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Abstract

In this thesis, we study one of the central problems in the automatic verification
of security protocols, that of verifying whether a given protocol leaks secrets or not.
The central work in the thesis identifies syntactic subclasses of protocols for which
the secrecy problem is decidable. The other work in the thesis concerns reasoning
about protocols. We introduce a logic using which interesting properties of protocols
can be specified and reasoned about.

We start the study by setting up a formal model of security protocols, and
proving several important properties about the model. Of particular importance
are the properties relating to synth and analz proofs, which formalise the way the
agents running a protocol derive new information from old.

We then consider the general secrecy problem and show that it is undecidable
both when the set of nonces is infinite (a result first proved in [DLMS99]) and
when the length of messages is unbounded (a result proved in [HT96]). We provide
relatively simple and uniform proofs for both these results.

We then consider the secrecy problem in the setting of infinitely many nonces but
bounded message length. We prove that for a certain syntactic subclass of protocols
called tagged protocols, the secrecy problem in this setting is decidable.

We then prove that a tagged protocol has a leaky run (a run that leaks a secret)
iff it has a leaky run containing only bounded length messages. This enables us to
prove that the secrecy problem for tagged protocols is decidable even in the setting
where both message length and number of nonces is unbounded.

We finally look at reasoning about security protocols. We define a logic in which
we can easily specify several interesting security properties like secrecy, authenticity,
etc. We also show some examples which illustrate how to reason about protocols.
We then extend some of the undecidability and decidability results of the earlier

chapters to the verification problem of the logic.
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Chapter 1

Introduction

1.1 Background

Computer security has come to occupy an increasingly central place in our lives
over the past twenty years. This has been a direct result of the enormous increase
in the development and use of networked and distributed systems over this period.
Financial transactions on the Internet is gaining currency now. Distributed financial
transactions — even if they are in the simple form of withdrawing money from an
ATM — have become part of many peoples’ lives today. Even more pervasive is the
routine use of electronic mail (which is sometimes even used to share confidential in-
formation). The consequences of a misuse of such systems are potentially disastrous.
This places a high premium on ensuring that such systems are not misused.

Security can basically be considered as a study of what the potential misuses
of such systems are and how they can be averted. A system may be said to be
secure if the properties of confidentiality, integrity, availability, authenticity, etc. of
the various system entities are maintained. Broadly speaking, a system maintains
confidentiality if no information can be accessed except by those entities which are
authorised to access it. Similarly, a system maintains integrity if no information
can be altered except by those entities which are authorised to alter it. Availability
simply means that the desired information (or resource) is available when desired.
An entity is said to be authentic if its apparent identity is genuine, i.e., the entity

in question does not masquerade as some other entity.
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The main challenge in security is to maintain some (or all) of the above attributes
in the presence of malicious users, accidental misuse or under some kinds of system
failures.

Historically, many different traditions have contributed to developments in com-
puter security. Developments in operating systems, military security, and cryptog-
raphy have all driven advances in security.

From its early days, research in security has focused on formal methods for prov-
ing systems correct. This is easily understandable, since the consequences of a
security-related error in a system could be disastrous, and thus the utmost care is
required in ensuring the security of systems. Formal methods are a useful aid in the
design and analysis of such systems.

Research on formal methods related to security has grown so much over the
years that it is no longer possible to consider it as a unified whole. Based on the
differences in the focus of research and the techniques and tools used, we have several
subdisciplines. Our contributions in this thesis lie in the area of security protocols,
which we look at in detail in the following sections. Meanwhile, we briefly look at

some of the other disciplines below.

Program security: This is a classic area of study in security. The fundamen-
tal focus of research in this area is to devise methods which ensure that no
program learns information that it is not authorised to know. Examples of
programs which learn information in such an unauthorised manner are viruses
and Trojan horses. For high-security systems like those used in the military,
it is highly important to check all the programs to see if they have secure
information flow. Formal methods are of immense help here. The fundamen-
tal theoretical problem studied here is whether a given problem has secure
information flow ([BL73], [Den77]). A simple definition of a program having
secure information flow is as follows: if the variables used in the program are
partitioned into high-security and low-security variables, observations of the
low-security variables do not reveal any information about the initial values of
the high-security variables. Closely related is the problem of detecting covert
flows [Lam73], where information is leaked indirectly, through variations in
program behaviour. The research in this area has focussed on syntactic mech-

anisms (like typing, see [VSI96] for instance) and semantic methods (see [LJ00],
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formation leaks.

Security policy: This is another widely studied area in security, which has its
origins in the access control model for confidentiality used in operating systems
(see [Lam74], for instance). The central problem here is somewhat similar to
that in program security, but is more general. The focus is on ensuring that
there is no unauthorised access to information. Most of the solutions depend on
restricting the behaviour of the system to achieve security. A classic example is
multilevel security. Let us assume for simplicity that there are two user levels:
high and low. Let us also assume that there are two security levels for objects:
confidential and public. The typical restrictions on such a system might include
no read-up: a low user cannot read a confidential file, and no write-down: a
high user cannot write to a public file. Note that these are restrictions on the
run-time behaviour of the systems. The fundamental theoretical challenge is
to come up with good security policy models, which are formal specifications
of the desired security-related behaviour of systems. [BL73] and [HRU76]
are two early papers dealing with security models. They propose models for
confidentiality which are directly based on access control models for operating
systems. The model proposed in [BL73] has features for access control as well
as multilevel security. The current trend of research in this area is to use more
abstract models based on the so called interface models, which derive from

[GM82]. See [McL94] for a good survey of security models.

Database security: The main focus in this line of research is the same as that of
the above two to ensure that every piece of information in a database is
learnt only by users authorized to know it. This implies much more than pro-
tecting data, which can be implemented by some kind of access control mech-
anism. A simple example to illustrate this point involves a salary database
where salaries above a certain threshold have to be kept secret. It is easy
enough to prevent queries from directly accessing the records which have salary
above the given threshold. But there are other kinds of information which
could be learned, like the average or sum of the salaries above the thresh-
old. In such cases, it is possible that information about individual records
can be inferred by cleverly asking many queries. For instance, if S is a set

of employees and S’ = S U {a}, then by learning the sum of the salaries of
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the employees in S, and the same for the employees in S’, a’s salary can be
learned. In some cases, even the fact that there exists a record of a particular
kind is vital information, even if the exact data cannot be accessed. In most
of these cases, the operation of aggregation introduces much complexity in the
system, by introducing many potential means to learn information. Much of
the research has focussed on statistical techniques to prevent the inference of
information. A brief introduction to the field (as also a general insight into

computer security) can be had from [Gol99].

1.2 Security protocols

Security protocols are specifications of communication patterns which are in-
tended to let agents share secrets over a public network. They are required to
perform correctly even in the presence of malicious intruders who listen to the mes-
sage exchanges that happen over the network and also manipulate the system (by
blocking or forging messages, for instance). Obvious correctness requirements in-
clude secrecy: an intruder cannot read the contents of a message intended for others,
and authenticity: if B receives a message that appears to be from agent A and in-
tended for B, then A indeed sent the same message intended for B in the recent
past.

The presence of intruders necessitates the use of encrypted communication. Thus
developments in the field of cryptography provide the foundation for the design
of security protocols. Research in cryptography has a long and glorious history.
The field has come into its own in the past century, with more and more sophisti-
cated mathematical techniques used to develop more and more sophisticated cryp-
tographic schemes. As a result, a wide variety of cryptographic tools are available
to the security protocol designer: conventional (shared-key) cryptography, public-key
cryptography, digital signature schemes, etc.

The operation of encryption typically involves transforming a given plaintext
to a ciphertext with the use a key, such that given the key it is easy to compute
the ciphertext from the plaintext and vice versa, and without the key it is hard
to compute the plaintext from the ciphertext. The inverse operation of computing
the plaintext given the ciphertext and the key, is called decryption. The ciphertext

is intended to be communicated over a possibly insecure network. Conventional
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cryptography uses the same key for both encryption and decryption. Public-key
cryptography systems ([DH76], [RSAT78]) use a pair of keys for each user of the
system (the user’s public and private keys), where messages are encrypted using the
receiver’s public key and decrypted using the receiver’s private key. A comprehensive
introduction to cryptography can be had from [Sch96b].

