateden
ryption.The use of two-
ounter ma
hines in the other unde
idability result is a new idea.Existing proofs of this result use redu
tions from Turing ma
hines or some problemsin logi
, and the redu
tions in those proofs are
onsiderably harder than ours.An interesting point about the proofs in this
hapter is that the proto
ols whi
hwere used to
ode up two-
ounter ma
hines do not use our de�nition of se
re
y inan essential manner. Rea
hability is all that really matters. Let us formally de�nethe rea
hability problem for se
urity proto
ols:De�nition 3.3.1 (The rea
hability problem) Given a proto
ol Pr = (C;R) andan a
tion a, we say that a is rea
hable in Pr i� there is a role � of Pr, a substitution� suitable for Pr and �, a number lp � j�j, and a run � of Pr su
h that �(lp) = aand (�; �; lp) 2 Events(�).

Chapter 3: Unde
idability results 72The rea
hability problem is to determine whether a is rea
hable in Pr, given aproto
ol Pr and an a
tion a.The rea
hability problem for well-typed runs (T -runs for a �xed T) is de�nedsimilarly by restri
ting the set of runs under
onsideration.The rea
hability problem for well-typed runs (as well as that for all runs, andall T -runs for �xed T) is unde
idable. The same redu
tion used earlier suÆ
es toprove the unde
idability of this problem as well. We only have to appeal to the fa
tthat the following problem is unde
idable: Given a two-
ounter ma
hine M and astate q of M , determine whether a
on�guration with state q is rea
hable in M .In fa
t, for any logi
 whi
h is powerful enough to express the rea
hability prop-erty, its veri�
ation problem is unde
idable in the same settings
onsidered in this
hapter.

Chapter 4
De
idability with unboundedlymany non
es
In this
hapter, we deal with the problem of unbounded non
es. We prove thatthe tagging s
heme introdu
ed in De�nition 2.2.31 ensures the de
idability of these
re
y problem for well-typed runs, even in the presen
e of unboundedly manynon
es.4.1 The bounded length
aseWe �rst prove the de
idability of a restri
ted se
re
y problem | that of
he
kingfor a given proto
ol Pr and a number r whether there is some well-typed leaky runof Pr of length bounded by r. The trouble is that the set of su
h runs is still in�nite.We show that we
an always suitably rename non
es and keys o

urring in runswith non
es and keys from a �xed �nite set. Sin
e there
an only be �nitely manywell-typed runs whi
h
an be thus formed, we get the desired de
idability result.Fix a tagged proto
ol Pr = (C; Æ) for the rest of the se
tion. For any number r,Rr(Pr) def= f� is a well-typed run of Pr j j�j � rg. For any T � T0 and any numberr, we de�ne RTr (Pr) to be f� j � is a well-typed T -run of Pr of length at most rg.Suppose we �x a �nite T � T0 and a number r. It is
lear that there are atmost b1 = (jT j)jEST(Æ)\T0j T -substitutions suitable for Pr. jEST (Æ)\ T0j is an upperbound on the number of basi
 terms whi
h o

ur in a role and hen
e are in the73

Chapter 4: De
idability with unboundedly many non
es 74domain of some T -substitution suitable for Pr. It now follows that there are at mostb2 = 2 � ` � b1 T -events, where ` is the length of Æ. This bound easily follows from thefa
t that the set of distin
t (�; i) pairs where � is a role of Pr and 1 � jij � j�j is 2 �`.This
oupled with the number of T -substitutions gives us b2. From this it easilyfollows that there are at most (b2 +1)r runs in RTr (Pr). Thus we see that RTr (Pr) isa �nite, e�e
tively
onstru
tible set, and therefore the problem of
he
king whetherthere is a leaky run in RTr (Pr) is de
idable.Below we explain how to de�ne a �nite set T (r) for any given number r su
h thatRr(Pr) has a leaky run i�RT (r)r (Pr) has a leaky run. Suppose w is the maximum sizeof any term o

urring in the spe
i�
ation of Pr, and suppose p is the maximum lengthof any role of Pr. Given r, �x four sets NT (r) � NnC, SN (r) � SN nC,K0(r) � K0nCand Ag(r) � Ag nC su
h that jN(r)j = jSN (r)j = jK0(r)j = jAg(r)j = r � p � (w+2).(The reason for
hoosing this spe
i�
 number will be
ome
lear as we develop theproof of the following lemma.) T (r) is de�ned to be N(r)[SN (r)[K0(r)[Ag(r)[CT(Pr).Lemma 4.1.1 For any r 2 N, if Rr(Pr) has a leaky run then so does RT (r)r (Pr).Proof: We �rst set up some notation whi
h we use lo
ally in this proof: for anya
tion a of the form A!B: (M)t or A?B: t, parties(a) (the set of apparent (not a
tual)parti
ipants in the a
tion a), is de�ned to be fA;Bg. For any sequen
e of a
tions� = a1 � � �a`, parties(�) = [1�i�` parties(ai). Let us de�ne the domain of � for any� 2 Pr to be (ST (�) [parties(�)) \ T0. Note that for all � 2 R, the domain of �
ontains at most p � (w + 2) terms. It
learly suÆ
es to
onsider events of Pr of theform (�; �; lp) where the domain of � is restri
ted to the domain of �. Let us
allsu
h events as domain-restri
ted events. A run
omposed only of bounded-domainevents is
alled a domain-restri
ted run.Let us de�ne the range of a run � to be the union of the ranges of all substitutions� su
h that (�; �; lp) 2 Events(�) for some � and lp. (Note that by range of asubstitution �, we mean the set f�(x) j x 2 T0 and �(x) is de�nedg.) If we
onsidera domain-restri
ted well-typed run � of length at most r, then it is
lear that therange of � has at most r � p � (w+ 2) terms. Now T (r)
ontains r � p � (w+ 2) non
esand the same number of sequen
e numbers, keys and agent names. Therefore thereexists at least one inje
tive, well-typed substitution from the range of � to T (r).Fix one su
h substitution �� for ea
h su
h bounded-domain run � 2 Rr(Pr).

Chapter 4: De
idability with unboundedly many non
es 75(It is the renaming map asso
iated with �.) For any su
h run � = e1 � � � ek withei = (�i; �i; lpi) for ea
h i � k, de�ne ��(�) to be the run ��(e1) � � � ��(ek) where��(ei) = (�i; �� Æ �i; lpi) for ea
h i � k (for ea
h x 2 T0, (�� Æ �i)(x) is de�ned to be��(�i(x))).Now for every bounded-domain run � 2 Rr(Pr), it is a simple matter to
he
kthat for any pre�x �0 of �, A 2 Ag and t 2 T , we have t 2 (infstate(�0))A i���(t) 2 (infstate(��(�0)))A. Also t is leaked in � i� ��(t) is leaked in ��(�). From thisit easily follows that ��(�) is in fa
t a run of Pr (and so belongs to RT (r)r (Pr)) andthat it is leaky if and only if � is leaky.Thus we have shown that if there is a leaky run in Rr(Pr), then there is also aleaky run in RT (r)r (Pr). 2From the above dis
ussion we
on
lude the following:Theorem 4.1.2 The problem of
he
king for a given proto
ol Pr and a given boundr whether there is a well-typed leaky run of Pr of length bounded by r, is de
idable.Note that we
an also take p = ` in the above proof. So if we �x Pr with itsparameters ` and w, and if we �x an r, then the size of jT (r)j is 4 � r � ` � (w + 2) +jCT(Pr)j. If we now let b1 = (jT (r)j)jEST(Æ)\T0j and b2 = 2 � ` � b1, then it suÆ
es tosear
h at most (b2 + 1)r runs to see if there is a leak. Letting
Pr be the maximumof jEST (Æ) \ T0j, w and jCT(Pr)j, we see that it suÆ
es to sear
h O((` � r �
Pr)r�
Pr)runs for a leak.4.2 De
idability for good runsIn this se
tion, we de�ne the notion of a good run and prove some basi
 propertiesof good runs. We also prove that the problem of
he
king whether there is a goodleaky run of a given tagged proto
ol is de
idable.De�nition 4.2.1 Suppose Pr = (C; Æ) is a tagged proto
ol and � = e1 � � � ek is awell-typed run of Pr. For i; j � k, ej is
alled a good su

essor of ei (and ei a goodprede
essor of ej) i� i < j and at least one of the following
onditions holds:� ei !` ej.� ei is a send event, ej is a re
eive event, and EST (ei) \ EST (ej) 6= ;.

Chapter 4: De
idability with unboundedly many non
es 76For i � k, ei is
alled a good event in � i� either i = k or there is some j > i su
hthat ej is a good su

essor of ei. ei is
alled a bad event i� it is not a good event. Arun � is
alled a good run i� all its events are good. A subsequen
e e1 � � � er of � is
alled a good path i� for all j < r, ej+1 is a good su

essor of ej.Note that a good su

essor of a send event need not ne
essarily be a \mat
hing"re
eive event. Also note that there might be multiple o

urren
es of the same eventin a good run. This might look a bit strange at �rst glan
e. But the right way toview this de�nition is that a bad event de�nitely signi�es something \bad" in termsof the intruder behaviour. In parti
ular, it means that the intruder is playing ana
tive role (generating a new message, or tampering with some earlier message) withregard to that parti
ular event, and is not simply relaying it from someone else tothe re
eiver. Su
h bad behaviour on the part of the intruder also makes it hard to
ompute bounds on the length of runs. While good runs do not ne
essarily eliminateall su
h \bad" behaviour, enough bad behaviour is eliminated so as to ease the taskof
omputing bounds on the length of good runs, as we will see in the rest of these
tion.Note that all good runs are well-typed by diktat. In a later se
tion we will provethat if a tagged proto
ol has a well-typed leaky run then it has a good leaky run.The following propositions list some useful properties of good runs.Proposition 4.2.2 Suppose Pr = (C;
1 � � �
`) is a tagged proto
ol and � is a well-typed run of Pr. Then all good paths in � are of length at most 2 � `.Proof: For
onvenien
e, de�ne the following notation: for all i : 1 � i � `,a2�i�1 def= a
t s(
i) and a2�i def= a
tr(
i). Note that a
tseq(
1 � � �
`) = a1 � � �a2�`. Sup-pose e1 � � � er is a good path in � with ei = (�i; �i; lpi) for all i � r. Sin
e for allj � r, ej is an event of Pr, it is
lear that there exists some ij � 2 � ` su
h that�j(lpj) = aij .We now show that for all j < r, ij < ij+1, using the fa
t that ej+1 is a goodsu

essor of ej. There are two
ases to
onsider:ej !` ej+1: In this
ase it is
lear that �j = �j+1, �j = �j+1 and lpj+1 = lpj + 1.Now �j is a role of Pr and hen
e a subsequen
e of a1 � � �a2�`. Thus aij o

ursearlier in a1 � � �a2�` than aij+1 and hen
e ij < ij+1.a
t(ej) 2 Send, a
t(ej+1) 2 Re
 and EST (ej) \ EST (ej+1) 6= ;: It is
lear now that

Chapter 4: De
idability with unboundedly many non
es 77aij is a send a
tion and aij+1 is a re
eive a
tion, and also that aij+1�1 is asend a
tion with term(aij+1�1) = term(aij+1). Thus it follows that there existt 2 EST (aij) and t0 2 EST (aij+1�1) su
h that �j(t) = �j+1(t0). But from item1 of Proposition 2.2.32, it follows that t = t0 and bij
 = bij+1� 1
. Sin
e bothaij and aij+1�1 are send a
tions, both the indi
es are odd. Hen
e it followsthat ij = ij+1 � 1. This shows that ij < ij+1.From this it follows that there is a sequen
e i1 < � � � < ir � 2 � ` su
h that for allj � r, �j(lpj) = aij . This suÆ
es to prove that r � 2 � `. 2Lemma 4.2.3 Suppose Pr = (C;
1 � � �
`) is a tagged proto
ol and � is a good runof Pr. Then j�j � 22�`+1 � 1.Proof: Suppose � = e1 � � � ek. Sin
e � is a good run of Pr, all the events ei (i � k)are good. This means that for all i < k, there is some j : i < j � k su
h that ejis a good su

essor of ei. It easily follows that for all i < k, there is a good pathfrm ei to ek. For all i : 0 � i � 2 � `, de�ne the set Ei to be the set of events eo

urring in � su
h that the shortest good path from e to ek is of length i. FromProposition 4.2.2 we know that all good paths of � are of length at most 2 � `. Thusthe set of events o

urring in � is partitioned by the sets E0; : : : ; E2�`. Now sin
eevery good run is also a well-typed run by de�nition, we
an apply item 2 of Propo-sition 2.2.32 and
on
lude that for every re
eive event e o

urring in � there is atmost one send event e0 in � su
h that EST (e) \ EST (e0) 6= ;. Further for everyevent e there is at most one e0 su
h that e0 !` e. Thus every event o

urring in �has at most two good prede
essors, and thus for all i < 2 �`, jEi+1j � 2 � jEij. Thus itis easy to see by indu
tion that for all i � 2�`, jEij � 2i, and that j�j � 22�`+1�1. 2Lemma 4.2.3 and Theorem 4.1.2 immediately imply the following theorem.Theorem 4.2.4 The problem of
he
king for a given tagged proto
ol Pr whetherthere is a good leaky run of Pr is de
idable.4.3 Redu
tion to good runsIn this se
tion we prove that if a tagged proto
ol has a well-typed leaky run thenit has a good leaky run. As proved in the previous se
tion,
he
king whether a tagged

Chapter 4: De
idability with unboundedly many non
es 78proto
ol has a good leaky run is de
idable, and hen
e the redu
tion presented inthis se
tion yields the de
idability of
he
king whether a tagged proto
ol has a well-typed leaky run. In the next
hapter we prove that if a tagged proto
ol has a leakyrun then it has a well-typed leaky run, thus proving the de
idability of the se
re
yproblem for tagged proto
ols.Suppose � is a well-typed bad run of a tagged proto
ol Pr and e is a bad event.The key to eliminating this event is to prove that, under
ertain
onditions, themessages of � whi
h
ome after e
an be
onstru
ted by the intruder using just thebasi
 terms learned from e instead of term(e). Therefore we �rst look at how terms
an be eliminated appropriately.4.3.1 How to eliminate termsSuppose T is a set of terms and u is a term su
h that u 2 T . Can we removea term t (with the property that EST (t) \ EST (u) = ;) from T but add a set ofatomi
 terms T 0 su
h that it is still the
ase that u 2 (T n ftg) [T 0? The followinglemmas show that under some additional assumptions this is possible. They willbe
ru
ially used later in the redu
tion to good runs. We split the task mentionedabove into two parts, �rst handling the
ase when u 2 analz(T) and then
onsideringwhat happens when u 2 T . The additional assumptions in the following lemmas arenot strong enough to prove that if u 2 analz(T) then u 2 analz((T n ftg) [T 0), butwe
an still prove that either u 2 analz((T n ftg) [T 0) or u 2 ST (t). Fortunatelythis suÆ
es to prove that whenever u 2 T , u 2 (T n ftg) [T 0.Lemma 4.3.1 Suppose T = (analz(S1 [ftg) n analz(S1)) \ T0 for some S1; S2 � Tand t 2 T .1. Let u be a term and let � be an analz-proof of S1[S2[ftg ` u su
h that for allk 2 ST (S1[ftg)\K for whi
h k labels a non-root node of �, k 2 analz(S1[ftg).Then u 2 (analz(S1 [ftg) \ ST (t)) [analz(S1 [S2 [T).2. Let u be a term su
h that u 2 synth((analz(S1[ftg)\ST (t))[analz(S1[S2[T))and EST (u) \ EST (t) = ;. Then u 2 S1 [S2 [T .Proof:1. Suppose � is an analz-proof of S1 [S2 [ftg ` u. We prove by stru
turalindu
tion that for every subproof $ of � with root labelled S1 [S2 [ftg ` w,

Chapter 4: De
idability with unboundedly many non
es 79we have w 2 (analz(S1 [ftg) \ ST (t)) [analz(S1 [S2 [T). Suppose $ is asubproof of � with root labelled S1 [S2 [ftg ` w su
h that for all propersubproofs $1 of $ the statement of the lemma holds. Then we prove thatit holds for $ as well. We only
onsider the
ases when the rule applied atthe root of $ is Axa or de
rypt. The other
ases
an be handled by a routineappli
ation of the indu
tion hypothesis.� Suppose $ is the following proof: AxaS1 [S2 [ftg ` wThen w 2 S1 [S2 [ftg. If w = t then w 2 analz(S1 [ftg) \ ST (t). Ifw 2 S1 [S2 then w 2 analz(S1 [S2 [T).� Suppose $ is the following proof:($1)...S1 [S2 [ftg ` fwgk ($2)...S1 [S2 [ftg ` k de
ryptS1 [S2 [ftg ` wBy indu
tion hypothesis fwgk 2 analz(S1 [ftg) [analz(S1 [S2 [T) andk 2 analz(S1 [ftg) [analz(S1 [S2 [T).fwgk 2 analz(S1 [S2 [T): If k 2 analz(S1[S2[T) then w is in the sameset as well and we are done. If on the other hand k 2 analz(S1[ftg),then k 2 K \ (analz(S1) [(analz(S1 [ftg) n analz(S1))). But thisimplies that k 2 analz(S1 [T) � analz(S1 [S2 [T) and hen
e w isalso in the same set.fwgk 2 analz(S1 [ftg) \ ST (t): It is evident that k 2 ST (S1 [ftg).Thus by assumption k 2 analz(S1 [ftg) and hen
e w is also in thesame set. Clearly w 2 ST (t) as well.2. Let us denote by W the set ((analz(S1 [ftg) \ ST (t)) [analz(S1 [S2 [T)) \ST (u). It is
lear that u 2 synth(W). Now w 2 ST (u) for every w 2 W , andsin
e EST (u)\EST (t) = ; it is also the
ase that EST (w)\EST (t) = ;. Weprove below thatW � S1 [S2 [T ; this suÆ
es to prove that u 2 S1 [S2 [T .So suppose w 2 W . Then w 2 analz(S1[S2[T)[(analz(S1[ftg)\ST (t)). Ifw 2 analz(S1[S2[T) we are done. Suppose w 2 analz(S1[ftg)\ST (t). In this

Chapter 4: De
idability with unboundedly many non
es 80
ase, as observed above EST (w) \ EST (t) = ;, and hen
e from w 2 ST (t)it follows that EST (w) = ;. This means that w is just a tuple of atomi
terms. In this
ase it is
lear that w 2 synth(analz(fwg) \ T0). But thenanalz(fwg) \ T0 � analz(S1 [ftg) \ T0 � analz(S1 [T). This implies thatw 2 S1 [S2 [T and the proof is done. 2The following lemma is vital in proving that if m is se
ret at a run � of aproto
ol Pr, then m is also se
ret at �0, where �0 is got by eliminating some eventsand renaming some atomi
 terms of �.Lemma 4.3.2 Suppose S is a set of terms and T � analz(S) \ T0. Suppose � is awell-typed substitution with the property that for all x 2 T0 nT , �(x) = x and for allx 2 T , �(x) 2 S. Then for all t 2 analz(�(S)), there exists r 2 analz(S) su
h that�(r) = t.Proof: Suppose � is an analz-proof of �(S) ` t. We prove by stru
tural indu
tionthat for every subproof $ of � with root labelled �(S) ` w, there exists r 2 analz(S)su
h that �(r) = w. Suppose $ is a subproof of � with root labelled �(S) ` w su
hthat for all proper subproofs $1 of $ the statement of the lemma holds. Then weprove that it holds for $ as well. We only
onsider the
ases when the rule appliedat the root of $ is Axa or de
rypt. The other
ases
an be handled by a routineappli
ation of the indu
tion hypothesis.� Suppose $ is the following proof: Axa�(S) ` wThen w 2 �(S) whi
h means that there exists r 2 S � analz(S) su
h that�(r) = w.� Suppose $ is the following proof:($1)...�(S) ` fwgk ($2)...�(S) ` k de
rypt�(S) ` w

Chapter 4: De
idability with unboundedly many non
es 81By indu
tion hypothesis there exist r0; r00 2 analz(S) su
h that �(r0) = fwgkand r00 = k. Sin
e � is well-typed, r0 is of the form frgk0 with �(r) = w and�(k0) = k, and r00 is of the form k00. We need to prove that r 2 analz(S).{ Suppose k0 2 T . It then follows that k0 2 K0 and hen
e it follows thatk0 = k0 and that k0 2 analz(S) (sin
e T � analz(S)). Coupled with thefa
t that frgk0 2 analz(S), we have that r 2 analz(S).{ Suppose k0 62 T . From the de�nition of � we see that k0 = k. Thusfrgk 2 analz(S).If k00 2 T , then sin
e �(T) � S � analz(S) it follows that k 2 analz(S).If k00 62 T , from the de�nition of � it follows that k00 = k, and thus it isagain
lear that k 2 analz(S).Coupled with frgk 2 analz(S), this implies that r 2 analz(S), as desired.24.3.2 Redu
tion to good runsIn this subse
tion we pro
eed to prove the redu
tion to good runs using theproperties proved in the previous subse
tion.Lemma 4.3.3 Suppose Pr = (C;
1 � � �
`) is a tagged proto
ol whi
h has a well-typedleaky run. Then it also has a good leaky run.Proof: We �x the following notation for the rest of the proof. Fix a well-typed leakyrun � = e1 � � � ek of Pr, none of whose proper pre�xes is leaky. Let ej = (�j; �j; lpj)for j � k. For any j � k, tj = term(ej). For any j : 1 � j � k, �j denotese1 � � � ej, sj denotes infstate(�j) and Tj denotes (sj)I. For i; j : 1 � i � j � k, ��ijdenotes e1 � � � ei�1ei+1 � � � ej if i < j and �i�1 if i = j, s�ij denotes infstate(��ij) andT�ij denotes (s�ij)I . We also denote init(Pr) by s0 and (s0)I by T0.Suppose � is not a good run. This means that there is a bad event in �. Letr = max(fi � k j ei is a bad event of �g); that is, r is the index of the latest badevent in �. Noti
e that by de�nition ek is a good event, and hen
e r < k. De�ne Tto be (analz(Tr) n analz(Tr�1)) \ T0. Sin
e �r is not leaky, it follows that no m 2 Tis se
ret at �r�1. Thus it has to be the
ase that T � NT (er) � N [SN [K0.

Chapter 4: De
idability with unboundedly many non
es 82Let � be a substitution whi
h maps every n 2 T \ N to n0, every m 2 T \ SNto m0 and every k 2 T \ K0 to k0 and is identity on all the other terms. (Re
allthat n0, m0, and k0 are �xed
onstants in the intruder's initial state.) For all j � k,we de�ne e0j to be (�j; � Æ �j; lpj), where (� Æ �j)(t) = �(�j(t)) for all t. We de�ne�0 = e01 � � � e0k. Analogous to the notations based on �, we de�ne the notations t0j, �0j,s0j, T 0j, (�0)�ij , (s0)�ij and (T 0)�ij based on �0.We now show that (�0)�rk) is a (well-typed) run of Pr and that it is leaky; butthe index of the latest bad event (if any) in (�0)�rk is less than r, and hen
e we
anrepeat the pro
ess on the new run, eventually obtaining a good run.We now prove that (�0)�rk is a run of Pr and that it is leaky, thus
on
luding theproof of the theorem.Claim: (�0)�rk is a run of Pr:Proof of Claim: Sin
e � is a run, it follows that NT (ei) \ ST (init(Pr)) = ; for alli � k, and that NT (ei)\NT (ej) = ; for all i < j � k. Sin
e T � NT (er) it followsthat T \ NT (eq) = ; for all q 6= r. It thus follows that NT (e0q) = NT (eq) for allq 6= r. It is now easy to see that for all i � k; i 6= r, NT (e0i) \ ST (init(Pr)) = ; andthat for all i < j � k; i; j 6= r, NT (e0i)\NT (e0j) = ;. Thus (�0)�rk satis�es the uniqueorigination property. We
on
entrate on proving that all its events are enabled atthe end of the pre
eding events.By de�nition of bad events it follows that er 6= ek and for all q : r < q � k, eqis not a good su

essor of er. This implies in parti
ular that for all q : r < q � k,:(er !` eq). From this it also follows that for all q : r < q � k, :(er +!`eq), i.e.,er 62 LP(eq).� We �rst
onsider the
ase when er is a re
eive event. Then by Proposi-tion 2.2.14, Tr = Tr�1 and thus T = ;. Then it is
lear that � is the identitymap on terms. Hen
e �0 = �. It suÆ
es to prove that ��rk is a run of Pr. Firstlyit is
lear that �r�1 is a run of Pr. Consider a q su
h that r < q � k. Sin
eall events in LP(eq) o

ur in �q�1 and er 62 LP(eq), it follows that all eventsin LP(eq) o

ur in ��rq�1.Now if eq is a re
eive event, then sin
e Tr = Tr�1 it is
lear that T�rq�1 = Tq�1and hen
e tq 2 T�rq�1. This suÆ
es to show that eq is enabled at ��rq�1. If eq isa send event, then sin
e plays of Pr are send-admissible, eq is enabled at ��rq�1.� Let us now
onsider the
ase when er is a send event. We �rst show that �0r�1

Chapter 4: De
idability with unboundedly many non
es 83is a run of Pr. Sin
e T � NT (er) and sin
e NT (er)\ST (sr�1) = ;, � does nota�e
t any term o

urring in �r�1. Hen
e it follows that for all q < r, tq = t0q,sq = s0q, and Tq = T 0q. Thus for all q < r, e0q is enabled at �0q�1. This meansthat �0r�1 is a run of Pr.We now show that for all q : r < q � k, e0q is enabled at (�0)�rq�1). We �rstnote that for any i < j � k, ei !` ej i� e0i !` e0j, ei 2 LP(ej) i� e0i 2 LP(e0j),and EST (ei) \ EST (ej) 6= ; i� EST (e0i) \ EST (e0j) 6= ;. These statementsimmediately follow from the de�nitions.Fix a q su
h that r < q � k. There are two
ases to
onsider:{ If eq is a re
eive event, then it is
lear that tq 2 synth(U) where U =analz(Tq�1) \ ST (tq). Consider some u 2 U and an analz-proof � ofTq�1 ` u. It is
lear that for all keys k, if k 2 (s0)A for some A 2 Ag thenk 2 (s0)B for some B 2 Ag . Further for any index i, if k 2 NT (ei), thenk 2 K0 and hen
e k = k. So we
an say that for any k 2 K, if k 2 (si)Afor some A 2 Ag then k 2 (si)B for some B 2 Ag . Further note that if k 2ST (si) then k 2 (si)A for some A 2 Ag , and therefore k 2 (si)A as well.Now sin
e �q�1 is not leaky, it follows that whenever k 2 ST (sr) for somer < q and k 2 analz(Tq�1) then k 2 analz(Tr). Thus Tr�1, Tq�1 nTr, tr, T ,u and � play the role of S1, S2, t, T , u, and � respe
tively in item 4.3.1of Lemma 4.3.1 and we get u 2 (analz(Tr) \ ST (tr)) [analz(T�rq�1). Thustq 2 synth((analz(Tr) \ ST (tr)) [analz(T�rq�1 [T)). Now sin
e er is not agood prede
essor of eq, EST (tq) \ EST (tr) = ;. Thus the
onditions ofitem 2 of Lemma 4.3.1 are ful�lled, and hen
e tq 2 T�rq�1 [T . ApplyingProposition 2.3.2 and using the fa
t that �(T) � T0, we
on
lude thatt0q = �(tq) 2 �(T�rq�1) [�(T) = (T 0)�rq�1. Hen
e e0q is enabled at (�0)�rq�1.{ If eq is a send event then e0q is also a send event. Now sin
e plays of Prare send-admissible it immediately follows that t0q 2 (T 0)�rq�1. Hen
e e0q isenabled at (�0)�rq�1.This proves that (�0)�rk is a run of Pr.Claim: (�0)�rk is leaky.Proof of Claim: We �rst prove that some m whi
h is se
ret at �k�1 belongs toanalz(T�rk [T). If er is a re
eive event, then by Proposition 2.2.14 it follows thatTk = T�rk and hen
e there is some m whi
h is se
ret at �k�1 and whi
h belongs to

Chapter 4: De
idability with unboundedly many non
es 84analz(T�rk). (This follows from the fa
t that � is itself leaky). Suppose now thater is a send event. Consider an analz-proof of Tk ` m0 for some m0 whi
h is se
retat �k�1. Let � be a subproof of this proof with the property that the root of � islabelled by some m whi
h is se
ret at �k�1 and none of the m00 labelling the nonrootnodes of � is se
ret at �k�1. Then it is
lear that Tr�1, Tk n Tr, tr, T , m and �play the role of S1, S2, t, T , u and � respe
tively in item 4.3.1 of Lemma 4.3.1 (ifk labels a node of � and if k 2 ST (sr) then sin
e k is not se
ret at �k�1 it followsthat k 2 analz(Tr)) and we get m 2 (analz(Tr)\ST (tr))[analz(T�rk [T). But sin
e�r is not leaky, m 62 analz(Tr). Thus m 2 analz(T�rk [T). From this it follows that�(m) 2 analz((T 0)�rk).We now prove that �(m) is se
ret at (�0)�rk�1. Sin
e m is se
ret at �k�1 andT � analz(Tr) � analz(Tk�1), it follows that m 62 T . Therefore �(m) = m. Sin
em is se
ret at �k�1, it is
lear that m 62 analz(Tk�1). Now we observe that T �analz(Tr) \ T0 � analz(Tk�1) \ T0. Further � is a well-typed substitution su
h thatfor all x 2 T0 n T , �(x) = x and for all x 2 T , �(x) 2 Tk�1. Thus Tk�1, T and �satisfy the
onditions of Lemma 4.3.2, and we thus see that whenever t 2 analz(T 0k�1)there exists r 2 analz(Tk�1) with �(r) = t. When t = m, it immediately follows thatr = m as well. This
oupled with the fa
t that m 62 analz(Tk�1) implies thatm 62 analz(T 0k�1). From this it follows that m 62 analz((T 0)�rk�1) as well, and thus that�(m) = m is se
ret at (�0)�rk�1. This
on
ludes the proof that (�0)�rk is leaky.We have thus proved the redu
tion to good runs. 2Lemma 4.3.3 and Theorem 4.2.4 immediately yield us the following theorem.Theorem 4.3.4 The problem of
he
king for a given tagged proto
ol Pr whetherthere is a well-typed leaky run of Pr is de
idable.We
on
lude this se
tion by some remarks on the
omplexity of the problem andon the generalisability of the result.We saw that the length of a good run of a proto
ol Pr = (C; Æ) with jÆj = `is 22�`+1 � 1. Further at the end of Se
tion 4.1 we saw that for
he
king a leak inwell-typed runs of Pr of length bounded by r, we have to sear
h O((`�r �
Pr)r�
Pr) runsfor a leak, where
Pr is a
onstant depending on the proto
ols. (We
an assume thatit is at most `, for simpli
ity). From this we see that the
omplexity of the se
re
yproblem for tagged proto
ols is 22O(`). Thus we see that a naive implementation of

Chapter 4: De
idability with unboundedly many non
es 85the above de
ision pro
edure gives a double exponential algorithm.When the se
re
y problem was de�ned in Se
tion 2.2, it was remarked that amore general notion of se
re
y is to allow the user to spe
ify the se
ret whi
h shouldnot be leaked. In fa
t, in Chapter 6 we de�ne a logi
 using whi
h we
an spe
ify su
ha more general notion of se
re
y, and other interesting properties like authenti
ationas well. We also prove in Se
tion 6.4 that some of the results proved in Se
tion 5.1(whi
h are spe
i�
 to the se
re
y problem as de�ned in Se
tion 2.2) generalise tothe logi
 introdu
ed in Chapter 6.We would ideally like to similarly extend the results of this
hapter. But not allthe proofs in this
hapter
an be adapted to the generalised situation. For instan
e,the proof of Lemma 4.3.3
ru
ially uses the fa
t that we start out with a leaky well-typed run of the given proto
ol, none of whose proper pre�xes is leaky. We thenshow that if this is not a good run, we
an do some transformations to eliminatea bad event and still have a leaky run. Among the many se
rets whi
h are leakedin the original run, it is possible that some are not leaked in the new run. This
an happen espe
ially if its being leaked depends on an eliminated bad event. Weare only assured that at least one se
ret is leaked in the new run as well. So if weallow the user to spe
ify the se
ret whi
h should not be leaked, it is possible thatthere is some bad run whi
h leaks the se
ret but on eliminating some bad events,the new run no longer leaks that parti
ular se
ret (even though it is guaranteed toleak some other se
ret). A further diÆ
ulty is that even the proof whi
h shows thatwe
an eliminate a bad event to form a new run of the proto
ol depends on ourstarting out with a run none of whose proper pre�xes are leaky. Notwithstandingthese diÆ
ulties, we still believe that the de
idability result of this
hapter
an begeneralised appropriately, and that the ideas introdu
ed in this
hapter will lead usto new insights whi
h will help solve the generalised problem.

Chapter 5
De
idability with unboundedmessage length

In this
hapter, we deal with the problem of unbounded message length, whi
h
auses unde
idability even if we assume a �xed �nite set of non
es, as proved inSe
tion 3.2. Even though proto
ol spe
i�
ations
ontain only messages of boundedlength, still the intruder
an for
e runs to
ontain unboundedly long messages byrepeated use of ill-typed substitutions. This is the heart of the problem.In the �rst se
tion, we prove that the tagging s
heme whi
h we have introdu
edearlier ensures that we
an work only with well-typed runs. Spe
i�
ally, we provethat every run of a tagged proto
ol has an \equivalent" well-typed run, with theproperty that the original run is leaky i� its well-typed
ounterpart is leaky. Thisproves that the general se
re
y problem (with no restri
tions on the set of runs
onsidered) is de
idable for the
lass of tagged proto
ols.In the se
ond se
tion, we approa
h the problem of unbounded message lengthfrom a di�erent angle. We de�ne a semanti
ally motivated equivalen
e relation onthe set of terms, with the property that it is of �nite index if we assume only a �xed�nite set of non
es and keys. The
ru
ial property of the equivalen
e relation is thatif two terms are equivalent then the set of basi
 terms whi
h
an be \learnt" fromeither of them is the same. The equivalen
e also leads to a notion of normal terms,and then
e to a notion of normal runs. We then prove the following semanti
 result:if every run of Pr is equivalent to a normal run of Pr, then we need only
onsidera �nite set of runs of Pr to
he
k for leakiness. This yields the de
idability of the86

Chapter 5: De
idability with unbounded message length 87se
re
y problem for the semanti
 sub
lass of proto
ols whose set of runs has thiskind of
losure property.5.1 Redu
tion to well-typed runsWe prove in this se
tion (in Subse
tion 5.1.2, to be more spe
i�
) that if a taggedproto
ol has a leaky run then it has a well-typed leaky run.We use the following basi
 de�nition throughout this se
tion. For any substitu-tion � and any non
e z, de�ne �z (whi
h is easily seen to be well-typed) as follows:8x 2 T0 : �z(x) = (z if x 2 N and �(x) 62 N�(x) otherwise5.1.1 Typing proofsIn this subse
tion, we introdu
e a notion of type for analz-proofs and prove somebasi
 properties of them. Of spe
ial interest are the so-
alled well-typed proofs. Theyprove useful in
oming up with a well-typed run \equivalent" to a given run of atagged proto
ol.De�nition 5.1.1 A type is a pair of the form (�; r) where r is a term and � is asubstitution suitable for r. Given a set of types P , terms(P) def= f�(r) j (�; r) 2 Pgand for any z 2 N , termsz(P) def= f�z(r) j (�; r) 2 Pg.By de�nition, � is suitable for r i� �(r) is de�ned. Throughout this se
tion,we will impli
itly use the fa
t that if �(r) is de�ned, then �(r1) is de�ned for anyr1 2 ST (r).De�nition 5.1.2 A type (�; r) mat
hes a term t at the outermost level i� �(r) = tand r 2 N) t 2 N .The following lemma is a trivial observation whi
h follows from the de�nitionabove and the de�nition of substitutions:Lemma 5.1.3 Let (�; r) mat
h t at the outermost level. Then the following
ondi-tions hold:� if t 2 K then r 2 K,

Chapter 5: De
idability with unbounded message length 88� if t 2 SN then r 2 SN ,� if t is of the form (t0; t00) then r is of the form (r0; r00), and� if t is of the form ft0gk0 then r is of the form fr00gk00.De�nition 5.1.4 Suppose P is a set of types and � is an analz-proof of terms(P) ` tfor some term t. We de�ne typesP (�) (the types of � with respe
t to P) by indu
tionas follows.We also observe the following properties whi
h
an be trivially
he
ked by follow-ing the de�nition: for all (�; r) 2 typesP (�):1. �(r) = t,2. there exists a term u su
h that r 2 ST (u) and (�; u) 2 P , and3. for all z 2 N , �z(r) 2 analz(termsz(P)).� Suppose � is the following proof: Axaterms(P) ` tThen (�; r) 2 typesP (�) i� (�; r) 2 P and �(r) = t.� Suppose � is the following proof: (�1)...terms(P) ` (t; t0) split1terms(P) ` tThen (�; r) 2 typesP (�) i� there exists r0 su
h that (�; (r; r0)) 2 typesP (�1).� Suppose � is the following proof:(�1)...terms(P) ` ftgk (�2)...terms(P) ` k de
ryptterms(P) ` t

Chapter 5: De
idability with unbounded message length 89Then (�; r) 2 typesP (�) i� there exist keys k0; k00 and a substitution �00 su
hthat (�; frgk0) 2 typesP (�1) and (�00; k00) 2 typesP (�2)� Suppose � is the following proof: (�1)...terms(P) ` fftgkgk redu
eterms(P) ` tThen (�; r) 2 typesP (�) i� there exists a key k0 su
h that (�; ffrgk0gk0 2typesP (�1).� is said to be well-typed with respe
t to P if there exists a type (�; r) 2 typesP (�)su
h that r mat
hes t at the outermost level.We note the following trivially provable
onsequen
e of the de�nition of types.Lemma 5.1.5 Suppose that P and P 0 are sets of types su
h that P � P 0 and t is aterm su
h that there exists a proof of terms(P) ` t whi
h is well-typed with respe
tto P . Then there exists a proof of terms(P 0) ` t whi
h is well-typed with respe
t toP 0. (We will refer to this as the upward
losure property of well-typed proofs).Lemma 5.1.6 Suppose P is a set of types, and u1 2 analz(termsz(P)) for somez 2 N . Then there exists (�; r) 2 P and r1 2 ST (r) su
h that �z(r1) = u1 and�(r1) 2 analz(terms(P)).Proof: Letting T denote terms(P) and Tz denote termsz(P), we prove by indu
tionon analz-proofs that for any analz-proof � whose root is labelled Tz ` u1 there exists(�; r) 2 P and r1 2 ST (r) su
h that �(r1) 2 analz(T) and �z(r1) = u1. We onlylook at the
ases when the rule applied at the root of � is Axa and de
rypt. Theother
ases are handled by a routine appli
ation of the indu
tion hypothesis.� Suppose � is the following proof: AxaTz ` u1Then it follows that u1 2 Tz, i.e., there exists (�; r1) 2 P su
h that �z(r1) = u1.But (�; r1) 2 P implies that �(r1) 2 T � analz(T), and we are through.