Research in cryptography primarily aims at developing new cryptosystems with
improved mathematical guarantees. But the focus of research in security protocols
is different. It has been widely acknowledged that even the use of the most perfect
cryptographic tools does not always ensure the desired security goals. (See [AN95]
for an illuminating account.) This situation arises primarily because of logical flaws
in the design of protocols.

Quite often, protocols are designed with features like ease of use, efficiency etc.
in mind, in addition to some notion of security. For instance, if every message of
a protocol were signed in the sender’s name and then encrypted with the receiver’s
public key, it appears as if a lot of the known security flaws do not occur. But
it is not usual for every message of a protocol to be signed. This could either be
for reasons of efficiency or because frequent use of certain long-term keys might
increase the chance of their being broken using cryptanalysis. Great care needs to
be exercised in such situations. The following example protocol highlights some of
the important issues nicely. It is based on a protocol designed by Needham and
Schroeder ([NS78]) and is aimed at allowing two agents A and B to exchange two
independent, secret numbers. It uses public-key encryption but does not require

agents to sign their messages.

Msgl. A — B :{x,A}uk,
MSg 2. B —- A {«T;y}pubkA
MSg 3. A —- B : {y}puka

Here pubk , and pubk, are the public keys of A and B, respectively, and {z} is
the notation used to denote x encrypted using key k. In the protocol, x and y are
assumed to be newly generated, unguessable (with high probability, of course!), pre-
viously unused numbers, also called nonces (nonce stands for “number once used”).
In message 2, B includes A’s nonce. On seeing it A is assured that B has received
message 1, since only B can decrypt the first message and use x in a later message.
Similarly on receipt of the third message, B is assured of A’s receipt of y.

At the end of a session of the protocol, both A and B share the secrets x and
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y and both also know that the other agent knows x and y. But it has been shown
([Low96]) that x and y are not necessarily known only to A and B. (Such a property
needs to be satisfied if we want to use a combination of z and y as a key shared

between A and B, for example.) The attack (called Lowe’s attack) is given below:

Msg a.1. A — T Az, A} pusk,
Msg 5.1. (I)A — B {a, Al pusk
Msg 3.2. — (DA Az, y}pusk,
Msg a.2. I - A AT, Y} pubk,
Msg «.3. A — T {y}puse,
Msg 8.3. (I)A — B Y} pubk

In the above attack, (I)A— B:x means that the intruder is sending message z to
B in A’s name, whereas A— (I)B:x means that the intruder is blocking a message
sent by A intended for B. The above attack consists of two parallel sessions of the
protocol, one (whose messages are labelled with o) involving A as the initiator and
as responder, and the other (whose messages are labelled with /) involving I (in A’s
name) as the initiator and B as the responder. (This shows that the names A, B, x
and y mentioned in the protocol specification are just placeholders or abstract names,
which can be concretely instantiated in different ways when the protocol is run. So
according to A and B, they have just had a normal protocol session with I and
A, respectively. But I knows better!) After the fifth message above, the intruder
gets to know y which is the secret generated by B in a session with someone whom
B believes to be A. This shows that the protocol does not satisfy the following
property: whenever an agent B engages in a session of the protocol as a responder
and B believes that the initiator is A, then the secret generated by B is known only
to A and B. The seriousness of this flaw depends on the kinds of use the protocol
is put to. It is worth noting that this attack does not depend on weaknesses of the
underlying encryption mechanism (nor even on some keys being guessed by chance).
It is also worth noting that this attack on the (simple enough) Needham-Schroeder
protocol was discovered seventeen years after the original protocol was proposed.

[Low96] also suggests a fix for the protocol:

Msgl. A — B :{x, A}puk,
Msg2. B — A :{x.y,B}um,
MSg 3. A — B : {y}pubk,;
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It is easy to see that the above attack does not happen anymore, but that still
doesn’t prove that the protocol does not have any vulnerabilities.

The following example illustrates a freshness attack (or replay attack), and also
highlights the use of nonces. Consider the following protocol (which is inspired by
the Denning-Sacco protocol [DS81]) which uses symmetric (shared-key) encryption,
where A is Aandal, B is a bank, and S is a key server. We assume that every agent

C shares a key k¢g with the server, which only C' and S know.

Msgl. A - S :AB
Msg 2. S — A B,k A{A k}rpseas
Msg3. A — B : {A, k}kBS

In message 1, A requests from the server S a key to communicate with B. S
generates k and creates message 2. Only A can decrypt this message successfully and
learn k, since she alone possesses k4g. She then passes on the component {A, &k}
to B. Now B also learns k. Now A can enter into a session with B using the key
k. Since only A and B know k, there is no danger of any information being leaked

out, as long as the key k is safe. But unfortunately, there is the following attack:

Msg a.1. A —- S AB
Msg a.2. S = A {BE {A Ek}iusthas
Msg a.3. A — B {A L},

Msg .3. (I)A — B :{A k}k,,
The attack is quite simple. Sufficiently long after the session « has happened, the

intruder masquerades as A and enters into a session with B with the same old
key k. This is possible because all the intruder has to do is to replay message 3
from the old session. There might be a question as to what this achieves, since the
intruder cannot continue the session meaningfully unless k is leaked. But this is not
a scenario which can be ignored. It might be the case that the key £ has actually
been compromised by long hours of cryptanalysis, much after the original session
was played out. The above attack then gives the intruder a chance for putting this
key into use. Or it might be the case that in the original session «, after setting up

the key k, A sends the following message:

Msg a.d. A — B :{Deposit Rs. 10000 from my account into I's}

(This might well be money which is legitimately owed to I by A.) The intruder,

who watches all the communication over the network, infers from the effect of the
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above message (Rs. 10000 deposited into I’s own account) the content of message

a.4, and just replays it as part of session [3.
Msg f.4. (I)A — B :{Deposit Rs. 10000 from my account into I's}

Since the bank thinks that the request is coming from A, I ends up richer by Rs.
10000.

A simple solution to the problem is for A and B to generate fresh nonces at the
start of each session, then obtain the key from S and check the timeliness of the key

received from S as follows:

Msgl. A — B :AB

Msg2. B — A :y

Msg3. A — S A B,y

Msg2. S — A {x, Bk {y, A k} iy thas
Msgd. A — B :{y, A k}i,

The use of the fresh nonces prevents the intruder from replaying old messages as
new. Of course, it is imperative that for each session a unique, unguessable, random
number is chosen as a nonce, since otherwise replay attacks cannot be prevented.

A different kind of problem exists with type-flaw attacks. This is illustrated by the
following simple example (see [DMTY97] for more examples of interesting type-flaw
attacks), where A sends a fresh, random secret z to B and also gets an assurance
that B has received it.

Msgl. A — B :{(A {2} pusky) }pusky
MSg 2. B — A : {«T}pubkA

The intruder can use the structure of message 1 and get the secret generated in

place of = leaked, as the following attack shows:

Msg a.1. A — (I)B :{(A {m}puk,,) }pubk

Msg f3.1. I - B AL (A AMY pusk ) Fpubk ) }pubk
Msg /3.2. B — I (A M} pusk ) Fpubk,

Msg 7.1. I — B AL, {m}pubk,,) } pubk,

Msg v.2. B — I M} pusk,

Msg 2. (I)B — A MY pubk

The important point about this attack is that in session [, the intruder is using

the term {(A, {m}pubk,)}pusk, in place of . In the absence of any mechanism to
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indicate the type of data being received, B believes that he has received a nonce.
By cleverly using the structure of the protocol over two sessions, the intruder learns
the secret m at the end of message 2 of session . This example also shows that the
length of messages occurring in runs of a protocol can be much more than that of
the messages occurring in the protocol specifications. Of course, this attack can be

simply thwarted by modifying the protocol as follows:

Msgl. A — B :{(A,2)}puk,
MSg 2. B - A :{«T}pubkA

The above examples illustrate the kinds of attacks which typically happen. Much
more details on authentication protocols, attacks on them, and the techniques used
to tackle them can be found in the excellent survey article [CJ97].

The above discussion illustrates the pitfalls in security protocol design, and also
highlights the need for a systematic approach to protocol design and analysis. There

are two possible approaches:

e Development of a design methodology following which we can always gener-
ate provably correct protocols. Much work in the protocol design community
focuses on this approach. [AN96] gives a flavour of the kinds of useful heuris-
tics which improve protocol design. But there has not been much theoretical

development towards formally justifying these design guidelines.

e Development of systematic means of analysing protocols for possible design
flaws. The bulk of the work in formal methods for security protocols focuses

on this approach. Here again, there are two possibilities:

— Development of methods for proving the correctness of certain aspects of

protocols.

— Development of systematic methods for finding flaws of those protocols

which are actually flawed.

The main contributions in this thesis lie in the field of formal analysis methods
for security protocols. We now briefly look at some of the approaches which have
been advocated in the literature for proving properties of protocols and detecting

flaws in them.
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An important stream of work relating to proving protocols right is automated
theorem proving. The typical approach in this style of work is as follows: a for-
mal protocol model is defined based on an expressive logic like first-order logic or
higher-order logic. To every protocol, a theory in the logic is associated. Properties
of protocols are also specified using the same logic. A property holds of a protocol
if it can be derived from the theory of the protocol using the rules of the logic. Es-
tablished proof techniques and tools in the logic can now be used to efficiently prove
properties of protocols. Examples of this approach include [Pau98] and [Bol97].
The advantage of this approach is that the highly expressive logics in the framework
can code up any protocol, and formally prove most of the desired properties. Some
possible disadvantages are that it requires expert knowledge to code up a protocol
into a theory, and that the theorem proving process is not fully automatic. Expert
intervention is needed to guide the proof search. The complexity involved in defin-
ing the theory of a protocol introduces further chances for error. Another possible
drawback is that the formal proofs are not intuitive, and thus hard for humans to
understand and base further developments on them.

An alternative approach is to use belief logics to prove properties of protocols.
The pioneering work in this line is [BAN9(], in which a modal logic (called the BAN
logic) was introduced as a tool to specify and reason about properties of protocols. It
is based on modalities which seek to formalise the epistemic reasoning of the agents
involved in the protocol. This logic has many attractive features, chief among them
being that it produces simple and abstract proofs, but there are also some drawbacks.
To use the logic, the authors propose a systematic idealisation step, which converts
each message of the given protocol into a formula which represents the potential
knowledge gained after receipt of the message. This feature introduces a chance for
error, since there is a possibility that a wrong idealisation might be used to prove
properties of the protocol. [BM93], [GNY90], and [Nes90] are some papers which
contain a discussion of this feature and suggest further improvements to the BAN
logic. [AT91], [Bie90], and [SvO94] are some papers which attempt to improve the
original logic with either new modalities or through new semantic features. While
they address some weaknesses of BAN logic, the simplicity of the original logic is
lost. More recently, there have been attempts to connect BAN style logics with other
formal models for security protocols ([ABV02] and [SCO01], for example). There have

also been attempts at automated reasoning about protocols using BAN-style logics
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([KW96], for instance). [SCO1] provides a comprehensive survey of BAN-style logics
for authentication protocols. The modalities which these logics concentrate on are
fairly abstract, like belief, trust, control etc. While it may not be difficult to formalise
these modalities, it is not clear whether they are fundamental to reasoning about
security. The iteration of these modalities also brings a lot of complexity in its
wake, complicating many of the technical questions regarding these logics. Thus it
is worthwhile to look at logics with simpler modalities.

Much of the literature is devoted to methods for detecting flaws in protocols
using the so-called model checking approach. The main idea is to consider a finite
state version (preferably with a small number of states) of the given protocol (by
imposing bounds on the set of nonces and keys used) and prove that all states of the
finite state system satisfies the desired property. This does not necessarily mean that
the protocol itself satisfies the desired property, since use of unboundedly many data
might possibly introduce more attacks. But if a violation of the desired property is
discovered using the small system, it usually means that the protocol is also flawed.
The focus of research in this area is to devise methods which will guarantee that a
finite state version of the protocol has most of the errors that the big system has,
and to devise techniques for efficiently verifying the small system.

As we will see later, when we model security protocols formally, we get infi-
nite state systems. Thus there is no given finite state system which one can verify.
The finite model should be constructed from the protocol specification by using ap-
propriate abstractions. The different subdivisions of research in this line basically
reflect the different techniques using which the finite state system can be defined,
and the different techniques that can be used to verify it. For example, [Low96],
[LRI7], [MMS97], [Sch96a], and [Sch98] advocate an approach based on process al-
gebra, in which important security properties are defined using some form of process
equivalence. [Mea95], [Mea96a], [Mea96b] advocate an approach based on logic pro-
gramming, where the protocol is modelled by a set of rules which tell us how each
action of the protocol changes the state of the system, and several specialized proof
techniques are used to prove that a bad state can never be reached by a protocol.
[Bol97] uses standard techniques based on abstract interpretation to define a finite-
state system from a protocol. Techniques based on tree automata ([Mon99], [GLO0],
[CCO03], [CCMO01]) have been proposed to efficiently represent and manipulate the

intruder’s state. Typically the intruder’s state is the cause of the infinite state na-
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ture of protocols, and hence methods of finitely representing the intruder state can
help construct a finite state system from a protocol.

The model checking approach has enjoyed great success in unearthing bugs in
many protocols, long after they had been put into use. [CJ97] is a good reference
for the many attacks which have been uncovered by formal verification tools. But
the main drawback in this approach is that the use of a finite state system is not
always justified. In fact, the general verification problem for security protocols
is undecidable (as we prove in later chapters), and therefore there exist protocols
which are not “equivalent” to any system with bounded number of states. In this
context, [Low99] proves that for a certain syntactic subclass of protocols and for
some particular kinds of properties, checking whether the protocol satisfies those
properties amounts to checking whether a particular small system satisfies them.
This provides a justification for verification algorithms, most of which define a small
system of the above kind from a given protocol, and verify the small system. The

decidability results in this thesis are in the same spirit as the results of [Low99].

1.3 Contributions of the thesis

In chapter 2 of the thesis, we describe our formal model for security protocols
which will be used in the rest of the thesis. We also highlight the aspects in which
the model differs from other models current in the literature. We set up several
technical propositions about synth and analz proofs, which formalise the way the
agents running the protocols derive new information from old.

We also introduce the secrecy problem, which aims to check if there is a run of
the given protocol which leaks a secret or not. Our main contribution in the thesis
is to identify subclasses of protocols for which it is possible to automatically verify
this property.

It turns out that when we model security protocols precisely, we get infinite state
systems. There are many sources of unboundedness in the model which contribute
to this. The first type of unboundedness occurs because there is no a priori bound
on the number of sessions occurring in a run, and thus there is no bound on the
length of the runs of a protocol as well. Further, requirements such as freshness
might necessitate the use of a fresh nonce or key for each session. Since the number

of sessions in a run is unbounded, it follows that there is no a priori bound on
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the number of distinct nonces and keys used in a run of a protocol. Further, as
evidenced in the type-flaw attack which was shown earlier, messages occurring in
runs of a protocol can be longer than those occurring in the protocol specification.
Thus there is no a priori bound on the length of the messages which are part of the
runs as well.

As such, it is to be expected that it is not possible to verify even simple reacha-
bility properties, and thus security properties like secrecy as well, of such systems. It
has been formally proved in ([DLMS99], [HT96], [ALV02]) that in fact, such simple
problems are undecidable for these systems. Of the factors which lead to unbound-
edness of these systems, the number of nonces and the message length are of special
importance. It is proved in [DLMS99] that even when the message length is re-
stricted to be bounded, allowing an unbounded number of nonces to occur in runs
of a protocol leads to undecidability. Dually, in [HT96] and [ALV02], it is proved
that even if the nonces and keys come from a fixed finite set, allowing arbitrarily
long messages to occur in protocol runs leads to undecidabilty. In chapter 3, we
provide simple and uniform proofs for the above two undecidability results.

The literature consists of many proposals to cope with the undecidability results.
If there is a bound on the number of nonces as well as the message length, then
every run can be shown to be equivalent to a run of bounded length, in terms of
the security-relevant information learnt by the various parties at the end of the run.
This has been used to prove decidability in [DLMS99]. Another common approach
is to place bounds on the number of plays of any run of the protocol, effectively
yielding a finite state system. [ALV02], [MS01] and [RT03] contain examples of
this approach. There are also approaches which impose restrictions on the way
messages can be constructed. Examples of this include [DEK82] and [ALV02] where
restrictions are imposed on the way messages are concatenated with one another to
form new messages. The work in [CCMO01] uses techniques from tree automata to
show decidability for a subclass of protocols in which every agent copies at most one
piece of any message it receives into any message it sends. The survey article [CS02]
gives a nice overview of the various approaches to decidability of security protocol
verification, and also the various undecidability results. [ALV02] also provides a
nice perspective on the various factors which affect decidability of security protocol
verification.