Chapter 5: De
idability with unbounded message length 90� Suppose � is the following proof:(�1)...Tz ` fu1gk (�2)...Tz ` k de
ryptTz ` u1By indu
tion hypothesis there exists (�; r) 2 P and r2 2 ST (r) su
h that�(r2) 2 analz(T) and �z(r2) = fu1gk. From this it
lear that r2 is of theform fr1gk0. Therefore �(r2) = �(fr1gk0) = f�(r1)g�(k0). It is also
lear thatthere exists (�0; r0) 2 P and r01 2 ST (r0) su
h that �(r01) 2 analz(T) and�0z(r01) = k. From this and the de�nition of �z it follows that �(r01) = k. Alsofrom the fa
t that �z(k0) = k it follows that �(k0) = k. Thus we have thatf�(r1)gk 2 analz(T) and k 2 analz(T) and it follows that �(r1) 2 analz(T).Sin
e �z(r2) = fugk it also follows that �z(r1) = u1. 2De�nition 5.1.7 A set of types P is said to be
onfusion-free i� for all (�; r) and(�0; r0) belonging to P and for all r1 2 EST (r) and r01 2 EST (r0), �(r1) = �0(r01))r1 = r01.Lemma 5.1.8 Suppose P [f(&; u)g is a
onfusion-free set of types su
h that everyt belonging to min(analz(terms(P))) has an analz-proof that is well-typed with re-spe
t to P. Suppose further that &(u) 2 terms(P). Then for any z 2 N , &z(u) 2termsz(P) [fzg.Proof: We �x a z and let T denote terms(P) and Tz denote termsz(P) throughoutthis proof. Note that &(u) 2 T = synth(min(analz(T))). We now prove that forall t1 2 synth(min(analz(T))) su
h that t1 = &(u1) for some u1 2 ST (u), &z(u1) 2Tz [fzg. Now we do an indu
tion on the stru
ture of terms, based on Fa
t 2.3.1.(We re
all that a

ording to Fa
t 2.3.1, whenever t 2 synth(T) then t 2 T , ort = (t0; t00) and ft0; t00g � synth(T), or t = ft0gk and ft0; kg � synth(T).)We �rst
onsider the
ase when t1 2 min(analz(T)). For any su
h t1, it follows byassumption that there is an analz-proof $ of T ` t1 that is well-typed with respe
t

Chapter 5: De
idability with unbounded message length 91to P . Let (�; r1) 2 typesP ($) be a type whi
h mat
hes t1 at the outermost level.It follows from the de�nition of types that �z(r1) 2 analz(Tz) � Tz [fzg. It is also
lear from the de�nition of types that �(r1) = t1 = &(u1). Now there are two
ases to
onsider, by Proposition 2.3.12 (whi
h, we may re
all, says that if t 2 min(analz(T))then t 2 T0 or t is an en
rypted term):t1 2 T0: It has to be the
ase that r1 2 T0. Sin
e (�; r1) mat
hes t1 at the outermostlevel, it follows that r1 2 N) t1 2 N . Thus it follows that �z(r1) = t1.Now either &z(u1) = z or &z(u1) = &(u1) = t = �z(r1). So in either
ase&z(u1) 2 Tz [fzg.t1 2 EST (T): Here there are two
ases to
onsider:u1 2 N : Then it is
lear that &z(u1) = z. It immediately follows that &z(u1) =z 2 Tz [fzg.u1 2 EST (u): Sin
e (�; r1) mat
hes t1 at the outermost level, it follows thatr1 is of the form fr2gk, from Lemma 5.1.3. From the de�nition of typesit follows that there exists r su
h that (�; r) 2 P and r1 2 EST (r). Nowsin
e the set P [f(&; u)g is
onfusion-free and �(r1) = &(u1), it followsthat r1 = u1. It is thus
lear that for all x 2 ST (r1)\T0, �(x) = &(x), andtherefore �z(x) = &z(x). From this it follows that &z(u1) = &z(r1) = �z(r1).Therefore &z(u1) 2 Tz [fzg.Now we
onsider the
ase when t1 is of the form (t01; t001) and t01and t001 belongto synth(min(analz(T))). Now either u 2 N or u is of the form (u0; u00). If u 2 Nthen &z(u) = z 2 Tz [fzg. Otherwise &(u0) = t01 and &(u00) = t001, and by indu
tionhypothesis both &z(u0) and &(u00) belong to Tz [fzg. But now it immediately followsthat &(u) = (&(u0); &(u00)) 2 Tz [fzg.The
ase when t1 is of the form ft01gk is identi
ally handled. This
on
ludes theindu
tion step and the proof. 25.1.2 Redu
tion to well-typed runsWe prove the following lemma in this subse
tion.

Chapter 5: De
idability with unbounded message length 92Lemma 5.1.9 If a weakly tagged proto
ol Pr has a leaky run, then it has a well-typedleaky run.For the rest of this se
tion, we �x a weakly tagged proto
ol Pr = (C; Æ) and arun � = e1 � � � ek of Pr with ei = (�i; �i; lpi) for all i � k. We also �x the followingnotations related to � for the rest of the dis
ussion. For any j : 1 � j � k,�j denotes e1 � � � ej, sj denotes infstate(�j), Tj denotes (sj)I, aj denotes �j(lpj),rj denotes term(aj), and tj denotes �j(rj). Similarly (ej)n0 denotes (�j; (�j)n0 ; lpj),(�j)n0 denotes (e1)n0 � � � (ej)n0 , (sj)n0 denotes infstate((�j)n0), (Tj)n0 denotes ((sj)n0)I ,and (tj)n0 denotes (�j)n0(rj). T0 and (T0)n0 denote (s0(Pr))I ; and �0 and (�0)n0denote the identity substitution. Further, for ea
h i : 0 � i � k, we de�ne a set oftypes Pi as follows: P0 = f(�0; m) j m 2 T0g; for i : 1 � i � k, Pi = Pi�1[f(�i; ri)g.Proof: We aim to prove that the sequen
e (�)n0 def= (�k)n0 is a run of Pr whi
h isleaky i� � is leaky. It is well-typed by
onstru
tion. We only have to prove that itis a run of Pr and it is leaky if and only if � is leaky.Claim: (�)n0 is a run of Pr.Proof of Claim: Firstly we observe that the run � has the unique originationproperty. Further NT (ei) = NT ((ei)n0) for all i � k. Thus it immediatelyfollows that (�)n0 also has the unique origination property. We now
on
entrateon proving the enabledness of the events in (�)n0.It is
lear that for all i � k, (ei)n0 is an event of Pr, sin
e it is
lear fromthe de�nitions that (�i)n0 is suitable for Pr and �i. We only have to provethat for all i � k, (ei)n0 is enabled at (e1)n0 � � � (ei�1)n0 . Suppose ei is a sendevent. Send-admissibility of plays of well-formed proto
ols ensures that (ei)n0is enabled at (�i�1)n0 .So we only need to
onsider the
ase when ei is a re
eive event. We needto prove that (ti)n0 2 (Ti�1)n0 . For this, observe that �i(ri) = ti 2 Ti�1.Now it follows from Proposition 2.2.32 (an immediate
onsequen
e of the weaktagging s
heme) that Pi is a
onfusion-free set of types. Further it follows fromLemma 5.1.10 (to be proved later) that for all t belonging to min(analz(Ti�1)),there is an analz-proof of Ti�1 ` t that is well-typed with respe
t to Pi. Thus we
an apply Lemma 5.1.8 and it follows that (ti)n0 = (�i)n0(ri) 2 (Ti�1)n0 [fn0g.But n0 2 T0 and hen
e n0 2 (Ti�1)n0 . Thus it follows that (ti)n0 2 (Ti�1)n0 .

Chapter 5: De
idability with unbounded message length 93Claim: (�)n0 is leaky i� � is leaky.Proof of Claim: We prove this by showing that for all i : 1 � i � k,Ti \ T0 = (Ti)n0 \ T0. Sin
e the initial states of both runs and the new non
esgenerated at ea
h event of both runs are the same, it immediately follows that�n0 is leaky i� � is.Suppose m 2 Ti \ T0. Then it is
lear that m 2 min(analz(Ti)). FromLemma 5.1.10 it is
lear that there is an analz-proof � of Ti ` m that iswell-typed with respe
t to Pi. Let (�; r) 2 typesPi(�). It is
lear that r 2 Nas well and that �n0(r) = m. But now it follows from the de�nition of typesthat m 2 analz(Tn0). This shows that Ti \ T0 � (Ti)n0 \ T0.Now supposem 2 analz((Ti)n0)\T0. By Lemma 5.1.6 it follows that there exists(�; r) 2 Pi and r1 2 ST (r) su
h that �(r1) 2 analz(Ti) and �n0(r1) = m. Nowif m = n0 then m 2 T0. If m 6= n0 then it follows that �(r1) = �n0(r1) = m.But then we have that m 2 analz(Ti). This shows that (Ti)n0 \ T0 � Ti \ T0and hen
e the
laim follows.This
ompletes the proof of the lemma, assuming Lemma 5.1.10. 2Lemma 5.1.10 For all i : 1 � i � k and for all t 2 min(analz(Ti)), there is ananalz-proof of Ti ` t that is well-typed with respe
t to Pi.Proof: The proof is by indu
tion on i.Base
ase: i = 0: If t 2 analz(T0) then for any analz-proof � of T0 ` t, (�0; t) belongsto typesP0(�). Clearly (�0; t) mat
hes t at the outermost level and thus � isan analz-proof of T0 ` t that is well-typed with respe
t to P0.Indu
tion
ase: Assume that i > 0 and that for all j < i and t 2 min(analz(Tj)),there is an analz-proof of Tj ` t that is well-typed with respe
t to Pj. By theupward
losure property of well-typed proofs, we see that for all su
h t, thereis an analz-proof of Ti ` t that is well-typed with respe
t to Pi. Now supposet 2 min(analz(Ti)) n analz(Ti�1) and � is an analz-proof of Ti ` t. Then weprove by indu
tion on proofs that for all subproofs $ of � with root labelledTi ` u, either u 2 Ti�1 or there is an analz-proof of Ti ` u that is well-typedwith respe
t to Pi. For this we assume that for all proper subproofs $0 of

Chapter 5: De
idability with unbounded message length 94$ with root labelled Ti ` u0, u0 has this property and use it to prove that uitself has this property. On
e we prove this the desired result follows, sin
e it
annot be the
ase that t, whi
h is assumed to be a minimal term in analz(T),belongs to synth(analz(Ti�1)) � synth(analz(Ti) n ftg).� Suppose $ is the following proof: AxaTi ` uThen u 2 Ti. By de�nition of types , typesPi($) 6= ;. By Lemma 5.1.11(whi
h is proved next) it follows that either u 2 Ti�1 or $ is well-typedwith respe
t to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` (u; u0) split1Ti ` uBy indu
tion hypothesis either (u; u0) 2 Ti�1 or there is an analz-proof�1 of Ti ` (u; u0) that is well-typed with respe
t to Pi. In the �rst
aseu 2 analz(Ti�1) = Ti�1 and we are done. In the se
ond
ase, we have thefollowing proof � of Ti ` u: (�1)...Ti ` (u; u0) split1Ti ` uBy de�nition of types, typesPi(�) 6= ;. It follows from Lemma 5.1.11 thateither u 2 Ti�1 or � is well-typed with respe
t to Pi, and we are through.� Suppose $ is the following proof:($1)...Ti ` fugk ($2)...Ti ` k de
ryptTi ` u

Chapter 5: De
idability with unbounded message length 95By indu
tion hypothesis either there is an analz-proof of Ti ` k thatis well-typed with respe
t to Pi or k 2 Ti�1. In the �rst
ase we aredone. In the se
ond
ase, we note that k is a basi
 term, and hen
ek 2 Ti�1) k 2 min(analz(Ti�1)). The indu
tion hypothesis (on i � 1)and the upward
losure property of well-typed proofs assure us that thereis an analz-proof �2 of Ti ` k that is well-typed with respe
t to Pi in this
ase also. Similarly, by indu
tion hypothesis either fugk 2 Ti�1 or thereis an analz-proof �1 of Ti ` fugk that is well-typed with respe
t to Pi.In the
ase where fugk 2 Ti�1, if u 2 Ti�1 we are done. Otherwisefugk 2 min(analz(Ti�1)), and the indu
tion hypothesis (on i� 1) and theupward
losure property of well-typed proofs assure us that there is ananalz-proof �1 of Ti ` fugk that is well-typed with respe
t to Pi. Given�1 and �2, we
an build the proof � as follows:(�1)...Ti ` fugk (�2)...Ti ` k de
ryptTi ` uBy de�nition of types it is
lear that typesPi(�) 6= ;. It follows fromLemma 5.1.11 that either u 2 Ti�1 or � is well-typed with respe
t to Pi,and we are through.� Suppose $ is the following proof:($1)...Ti ` ffugkgk redu
eTi ` uBy indu
tion hypothesis either ffugkgk 2 Ti�1 or there is an analz-proof�1 of Ti ` ffugkgk that is well-typed with respe
t to Pi. In the �rst
ase,it is
lear that u 2 analz(Ti�1) = Ti�1. We now show that the se
ond
ase
annot arise at all for the following reason: by indu
tion hypothesisthere exists (�; r) 2 typesPi(�1) whi
h mat
hes ffugkgk at the outermostlevel. So r is of the form fr0gk0. But then sin
e Pr is a tagged proto
oland fr0gk0 2 EST (Æ), r0 is of the form (
; r00) for some
 2 C and some r00.It also follows from the de�nition of types that �(r) = ffugkgk, but this

Chapter 5: De
idability with unbounded message length 96would mean that �(
; r00) = fugk, an impossibility. Thus the se
ond
ase
annot arise at all and we are done.This
on
ludes the indu
tion step and the proof. The lemma is thus proved, assum-ing Lemma 5.1.11. 2Lemma 5.1.11 Suppose 1 � i � k and t 2 analz(Ti) su
h that there is an analz-proof � of Ti ` t with typesPi(�) 6= ;. Then either � is well-typed with respe
t to Pior t 2 Ti�1.Proof: Suppose (�; r) 2 typesPi(�). If (�; r) mat
hes t at the outermost level, then� is well-typed with respe
t to Pi. Otherwise it has to be the
ase that r 2 N andt 62 N . Sin
e �(r) = t and r 6= t, it
annot be the
ase that � = �0. Hen
e � = �jfor some j � 1. It is
lear from the de�nition of types that there exists u su
h thatr 2 ST (u) and (�; u) 2 Pi. Sin
e � = �j, u = rj. But now r 2 ST (rj) \ Nand �j(r) 62 N , so it follows from Lemma 5.1.15 (whi
h is proved later) thatt = �j(r) 2 Tj�1 � Ti�1. Thus the lemma is proved, assuming Lemma 5.1.15.2The following de�nition and the next two lemmas are preparatory to provingLemma 5.1.15.De�nition 5.1.12 We say that a term t originates at i � k in � i� t 2 ST (ei) andfor all j < i, t 62 ST (ej).Lemma 5.1.13 Suppose ei is a send event for some i : 1 � i � k and there existsn 2 ST (ri)\N su
h that �i(n) 62 N . Then i > 1 and there exists j : 1 � j < i su
hthat n 2 ST (rj) and �i(n) = �j(n).Proof: Sin
e �i(n) 62 N , it follows from de�nitions that n 62 NT (ai) (otherwise�i would not be suitable for ai and hen
e ei would not be an event). Also therun � has the property of unique origination of non
es, and hen
e, it follows thatn 62 CT(Pr). But the fa
t that n 2 ST (ri) implies (again by the send-admissibiltyof roles of well-formed proto
ols) that n 2 ST (�i(lp)) for some lp < lpi. But then,sin
e LP(ei) � fe1; : : : ; ei�1g, it follows that e = (�i; �i; lp) 2 fe1; : : : ; ei�1g and thusthere exists j : 1 � j < i su
h that n 2 ST (rj) and �i(n) = �j(n). 2