The literature also consists of work where decidability is obtained without placing
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such ‘external’ bounds. For example, the work [Sto02] seeks to identify some simple
semantic properties which lead to decidability and argue that these properties are
satisfied by a large class of protocols found in the literature. [AC02] introduces
checkable syntactic conditions which entail the equivalence of the given protocol to
a finite-state system, and then gives methods of checking the finite-state systems
for security breaches. A significant work in this line is [Low99], where decidability
is proved for a syntactic subclass of protocols, under the assumption that message
length is bounded but without any assumptions on the number of nonces. Our work
in chapter 4 is in this spirit. Assuming that message length is bounded and the set
of nonces is not, we prove decidability of the secrecy problem for a syntactic subclass
of protocols, the so called tagged protocols. Essentially, these are protocols where
the important components of each message have some kind of type tags attached to
them. The use of tags allows us to prove that for every tagged protocol, there is a
run which leaks a secret iff there is a run of bounded length which leaks a secret.
This is the key to our decidability result.

We continue the same theme in chapter 5, where we prove that even if we do
not place any bound on message length, we can obtain decidability of the secrecy
problem for the class of tagged protocols. We achieve this by showing that for tagged
protocols, every run is equivalent to a well-typed run (under a suitable notion of
equivalence which preserves many important security properties). A well-typed run
is basically a run in which there is no type-flaw. This means that nonces occurring
in the protocol specification are only replaced by nonces in the different sessions of
the run, and so on for the other types of data as well. This further means that the
length of the messages occurring in a well-typed run is bounded by the length of the
messages occurring in the protocol specification. Since every run is equivalent to a
well-typed run, the problem reduces in effect to the setting of chapter 4, and thus
we get our decidability result.

In chapter 5, we also consider a semantic subclass of protocols based on an
equivalence relation of finite index on messages, and prove the decidability of the
secrecy problem for this semantic subclass, under the assumption that the nonces
and keys come from a fixed finite set.

In chapter 6, we look at methods for reasoning about protocols. We define a
logic in which several important properties like secrecy and authentication can be

naturally specified. A major portion of the chapter is devoted to examples which
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illustrate how to reason about protocols using the logic. We then show that the
undecidability results of chapter 3 and the reduction to well-typed runs proved in
chapter 5 extend to the verification problem for the logic as well. Using the reduction
to well-typed runs, we prove the decidability of the verification problem of the logic
in a setting where there are no restrictions on the length of messages occurring in
runs of a protocol, but where the nonces and keys come from a fixed finite set.
The research that this thesis is based on was done in cooperation with R. Ra-
manujam. The work in chapter 4 is based on the papers [RS03a] and [RS03c].
[RS03c] is also the basis for the part of chapter 5 which deals with the reduction to
well-typed runs. The semantic decidability result in chapter 5 is based on [RS03b].



Chapter 2

Security protocol modelling

In this chapter, we first discuss the issues involved in modelling security protocols.
We then informally introduce our model and compare it with some of the other
existing models. We then present a formalization of the model. We close the chapter
with some important properties of our models, especially properties relating to the

generation of new messages by agents from old information which they possess.

2.1 Discussion

The formal modelling of security protocols is a nontrivial problem in itself. For

example, consider the Needham-Schroeder protocol presented in Section 1.2.

e The protocol is specified in terms of two agents A and B and two secrets x
and y. But as evidenced in Lowe’s attack, these are just abstract names which
act as placeholders and can be concretely instantiated with different values to

create many different sessions of the protocol.

e [t is also evident from Lowe’s attack that runs typically contain many parallel

sessions.

e Further there could be infinitely many sessions of a given protocol and it is

possible that a run consists of unboundedly many sessions.

16
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e A further complication is that the abstract terms in the protocol can be in-
stantiated with arbitrary messages (not just atomic messages) to carry out

certain attacks. This was illustrated by the second example of Section 1.2.

So we see that while protocol specifications are finite (usually quite small), the
system which generates the set of runs of the protocol needs to remember an un-
bounded amount of information, and is thus an infinite state system. Thus a for-
mal model for security protocols involves many details which need to be got right.
The large gap in complexity between a protocol specification and the system which
generates the runs of the protocol makes the task of formally modelling protocols
nontrivial.

Further, at every step of defining a model, the modeller is presented with choices
which have to be resolved one way or the other. Some of the possible questions that

she might face are:
e what should be the structure of the messages?
e how are protocols to be presented?
e what should be the assumptions on intruders?
e how do agents construct new messages from old?
e what is the underlying model of communication?

As always, the manner in which the choices are resolved is driven by the application

in hand. Thus it is not surprising that a consensus has still not been reached, and

that the literature abounds with many different models for security protocols.
Before a description of our model, we briefly look at some of the other popular

styles of modelling security protocols.

Process algebra models Examples of these kinds of models include the CSP-
based models of [Low96], [LR97], and [Sch96a], and the the spi calculus model
of [AG99]. We look at the spi-calculus model to provide a flavour of these
kinds of models. It is an extension of the pi calculus [MPW92]| with crypto-
graphic primitives. The basic idea is that every protocol is represented by a
spi calculus process (which gives the operational semantics of the protocol, in

the sense that the process displays exactly the same run-time behaviour as
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the protocol). The process for a protocol is typically a parallel composition
of (possibly many different instantiations of) a process for each role of the
protocol. The other process algebra models also model the behaviour of the
intruder as an intruder process, and the process corresponding to a protocol
is defined as a parallel composition of the processes for the roles and the in-
truder process. But the spi calculus differs from them in that it does not fix an
intruder process. We will see a little later how intruder behaviour is modelled
in the spi calculus. Security properties of protocols can now be translated to
properties of the process representing the protocol. These are typically vari-
ous kinds of observational equivalences between processes, which basically say
that no observer interacting with the two processes can distinguish between

the two.

For instance, let us say that a protocol which uses an abstract term x is
represented by a process P(x). (The notation signifies that the definition of P
is parametrized by z.) Let us say that the protocol involves sending z from A
to B securely. For every concrete term m, we define Py,.(m) to be a process
which is “obviously correct” in its behaviour with respect to m. (For instance,
it might say that irrespective of what happens after A sends the message m, at
some future point of time B (either normally or magically) receives the same
message m.) Now a possible definition of secrecy is that for any two distinct
messages m and m', P(m) is observationally equivalent to P(m'). If the secret
is not revealed, then no external observer can see any difference between a
run of the protocol which uses secret m and one which uses secret m'. A
possible definition of authentication is that for all m, P(m) is observationally
equivalent to Psp..(m). This says that if the A sends the message m, then if at
all the receiver receives a message which purports to be from A, the message

has to be m.

Since the notion of observational equivalence used in the spi calculus refers to
all processes, there is no need to explicitly define an intruder process. If there
is an attack on a protocol, it will definitely manifest in the form of the two
relevant processes being distinguishable by a process coding up the intruder

behaviour in the attack.

The main focus of research in spi calculus is to develop generic proof tech-
niques that work for classes of protocols ([AG98], [Aba99], [AFG02]). Tt is
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also possible to use existing tools for the process algebra models and apply
them to security. An example is the FDR model checker for CSP, which has
been successfully used in discovering attacks on protocols (see [Low96], for

example).

The inductive approach This approach was pioneered by [Pau98|, which advo-
cates a theorem-proving approach to verifying cryptographic protocols. The
theorem prover used in [Pau98] is Isabelle/HOL, which works with higher-order

logic.

A protocol is formalised as a set of traces, where each trace is a sequence of
events. Example of events include Says A B X and Notes A X. Says A B X means
that A says X to B, it does not imply that B heard what A says. Notes A
X means that A learns the message X. The important point is that the set
of traces of the protocol is defined inductively, starting with the empty trace,
adding “proper” actions for the honest principals, and any “admissible” action
for the intruder. “Proper” actions are those which follow the protocol. For
instance the fifth message of a role can be sent only after the fourth message.
“Admissible” means that the message that is being communicated in the event
can be constructed by the agent from the information already learnt by him.
The operators synth and analz formalize the way in which new messages are

constructed from old.

A protocol is said to satisfy a property if all its traces satisfy the property.
This can be verified by letting a theorem-prover inductively check that all
traces of the protocol satisfy the said property. If a property does not hold of

a protocol, then the failed attempts at a proof lead one to an attack scenario.

The inductive approach has been used as a basis for proving the correctness

of some very complicated protocols [Bel99.

Strand spaces This is a model introduced in [FHG99]. In this model, a protocol is
assumed to be presented by set of (parametrized) strands, which are sequences
of send or receive actions. A mnode of a protocol is a pair consisting of an
instantiation s of a parametrized strand and an index ¢ which is at most the
length of s. A strand space corresponding to a protocol is a graph whose nodes
consist of all the nodes of the protocol and whose edges reflect the local and

communication dependency between events. A very important component of
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the model is the formalisation of the intruder behaviour in terms of penetrator
strands. Each penetrator strand describes an atomic behaviour of the intruder.
Examples of such behaviour include receiving a message, creating a copy of
a message that has been received, splitting a message of the form (¢,#') to
get t, encrypting ¢ using a key k to obtain {¢};, and so on. The penetrator
strands of this model, the intruder process in the process algebra models, and
the intruder theory in the multi-set rewriting model (to be described below)
roughly correspond to one another. A bundle of a protocol (which basically
stands for a run of the protocol) is a finite partially ordered subgraph of the
strand space of the protocol, with the condition that for every event in the
bundle, its causal past is also included in the bundle. The significant feature
of this model is that runs of a protocol are formalised as partially ordered

objects.

Significant properties of protocols can now be expressed in terms of the model.
An example of an authentication property is the requirement that whenever
node n; occurs in a bundle, node ny should also occur. Secrecy properties are
formalised by saying that some kinds of nodes do not occur in any bundle of the
protocol. (These are typically nodes which reveal some secret to the intruder).
A significant amount of the research here is devoted to developing techniques
for proving general bounds on the intruder’s abilities in any run of a protocol
(or a class of protocols). There have also been attempts at automatic analysis
of protocols based on the strand spaces model (see [SBPO01], for example).
There have also been attempts to provide a semantics for BAN logic in terms

of the strand space model ([SC01], for example).

Multi-set rewriting Like the spi calculus and the inductive model, this is also a
general-purpose model in which we can embed security protocols. [DM99] is an
introduction to the model, whereas [DLMS99] and [CDL*99] present technical

results about the framework.

The basic idea here is that a security protocol is given by a theory which is
a finite set of rules, where each rule is of the form P(---),..., P(--+) —
3.0, («+9)...,Qi(--+). The P’s and @’s are atomic formulas (of the predicate
calculus). The theory of a protocol is got by composing a theory for each

role with a standard intruder theory. A state is a finite multiset of atomic
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sentences. Rules are allowed to have free variables, but ground instantiations
of rules are applied to states to yield new states. A rule application on a state
s yields another state s’ iff:

e all the preconditions of the rule all belong to s,

e the preconditions which are not postconditions do not belong to s,

for every copy of a postcondition which is not a precondition, a copy of
it is added to s,

the rest of s is copied into s, and

each existentially quantified variable is instantiated by a new constant

not occurring in s.

In fact, the semantics of rules has close connections with the proof theory of

linear logic.

Properties of security protocols can be easily formalised in this framework. For
instance, the secrecy problem is essentially a state reachability problem (the
input for the problem is a theory, an initial state and an atomic sentence).
The problem is to determine whether there is a reachable state in which the

said atomic sentence holds.

We now describe our model informally. While it does not differ drastically from
any of the models described above, still there are differences in emphasis. Our focus
is on retaining enough distinctions at the level of protocol specification so that it is
easy to define certain syntactic subclasses, for which we later prove the decidability

of verifying secrecy.

Protocol specifications: Security protocols are typically specified as a (finite) set
of roles (typically with names like challenger, responder and so on). These
are abstract patterns of communication which specify what messages are sent
when, and how to respond to the receipt of any message. The content of these
messages is (usually) not relevant, but the structure is; hence abstract variables
suffice to describe the protocol. For example, the Needham-Schroeder can be

viewed as consisting of two roles, an initiator role given by

AlB: {maA}puka; A?B:{xay}pubkA; A!B:{y}puka
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and a responder role given by
B7A {.T,A}puka; B'A {may}pubkA; B?Ai{y}puka.

Roles are typically sequences of actions, which can either be a send action of
the form A!B:¢ (which stands for A sending ¢ over the network intended for
B) or a receive action of the form A?B:t (which stands for A receiving ¢ over

the network with some indication that the sender is B).

In our model, we pay close attention to protocol specifications. In fact, the
major technical results in this thesis show that the manner in which protocols
are specified has a major bearing on problems like verifying secrecy of a given
protocol. In fact, the negative results in Chapter 3 point out that the above
style of presenting protocols admits too many complicated protocols, which
are not representative of the protocols which arise in practice ([CJ97]). So, for
our positive results we focus on the more manageable class of protocols which
are presented as sequence of communications of the form A — B:t. This is also
the informal style of presenting protocols which is popular in the literature.
There are also some admissibility conditions here that are assumed implicitly
in the literature. We make them explicit and point out their crucial role in
the analysis of protocols. The class of protocols which satisfy these conditions

are called well-formed protocols.

Starting from such descriptions of a protocol, we formally define the seman-
tics of each protocol. This is slightly different from the style current in the
literature. For instance, in the inductive model, a protocol is formally a set of
rules (in higher-order logic) which specify the conditions under which runs of
the protocol can be extended by adding an event. In the spi calculus model,
a protocol is formally a spi calculus process (which can generate the set of
all runs of the protocol). The passage from an informal protocol specification
(as a sequence of communications) to the formal object is not given much
attention (as that is usually trivially achieved). But formally any finite set of
rules (or any process) can be a protocol. The advantage of such an approach
is the high expressive power of the model. Any protocol can be coded up as
a formal object of the model. A possible disadvantage is that it is sometimes
difficult to isolate a certain (syntactic or semantic) class of protocols that we

wish to concentrate on. Further, it is sometimes difficult to judge whether a
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technical result (like undecidability of verification, for instance) holds because
of something inherent to protocols or because it is a general result which holds

of the model itself.

Messages: A protocol as specified above is run by a set of agents, who are of two
kinds: the malicious intruder and the rest, who are honest. They perform mes-
sage exchanges as prescribed in the protocol. Following the lead of Dolev and
Yao ([DY83]), we will assume that the terms which are communicated in mes-
sage exchanges come from a free algebra of terms with tupling and encryption
operators. This means that we are operating on a space of symbolic terms,
abstracting away from the fact that in the underlying system all messages are

bit strings.

We work with a simple syntax of messages which allows only atomic keys.
We disallow constructed keys, using which one can form messages of the form
{2}k, While this choice certainly limits the applicability of our model and
the results, we want to consider key technical questions like the decidability
of the secrecy problem in this important setting, before moving on to more
complex settings. On the other hand we feel that some of the other extensions
to the message syntax, like hashing, can be easily handled and almost all our

results will go through with minor modifications.

Cryptographic assumptions: Following the lead of Dolev and Yao ([DY83]) we
make the perfect encryption assumption. This means that a message encrypted
with key k£ can be decrypted only by an agent who has the corresponding
inverse k. We thus abstract away cryptographic concerns and treat encryp-
tion and decryption as symbolic operators. There is a different tradition to
studying security protocols, called the “computational approach”. In this ap-
proach, protocols are shown correct by reducing the protocol to the underlying
cryptography, i.e., it is shown that if there exists an adversary with a signif-
icant chance of attacking the protocol, there exists another adversary with
a significant chance of breaking the underlying cryptographic scheme itself.
The work [BR93] is an example of this approach. We have chosen the more
abstract framework which is preferred by most researchers in formal methods
for cryptographic protocols. Recently, there has been some important work in

reconciling the two approaches to cryptography. (See [AR00], [Her02], [Her03],
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for examples of such work.)

We also abstract away the real-life phenomenon in which some honest agents
lose their long-term keys. This is modelled in [Pau98|, for example, by the
notion of an Oops event. This reflects the probabilistic nature of the underlying
cryptography, all the current schemes being not absolutely secure but only
unbreakable with a very high probability. While we can model more attacks
this way, we opt for a more restricted model in which decidability questions are
easier to handle. Further our focus is mainly on logical flaws in protocols which

exist even under the assumption that cryptography is absolutely unbreakable.