Chapter 5: De
idability with unbounded message length 97Lemma 5.1.14 Suppose a term t originates at a re
eive event ei for some i � k.Then t 2 Ti�1, and further, if t = fugk for some u and k then fu; kg � Ti�1.Proof: It is
lear from the de�nition of runs that sin
e ei is a re
eive event,ti 2 Ti�1. It is also
lear that t 2 ST (ti) � ST (Ti�1) and therefore by Proposi-tion 2.3.7 it follows that t 2 ST (analz(Ti�1)) or t 2 Ti�1. (Re
all that a

ording toProposition 2.3.7, whenever r 2 ST (synth(T)) then r 2 synth(T) [ST (T).) Nowanalz(T) � ST (T) (and hen
e ST (analz(T)) = ST (T)) for any set of terms T , andtherefore it follows that either t 2 ST (Ti�1) ot t 2 Ti�1. Now sin
e t originatesat ei, it
annot be the
ase that t 2 ST (Ti�1). Therefore t 2 Ti�1. Further ift = fugk we
an apply Proposition 2.3.8 to t and analz(Ti�1) and
on
lude thatfu; kg � synth(analz(Ti�1)) = Ti�1. (Re
all that a

ording to Proposition 2.3.8,whenever frgk 2 ST (synth(T)) then r 2 ST (T) or fr; kg � synth(T). Further, inthe present
ase t 62 ST (Ti�1) = ST (analz(Ti�1)). Hen
e the
on
lusion.) 2Lemma 5.1.15 If �i(n) 62 N for some i : 1 � i � k and n 2 ST (ri) \ N , then�i(n) 2 Ti�1.Proof: The proof is by indu
tion on i.Base
ase: i = 1: Suppose there exists n 2 ST (ri) \ N su
h that �i(n) 62 N . We�rst note that ei
annot be a send event for then, by Lemma 5.1.13, it wouldfollow that i > 1,
ontradi
ting the fa
t that i = 1. Thus ei is a re
eive event,and hen
e ti 2 Ti�1 and sin
e Ti�1 = T0 � T0 it follows from Proposition 2.3.9that t 2 Ti�1 for all t 2 ST (ti) and in parti
ular �i(n) 2 Ti�1. (Re
all thata

ording to Proposition 2.3.9, whenever T � T0, ST (synth(T)) � synth(T).)Indu
tion
ase: Suppose i > 1 and the statement of the lemma holds for all j < i.Suppose there exists an n 2 ST (ri) \ N su
h that �i(n) 62 N . There are two
ases to
onsider here:ei is a re
eive event: In this
ase it is
lear that ti = �i(ri) 2 Ti�1. Now ifn o

urs unen
rypted in ri, �i(n) 2 Ti�1 as well and the indu
tion
aseis through. Otherwise let fugk be the smallest en
rypted subterm of ri
ontaining n. Let �i(fugk) originate at some j � i. There are two
asesto
onsider here:

Chapter 5: De
idability with unbounded message length 98ej is a re
eive event: In this
ase, it follows from Lemma 5.1.14 that�i(u) 2 Tj�1 and sin
e fugk is a minimum en
rypted term
ontainingn as a subterm, n 2 analz(u) and hen
e �i(n) 2 Tj�1 � Ti�1.ej is a send event: Now it
annot be the
ase that �i(fugk) 2 ST (�j(m))for some m 2 ST (rj)\N , sin
e it is in violation of Lemma 5.1.13. Italso
annot be the
ase that there is some fu0gk0 2 ST (rj) su
h thatfu0gk0 6= fugk and �i(fugk) = �j(fu0gk0), sin
e it is in violation ofProposition 2.2.32. The only remaining
ase is that fugk 2 ST (rj)and �i(fugk) = �j(fugk) in whi
h
ase it follows that �i(n) = �j(n).Also note that sin
e ei is a re
eive event, j < i. Hen
e by indu
tionhypothesis �i(n) 2 Tj�1 � Ti�1.ei is a send event: Sin
e �i(n) 62 N , it follows from Lemma 5.1.13 that thereis a j < i su
h that n 2 ST (rj) and �j(n) = �i(n). Thus it follows byindu
tion hypothesis that �i(n) 2 Tj�1 � Ti�1.This
ompletes the proof of the lemma. 2Of
ourse the statement of Lemma 5.1.9 holds for tagged proto
ols as well. This
ombined with Theorem 4.3.4 leads to the following result, whi
h is the
entral resultof the thesis.Theorem 5.1.16 . The general se
re
y problem (with no restri
tion on the set ofruns
onsidered) is de
idable for the
lass of tagged proto
ols.5.2 An approa
h based on equivalen
e on termsAs mentioned earlier, we approa
h the problem of unbounded message lengthin a di�erent manner in this se
tion. We de�ne an equivalen
e relation on termsbased on whi
h we obtain a sub
lass of proto
ols for whi
h the se
re
y problem isde
idable, under the assumption that the keys and non
es used
ome from a �xed�nite set.The equivalen
e relation is based on the following semanti
 motivations: Intypi
al proto
ols the term (t; t) is not
onstrued as
onveying more informationthan the term t alone. Even in the rare
ase where it
onveys more information, itdoes so only in an indire
t manner. For instan
e, the same term repeated twi
e in a

Chapter 5: De
idability with unbounded message length 99message might signify some
ontrol information. In that
ase, we
an use some moredire
t s
heme to
onvey that information. A similar argument holds for repeateden
ryptions with the same key as well. Extending this line of thinking, we see thata term of the form ff(fm;ngk; m)gk0gk
onveys really the same information thatffm;ngk0gk does. It
an be seen that it is reasonable to equate the two terms, sin
ean agent with a given set of keys learns the same basi
 terms from both these terms.These
onsiderations lead us to our de�nition of the equivalen
e relation, whi
his meant to enfor
e a reasonableness
ondition on the kinds of messages that
an be
onstru
ted. We leave open the question of how these rules
an be implemented sothat only reasonable messages are used. Even if we restri
t the proto
ol spe
i�
a-tions to refer only to normal terms (whi
h formally stand for \reasonable messages"),the runs of the proto
ol might not
ontain only normal terms. It
an be seen thatsu
h a situation might arise only due to the a
tions of an unrestri
ted intruder. Onepossible way of enfor
ing the use of normal terms in all the runs is to o�er only somerestri
ted kinds of message building
apabilities to the users of the proto
ol, at theimplementation level. There are many other ways of a
hieving the same result, andthe de
idability result that we prove in this se
tion applies irrespe
tive of the spe
i�
s
heme used to implement this. The result is proved for a general semanti

lass ofproto
ols (informally, these are proto
ols whi
h have \normal representatives" forany of their runs).We set up the following notation and terminology for this se
tion: We say thata key k en
rypts in a term t if 9t0 : ft0gk 2 ST (t).Given a term t and a key k de�ne t�k by indu
tion as follows: for m 2 T0,m�k = m; (t; t0)�k = (t�k; t0�k); and (ftgk0)�k is de�ned to be t�k if k = k0, andft�kgk0 otherwise. Thus t�k is the term t with all en
ryptions by key k removed.The en
ryption depth of a term is de�ned by indu
tion as follows:en
depth(m) = 0 for m 2 T0;en
depth((t; t0)) = max(en
depth(t); en
depth(t0)); anden
depth(ftgk) = en
depth(t) + 1.We also �x a �nite set T � T0 of size B. Throughout this se
tion we will only
onsider terms t with the property that ST (t) � T .De�nition 5.2.1 An �-proof is an inverted tree whose nodes are labelled by equa-tions of the form r � r0 and
onne
ted by one of the rules in Figure 5.1 and whose

Chapter 5: De
idability with unbounded message length 100AxiomsA1t � t A2(t; t) � t A3(t; t0) � (t0; t) A4(t; (t0; t00)) � ((t; t0); t00)A5ftgk � ft�kgk

Rulest � t0 R1t0 � tt � t0 t0 � t00 R2t � t00t1 � t01 t2 � t02 R3(t1; t2) � (t01; t02)t � t0 R4ftgk � ft0gkFigure 5.1: Axioms and rules for �-proofs.leaves are labelled by instan
es of the axioms in Figure 5.1.We say that t � t0 i� there is an �-proof whose root is labelled by t � t0. Wesay that t �1 t0 i� there is an �-proof whose root is labelled by t � t0, and none ofwhose leaves are labelled by the axioms A2 and A5.De�nition 5.2.2 Any term whi
h has a subterm of the form (r; r) or of the formfrgk with k en
rypting in r is said to be a redex. A term t is said to be normal ifthere is no t0 su
h that t �1 t0 and t0 is a redex. A substitution � is normal i� forall x 2 T0: if �(x) is de�ned then it is normal. An event e = (�; �; lp) is normal if� is normal, and a sequen
e of events � is normal i� all the events o

urring in itare normal.The main fun
tion of the equivalen
e relation is to ensure two things: the tuplingoperator works with sets of terms now rather than lists, whi
h is ensured by AxiomsA2 to A4; the depth of the en
ryption operator is bounded. The latter is a
hievedby the axiom A5, whi
h ensures that if we
onsider a basi
 term m o

urring in twoequivalent terms t and t0, the same keys en
rypt m in both t and t0. Thus it easilyfollows that for any set of terms T , analz(T [ftg) \ T0 = analz(T [ft0g) \ T0. Thisproperty is
ru
ial for our later development.We �rst observe the following property whi
h follows immediately from the def-

Chapter 5: De
idability with unbounded message length 101initions.Proposition 5.2.3 For any two terms t and t0, if t �1 t0 then t is normal i� t0 isnormal.Lemma 5.2.4 For any normal term t, en
depth(t) � B.Proof: This is quite easy to see. Firstly note there are at most B keys in T . Nowthe result
an be proved by a a trivial indu
tion on the stru
ture of terms as follows:If t 2 T then of
ourse en
depth(t) = 0 � B.Suppose t is of the form (r; r0). We �rst
laim that r and r0 are normal terms.For, suppose r were not a normal term, for example. Then there is a redex u su
hthat r �1 u. But now (r; r0) �1 (u; r0). Sin
e u is a redex, (u; r0) is also a redex, andhen
e t would itself be a nonnormal term. This
ontradi
tion leads us to the fa
tthat r and r0 are normal terms. Therefore en
depth(r) � B and en
depth(r0) � B,by indu
tion hypothesis. Thus en
depth(t) = max(en
depth(r); en
depth(r0)) � B.Suppose t is of the form frgk. Then as before we
an show that r is a normalterm. So en
depth(r) � B. But sin
e t is a normal term, it follows that it is not aredex. From this it follows that k does not en
rypt in r. Thus en
depth(r) is stri
tlyless than B. From this it follows that en
depth(t) � B. 2Lemma 5.2.5 The equivalen
e relation � on terms is of �nite index. Further thereis a bound on the size of normal terms.Proof: It is easy to see that every term is equivalent to a normal term. Wenow show that the set of normal terms is �nite, whi
h will immediately imply thestatement of the proposition. We will also simultaneously prove that ea
h normalterm is of bounded size (whi
h depends only on T .)Re
all that jT j = B. Let us denote by Ni the set of normal terms of en
ryptiondepth i. We show below that there is a bound fi on the size of the terms in Ni.Sin
e all normal terms are en
ryption depth at most B, the number fB is a boundon the size of normal terms.Consider a term t in N0. Clearly t is built up using only the pairing
onstru
t,with no basi
 term having more than one o

urren
e. Thus t
an be viewed as abinary tree with at most B leaves. The size of su
h a tree
an be at most 2 � B.Thus we
an let f0 = 2 �B.

Chapter 5: De
idability with unbounded message length 102Consider a term t in Ni. Suppose the set Ni�1 is of size at most gi�1. Now wenote that any term in Ni
an be built from terms of the form frgk (with r 2 Ni�1)using the pairing
onstru
t repeatedly. The number of terms of the form frgk withr 2 Ni�1 is at most B � gi�1 (sin
e any of at most B keys
an be used to en
rypt anyof the at most gi�1 terms from Ni�1). Now sin
e t is normal, it follows that there isat most one o

urren
e of ea
h of the above B � gi�1 terms in t. Thus t
an againbe viewed as a binary tree with at most B � gi�1 leaves. The size of t
annot ex
eed2 �B � gi�1. This number
an be
hosen as fi.We now show how to determine gi from fi, for ea
h i. We �rst look at thedi�erent \stru
tures" of size fi that
an o

ur. A loose upper bound is the numberof binary trees with at most fi leaves. This gives us a bound of fO(fi)i . Now we
anmap ea
h of the leaves of these trees to any one of the B basi
 terms to form termsin Ni, so we get an estimate of BfO(fi)i for gi.This
ompletes the proof of this lemma. 2While the bounds arrived at in the above lemma suÆ
e for our de
idabilityresults, they are
learly not pra
ti
al. More work needs to be done in
oming upwith proto
ol-spe
i�
 equivalen
es whi
h yield pra
ti
al bounds.We now
ome to the se
ond part of our endeavour, whi
h is to prove that if �and �0 are equivalent runs, then � is leaky i� �0 is. We say that � � �0 for twosubstitutions � and �0 i� their domains of de�nition are the same and for all x 2 T0,if �(x) is de�ned then �0(x) � �(x). We say that (�; �; lp) � (�0; �0; lp 0) i� � = �0,lp = lp0, and � � �0. Given two sequen
es of events � = e1 � � � ek and �0 = e01 � � � e0k,we say that � � �0 i� for all i � k, ei � e0i.We now prove the
ru
ial semanti
 property of the equivalen
e on runs. Prepara-tory to that is the following property of equivalent terms.Proposition 5.2.6 Suppose t and t0 are two terms with t � t0. Suppose U is a setof basi
 terms. Then analz(U [ftg) \ T = analz(U [ft0g) \ T .Proof: We note that it suÆ
es to prove the statement when t is of the form frgkand t0 is of the form fr�kgk. Then a trivial indu
tion on �-proofs yields the desiredresult.We now pro
eed to prove that analz(U [ffrgkg)\T = analz(U [ffr�kgkg)\T .At the outset there are two
ases to be
onsidered:

Chapter 5: De
idability with unbounded message length 103� Suppose k 62 U . Then analz(U [ffrgkg) = analz(U [ffr�kgkg) = ;, so we getour result.� Suppose k 2 U . We now prove by indu
tion on the stru
ture of terms thatanalz(U [frg)\T = analz(U [fr�kg)\T . The desired result follows sin
e thepresen
e of k in U ensures that analz(U[fr�kg)\T = analz(U [ffr�kgkg)\T .When r 2 T then r�k = r, so it immediately follows that analz(U [frg) =analz(U [ffr�kgkg).When r = (u; u0) then r�k = (u�k; u0�k). By indu
tion hypothesis we knowthat analz(U [fug) \ T = analz(U [fu�kg) \ T , and that a similar propertyholds for u0. The result now follows by noting that analz(U [f(u; u0)g) \ T =(analz(U [fug) [analz(U [fu0g)) \ T , and that a similar property holds for(u�k; u0�k).When r = fugk0, there are two
ases to
onsider. If k0 = k then r�k = u�k.By indu
tion hypothesis analz(U [fug)\ T = analz(U [fu�kg) \ T . But thepresen
e of k in U ensures that analz(U [fugk)\T = analz(U[fug)\T . Fromthis the desired result follows. If k0 6= k then r�k = fu�kgk0. By indu
tionhypothesis analz(U [fug) \ T = analz(U [fu�kg) \ T . Again a
ase analysisbased on whether k0 belongs to U or not yields the desired result. 2Proposition 5.2.7 Suppose Pr is a proto
ol and � and �0 are runs of Pr su
h that� � �0. Then (infstate(�))A \ T = (infstate(�0))A \ T for all A 2 Ag. Further � isleaky i� �0 is leaky.Proof: We prove the proposition by indu
tion on the length of the runs. In thebase
ase � = �0 = " and therefore
learly infstate(�) = infstate(�0) = init(Pr) andthe proposition is true. For the indu
tion step suppose that � = �1 � e and �0 = �01 � e0with e � e0 and �1 � �01. Fix an A 2 Ag . By indu
tion hypothesis we see that(infstate(�1))A \ T = (infstate(�01))A \ T . Let this set be denoted by U . Now weonly
onsider the
ase when e is a re
eive event by A. Let t = a
t(e) and t0 = a
t(e0).Clearly t � t0. Then we note that (infstate(�))A \ T = analz(U [ftg)\ T , and that

Chapter 5: De
idability with unbounded message length 104a similar property holds for �0. It immediately follows from Proposition 5.2.6 that(infstate(�))A \ T = (infstate(�0))A \ T .We now
laim that if e1 � � � ek � e01 � � � e0k then for all i � k, NT (ei) = NT (e0i).This is easy to see. If we let ei = (�i; �i; lpi) and e0i = (�0i; �0i; lp 0i), then for allm 2 NT (�i(lpi)), �(m) 2 T . But �(m) � �0(m) and, sin
e m 2 T0, it
an only bethe
ase that �(m) is the same as �0(m). This shows that NT (ei) = NT (e0i).The above two fa
ts immediately imply that � is leaky i� �0 is leaky. 2We now de�ne a semanti
 sub
lass of proto
ols, the
lass of �-invariant proto-
ols.De�nition 5.2.8 A proto
ol Pr is said to be �-invariant i� for all runs � of Pr,there is a normal run of �0 of Pr su
h that � � �0.It immediately follows that, given an �-invariant proto
ol Pr,
he
king whetherthere is a leaky run of Pr boils down to
he
king whether there is a normal leakyrun of Pr. Now the set of normal events of Pr is bounded in number (the bounddepending on the number fB derived in Lemma 5.2.5 and the spe
i�
ation of Pr).But this does not mean that the set of normal runs of Pr is a �nite set. The problemarises be
ause the same event may o

ur many times in a run (as long as it doesnot generate any new non
es), and so there is no bound on the length of the runsthat we have to
onsider. A solution to this problem is provided in the proof of thefollowing theorem.Theorem 5.2.9 The problem of
he
king whether a given �-invariant proto
ol hasa leaky run is de
idable.Proof: Given an �-invariant proto
ol Pr, it suÆ
es to
he
k whether there is anormal leaky run of Pr or not. We now show that this is equivalent to
he
kingwhether there is a redu
ed normal leaky run of Pr or not. We re
all that a redu
edrun is a run with all dupli
ate o

urren
es of events removed. Sin
e there are onlyboundedly many normal events, and sin
e there is at most one o

urren
e of anyevent in a redu
ed run, the set of redu
ed normal runs of Pr is �nite, and thus weobtain de
idability.It follows from Proposition 2.2.20 that if � is a run of Pr so is red(�). Wenow prove that � is leaky i� red(�) is leaky. Suppose � is leaky. This means that

Chapter 5: De
idability with unbounded message length 105there is a basi
 term m and a pre�x �0 of � su
h that m is se
ret at �0 and notse
ret at �. From Proposition 2.2.20 we see that infstate(�) = infstate(red(�)) andinfstate(�0) = infstate(red(�0)). Thus it follows that m is se
ret at red(�0) and notse
ret at red(�). Further it is
lear from the de�nitions that red(�0) is a pre�x ofred(�). Thus red(�) is also leaky.Suppose on the other hand that red(�) is leaky. This means that there is a basi
term m whi
h is se
ret at some pre�x of red(�) but not se
ret at red(�). We nowuse the fa
t (whi
h immediately follows from de�nitions) that any pre�x of red(�)is of the form red(�0) for some pre�x �0 of �. Thus we see that m is se
ret at red(�0)and not se
ret at red(�). From Proposition 2.2.20, it follows that m is se
ret at �0but not se
ret at �. This means that � is leaky.So we see that there is a normal leaky run of Pr i� there is a redu
ed normalleaky run of Pr, and this
ompletes the proof of the theorem. 2The work in this se
tion suggests an approa
h to the veri�
ation of se
urityproto
ols. To make this relevant to pra
ti
e, mu
h more work needs to be done toyield better bounds on the size of terms. This might entail
hanging the de�nitionof the equivalen
e relation suitably (perhaps with some spe
i�

lasses of proto
olsin mind). Further we need to
ome up with synta
ti

onditions on proto
ols whi
hensure that they are �-invariant. It is needed be
ause as of now we do not haveany method of e�e
tively
he
king whether a given proto
ol is �-invariant or not.We
on
lude by saying that the development in this se
tion sets up a framework forthe veri�
ation of se
urity proto
ols, and that there is still some way to go beforewe obtain results whi
h are relevant to pra
ti
e.