Intruder capabilities: We assume an all-powerful intruder, who can copy every
communication in the system, can block any message and can pretend to be
any agent. In addition he also has the message building capabilities available
to every agent. It is assumed that the intruder has unlimited computational
resources and can keep a record of every public system event and utilize it at
an arbitrarily later time. However, we assume that the intruder cannot break
encryption. These assumptions keep the intruder model technically simple.

They are also followed widely in the literature.

The different models in the literature have tended to agree on most aspects
of the intruder modelling. Such an intruder is called a Dolev-Yao intruder.
Some variations to the above model have been tried but it has been shown
that they do not significantly alter the intruder’s powers. For example, we
might consider a group of colluding intruders rather than a single intruder.
But such a collusion cannot cause more attacks than a single intruder acting

alone, as has been proved in [CMS00].

Events and runs of a protocol: An event of a protocol is an action of some role
of the protocol with a substitution which supplies concrete terms for the ab-
stract placeholders mentioned in the roles. As observed earlier, arbitrary terms
can be substituted in place of nonces. An important class of events we will
consider are the class of well-typed events which are obtained by substitutions
which replace nonces only by nonces. It is clear that there are potentially
infinitely many events of a protocol. If the set of nonces and keys is assumed

to be infinite, it is possible that even the set of well-typed events is infinite.

A run of a protocol can informally be thought of as a sequence of events which
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respects certain admissibility conditions, which will be detailed below. Thus it
is seen that we do not place any bounds on the number of plays occurring
in a run, or on the number of plays which are active simultaneously (parallel
sessions, as we called them earlier). It is to be noted that in [MS01] and
[RT03], certain decidability results are obtained by essentially placing bounds
on the number of plays that can occur in any run of the protocol. We follow
an alternative approach by retaining the more general model and proving the

corresponding decidability results for syntactic subclasses of protocols.

We consider sequential runs, like most of the other models in the literature,
and unlike the strand spaces model. We choose sequential runs over partially
ordered runs since we find it is easier to present the decidability arguments in

that setting.

Admissibility: Arbitrary interleavings of plays of a protocol are not counted as
runs. They have to be realisable, in the sense that for every action a occurring
in the run, if ¢ is the term communicated in a and if agent A is the commu-
nicator, t can be constructed from the information which is presented to A
in the initial state along with the information learnt by her from the message
exchanges preceding a. Another important requirement is that certain secrets
which are used as instantiations of new nonces (i.e., abstract secret names
which are specified as “fresh” by the protocol) should satisfy the property of
freshness, i.e. these secrets have not been used before in the run. Thus a record
of the secrets used so far in the run has to be necessarily kept. These con-
siderations lead us to the notions of information state of an agent and message
construction rules. The agents are supposed to have learnt all the messages
which have been communicated to them. Further they can construct new
messages from old by tupling, detupling, encryption and decryption using known
keys, and by generating new unguessable nonces which have not been pre-
viously used by anyone. The formal counterparts of the message generation
rules are the operators synth and analz which are at the heart of most of the

technical results in the thesis.

It is to be noted that our definition of runs is quite close to that given in
[Pau98|. At the level of defining runs, the admissibility conditions are quite

standard in the literature. The key element in our model is that we consider
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incorporating some of these conditions in the protocol specification itself as a

formalisation of a notion of a “well-behaved protocol”.

Initial knowledge: This is another feature of security protocol modelling in which
the different existing models have tended to display slight differences. One
typical approach is to let this be part of the specification of protocols. For
instance, we might say that every agent shares a key with the server in the
initial state, while the server has (or can generate) all the other keys, which the
agents can request and obtain. Or we might say that every agent shares a key
with every other agent in the initial state. We follow the technically simple
approach of fixing a set of keys known to each of the agents in the initial
state, independent of the protocol. This looks restrictive, but the model can
be easily adapted to include such protocol specifications. We only need to add
a few consistency conditions (for instance, at every state, if a key is available
to some agent, then its inverse is also available to some (not necessarily the

same) agent) for some of the technical results in Chapter 4 to go through.

Closely related to this is the issue of constant terms of a protocol. Typical
names occurring in a protocol specification (like the names A, B, x, etc. of
the Needham-Schroeder protocol) are placeholders which can be substituted
with any other term to generate runs. But some protocols might refer to some
agents like a key server, whose role can be played only by some designated
processes. Thus we do not allow the meanings of these names to change during
the course of a protocol run. While we usually do not distinguish between the
rest of the honest agents either in terms of their initial knowledge or in terms of
their computational power, designated agents like the key server might have
some extra information in the initial state, and some added computational

power as well.

2.2 A formal model for security protocols

2.2.1 Security protocols and their runs

Basic terms

We assume a (potentially infinite) set of agents Ag with a special intruder
I € Ag. The set of honest agents, denoted Ho, is defined to be Ag \ {I}. We
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assume that the set of keys K is given by Ky U K; where K is a countable set
and K, aef {kap, pubk 4, privk , | A, B € Ag, A # B}. pubk, is A’s public key and
privk 4 is its private key. kap is the (long-term) shared key of A and B. For k € K,
k, the inverse key of k, is defined as follows: pubk , = privk , and privk , = pubk ,
for all A € Ag, and k = k for all the other keys. For every agent A, the set of
keys which are assumed to be always known by A, denoted K4, is defined to be
{kap, kpa, pubk 4, privk 4, pubk g | B € Ag,B # A}. We also assume a countable
set of nonces N. (‘Nonce’ stands for “number once used”). We also assume a per-
fect nonce generation mechanism which can generate a nonguessable, unique nonce
on each invocation. Finally we assume a set SN of sequence numbers (numbers
which are used to associate one message with another). A mechanism to generate
sequence numbers is also assumed, which can generate a unique (but not necessarily
nonguessable) number on each invocation. 7y, the set of basic terms, is defined to
be KUNUSN U Ag. The set KoU N U SN U Ag will also play a special role in the
subsequent development. We use the notation T, to denote it.

Further we fix the nonce ng, the sequence number mg, and the key ko € K, for the
whole discourse. They will essentially play the role of the intruder’s initial knowledge, as

will be explained later.

Terms

The set of information terms is defined to be
T == m| (t,ta) | {t}k

where m ranges over 7y and k ranges over K. These are the terms used in the
message exchanges below.

The notion of subterm of a term is the standard one — ST (m) = {m} for m € Ty;
ST ((t1,t2)) = {(t1,t2) }UST (t1) UST (t2); and ST ({t}r) = {{t}x}UST(t)UST (k).
t' is an encrypted subterm of ¢t if ¢’ € ST(t) and t' is of the form {¢"},. EST(t)
denotes the set of encrypted subterms of t. The size of terms is inductively defined
as follows: |m| =1 for m € To; |(t1,t2)] = |t1] + |t2| + 1; and |[{t}k| = || + || + 1.

In the rest of the thesis, we use the notation |- | in three different meanings: as
the size of terms, as the size of sets, and as the length of sequences. It is easy to
know what is meant by looking at the context.

The term {¢} is an abstract notation where we make no cryptographic assump-
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tions about the algorithm used to form {t}, from ¢ and k. It could stand for ¢
encrypted with the key k., or it could stand for ¢ appended with a signature using
the key k. Following the lead of Dolev and Yao [DY83] we make the perfect encryp-
tion assumption. This means that a message encrypted with key £ can be decrypted
only by an agent who has the corresponding inverse k. This is reflected in the encrypt

and decrypt rules below.

Actions

An action is either a send action of the form A!B: (M)t or a receive action of
the form A?B:t where: A € Ho,B € Ag and A # B; t € T; and M is a subset
of ST(t)N (N UK, USN). In a send action of the form A!B:(M)t, M is the set
of nonces, keys and sequence numbers freshly generated by A just before sending
t. For simplicity of notation, we write A!B:t instead of A!B:(0) t. The set of all
actions is denoted by Ac, the set of all send actions is denoted by Send, and the
set of all receive actions is denoted by Rec. Ac,, the set of A-actions is given by
{C'D:(M)t,C?D:t € Ac | C = A}.

Note that we do not have explicit intruder actions in the model. As will be
clear from the definition of updates caused by actions, every send action is implicitly
considered to be an instantaneous receive by the intruder, and similarly, every receive
action is considered to be an instantaneous send by the intruder. Thus the agent B
is (merely) the intended receiver in A!B: (M)t and the purported sender in A?B:t.

For a of the form A!B: (M)t, term(a) ' tand NT(a) & M. For a of the form

A?B:t, term(a) & ¢ and NT(a) & 0. NT(a) stands for new terms generated
during action a. ST(a) and EST (a) have the obvious meanings, ST (term(a)) and

EST(term(a)) respectively. terms(n) = U term(a;) for n = ay---a; € Ac”.

1<i<t
NT(n), ST(n) and EST(n) are similarly defined. n[A, A’s view of 7, is defined

inductively as follows: e[A =¢; (n-a)[A = (n]A) - a if a € Acs and n[A otherwise.

Protocol specifications

Definition 2.2.1 An information state s is a tuple (sa)acay where s4 C T for each

agent A. S denotes the set of all information states. For a state s, we define ST (s)

to be U ST (sa).

A€Ag
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Definition 2.2.2 A protocol is a pair Pr = (C,R) where:

e C, the set of constants of Pr, denoted CT(Pr), is a subset of Ty with the property
that {ng, mg,ko} N C =10, and

e R, the set of roles of Pr, denoted Roles(Pr), is a finite subset of Ac™ such that
for each n € R, there is an A € Ho with n € Ac.

Definition 2.2.3 Given a protocol Pr = (C,R), init(Pr), the initial state of Pr is
defined to be (Ta)acay where for all A € Ho, Ty = CUK, and T; = CU K; U

{nUJ Mo, k(]}

This style of presentation of protocols is close to that in the multiset rewriting
framework of [CDL*99], [DLMS99], [DM99], etc., and the process algebra framework
of [AG99], [Low96], etc. The more usual style of presenting protocols is developed
in a later section.

As we have mentioned earlier, we do not explicitly model intruder actions. Thus
we do not explicitly model the phenomenon of the intruder generating new nonces
in the course of a run, as is done in some other models (for instance, [DLMS99]). An
alternative would be to provide an arbitrary set of nonces and keys to the intruder
in the initial state. We follow the approach of just providing the intruder with the
fixed nonce ng, the fixed sequence number mg, and the fixed key kg in the initial
state. They serve as symbolic names for the set of new data the intruder might
generate in the course of a run. This suffices for the analysis we perform in our
proofs later. We will ensure as we develop the model that ng, my and ko are not

generated as a fresh term by any honest agent in the course of a run of Pr.

Example 2.2.4 A version of the Needham-Schroeder protocol ([NS78]) is presented
in this example. The protocol Prys is given by (C,R) where

e C=10, and
e R={m,n}, where

— 11 is the following sequence:

1. A !B (T) {Avx}Puka
2. A ? B : {z, v} pusk,
3. A ! B {y}puka
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— 1) is the following sequence:

1. B 7 A : {A, -’I;}puka
2. B! A : (y) {.77, y}pUbkA
3. B 7?7 A : {y}pubk,;

The protocol has two roles: we call n; the initiator role and 7, the responder role.
A sends the new nonce = to B as a challenge to prove his (B’s) identity. She then
receives a response to it as also a challenge from B in the form of a nonce y. She
finally responds to B’s challenge by sending back y. Since only B can decrypt the
contents of the first message, A is at least convinced that B is alive. Similarly, B first
receives a challenge from A and responds to it while issuing his own challenge. He
finally receives the response to his challenge. Since only A could have decrypted the

contents of the message sent by B, the latter is at least convinced that A is alive. O

Example 2.2.5 Here is another example of a protocol, We call this Pr,. It is given

by (C,R) where:
e C=(, and

e R={(,¢} where

— (; is the following sequence:

1. A B : () {AA{2}pubky fpusk,
2. A 7?7 B : {x}pubkA

— (o is the following sequence:

1. B 7 A : {A, {x}pqukB}pTLka
2. B! A : {m}pubkA

Here again we can call the role (; the initiator role and the role (5 the responder role.
The initiator issues a challenge, response to which will ensure her at least of the
responder’s being alive in the network. The responder plays the passive role of just

responding to the challenge. O
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Substitutions and events of a protocol

A substitution o is a partial map from Ty to 7 such that:

e for all A € Ay, if 0(A) is defined then it belongs to Ag,

e for all k € Ky, if o(k) is defined then it belongs to K, and
e for all m € SN, if o(m) is defined then it belongs to SN.

An important point to note about substitutions is that nonces can be substituted
with arbitrary terms. Thus our formal model allows the possibility of some kinds of
type-flaw attacks to be carried out by the intruder. A substitution o is well-typed
iff for all n € N, if o(n) is defined then it belongs to N. Given a set T C Ty, a
substitution is said to be a T-substitution iff for all m € Ty, if o(m) is defined then
it belongs to 7.

Substitutions are extended to terms, sets of terms, actions and sequences of

actions in a straightforward manner, as follows:

e o(pubk ,) and o(privk 4) are defined only if o(A) is defined, in which case they
are defined to be pubk, 4y and privk, 4y, respectively.

e 0(kap) is defined only if o(A) and o(B) are defined and o(A) # o(B), in

which case it is defined to be ky(4)s(B)-

e o((t,t')) is defined only if o(¢) and o(t') are defined, in which case it is defined
to be (o(t),a(t)).

e o({t}y) is defined only if o(t) and o(k) are defined, in which case it is defined
to be {(I(t)}r,(k).

e 0(T) is defined only if o(t) is defined for all ¢ € T', in which case it is defined
to be {o(t) |t € T}.

e 0(A!B:(M)t) is defined only if o(A), o(B) and o(t) are defined, o(A) € Ho,
o(A) # o(B), and o(M N N) is a subset of N, in which case it is defined to
be o(A)la(B):(c(M))o(t).

e 0(A?B:t) is defined only if 0(A), o(B) and o(t) are defined, o(A) € Ho, and
0(A) # o(B), in which case it is defined to be o(A)?0(B):o(t).
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o forn =ay---a; € Ac*, o(n) is defined only if o(a;) is defined for all i < ¢, in

which case it is defined to be o(ay) - o(ay).

A substitution o is said to be suitable for an action a iff o(a) is defined, and
suitable for a sequence of actions n iff o(n) is defined. o is said to be suitable for a
protocol Pr if o(t) is defined and equal to ¢ for all constants ¢ € CT(Pr).

Example 2.2.6
e Here are two substitutions suitable for the protocol Prys, presented in Exam-

ple 2.2.4:

— oy given by: o1(z) =m, o1(y) =n, 0(A) = A and 0,(B) = I.

— 09 given by: o3(x) = m, o3(y) =n and 09(A) = A and 09(B) = B.

Of these o7 is suitable for 7; and o, is suitable for 7. Notice that o; is not

suitable for 7, since o1(B) = I and 1y € Acj.

e Here are three substitutions suitable for the protocol presented in Exam-
ple 2.2.5.

— ¢ given by: ¢i(x) =m, ¢;(A) = A and ¢ (B) = B.
— < given by: G(x) = (A, {m}puk,), 2(A) =1, and ¢(B) = B.
— <3 given by: ¢3(z) = m, ¢3(A) = I, and ¢3(B) = B.

Of these ¢; is suitable for (; and ¢, and ¢3 are suitable for (5. Notice that ¢3 is
not suitable for (; since (; € Ac’ and ¢3(A) = I. ¢ is not suitable for ¢; for
the same reason, and also since x € NT((;) but ¢(z) & To.

An event is a triple (n, o, Ip) such that n € Ac™, o is a substitution suitable for
n, and 1 < Ip < |n|. The set of all events is denoted Events. An event (n,o,Ip) is
said to be well-typed iff o is well-typed. For a set T' C Ty, an event (1, 0, Ip) is said
to be a T-event iff o is a T-substitution. An event e = (n, 0, [lp) is said to be an
event of a protocol Pr if ) € Roles(Pr) and o is suitable for Pr. The set of all events
of Pr is denoted FEwvents(Pr).



Chapter 2: Security protocol modelling 33

For an event e = (9,0, lp) with n = a1 - - - ay, act(e) o o(ap). If Ip < |n| then
(n,0,lp) —¢ (n,0,lp +1). For any event e, LP(e), the local past of e, is defined to
be the set of all events ¢’ such that ¢'~5,e. For any event e, term(e) will be used to

denote term(act(e)) and similarly for NT(e), ST (e), EST(e), etc. For any sequence

€ =e1--- e of events, terms(&) o U term(e;). NT (&), ST (), EST(E) etc. are
1<i<k
similarly defined.
For any sequence of events & = e - - - ex, Events(§) dof {e1,...,er}.

Message generation rules

Definition 2.2.7 A sequent is of the form T =t where T C T andt € T.