Chapter 6
Reasoning about se
urityproto
ols

In this
hapter, we develop a logi
 for spe
ifying interesting properties of proto-
ols and reasoning about them. We also show that some of the de
idability resultsof the earlier
hapters extend to the veri�
ation problem for the logi
.6.1 MotivationIn
hapter 1, we brie
y saw some of the approa
hes to logi
al reasoning of se
urityproto
ols: namely, automated theorem proving and belief logi
s. We also pointedout some of the strengths and drawba
ks of ea
h approa
h. We take a fresh lookat these approa
hes in the light of the developments and results of the pre
eding
hapters.We saw in Chapter 2 that modelling se
urity proto
ols is fairly intri
ate. Thete
hni
al results proved in the other
hapters also rest on some nontrivial analysisbased on the model. In su
h a situation, an automati

hoi
e for reasoning aboutproto
ols is a highly expressive logi
 like �rst-order logi
 or higher-order logi
 (whi
hare typi
ally used by automated theorem provers). But as was already pointed out,it requires expert knowledge to work with these logi
s. A further drawba
k is thatthe added expressive power usually brings unde
idability in its wake, and thus afully automated approa
h to proto
ol veri�
ation
annot be based on su
h a logi
.106

Chapter 6: Reasoning about se
urity proto
ols 107On the other hand, as we already pointed out, belief logi
s work with fairlyabstra
t modalities like knowledge, belief, awareness, et
. It is not
lear whetherthese are at the
ore of reasoning about se
urity proto
ols. The analysis involvedin the proofs of the various te
hni
al results that we saw earlier suggest that theexpli
it information present in the agents' state is
ru
ial to mu
h of the reasoningabout proto
ols. We base our logi
 on this. Thus ours is an expli
it-informationbased logi
 in that we fo
us on the expli
it information available in ea
h agent'sstate at any point of a proto
ol run, rather than on the epistemi
 attitudes of thedi�erent agents. The
ru
ial se
urity properties also involve a notion of time, sothe logi
 needs some way of referring to the future and past. Here again, we seethat temporal modalities like the nexttime and until modalities of LTL, and
omplextemporal reasoning involving them are not
ru
ial to the analysis of proto
ols. Wethus
hoose to endow the logi
 with the simple tense logi
 modailties F (referring tosome time in the future) and P (referring to some time in the past).[RS01℄ is an attempt to develop a simple modal logi
 along these lines. Themain feature of the logi
 is the modality has, whi
h refers to the expli
it informationavailable to an agent at a state. For instan
e, the formula A has m says that theterm m is in A's database in the
urrent state. More interestingly, the formulaA has (B has m) says that A has expli
it information about B having a

ess to m.But the te
hni
al treatment in [RS01℄ is unne
essarily
ompli
ated be
ause has istreated as a modality, and
an thus be iterated. It is also not
lear whether iteratingthe has modality lies at the
ore of reasoning about se
urity proto
ols.The logi
 whi
h we des
ribe in this
hapter follows the information based ap-proa
h, but does not treat has as a modality. Instead it is a spe
ial kind of atomi
proposition. Our aim in de�ning this logi
 is to
ome up with a
ore logi
 for se
urityproto
ols with the property that most of the te
hni
al results proved in the earlier
hapters (about the se
re
y problem) generalise to the logi
. But at the same timethe logi
 should have enough expressive power su
h that the basi
 se
urity prop-erties
an be naturally expressed in it. The di�erent
hoi
es made in de�ning theelements of the logi
 have the above two requirements in mind.Before we de�ne the logi
 proper (in the next se
tion), we motivate it by des
rib-ing a mu
h simpler logi
 whi
h helps us understand the issues involved. The syntaxof the logi
 has basi
 propositions of the form A has m and a where A 2 Ag , m 2 T0and a 2 A
. Further the set of formulas is
losed under the usual boolean operators,

Chapter 6: Reasoning about se
urity proto
ols 108the future modality F, and the past modality P. The formulas are interpreted overinstants of runs of a proto
ol, i.e., (�; i) where � is a run of a proto
ol and 0 � i � j�j.We say that the formula A has m is satis�ed at (�; i) i� m 2 (infstate(�i))A (where�i is the pre�x of � of length i). (�; i) satis�es a i� a
t(ei) = a (ei being the ith eventof �). The formula F� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i.Similarly, P� is satis�ed at (�; i) i� � is satis�ed at (�; j), for some j � i. The dualmodalities G and H are de�ned by: G� def= :F:� and H� def= :P:�. A proto
olPr satis�es a formula � if (�; 0) satis�es � for all runs � of Pr. This is basi
ally atense logi
 with the past operator and some spe
ialised atomi
 propositions to talkabout se
urity.Several basi
 se
urity properties
an be spe
i�ed in this logi
. The formula:F(I hasm) says that the basi
 termm is never learnt by the intruder in the
ourse ofa run. This is a rudimentary form of se
re
y. A rudimentary form of authenti
ationis spe
i�ed by the formula G(A?B: t � P(B!A: t)). This says that if A re
eives tpurportedly from B at some point of a run, then B a
tually sent it intended for A atsome time in the past. We
an even de�ne more
ompli
ated forms of authenti
ationin the logi
. With respe
t to the Needham-S
hroeder proto
ol PrNS the followingformula � says that if some instantiation of the responder role is played, then anappropriate instantiation of the initiator role has also been played to
ompletion.� def= G[B?A:fngpubkB �P(A!B:fngpubkB ^ P(A?B:fm;ngpubkA ^ P(A!B: (m)fmgpubkB)))℄This is just representative of the kind of properties that
an be spe
i�ed. Otherforms of proto
ol-spe
i�
 authenti
ation properties
an be spe
i�ed using the logi
.But the main drawba
k of the logi
 is that the formulas mention
on
rete termsa
tually
ommuni
ated during a run. This makes the task of spe
ifying abstra
tse
urity properties in the logi
 mu
h harder. Further, sin
e there are potentially in-�nitely many
on
rete terms, we need a logi
al devi
e like quanti�
ation over termsto express properties about all terms. In the logi
 that we introdu
e next, we solvethese problems by mentioning only abstra
t terms mentioned in the proto
ol spe
i-�
ation. Further, instead of a quanti�
ation on terms we have a quanti�
ation oversubstitutions. Re
all that substitutions are the unknown elements at the level ofproto
ol spe
i�
ations, sin
e they serve to introdu
e di�erent terms in the proto
olruns. These features enable the proposed logi
 to naturally spe
ify abstra
t prop-erties of proto
ols with referen
e to the runs of the proto
ol. Thus our approa
h

Chapter 6: Reasoning about se
urity proto
ols 109
ombines some of the advantages of BAN-style logi
s (ability to spe
ify abstra
tproperties) with some of the advantages of the logi
 presented above (formulas
anbe easily and naturally interpreted over runs of a proto
ol, even though
on
reteterms not in mentioned in the formula (or the proto
ol spe
i�
ation) o

ur in therun).6.2 A modal logi
 for se
urity proto
olsIn this se
tion, we develop a logi
 keeping the points raised in the above dis
us-sion in mind. The logi
 is designed to spe
ify abstra
t properties of proto
ols. Thusthe formulas need to talk about terms, a
tions, et
. but in an abstra
t way.SyntaxWe assume a
ountable set AS of abstra
t substitution names. For a term m 2 T0,we de�ne type(m) to be non
e if m 2 N , sequen
e-number if m 2 SN , key if m 2 Kand agent if m 2 Ag .The set of formulas � is given by:� ::= ��A has �0 �m (A 2 Ag ; m 2 T0; �; �0 2 AS)j ��a (a 2 A
; � 2 AS)j ��x = �0 �x0 (x; x0 2 T0; type(x) = type(x0); �; �0 2 AS)j :�j � _ �j F�j P�j (9�)�We introdu
e the other standard operators as follows: � ^ � def= :(:� _ :�),� � � def= :�_�, � � � def= (� � �)^(� � �), G� def= :F:�, H� def= :P:�,(8�)� def= :(9�):�.The set of subformulas, the set of free substitution names, and the set of \sub-terms" of a formula are all easily de�ned:� SF (��A has �0 �m) = f��A has �0 �mg;FSN (��A has �0 �m) = f�; �0g;

Chapter 6: Reasoning about se
urity proto
ols 110ST (��A has �0 �m) = f��A; �0 �mg;� SF (��a) = f��ag;FSN (��a) = f�g;ST (��a) = f��m j m 2 ST (a) \ T0g;� SF (��x = �0 �x0) = f��x = �0 �x0g;FSN (��x = �0 �x0) = f�; �0g;ST (��x = �0 �x0) = f��x; ��x0g;� SF (:�) = f:�g [SF (�);FSN (:�) = FSN (�);ST (:�) = ST (�);� SF (� _ �) = f� _ �g [SF (�) [SF (�);FSN (� _ �) = FSN (�) [FSN (�);ST (� _ �) = ST (�) [ST (�);� SF (F�) = fF�g [SF (�);FSN (F�) = FSN (�);ST (F�) = ST (�);� SF (P�) = fP�g [SF (�);FSN (P�) = FSN (�);ST (P�) = ST (�);� SF ((9�)�) = f(9�)�g [SF (�);FSN ((9�)�) = FSN (�) n f�g;ST ((9�)�) = ST (�).A formula � is said to be
losed i� FSN (�) = ;.Semanti
sA stru
ture is a pair A = (Pr; S) where Pr is a proto
ol and S is a set of substitu-tions suitable for Pr. (Note that S need not ne
essarily be the set of all substitutions� suitable for Pr.) An A-run � is a run of Pr su
h that for all (�; �; lp) 2 Events(�),� 2 S. An A-assignment � is a map whi
h asso
iates ea
h substitution name � inAS to a substitution �� 2 S. (Note that for ease of notation we write �� rather than

Chapter 6: Reasoning about se
urity proto
ols 111�(�).) Given a stru
ture A = (Pr; S), an A-assignment � and a substitution � 2 S wede�ne �[� := �℄ to be the assignment �0 with the property that �0� = � and �0�0 = ��0for �0 6= �.Amodel is a pairM = (A; �) where A is a stru
ture and � is anA-assignment. Wesay that � is anM-run if it is an A-run. A modelM = (A; �) is said to be
ompatiblewith a formula � i� for all ��m 2 ST (�), ��(m) is de�ned and type(��(m)) = type(m).Given a sequen
e of events �, an instant in � is a number i su
h that 0 � i � j�j.Given a formula �, a modelM = ((Pr; S); �)
ompatible with �, an M-run � andan instant i in �, we de�ne the satisfa
tion relation M; (�; i) j= �. Suppose that� = e1 � � � ek, where for ea
h i � k, ei = (�i; �i; lpi). Let si denote infstate(e1 � � � ei),for any i � k. We now give the indu
tive de�nition of M; (�; i) j= �.� M; (�; i) j= ��A has �0 �m i� n 2 (si)C (where ��0(m) = n and ��(A) = C);� M; (�; i) j= ��a i� i > 0, �i(lpi) = a and ��(a) = �i(a);� M; (�; i) j= ��x = �0 �x0 i� ��(x) = ��0(x0);� M; (�; i) j= :� i� M; (�; i) 6j= �;� M; (�; i) j= � _ � i� M; (�; i) j= � or M; (�; i) j= �;� M; (�; i) j= F� i� there exists j � i su
h that M; (�; j) j= �;� M; (�; i) j= P� i� there exists j � i su
h that M; (�; j) j= �;� M; (�; i) j= (9�)� i� M0; (�; i) j= �, where M0 = (A; �[� := �℄) for some substi-tution � 2 S and M0 is
ompatible with �.A formula � is satis�able i� there exists a modelM
ompatible with �, anM-run�, and an instant i in � su
h thatM; (�; i) j= �. A formula � is valid i�M; (�; i) j= �for all models M
ompatible with �, all M-runs �, and all instants i in �.Note that a formula � is valid i� :� is not satis�able.The interesting validities involve intera
tion of the quanti�ers and modalities.Note that (8�)G� � G(8�)� and (9�)F� � F(9�)� are validities. Similarly for the pastmodalities. On the other hand note that (9�)G� � G(9�)� and F(8�)� � (8�)F�are validities, but the impli
ations do not hold the other way. A similar statement
an be made about the past modalities. This behaviour is typi
al of the intera
tionof the quanti�ers and the modalities.

Chapter 6: Reasoning about se
urity proto
ols 112Note that even though the logi
 has both quanti�ers and modalities, the seman-ti
s is more restri
ted than that of �rst-order modal logi
. The typi
al feature of�rst-order modal logi
 is that the possible worlds are di�erent �rst-order stru
tures(even under the so-
alled
onstant-domain semanti
s, the di�erent worlds only sharethe domain while the interpretations of the relations and
onstants usually vary).In our framework, a single stru
ture remains
onstant a
ross many worlds. In thisrespe
t, the logi
 presented here
an be thought of as a kind of quanti�ed proposi-tional logi
 with modalities. The quanti�
ation over substitutions
an be
onsideredas a spe
ial form of quanti�
ation over propositions.For a stru
ture A = (Pr; S) and a formula �, we say that A j= � i�M; (�; 0) j= �for all A-assignments � su
h thatM = (A; �) is
ompatible with �, and all A-runs �.Suppose � is a formula, A is a stru
ture, and M = (A; �) and M0 = (A; �0) are twomodels
ompatible with � su
h that for all � 2 FSN (�), �� = �0�. Then M; (�; i) j= �i� M0; (�; i) j= � for all M-runs � and all instants i in �. It follows from this thatgiven a stru
ture A and a formula �, to
he
k whether A j= �, it suÆ
es to
onsiderA-assignments restri
ted to FSN (�).We now de�ne several notions of validity with respe
t to a �xed proto
ol Pr.We say that Pr j= � i� (Pr; SPr) j= �, where SPr is the set of all substitutions �suitable for Pr.We say that Pr j=wt � i� (Pr; SPr;wt) j= �, where SPr;wt is the set of all well-typedsubstitutions � suitable for Pr.For a �xed set T � T0, we say that Pr j=T � i� (Pr; SPr;T) j= �, where SPr;T isthe set of all T -substitutions suitable for Pr.We say that Pr j=Twt � i� (Pr; SPr;wt;T) j= �, where SPr;wt;T is the set of all well-typed T -substitutions suitable for Pr.A feature of the semanti
s that needs a little dis
ussion is that the satisfa
tionrelationM; (�; i) j= � is de�ned only ifM is
ompatible with �. Re
all that the
orelogi
 that we presented in Se
tion 6.1 works with formulas of the form A has m,where m 2 T0. The logi
 we are working with is supposed to be an abstra
tion of the
ore logi
. Consider a formula of the form ��A has �0 �m. If we interpret this formulaon some model (A; �) su
h that ��0(m) 62 T0, then we would be indire
tly referring toa nonatomi
 term t using our formula. The de�nition of M being
ompatible with� disallows su
h an indire
t referen
e to nonatomi
 terms.Note that the logi
 has both quanti�
ation over substitution names and equality.

Chapter 6: Reasoning about se
urity proto
ols 113As the examples in the next se
tion show, a
ombination of these two features of thelogi
 is
ru
ially used in spe
ifying properties of and reasoning about proto
ols. Thelogi
 would not be as e�e
tive even if one of the two features were not present. In theabsen
e of the equality operator, there would be no means of relating substitutionnames with one another. In the absen
e of quanti�
ation, the logi
 would not havethe ability to refer to all the substitutions of the model (there might possibly bein�nitely many of them). For instan
e, a typi
al authenti
ation requirement wouldbe that for any instantiation of a responder role o

urring in a run with A as thepurported initiator and B as the responder, there is an instantiation of the initiatorrole in the same run with A as the initiator and B as the intended responder. Notethe
ru
ial use of the of quanti�ers (for every responder role, there is an initiator role)and of equality (whi
h
onstrain the initiator role to
orrespond to the responderrole).6.3 ExamplesLet us look at some examples whi
h illustrate the use of the logi
. Without lossof generality we assume that for all modelsM = (A; �)
ompatible with a formula �,��(I) = I for all ��I 2 ST (�). This means that we
an use the name I in formulaswithout pre�xing it with any substitution name.6.3.1 The Needham-S
hroeder proto
olWe look at the Needham-S
hroeder proto
ol in detail now, stating several of itsproperties in our logi
, demonstrating that some of them are true in all runs of theproto
ol, and also showing that some
ru
ial properties fail.The proto
ol is given by (C; Æ) where C = ; and Æ is the following sequen
e of
ommuni
ations. 1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. A ! B : fygpubkBThere are two roles in this proto
ol. The initiator role �1 is given below:

Chapter 6: Reasoning about se
urity proto
ols 1141. A ! B : (x) fA; xgpubkB2. A ? B : fx; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fx; ygpubkA3. B ? A : fygpubkBWe will use the notation ai to denote �1(i) and bi to denote �2(i), for 1 � i � 3.The following is an immediate and trivial validity for this proto
ol, whi
h justsays that any event in a run is pre
eded by its lo
al past.(8�)G[^i=2;3((��ai � P(��ai�1)) ^ (��bi � P(��bi�1)))℄:Example spe
i�
ationsOne of the most immediate properties that we desire of this proto
ol is that ofse
re
y. There are two desirable se
re
y requirements in this
ase. Se
re
y for theinitiator says that all fresh non
es that are instantiated for x and not intended forthe intruder are not leaked to the intruder. It is expressed by the following formula:se
re
y init def= (8�)G[(��a1 ^ :(��B = I)) � G:I has ��x℄:Se
re
y for the responder says that all fresh non
es that are instantiated for yand are not intended for the intruder are not leaked to the intruder. It is expressedby the following formula:se
re
yresp def= (8�)G[(��b2 ^ :(��A = I)) � G:I has ��y℄:Authenti
ation for the initiator says that for every play of the initiator role (withan apparently honest responder) in a run of the proto
ol, there is a
orrespondingplay of the responder role in that run.auth init def= (8�)G[(��a2 ^ :(��B = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �b2)℄℄:Authenti
ation for the responder says that for every play of the responder role(with an apparently honest initiator) in a run of the proto
ol, there is a
orrespond-ing play of the initiator role in that run.

Chapter 6: Reasoning about se
urity proto
ols 115authresp def= (8�)G[(��b3 ^ :(��A = I)) � (9�0)[��x = �0 �x ^ ��y = �0 �y ^��A = �0 �A ^ ��B = �0 �B ^ P(�0 �a3)℄℄:The notable feature of the formulas is that they are quite simple and intuitiveto write, not requiring us to name any a
tual terms that are substituted.Lowe's atta
kOf the above properties, se
re
y for the responder is not guaranteed by theproto
ol, i.e., PrNS 6j= se
re
y resp . This
an be eviden
ed by the following run �. Inthe following, �1 is a substitution su
h that �1(A) = A, �1(B) = I, �1(x) = m, and�1(y) = n; and �2 is a substitution su
h that �2(A) = A, �2(B) = B, �2(x) = m,and �2(y) = n. (�1; �1; 1) A ! I : (m) fA;mgpubkI(�2; �2; 1) B ? A : fA;mgpubkB(�2; �2; 2) B ! A : (n) fm;ngpubkA(�1; �1; 2) A ? I : fm;ngpubkA(�1; �1; 3) A ! I : fngpubkI(�2; �2; 3) B ? A : fngpubkBSuppose A = (Pr; SPr) and � is an A-assignment su
h that �� = �2. SupposeM = (A; �). Then it is
lear that M; (�; 3) j= ��b2 ^ :(��A = I). But on the otherhand it
an be easily seen thatM; (�; 5) j= I has ��y. This is easy to see sin
e n 2 sI ,where s is the information state at the end of the �rst �ve events of �. From thesetwo fa
ts it follows thatM; (�; 0) 6j= se
re
yresp and hen
e that PrNS 6j= se
re
yresp aswell. In fa
t, this also shows that PrNS 6j=wt se
re
y resp . This is the famous Lowe'satta
k on the Needham-S
hroeder proto
ol.The above atta
k also shows that PrNS 6j=wt authresp . It is
lear that M; (�; 6) j=��b3 ^ :(��A = I). But it is also true that M; (�; 0) j= (8�0)G[�0 �a3 � �0 �B 6= ��B℄.This shows that M; (�; 0) 6j= authresp and hen
e that PrNS 6j=wt authresp .Se
re
y for the initiatorEven though PrNS 6j=wt se
re
yresp , it
an be argued that PrNS j=wt se
re
y init .The reasoning is as follows: We assume that PrNS 6j=wt se
re
y init and arrive at a
ontradi
tion. The assumption means that M; (�; 0) 6j= se
re
y init for some M =

Chapter 6: Reasoning about se
urity proto
ols 116((Pr; SPrNS;wt); �)
ompatible with se
re
y init , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.1. We are given that M; (�; 0) 6j= se
re
y init . This means that there exist i � 0and � 2 AS su
h thatM; (�; i) j= ��a1^:(��B = I) andM; (�; i) j= F(I has ��x).2. Sin
e M; (�; i) j= ��a1, it follows that �i(lpi) = a1 and �i(a1) = ��(a1).3. Sin
e x 2 NT (�1(1)), it is
lear that ��(x) 2 NT (ei), and hen
e it follows fromthe unique origination property of runs that M; (�; i0) j= :(I has ��x) for alli0 < i. Sin
e only f��(A); ��(x)gpubk��(B) is added to the intruder's state by ei,and sin
e ��(B) 6= I, it follows that M; (�; i) j= :(I has ��x) as well.4. Sin
e M; (�; i) j= F(I has ��x), there is a least j � i su
h that M; (�; j) j=I has ��x. Clearly j > i and M; (�; j 0) j= :(I has ��x) for all j 0 < j.5. Sin
e there is a
hange in the intruder's state at the jth instant, it must bethe
ase that ej is a send event. A further perusal of the proto
ol spe
i�
ationtells us that ej
an only take one of the following forms:(a) (�1; �; 1) with �(x) = ��(x) and �(B) = I.This means that ��(x) 2 NT (ej) but that
annot happen be
ause of theproperty of unique origination. Hen
e this
ase
annot arise at all.(b) (�1; �; 3) with �(y) = ��(x) and �(B) = I.In this
ase it is
lear that there exists ` < j su
h that e` = (�1; �; 2).Suppose �(x) = n and �(y) = m. Then term(e`) = fn;mgpubk�(A). Sin
ee` is a re
eive event, fn;mgpubk�(A) 2 (s`�1)I . It should be noted thatm 2 NT (ei) and term(ei) = f��(A); mgpubk��(B) , and therefore by theunique origination property of �, it is not possible that there is a sendevent e with term(e) = fn;mgpubk�(A) (sin
e m 2 NT (e) would hold inthat
ase). Thus fn;mgpubk�(A) 62 analz((s`�1)I), in parti
ular. But thisterm belongs to (s`�1)I , and hen
e it follows that m 2 (s`�1)I . But thenM; (�; ` � 1) j= I has ��x. Sin
e ` � 1 < j, this is a
ontradi
tion tothe fa
t that j is the least instant in � su
h that M; (�; j) j= I has ��x.Therefore this
ase is also not possible.(
) (�2; �; 2) with (�(y) = ��(x) or �(x) = ��(x)) and �(A) = I.

Chapter 6: Reasoning about se
urity proto
ols 117If �(y) = ��(x) then it means that ��(x) 2 NT (ej) but that
annot happenbe
ause of the property of unique origination. Hen
e it has to be the
asethat �(x) = ��(x).In this
ase it is
lear that there exists ` < j su
h that e` = (�2; �; 1).Suppose �(x) = m. Then term(e`) = fI;mgpubk�(B) . Sin
e e` is a re-
eive event, fI;mgpubk�(B) 2 (s`�1)I . It should be noted that m 2 NT (ei)and term(ei) = f��(A); mgpubk��(B) with ��(A) 2 Ho, and therefore bythe unique origination property of �, it is not possible that there isa send event e with term(e) = fI;mgpubk�(B). Thus fI;mgpubk�(B) 62analz((s`�1)I), in parti
ular. But this term belongs to (s`�1)I, and hen
eit follows that m 2 (s`�1)I . But then M; (�; ` � 1) j= I has ��x. Sin
e`� 1 < j, this is a
ontradi
tion to the fa
t that j is the least instant in� su
h thatM; (�; j) j= I has ��x. Therefore this
ase is also not possible.This
on
ludes the proof that PrNS j=wt se
re
y init .Se
re
y for the responderEven though PrNS 6j=wt se
re
yresp , it
an be shown that the following slightlyweaker guarantee holds for the responder:se
re
y 0resp def= (8�)[(8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)) �G[(��b2 ^ :(��A = I)) � G:I has ��y℄℄:The proof is as before. We assume that PrNS 6j=wt se
re
y 0resp and arrive at a
ontradi
tion. The assumption means that M; (�; 0) 6j= se
re
y 0resp for some M =((Pr; SPrNS;wt); �)
ompatible with se
re
y 0resp , and some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei) for i � k. Also let ei = (�i; �i; lpi), for i � k.Reasoning along the lines of items 1 to 4 in the previous proof, we
an show thatthere exists � 2 AS su
h that M; (�; 0) j= (8�0):(��y = �0 �y ^ �0 �B = I ^ F(�0 �a1)),i � 0 su
h that M; (�; i) j= ��b2 ^:(��A = I) and M; (�; i) j= F(I has ��y), and j > isu
h that M; (�; j) j= I has ��y and M; (�; j 0) j= :(I has ��y) for all j 0 < j.Reasoning along the lines of item 5, we see that ej
an only be one of the followingforms:(a) (�1; �; 1) with �(x) = ��(y) and �(B) = I.It
an be shown that this
ase
annot arise, reasoning along the lines ofitem 5(a) of the previous proof.

Chapter 6: Reasoning about se
urity proto
ols 118(b) (�1; �; 3) with �(y) = ��(y) and �(B) = I.In this
ase it is
lear that there exists ` < j su
h that e` = (�1; �; 1). ThusM; (�; 0) j= (9�0)(��y = �0 �y ^ ��B = I ^ F(�0 �a1)), whi
h is a
ontradi
tionto our assumption. Therefore this
ase
annot arise. Note that this
ase isa
tually the problem with Lowe's atta
k. If it is possible for honest agents toinitiate sessions with the intruder (this is not an improbable situation), thenLowe's atta
k exists. If we rule out this possibility (whi
h is what the extraassumptions in se
re
y 0resp do), then Lowe's atta
k does not exist any more.(
) (�2; �; 2) with (�(y) = ��(y) or �(x) = ��(y)) and �(A) = I.It
an be shown that this
ase
annot arise as well, reasoning along the linesof item 5(
) of the previous proof.Authenti
ation for the initiatorWe now show that PrNS j=wt auth init . Consider some well-typed run � = e1 � � � ekof PrNS. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi) for i � k.Consider a modelM = ((PrNS; SPrNS;wt); �)
ompatible with auth init . We prove belowthat M; (�; 0) j= auth init .1. Suppose now that there exists � 2 AS and i � 0 su
h that M; (�; i) j= ��a2 ^:(��B = I).2. It easily follows that there exists an i0 < i su
h thatM; (�; i0) j= ��a1. Using thefa
t that PrNS j=wt se
re
y init , we
an
on
lude thatM; (�; i0) j= G:(I has ��x).3. Sin
e x 2 NT (�1(1)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��x) for all i00 < i0. Thus we
an
on
lude thatM; (�; 0) j= G:(I has ��x).4. Let ��(A) = C, ��(x) = m and ��(y) = n. Then term(ei) = fm;ngpubkC .Clearly fm;ngpubkC 2 (si�1)I . But sin
e m 62 (si�1)I , it has to be the
asethat there is some send event ej (j < i) with term(ej) = term(ei). But thenej is of the form (�2; �; 2) with �(A) = ��(A), �(x) = ��(x) and �(y) = ��(y).Our proof would be
omplete if we showed that �(B) = ��(B). Suppose�(B) = D. It is
lear that there exists ` < j su
h that e` = (�2; �; 1).Here again term(e`) = fC;mgpubkD . This term belongs to (s`�1)I , but sin
e

Chapter 6: Reasoning about se
urity proto
ols 119m 62 (s`�1)I it follows that there is a send event e`0 with term(e`0) = term(e`).Then it would be the
ase that m 2 NT (e`0), and by the unique originationproperty of �, it follows that i0 = `0. From this it follows that �(B) = ��(B),and we are through.6.3.2 The Needham-S
hroeder-Lowe proto
olThis is a slight modi�
ation of the Needham-S
hroeder proto
ol, with a
orre
-tion proposed by Gavin Lowe. The
hange in this proto
ol is that the responder'sidentity is in
luded in the message sent by the responder.The proto
ol is given by PrNSL = (C; Æ) where C = ; and Æ is the followingsequen
e of
ommuni
ations.1. A ! B : (x) fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. A ! B : fygpubkBThere are two roles in this proto
ol. The initiator role �1 is given below:1. A ! B : (x) fA; xgpubkB2. A ? B : fB; x; ygpubkA3. A ! B : fygpubkBThe responder role �2 is given below:1. B ? A : fA; xgpubkB2. B ! A : (y) fB; x; ygpubkA3. B ? A : fygpubkBAs before, we will use the notation ai to denote �1(i) and bi to denote �2(i), for1 � i � 3.Se
re
y for the initiator and responder, and authenti
ation for the initiator andresponder, are given by the four formulas se
re
y init , se
re
yresp , auth init and authresprespe
tively. These formulas have the same de�nitions as earlier, ex
ept for the
hange in the a
tions a2 and b2. It
an be seen that the atta
k whi
h leads to theviolation of se
re
y resp and authresp does not work anymore, with the addition of theresponder's name in the a
tion b2, but we have to still prove that no other atta
ksare possible.

Chapter 6: Reasoning about se
urity proto
ols 120One
an prove that PrNSL j=wt se
re
y init and PrNSL j=wt auth init in exa
tly thesame manner as before. The ni
e thing is that PrNSL j=wt se
re
yresp also holds now.The proof is exa
tly along the lines of the proof of se
re
y for the initiator in theNeedham-S
hroeder proto
ol.Authenti
ation for responderWe now show that PrNSL j=wt authresp as well. Consider some well-typed run � =e1 � � � ek of PrNSL. Let si denote infstate(e1 � � � ei), for i � k. Also let ei = (�i; �i; lpi)for i � k. Consider a modelM = ((PrNSL; SPrNSL;wt); �)
ompatible with authresp . Weprove below that M; (�; 0) j= authresp .1. Suppose now that there exists � 2 AS and i � 0 su
h that M; (�; i) j= ��b3 ^:(��A = I).2. It easily follows that there exists an i0 < i su
h thatM; (�; i0) j= ��b2. Using thefa
t that PrNS j=wt se
re
yresp , we
an
on
lude thatM; (�; i0) j= G:(I has ��y).3. Sin
e y 2 NT (�2(2)), it follows from the unique origination property of runsthat M; (�; i00) j= :(I has ��y) for all i00 < i0. Thus we
an
on
lude thatM; (�; 0) j= G:(I has ��y).4. Arguing in the lines of item 4 of the proof of authenti
ation for the initiatorin the Needham-S
hroeder proto
ol, we
an show that there exists some j 0 < iand �0 2 AS su
h that M; (�; j 0) j= �0 �a3 ^ �0 �B = ��B ^ �0 �y = ��y. It followsimmediately from this that there exists j < j 0 su
h thatM; (�; j) j= �0 �a2. Nowwe note that ��(B) 6= I, sin
e a
t(ei) 2 A
��(B), and by de�nition ��(B) 2 Ho.Thus M; (�; j) j= :(��B = I). Now we use the fa
t that PrNSL j=wt auth init .Thus there exists �00 2 AS su
h that M; (�; j) j= �0 �A = �00 �A ^ �0 �B =�00 �B ^ �0 �x = �00 �x ^ �0 �y = �00 �y ^ P(�00 �b2). Let ` < j be su
h thatM; (�; `) j= �00 �b2. It is
lear that ��(y) 2 NT (e`). But re
all that ei0 = (�2; ��; 2)and thus ��(y) 2 NT (ei0) as well. By the unique origination of �, it followsthat ` = i0, and thus it also follows that �� = �00� . This proves the desiredresult.

Chapter 6: Reasoning about se
urity proto
ols 1216.4 De
idabilityIn this se
tion we study the veri�
ation problem of the logi
 in di�erent settingsand see that all the unde
idability results and some of the de
idability results whi
hwe saw in the earlier
hapters go through for the logi
 as well.The unde
idability results are easy to show, sin
e the rea
hability property (de-�ned at the end of Chapter 3)
an be trivially expressed in our logi
. Suppose weare given a proto
ol Pr = (C;R), and an a
tion a. Consider the following formula:�rea
h def= :(9�)F(��a):Then it is
lear that Pr 6j=wt �rea
h i� Pr and a form a positive instan
e of therea
hability problem for well-typed runs. From this it follows that the problem of
he
king whether Pr j=wt � is unde
idable. Reasoning on exa
tly the same lines, we
an
on
lude that the problem of
he
king whether Pr j=T � is unde
idable, evenfor �nite T (of some reasonable size | the proof in Se
tion 3.2 requires T to be ofsize at least 6). We summarize the results in the following theorem.Theorem 6.4.1 The problem of
he
king whether Pr j=wt � given a proto
ol Pr anda formula � is unde
idable.For a �xed T � T0 (whi
h might even be �nite), the problem of
he
king whetherPr j=T � given a proto
ol Pr and a formula � is unde
idable.We now prove that the redu
tion to well-typed runs des
ribed in Se
tion 5.1extends to our logi
 as well. In the proof we
ru
ially use the following fa
t provedin Se
tion 5.1, in the proof of Lemma 5.1.9: if � = e1 � � � ek is a run of a weakly-taggedproto
ol, then for all i � k, (si)I \ T0 = (s0i)I \ T0 (where si = infstate(e1 � � � ei)and s0i = infstate((e1)n0 � � � (ei)n0)). We
laim that it
an be proved along the samelines that (si)A \ T0 = (s0i)A \ T0 for all A 2 Ag, provided that n0 is added to all theagents' initial states. We therefore make the assumption that for all proto
ols Prand for all A 2 Ag , n0 2 (init(Pr))A.Lemma 6.4.2 For any �xed T � T0 su
h that n0 2 T , for any weakly tagged proto
olPr = (C; Æ) su
h that C � T , and for any formula � 2 �, Pr j=T � i� Pr j=Twt �.Proof: Fix a set T � T0 su
h that n0 2 T . Fix a weakly tagged proto
ol Pr = (C; Æ)su
h that C � T , and �x a formula �0. Fix a T -run � = e1 � � � ek of Pr with ei =(�i; �i; lpi) for all i : 1 � i � k. Let si = infstate(e1 � � � ei), for i � k. It is
lear that

Chapter 6: Reasoning about se
urity proto
ols 122�n0 = (e1)n0 � � � (ek)n0 is a well-typed T -run. Let us denote infstate((e1)n0 � � � (ei)n0)by (si)n0 , for all i � k. Let A = (Pr; SPr;T) and Awt = (Pr; SPr;wt;T). (Note that wework with only well-typed substitutions in Awt .) For every A-assignment �, let �n0be a map su
h that �n0(�) = (�(�))n0 for all � 2 AS. Sin
e �n0(�) is a well-typedsubstitution for all � 2 AS, it is
lear that �n0 is anAwt -assignment. It is also
learthat a model M = (A; �) is
ompatible with a formula � i� Mn0 = (Awt ; �n0) is
ompatible with �. Throughout the proof we will also use the fa
t that any model
ompatible with � is also
ompatible with any subformula of �.We now prove by indu
tion that for all subformulas � of �0, and for all A-assignments � su
h that M = (A; �) is
ompatible with �, for all A-runs �, and forall instants i in �: M; (�; i) j= � i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��A has �0 �m. Suppose �(�0) = �. Then �n0(�0) =�n0 . Sin
e M is
ompatible with �0, and sin
e ��m 2 ST (�0), it follows thattype(�(m)) = type(m). Hen
e it follows that �(m) = �n0(m) 2 T0. Finallynote that (si)A \ T0 = ((si)n0)A \ T0 (as explained in the dis
ussion pre
edingthis lemma).Now M; (�; i) j= � i� �(m) 2 (si)A \ T0 i� �n0(m) 2 ((si)n0)A \ T0 i�Mn0 ; (�n0; i) j= �.� Suppose � is of the form ��a. Suppose �(�) = �. Then �n0(�) = �n0 . Sin
eM is
ompatible with �0 and sin
e f��m j m 2 ST (a) \ T0g � ST (�0), itfollows that type(�(m)) = type(m) for all m 2 ST (a) \ T0. Hen
e it followsthat �(a) = �n0(a). It also follows that for all j � k, �j(a) = (�j)n0(a).Now M; (�; i) j= � i� �i(lpi) = a and �i(a) = �(a) i� �n0(a) = (�i)n0(a) and�i(lpi) = a i� Mn0 ; (�n0 ; i) j= �.� Suppose � is of the form ��x = �0 �x0. Suppose �(�) = � and �(�0) = �0. Then�n0(�) = �n0 and �n0(�0) = �0n0 . Also note that type(�(x)) = type(x) andtype(�0(x0)) = type(x0). Therefore �n0(x) = �(x) and �0n0(x0) = �0(x0).Now M; (�; i) j=� � i� �(x) = �0(x0) i� �n0(x) = �0n0(x0) i� Mn0 ; (�n0; i) j= �.� Suppose � is of the form :�. NowM; (�; i) j= � i� (by semanti
s)M; (�; i) 6j= �i� (by indu
tion hypothesis)Mn0 ; (�n0; i) 6j= � i� (by semanti
s)Mn0 ; (�n0 ; i) j=�.

Chapter 6: Reasoning about se
urity proto
ols 123� Suppose � is of the form � _
. Now by semanti
s M; (�; i) j= � i�M; (�; i) j=� or M; (�; i) j=
. By indu
tion hypothesis, this happens exa
tly whenMn0 ; (�n0; i) j= � or Mn0 ; (�n0; i) j=
. But by semanti
s this happens exa
tlywhen Mn0 ; (�n0; i) j= �.� Suppose � is of the form F�.If M; (�; i) j= � then (by semanti
s) there exists j � i su
h that M; (�; j) j=�. This implies (by indu
tion hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semanti
s) Mn0 ; (�n0; i) j= �. In a similar manner we
an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form P�.If M; (�; i) j= � then (by semanti
s) there exists j � i su
h that M; (�; j) j=�. This implies (by indu
tion hypothesis) that Mn0 ; (�n0 ; j) j= �. But now(by semanti
s) Mn0 ; (�n0; i) j= �. In a similar manner we
an prove that ifMn0 ; (�n0; i) j= � then M; (�; i) j= �.� Suppose � is of the form (9�)�.If M; (�; i) j= � then (by semanti
s) there exists � 2 SPr;T su
h that M0 =(A; �[� := �℄) is
ompatible with � and M0; (�; i) j= �. This implies (byindu
tion hypothesis) that M0n0 ; (�n0 ; i) j= �. But now it is
lear that �n0 2SPr;wt;T and thus (by semanti
s and the fa
t that M0n0 = (Awt ; �n0 [� := �n0 ℄)),itfollows that Mn0 ; (�n0 ; i) j= �.If Mn0 ; (�n0 ; i) j= � then (by semanti
s) there exists � 2 SPr;wt;T su
h thatM00 = (Awt ; �[� := �℄) is
ompatible with � and M00; (�n0; i) j= �. But �� forall � 2 AS and � are well-typed substitutions, whi
h implies that � = �n0and � = �n0 . Thus, letting M0 = (A; �[� := �℄), we see that M00 = M0n0 .Thus we have that M0n0 ; (�n0 ; i) j= �. By indu
tion hypothesis it follows thatM0; (�; i) j= �. Thus by semanti
s it follows that M; (�; i) j= �.Suppose now that Pr j=Twt � for some formula �. We
laim that Pr j=T � as well.Let A = (Pr; SPr;T) and let � be an A-run. Consider any A-assignment � and letM = (A; �) be
ompatible with �. By what has been proved above M; (�; 0) j= �i� Mn0 ; (�n0 ; 0) j= �. Sin
e Pr j=Twt �, Mn0 ; (�n0; 0) j= �. Therefore M; (�; 0) j= � aswell. Sin
e � is an arbitrary A-run and � is an arbitrary A-assignment, this provesthat Pr j=T �.

Chapter 6: Reasoning about se
urity proto
ols 124Suppose now that Pr j=T � for some formula �. We
laim that Pr j=Twt � aswell. Let A0 = (Pr; SPr;wt;T)and let � be an A0-run. Of
ourse A0 = Awt whereA = (Pr; SPr;T). Further � = �n0 . Let � be a A0-assignment and let M0 = (A0; �)be
ompatible with �. Again it is obvious that � = �n0 and thus M0 = Mn0 whereM = (A; �). By what has been proved above M; (�; 0) j= � i� Mn0 ; (�n0; 0) j= �.Sin
e Pr j=T �, M; (�; 0) j= �. Therefore it follows that Mn0 ; (�; 0) j= � as well.Sin
e � is an arbitrary A0-run and � is an arbitrary A0-assignment, this proves thatPr j=Twt �.This
ompletes the proof of the lemma. 2The above lemma shows that on
e we �x a T � T0, it suÆ
es to
onsider well-typed T runs of any given proto
ol. Of
ourse, if we �x a �nite T � T0, then forany proto
ol Pr, there are only �nite many well-typed T -events. But there mightstill be in�nitely many well-typed T -runs of Pr, sin
e the same event may repeatmany times in a run. To get de
idability in su
h a setting, we show that for everyproto
ol Pr and formula �, there is a �nite-state automaton APr;� with alphabetEvents(Pr) su
h that � 2 L (APr;�) i� there is some (Pr; SPr;wt;T)-assignment � su
hthat M = ((Pr; SPr;wt;T); �) is
ompatible with � and M; (�; 0) j= �.We now �x a �nite set T � T0, a weakly tagged proto
ol Pr (and therefore thestru
ture A0 = (Pr; SPr;wt;T)), and a formula �0 for the rest of the se
tion, and takeup the
onstru
tion of the automaton APr;�0 . As observed earlier, given a stru
tureA and a formula �, to see whether A j= �, it suÆ
es to
onsider A-assignmentsrestri
ted to FSN (�). In the
ase of A0, we need to
onsider only �nitely many su
hA0-assignments (sin
e SPr;wt;T and FSN (�0) are �nite sets, whose sizes depend onlyon the sizes of Pr, �0 and T). For the rest of the se
tion we assume that �1; : : : ; �r isan enumeration of all the A0-assignments � restri
ted to FSN (�0) su
h that (A0; �)is
ompatible with �0. We let Mi = (A0; �i), for all i � r.Let SF denote SF (�0). We de�ne :SF to be the set f� j :� 2 SFg[f:� j � 2SF and � is not of the form :�g. We de�ne CL to be SF [:SF .An atom 	 is any subset of CL whi
h satis�es the following
onditions:� for all :� 2 CL, :� 2 	 i� � 62 	;� for all � _ � 2 CL, � _ � 2 	 i� � 2 	 or � 2 	;� for all F� 2 CL, if � 2 	 then F� 2 	;

Chapter 6: Reasoning about se
urity proto
ols 125� for all P� 2 CL, if � 2 	 then P� 2 	.Given two atoms 	1 and 	2, we say that 	1�!	2 i�:� for all F� 2 CL:{ if F� 2 	2 then F� 2 	1, and{ if F� 2 	1 and � 62 	1 then F� 2 	2;� for all P� 2 CL:{ if P� 2 	1 then P� 2 	2, and{ if P� 2 	2 and � 62 	2 then P� 2 	1.An atom 	1 is an initial atom i�:� for all P� 2 CL, if P� 2 	 then � 2 	, and� for all formula � 2 CL of the form ��a, � 62 	.(The last
lause re
e
ts the fa
t that a formula of the form ��a is true only at positiveinstants.)An atom 	1 is a �nal atom i� for all F� 2 CL, if F� 2 	 then � 2 	.For i; j � r and � 2 FSN (�0), we say that �i and �j are �-variants if for all�0 2 FSN (�0) su
h that �0 6= �: �i(�0) = �j(�0).A mole
ule is a tuple of the form (�;	1; � � � ;	r) su
h that:� � is a redu
ed well-typed T -run of Pr;� for all i � r, 	i is an atom su
h that for all atomi
 formulas � 2 CL of theform ��A has �0 �m and ��x = �0 �x0: � 2 	i i� Mi; (�; j�j) j= �;� for all i � r and for all (9�)� 2 CL, (9�)� 2 	i i� there exists j � r su
h that�i and �j are �-variants and � 2 	j.Note that sin
e there are only �nitely many redu
ed well-typed T -runs of Pr,and sin
e CL is a �nite set, there are only �nitely many mole
ules. We denote theset of mole
ules by M .Given two mole
ules � = (�;	1; � � � ;	r) and �0 = (�0;	01; � � � ;	0r), and an evente 2 Events(Pr), we say that � e�!�0 i�:

Chapter 6: Reasoning about se
urity proto
ols 126� �0 = red(� � e);� for all i � r, 	i�!	0i;� for all i � r and all atomi
 formulas � 2 CL of the form ��a, � 2 	0i i�Mi; (� � e; j� � ej) j= �.A mole
ule � = (�;	1; � � � ;	r) is said to be an initial mole
ule i�:� � = ",� for all i � r, 	i is an initial atom, and� there exists i � r su
h that �0 2 	i.The set of initial mole
ules is denoted by I .A mole
ule � = (�;	1; � � � ;	r) is said to be a �nal mole
ule i� for all i � r, 	iis a �nal atom. The set of �nal mole
ules is denoted by F .We are now all set to de�ne the automaton.De�nition 6.4.3 (The automaton APr;�0) The automaton APr;�0 is given by thetuple (M ;�!;I ;F) where:� M , the set of mole
ules, forms the �nite set of states of the automaton,� The relation �! de�ned on mole
ules forms the transition relation of theautomaton, and� I forms the set of initial states and F forms the set of �nal states of theautomaton.An a

epting run of the automaton on a sequen
e � = e1 � � � ek from (Events(Pr))�is a sequen
e of mole
ules �0 � � ��k su
h that:� �0 is an initial mole
ule and �k is a �nal mole
ule, and� for all i : 1 � i � k, �i�1 ei�!�i.The language a

epted by APr;�0 , denoted L (APr;�0) is the set of � 2 (Events(Pr))�su
h that there is an a

epting run of the automaton on �.The following te
hni
al lemma shows the
orre
tness of the automaton
onstru
-tion and immediately implies Theorem 6.4.5.

Chapter 6: Reasoning about se
urity proto
ols 127Lemma 6.4.4 For any sequen
e � 2 (Events(Pr))�, � 2 L (APr;�0) i� � is an A0-run and there exists i � r su
h that Mi; (�; 0) j= �0.Proof: Fix a � = e0 � � � ek 2 (Events(Pr))�. For all j � k, let �j denote e1 � � � ej.()) :We �rst prove that if � is in the language of the automaton then � is a run of Pr andfor some i � r, Mi; (�; 0) j= �. Suppose � 2 L (APr;�0). This means that there is ana

epting run of the automaton of the form �0 � � ��k. Let �j = (�j;	j1; � � � ;	jr), forall j � k.Claim: � is an A0-run.Proof of Claim: We now prove that for all j � k, �j = red(�j). From this itwould follow that red(�) = �k, and sin
e �k is a run, it is easy to see that � isa run as well.Sin
e �0 = �0 = ", red(�0) = �0. Suppose �j�1 = redj�1 for some j : 1 � j � k.Now �j = �j�1 � ej. But sin
e �j�1 ej�!�j, it follows from the de�nitions that�j = red(�j�1 � ej). But it is an easy
onsequen
e of the de�nition of red thatred(� � e) = red(red(�) � e), and from this it follows that red(�j) = �j. This
ompletes the indu
tion step and the proof of the
laim as well.Claim: Mi; (�; 0) j= �0 for some i � r.Proof of Claim: We now prove that for all j � k, all � 2 CL and all i � r,� 2 	ji i�Mi; (�; j) j= �. Sin
e �0 is an initial mole
ule, by de�nition �0 2 	0ifor some i � r, and it immediately follows that Mi; (�; 0) j= �0.Fix j � k and i � r. We prove by indu
tion on the stru
ture of formulas that� 2 	ji i� Mi; (�; j) j= �.� If � is of the form ��A has �0 �m or ��x = �0 �x0 then it follows from thede�nition of mole
ules that � 2 	ji i� Mi; (�j; j�jj) j= �. But sin
e �j =red(�j), it follows that infstate(�j) = infstate(�j). It now immediatelyfollows that � 2 	ji i� Mi; (�; j) j= �.� Suppose � is of the form ��a. If j = 0 then it follows from the semanti
sthat Mi; (�; j) 6j= �, and it follows from the de�nition of initial atomsthat � 62 	ji . If j � 1, then it follows from �j�1 ej�!�j that � 2 	ji i�Mi; (�j�1 � ej; j�j�1 � ejj) j= �. But the semanti
s of a formula of this kind

Chapter 6: Reasoning about se
urity proto
ols 128depends only on the last event ej and not on the other events in �j. Itthus immediately follows that � 2 	ji i� Mi; (�; j) j= �.� The boolean
ases are handled by a routine appli
ation of the indu
tionhypothesis, using the fa
t that atoms are propositionally
onsistent.� Suppose � is of the form F�. We prove by indu
tion on k�j that if � 2 	jithen Mi; (�; j) j= �. Suppose � = F� 2 	ki . Then by de�nition of �nalatom, � 2 	ki . By indu
tion hypothesis (on the formulas)Mi; (�; k) j= �,and hen
e Mi; (�; k) j= �. Suppose j < k and � 2 	ji . If � 2 	ji ,then by indu
tion hypothesis (on the formulas) Mi; (�; j) j= � and hen
eMi; (�; j) j= �. If � 62 	ji , then sin
e 	ji�!	j+1i , it follows that � 2 	j+1i .By indu
tion hypothesis (on k� j), it follows thatMi; (�; j+1) j= �, andhen
e Mi; (�; j) j= � as well.We now prove by indu
tion on k � j that if Mi; (�; j) j= � then � 2 	ji .If Mi; (�; k) j= �, then by semanti
s Mi; (�; k) j= � as well. Thereforeby indu
tion hypothesis (on formulas), it follows that � 2 	ki , and byde�nition of atoms it follows that � 2 	ki as well. Suppose j < k andMi; (�; j) j= �. IfMi; (�; j) j= � then � 2 	ji (by indu
tion hypothesis onformulas). It follows from the de�nition of atoms that � 2 	ji as well. IfMi; (�; j) 6j= � then Mi; (�; j+1) j= � and hen
e by indu
tion hypothesison k� j, � 2 	j+1i . Sin
e 	ji�!	j+1i , it follows from the de�nitions that� 2 	ji as well.� The
ase when � is of the form P� is handled similarly as above.� Suppose � is of the form (9�)�. Then � 2 	ji i� (by de�nition ofmole
ules) there is i0 � r su
h that �i and �i0 are �-variants and � 2 	ji0 i�(by indu
tion hypothesis) there is i0 � r su
h that �i and �i0 are �-variantsand Mi0; (�; j) j= � i� (by semanti
s) Mi; (�; j) j= �.(() :We now prove that if � is an A0-run and Mi; (�; 0) j= �0 for some i � r, then� 2 L (APr;�0). For all i � r and j � k, let 	ji = f� 2 CL j Mi; (�; j) j= �g. Forall j � k, let �j = red(�j). Let �j = (�j;	j1; � � � ;	jr). We
laim that �0 � � ��k is ana

epting run of APr;�0 on the sequen
e �.It is straightforward to
he
k that for all i � r and j � k, 	ji is an atom. Furtherfrom the fa
t that � is a run, �j is a redu
ed run for all j � k. It now follows by

Chapter 6: Reasoning about se
urity proto
ols 129the semanti
s that �j is a mole
ule for all j � k. From the semanti
s it also followsthat �j�1 ej�!�j for all j : 1 � j � k, and it also follows that �0 is an initial mole
uleand �k is a �nal mole
ule. Thus �0 � � ��k is an a

epting run of the automaton on�. Therefore � 2 L (APr;�0).This
ompletes the proof of the lemma. 2Thus we see that
he
king whether Pr j=Twt �0 redu
es to
he
king whetherL (APr;:�0) is empty. Sin
e the emptiness problem for �nite state automata isde
idable, it follows that
he
king whether Pr j=Twt � is de
idable. This
oupledwith Lemma 6.4.2 yields the following theorem, the main te
hni
al result of this
hapter.Theorem 6.4.5 For a �xed �nite T � T0, the problem of
he
king whether Pr j=T �given a weakly tagged proto
ol and a formula � is de
idable.

Chapter 7
Con
lusions

We summarise the work done in the thesis below:� We introdu
ed a model for se
urity proto
ols in Chapter 2, where we high-lighted the role of properties like send admissibility in analysis of proto
ols. Wealso introdu
ed the important notions of well-formed proto
ols and tagged pro-to
ols, and proved some important
onsequen
es of our tagging s
heme. Wealso looked at important properties of the synth and analz operators.� We gave proofs of the unde
idability of the se
re
y problem, both under thesetting of unboundedly many non
es but bounded message length, and bound-edly many non
es but unbounded message length, in Chapter 3. We providedsimple and uniform proofs for both the resuts.� In Chapter 4, we proved that the se
re
y problem for tagged proto
ols isde
idable, when we
onsider only well-typed runs. We also saw a de
isionpro
edure for solving the problem with a double exponential upper bound (interms of the number of
ommuni
ations in the proto
ol spe
i�
ation).� In Chapter 5, we proved that for weakly tagged proto
ols, presen
e of a leakyrun implies the presen
e of a well-typed leaky run. We derived the fa
t thatthe general se
re
y problem for tagged proto
ols is de
idable as a
onsequen
eof the above result. We also looked at a semanti
 approa
h to de
idabilitybased on an equivalen
e relation on terms.130

Chapter 7: Con
lusions 131� In Chapter 6, we introdu
ed a logi
 using whi
h we
ould express many in-teresting se
urity properties. We saw many examples of reasoning using thelogi
. We then extended some of the results of Chapter 5 to the logi
.Future dire
tionsThe most immediate improvement over the work in this thesis involves extendingthe de
idability result in Chapter 4 to
over other notions of se
re
y and authenti
a-tion. We feel that obtaining a de
idable logi
 in the presen
e of unbounded non
eswill be a signi�
ant result and that it will provide signi�
ant insight into the natureof the problem itself. We believe that su
h a result is eminently possible, if the logi
itself does not for
e unde
idability. This is be
ause the unde
idability results haveto do with the inherent power of proto
ols to
ode up
omputations and do nothave mu
h to do with the properties we are
he
king for. Sin
e the well-formedness
onditions and other restri
tions on tagged proto
ols restri
t the intruder's powerto
ode up su
h
omputations, we believe that the de
idability result will extend tothe logi
. But more insight needs to be developed before we
an ta
kle the problemformally.Another important dire
tion of work is to
onvert the de
ision pro
edure ofChapter 4 into a pra
ti
al veri�
ation algorithm whi
h is eÆ
ient in pra
ti
e. It ispossible that some notions introdu
ed in Chapter 6 like abstra
t substitution namesmight be of help in this endeavour.Mu
h more work needs to be done on formal reasoning about proto
ols. Theexamples whi
h we presented in Chapter 6 involved semanti
 reasoning. In futurework, we aim to formalise this pro
ess by introdu
ing axioms and (probably proto
ol-spe
i�
) rules using whi
h we
an
arry out the reasoning in the logi
. There arefurther interseting te
hni
al questions like formally
hara
terising
lasses of proto
olsin the logi
, various axiomatisability questions, de
idability of satis�ability et
.An important extension would involve extending some of the features of ourbasi
 model. The most important of these is to
onsider
onstru
ted keys. In thepresen
e of
onstru
ted keys, synth(analz(T)) no longer represents the
losure ofthe set of terms T . For instan
e, letting T = ffmgfngk ; n; kg, m does not belongto synth(analz(T)) but (on
e we set up the synth and analz-rules for
onstru
tedkeys properly) it
an be seen that fngk belongs to synth(T) and that m belongs to

Chapter 7: Con
lusions 132analz(synth(T)). The usual style in su
h a setting is to use a
ombined proof systemwhi
h in
orporate both synthesis and analysis rules. Several of our proofs have to bemodi�ed
onsiderably in this new setting. We believe that the results of Chapter 5
an be easily extended in this new setting as well. But the redu
tion to good runshas to be reworked to an extent. The key to proving these results would be to derivesome normal forms for these new proofs.We hope that the ideas and results presented in this thesis will form a basisfor further improvements and eventually �nd their use in pra
ti
al veri�
ation ofse
urity proto
ols.

Publi
ations
[RS01℄ R. Ramanujam and S.P. Suresh. Information based reasoning about se
urityproto
ols In Pro
eedings of LACPV'01 (Logi
al Aspe
ts of Cryptographi
 Proto
olVeri�
ation), volume 56 of Ele
troni
 Notes in Theoreti
al Computer S
ien
e,pages 89{104, 2001.[RS03a℄ R. Ramanujam and S.P. Suresh. A de
idable sub
lass of unbounded se
urityproto
ols In Roberto Gorrieri, editor, Pro
eedings of WITS'03 (Workshop onIssues in the Theory of Se
urity), pages 11{20, Warsaw, Poland, April 2003.[RS03b℄ R. Ramanujam and S.P. Suresh. An equivalen
e on terms for se
urityproto
ols In Ramesh Bharadwaj, editor, Pro
eedings of AVIS'03 (Workshop onAutomati
 Veri�
ation of In�nite-State Systems), pages 45{56, Warsaw, Poland,April 2003.[RS03
℄ R. Ramanujam and S.P. Suresh. Tagging makes se
re
y de
idable for un-bounded non
es as well In Pro
eedings of 23rd FST&TCS, Mumbai, India, De-
ember 2003. To appear.

133

Bibliography
[Aba99℄ Martin Abadi. Se
re
y by Typing in Se
urity Proto
ols. Journal of theACM, 46(5):749{786, 1999.[ABV02℄ Rafael A

orsi, David Basin, and Lu
a Vigan�o. Modal Spe
i�
ations ofTra
e-Based Se
urity Properties. In Klaus Fis
her and Dieter Hutter,editors, Pro
eedings of the Se
ond International Workshop on Se
urityof Mobile Multiagent Systems, pages 1{11, July 2002.[AC02℄ Roberto M. Amadio and Witold Charatonik. On name generation andset-based analysis in Dolev-Yao model. Te
hni
al Report 4379, IN-RIA, January 2002. Extended abstra
t in Pro
eedings of CONCUR'02,Springer-Le
ture Notes in Computer S
ien
e 2421, pages 499{514, 2002.[AFG02℄ Martin Abadi, C�edri
 Fournet, and Georges Gonthier. Se
ure Imple-mentation of Channel Abstra
tions. Information and Computation,174(1):37{83, April 2002.[AG98℄ Martin Abadi and Andrew D. Gordon. A BisimulationMethod for Cryp-tographi
 Proto
ols. Nordi
 Journal of Computing, 5(4):267{303, 1998.[AG99℄ Martin Abadi and Andrew D. Gordon. A
al
ulus for
ryptographi
proto
ols: the spi
al
ulus. Information and Computation, 148(1):1{70,1999.[ALV02℄ Roberto M. Amadio, Denis Lugiez, and Vin
ent Vana
k�ere. On the sym-boli
 redu
tion of pro
esses with
ryptographi
 fun
tions. Theoreti
alComputer S
ien
e, 290(1):695{740, 2002. Also INRIA Resear
h Report4147, Mar
h 2001. 134

Bibliography 135[AN95℄ Ross Anderson and Roger M. Needham. Programming Satan's
om-puter. In Computer S
ien
e Today, volume 1000 of Le
ture Notes inComputer S
ien
e, pages 426{441, 1995.[AN96℄ Martin Abadi and Roger M. Needham. Prudent engineering pra
ti
es for
ryptographi
 proto
ols. IEEE Transa
tions on Software Engineering,22:6{15, 1996.[AR00℄ Martin Abadi and Phillip Rogaway. Re
on
iling two views of
ryptogra-phy (the
omputational soundness of formal en
ryption). In Pro
eedingsof the IFIP International Conferen
e on TCS (IFIP TCS2000), volume1872 of Le
ture Notes in Computer S
ien
e, pages 3{22, 2000.[AT91℄ Martin Abadi and Mark Tuttle. A Semanti
s for a Logi
 of Authenti
a-tion. In Pro
eedings of the Tenth Annual ACM Symposium on Prin
iplesof Distributed Computing, pages 201{216, August 1991.[BAN90℄ Mi
hael Burrows, Martin Abadi, and Roger M. Needham. A logi
 ofauthenti
ation. ACM Transa
tions on Computer Systems, 8(1):18{36,Feb 1990.[Bel99℄ Giampaolo Bella. Modelling Se
urity Proto
ols Based on Smart Cards.In Pro
eedings of the International Workshop on Cryptographi
 Te
h-niques & E-Commer
e, pages 139{146, 1999.[Bie90℄ Pierre Bieber. A logi
 of
ommuni
ation in a hostile environment. InPro
eedings of 3rd Computer Se
urity Foundations Workshop, pages 14{22. IEEE Press, 1990.[BL73℄ David E. Bell and Leonard J. LaPadula. Se
ure
omputer systems:Mathemati
al foundations and model. Te
hni
al Report M74-244,MITRE Corporation, Bedford, Massa
hussets, 1973.[BM93℄ Colin Boyd and Wenbo Mao. On a limitation of BAN logi
. In Pro
eed-ings of Euro
rypt'93, Le
ture Notes in Computer S
ien
e, pages 240{247, 1993.

Bibliography 136[Bol97℄ Dominique Bolignano. Towards a me
hanization of
ryptographi
 pro-to
ol veri�
ation. In Pro
eedings of CAV'97, volume 1254 of Le
tureNotes in Computer S
ien
e, pages 131{142, 1997.[BP03℄ Bruno Blan
het and Andreas Podelski. Veri�
ation of Cryptographi
Proto
ols: Tagging Enfor
es Termination. In Andrew D. Gordon, editor,Pro
eedings of FoSSaCS'03, volume 2620 of Le
ture Notes in ComputerS
ien
e, pages 136{152, 2003.[BR93℄ Mihir Bellare and Phillip Rogaway. Entity authenti
ation and key dis-tribution. In D. Stinson, editor, Advan
es in Cryptography-Crypto93,volume 773 of Le
ture Notes in Computer S
ien
e, pages 232{249, 1993.[CC03℄ Hubert Comon and V�eronique Cortier. Tree automata with one mem-ory, set
onstraints, and
ryptographi
 proto
ols. Theoreti
al ComputerS
ien
e, 2003. To appear.[CCM01℄ Hubert Comon, V�eronique Cortier, and John C. Mit
hell. Tree automatawith One Memory, Set Constraints, and Ping-Pong Proto
ols. In Pro-
eedings of ICALP 2001, volume 2076 of Le
ture Notes in ComputerS
ien
e, pages 682{693, 2001.[CDL+99℄ Iliano Cervesato, Nan
y A. Durgin, Patri
k D. Lin
oln, John C. Mit
hell,and Andre S
edrov. A Meta-notation for Proto
ol Analysis. In P. Syver-son, editor, Pro
eedings of the 12th IEEE Computer Se
urity Founda-tions Workshop, pages 35{51. IEEE Computer So
iety Press, 1999.[CJ97℄ John Clark and Jeremy Ja
ob. A survey of authenti
ation proto
olliterature. Available at http://www.
s.york.a
.uk./�ja
, 1997.[CMS00℄ Iliano Cervesato, Catherine A. Meadows, and Paul F. Syverson. Dolev-Yao is no better than Ma
hiavelli. In P. Degano, editor, Pro
eedings ofWITS'00, pages 87{92, July 2000.[CS02℄ Hubert Comon and Vitaly Shmatikov. Is it possible to de
ide whether a
ryptographi
 proto
ol is se
ure or not? Journal of Tele
ommuni
ationsand Information Te
hnology, 4:5{15, 2002.

Bibliography 137[DEK82℄ Danny Dolev, Shimon Even, and Ri
hard M. Karp. On the Se
urity ofPing-Pong Proto
ols. Information and Control, 55:57{68, 1982.[Den77℄ Dorothy E. Denning. A latti
e model of se
ure information
ow. Com-muni
ations of the ACM, 19(5):236{243, May 1977.[DH76℄ Whit�eld DiÆe and Martin E. Hellman. New Dire
tions in Cryptog-raphy. IEEE Transa
tions on Information Theory, IT-22(6):644{654,November 1976.[DLMS99℄ Nan
y A. Durgin, Patri
k D. Lin
oln, John C. Mit
hell, and Andre S
e-drov. The unde
idability of bounded se
urity proto
ols. In Pro
eedingsof the Workshop on Formal Methods and Se
urity Proto
ols (FMSP'99),1999.[DM99℄ Nan
y A. Durgin and John C. Mit
hell. Analysis of se
urity proto
ols.In Cal
ulational System Design, volume 173 of Series F: Computer andSystem S
ien
es, pages 369{395. IOS Press, 1999.[DMTY97℄ Mourad Debbabi, Mohamed Mejri, Nadia Tawbi, and Imed Yahmadi.Formal automati
 veri�
ation of authenti
ation proto
ols. In Pro
eed-ings of the First IEEE International Conferen
e on Formal EngineeringMethods (ICFEM97), pages 50{59. IEEE Press, 1997.[DS81℄ Dorothy E. Denning and Giovanni M. Sa

o. Timestamps in Key Distri-bution Proto
ols. Communi
ations of the ACM, 24(8):533{536, August1981.[DY83℄ Danny Dolev and Andrew Yao. On the Se
urity of publi
-key proto
ols.IEEE Transa
tions on Information Theory, 29:198{208, 1983.[FHG99℄ F. Javier Thayer F�abrega, Jonathan Herzog, and Joshua Guttman.Strand Spa
es: Proving Se
urity Proto
ols Corre
t. Journal of Com-puter Se
urity, 7:191{230, 1999.[GL00℄ Jean Goubault Larre
q. A method for automati

ryptographi
 proto
olveri�
ation. In Pro
eedings of the 15th IPDPS Workshops 2000, volume1800 of Le
ture Notes in Computer S
ien
e, pages 977{984, 2000.

Bibliography 138[GM82℄ Joseph Goguen and Jos�e Meseguer. Se
urity poli
ies and se
urity mod-els. In Pro
eedings of the 1982 IEEE Symposium on Resear
h in Se
urityand Priva
y, pages 11{20. IEEE Computer So
iety Press, 1982.[GNY90℄ Li Gong, Roger Needham, and Raphael Yahalom. Reasoning AboutBelief in Cryptographi
 Proto
ols. In Deborah Cooper and Teresa Lunt,editors, Pro
eedings 1990 IEEE Symposium on Resear
h in Se
urity andPriva
y, pages 234{248. IEEE Computer So
iety, 1990.[Gol99℄ Dieter Gollmann. Computer Se
urity. John Wiley & Sons Ltd., 1999.[Her02℄ Jonathan Herzog. Computational soundness for formal adversaries.Master's thesis, Massa
hussets Institute of Te
hnology, O
tober 2002.[Her03℄ Jonathan Herzog. A Computational Interpretation of Dolev-Yao Adver-saries. In R. Gorrieri, editor, Pro
eedings of WITS'03, pages 146{155,April 2003.[HLS00℄ James Heather, Gavin Lowe, and Steve S
hneider. How to Prevent TypeFlaw Atta
ks on Se
urity Proto
ols. In Pro
eedings of the 13th IEEEComputer Se
urity Foundations Workshop (CSFW 13), pages 255{268,July 2000.[HRU76℄ Mi
hael Harrison, Walter Ruzzo, and Je�rey Ullman. Prote
tion inoperating systems. Communi
ations of the ACM, 19(8):461{471, 1976.[HT96℄ Nevin Heintze and Doug Tygar. A model for se
ure proto
ols and their
omposition. IEEE Transa
tions on Software Engineering, 22:16{30,1996.[KW96℄ Darrell Kindred and Jeannette Wing. Fast, automati

he
king of se-
urity proto
ols. In Pro
eedings of the 2nd USENIX workshop on e-
ommer
e, pages 41{52, 1996.[Lam73℄ Butler W. Lampson. A note on the
on�nement problem. Communi
a-tions of the ACM, 16(10):613{615, O
tober 1973.[Lam74℄ Butler W. Lampson. Prote
tion. ACM Operating Systems Review,8(1):18{24, 1974.

Bibliography 139[LJ00℄ K. Rustan M. Leino and Rajeev Joshi. A Semanti
 Approa
h to Se
ureInformation Flow. S
ien
e of Computer Programming, 37(1{3):113{138,2000.[Low96℄ Gavin Lowe. Breaking and �xing the Needham-S
hroeder publi
 keyproto
ol using FDR. In Pro
eedings of TACAS'96, volume 1055 of Le
-ture Notes in Computer S
ien
e, pages 147{166, 1996.[Low99℄ Gavin Lowe. Towards a
ompleteness result for model
he
king of se
u-rity proto
ols. Journal of
omputer se
urity, 7:89{146, 1999.[LR97℄ Gavin Lowe and Bill Ros
oe. Using CSP to dete
t errors in the TMNproto
ol. IEEE Transa
tions of Software Engineering, 23(10):659{669,1997.[M
L94℄ John M
Lean. Se
urity models. In John Mar
iniak, editor, En
y
lopediaof Software Engineering. Wiley & Sons In
., 1994.[Mea95℄ Catherine A. Meadows. Formal Veri�
ation of Cryptographi
 Proto
ols:(A Survey). In Asia
rypt '94, volume 917 of Le
ture Notes in ComputerS
ien
e, pages 133{150, 1995.[Mea96a℄ Catherine A. Meadows. Analyzing the Needham-S
hroeder publi
-keyproto
ol. In E. Bertino, H. Kurth, G. Martella, and E. Montolivo, edi-tors, ESORICS'96, volume 1146 of Le
ture Notes in Computer S
ien
e,pages 351{364, 1996.[Mea96b℄ Catherine A. Meadows. The NRL Proto
ol Analyzer: An overview.Journal of Logi
 Programming, 26(2):113{131, 1996.[MMS97℄ John C. Mit
hell, Mark Mit
hell, and Ulri
h Stern. Automated analysisof
ryptographi
 proto
ols using Mur'. In Pro
eedings of the IEEESymposium on Se
urity and Priva
y, pages 141{153, 1997.[Mon99℄ David Monniaux. Abstra
ting
ryptographi
 proto
ols with tree au-tomata. In Stati
 analysis symposium, volume 1694 of Le
ture Notes inComputer S
ien
e, pages 149{163, 1999.

Bibliography 140[MPW92℄ Robin Milner, Joa
him Parrow, and David Walker. A
al
ulus of mobilepro
esses: parts I and II. Information and Computation, 100(1):1{77,1992.[MS01℄ Jonathan K. Millen and Vitaly Shmatikov. Constraint solving forbounded-pro
ess
ryptographi
 proto
ol analysis. In ACM Conferen
eon Computer and Communi
ations Se
urity, pages 166{175, 2001.[Nes90℄ D. M. Nessett. A
ritique of the Burrows, Abadi and Needham logi
.ACM Operating systems review, 24(2):35{38, 1990.[NS78℄ Roger M. Needham and Mi
hael D. S
hroeder. Using En
ryption forAuthenti
ation in Large Networks of Computers. Communi
ations ofthe ACM, 21(12):993{999, 1978.[Pau98℄ Lawren
e C. Paulson. The indu
tive approa
h to verifying
ryptographi
proto
ols. Journal of
omputer se
urity, 6:85{128, 1998.[RS01℄ R. Ramanujam and S.P. Suresh. Information based reasoning about se-
urity proto
ols. In LACPV'01 (Logi
al Aspe
ts of Cryptographi
 Proto-
ol Veri�
ation), volume 56 of Ele
troni
 Notes in Theoreti
al ComputerS
ien
e, pages 89{104, 2001.[RS03a℄ R. Ramanujam and S.P. Suresh. A de
idable sub
lass of unboundedse
urity proto
ols. In Roberto Gorrieri, editor, Pro
eedings of WITS'03,pages 11{20, Poland, Warsaw, April 2003.[RS03b℄ R. Ramanujam and S.P. Suresh. An equivalen
e on terms for se
urityproto
ols. In Ramesh Bharadwaj, editor, Pro
eedings of AVIS'03, pages45{56, Poland, Warsaw, April 2003.[RS03
℄ R. Ramanujam and S.P. Suresh. Tagging makes se
re
y de
idable forunbounded non
es as well. In Pro
eedings of 23rd FST&TCS, Mumbai,India, De
ember 2003. To appear.[RSA78℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adelman. A Methodfor Obtaining Digital Signatures and Publi
-key Cryptosystems. Com-muni
ations of the ACM, 21(2):120{126, February 1978.

Bibliography 141[RT03℄ Mi
ha�el Rusinowit
h and Mathieu Turuani. Proto
ol Inse
urity withFinite Number of Sessions and Composed Keys is NP-
omplete. Theo-reti
al Computer S
ien
e, 299:451{475, 2003.[SBP01℄ Dawn Xiaodong Song, Sergey Berezin, and Adrian Perrig. Athena:A Novel Approa
h to EÆ
ient Automati
 Se
urity Proto
ol Analysis.Journal of Computer Se
urity, 9(1/2):47{74, 2001.[SC01℄ Paul F. Syverson and Iliano Cervesato. The logi
 of authenti
ation pro-to
ols. In Ri
ardo Fo
ardi and Roberto Gorrieri, editors, Foundationsof Se
urity Analysis and Design, volume 2171 of Le
ture Notes in Com-puter S
ien
e, pages 63{106, 2001.[S
h96a℄ Steve S
hneider. Se
urity properties and CSP. In Pro
eedings of theIEEE Computer So
iety Symposium on Se
urity and Priva
y, pages 174{187, 1996.[S
h96b℄ Bru
e S
hneier. Applied Cryptography. John Wiley & Sons, se
ondedition, 1996.[S
h98℄ Steve S
hneider. Verifying Authenti
ation Proto
ols in CSP. IEEETransa
tions on Software Engineering, 24(9):741{758, 1998.[Sto02℄ S
ott D. Stoller. A Bound on Atta
ks on Authenti
ation Proto
ols.In Pro
eedings of the 2nd IFIP International Conferen
e on Theoreti
alComputer S
ien
e, pages 588{600, 2002. An extended version appearedas Indiana University, CS Dept., Te
hni
al Report 526, July 1999 (re-vised January 2001).[SvO94℄ Paul F. Syverson and P.C. van Oors
hot. On unifying some
rypto-graphi
 proto
ol logi
s. In Pro
eedings of the 13th IEEE Symposium onse
urity and priva
y, pages 14{28. IEEE Press, 1994.[VSI96℄ Dennis Volpano, Geo�rey Smith, and Cynthia Irvine. A sound typesystem for se
ure
ow analysis. Journal of Computer Se
urity, 4(3):1{21, 1996.