An analz-proof (synth-proof) m of T & t is an inverted tree whose nodes are la-
belled by sequents and connected by one of the analz-rules (synth-rules) in Figure 2.1,
whose root s labelled T + t, and whose leaves are labelled by instances of the Ax,
rule (Axs rule). For a set of terms T, analz(T) (synth(T)) is the set of terms t such
that there is an analz-proof (synth-proof) of T + t.

For ease of notation, synth(analz(T')) is denoted by T.

Thus T represents the closure of T got by first “analysing” all terms in 7" into
their subcomponents, using the analz-rules, and then “synthesizing” new terms using
the synth-rules. Later, we will prove that this definition is equivalent to a different
way of defining the closure of 7', in which the synth and analz-rules are applied in
an arbitrary order.

The analz-rule decrypt says that if the abstract term {t}; and k can be derived
from T, then ¢ can also be derived. This could either mean decrypting the encrypted
term {t}, using the inverse key k, or verifying the signed term {t}, using the cor-
responding sign verifier k. Thus this is an abstract rule in which, depending on
the status of k, the concrete algorithm which leads to the derivation of ¢ differs.
Similarly, the synth-rule encrypt could either denote either encryption or signing.
The rule reduce really says that {{t};}; is a different abstract notation which de-
notes the same term denoted by ¢. This is again a consequence of the fact that
{t}\ denotes different cryptographic algorithms — encryption, decryption, signing,

verifying signatures, etc.

Example 2.2.8 Let T = {t} where t = ({{(m,n)};}s, (k,k")). The analz-proof

given in Figure 2.2 shows that m € analz(T"). To reduce clutter, we use the notation



Chapter 2: Security protocol modelling 34

— Ax,
TuU{t}+t
Tuire
U1t f
TE (t,t
Mspliti(i =1,2)
Trt Thrt  Trt o
_ Tt (t1,t)
T+ {t} THE
decrypt
THt THt T'_kencrypt
T+ A{t}
T {{thle
T—l—t reauce
synth-rules
analz-rules

Figure 2.1: analz and synth rules.

Xa
Ax Tht split, "
Tht e 2 ooy,  LEL i,
TH THE decrypt T+ t_2 split,
T+ t3 T
— decrypt
TF b split,
THFm

Figure 2.2: An example analz-proof.

ty for {{(m,n)}r}w, to for (k, k'), t3 for {(m,n)}, and t, for (m,n). O

Example 2.2.9 Let T = {m,n, k,k'} and t = {{(m,n)},},. The synth-proof given
in Figure 2.3 shows that ¢ € synth(7). For readability, we denote {(m,n)}; by t
and (m,n) by ts. O

Example 2.2.10 Note that when ¢ = ({{(m,n)}s}r, (k, k")), m & analz({t'}) un-
less k = k. Also note that if 7" = {(n,m), k,k'} and t" = {{(m,n)}r} s, t" € T"
but t" & synth(T"). O
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— Ax, Ax;
THFm TkFn pair Ax,
THEt, THE
encrypt — Ax,
THt THE
encrypt
THt

Figure 2.3: An example synth-proof.

Information states and updates

Definition 2.2.11 The notions of an action enabled at a state and update of a state

on an action are defined as follows:
e A!B:(M)t is enabled at s iff t € s4U M.

e A?B:t is enabled at s iff t € 57.

e update(s, A!B: (M)t) s where sy =saUMU{t}, sh =s; U{t}, and for

all C e Ag\{A, I}, s, = sc.

e update(s, A?B:t) © ¢ where s'y = saU{t} and for allC € Ag\{A}, s, = sc.

update(s,e) = s, update(s,n - a) = update(update(s,n),a).

In an action of the form A!B:(M)t, M is supposed to represent the set of new
terms which are generated by the action. For such an action to be enabled at a state
s, it is natural to expect that a freshness condition should hold, namely that none
of the terms in M belong to ST (s). We find it simpler to ensure this condition in
the definition of runs (which occurs later in this section) rather than here. Since we
usually look at states only in the context of runs, there are no technical problems
as well.

Note that we have chosen to let I record only the terms communicated over
the network, and not the sender and receiver information as well. This is a slight
departure from the usual practice, and also from what was said in our informal
discussion of the model. We choose the simpler alternative, since the choice here
does not have a bearing on our main results.

Another aspect worth noting here is that the intruder is acting as an unbounded
buffer which synchronises with each send and receive event of the honest agents. In

effect the intruder is playing the role of the network as well, but there are some vital
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differences. The intruder is assumed not to lose any message (even though it might
not be sent to the intended recepient). This simplifies much of our analysis since
at any point in time, the intruder has all the messages exchanged thus far. In a
real-life situation the network (having finite memory) might lose some information
and hence our analysis might get more complicated due to consideration of past

information.

Definition 2.2.12 Given an information state s and a sequence of events & =
e+ - e, infstate(s, e -+ -eg) is defined to be update(s, act(ey) - - act(er)). An event
e is said to be enabled at (s,&) iff LP(e) C {ey,...,er} and act(e) is enabled at
infstate(s,§).

Given a protocol Pr and a sequence & = eq - - - ey, of events of Pr, infstatep, (&) is
defined to be infstate(init(Pr),e;---ex). We omit the subscript Pr if the context is
clear. An event e of Pr is said to be enabled at a sequence & of events of Pr iff e is
enabled at (init(Pr),&).

The following two propositions, which state that if an agent A is not “involved”
in an action a then a does not affect A’s state, are easy consequences of the definition

of update.

Proposition 2.2.13 Suppose s is an information state, n is a finite sequence of
actions, A € Ho and a ¢ Aca. Then (update(s,n))a = (update(s,n-a))a. As a
consequence, for all information states s, all finite sequences of actions n and for
all A € Ho, (update(s,n))a = (update(s,n[A))a.

Proposition 2.2.14 Suppose s is an information state, n is a finite sequence of

actions, and a is a receive action. Then (update(s,n))r = (update(s,n-a));.

Runs of a protocol

We isolate the sequences of events which can possibly occur as runs of protocols
in the following definition. In the next definition, we define the set of runs of a given

protocol.

Definition 2.2.15 A sequence of events ey - - - ey is said to be a run with respect to

an information state s iff:

e foralli:1<i<k,e; isenabled at (s,e;---¢e; 1),
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e foralli:1<i<k, NT(e;)NST(s) =0, and for alli < j < k, NT(e;) N
NT(e;) = 0. (This is the unique origination property of runs.)

A run is € is said to be well-typed iff every e € Events(&) is well-typed. For a given
T C Ty, a run £ is said to be a T-run iff every e € Fvents(£) is a T-event.

Definition 2.2.16 Given a protocol Pr, a sequence & of events of Pr is said to be a
run of Pr iff it is a run with respect to init(Pr).

We let R(Pr) denote the set of all runs of Pr, Ru:(Pr) denote the set of all well-
typed runs of Pr, and for any given T C Ty, Ry (Pr) denote the set of all T-runs of
Pr.

Note that in our definition of runs, we do not insist that every send event have
a “matching” receive event. These would be the messages which are blocked by the
intruder. There is no requirement that every receive should have a “matching” send,
as well. These would be the messages which are generated and sent by the intruder

(possibly under an assumed identity).

Example 2.2.17

e An example run of Prys is &, given below:

(m.o1,1) A LT (m) {A m}pu,
(m2,00,1) B 7 A : {A, m} pusk,
(n2.02,2) B ! A+ (n) {m,n}pum,
(m,01,2) A 7 1T {m, n}pus
(m,01,3) A ! I {n}pusk,
(m2,02,3) B 7 A : {n}pusk,,

Here n; and ny are roles of Prys defined in Example 2.2.4 and o7 and oy are

substitutions suitable for Prys defined in Example 2.2.6.

e An example run of Pry is &, given below:

(Ciy61,1) A LB (m) {4, {m}pubkg }puka

(CQ, S2, 1) B 7 I {]; {A, {m}pubk;;}pubk,;}pubk,;
(C2,,2) B ! I {A M} pusk , }pusk,

(Coy63,1) B 7 1 {1, Am} pusk, } pub

(CQ, 3, 2) B 11 {m}pubk,

( ) A B

<17<1a 2 {m}pubkA
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Again (7 and (, are roles of Pr,; defined in Example 2.2.5 and ¢, ¢; and ¢3 are
substitutions suitable for Pr,; defined in Example 2.2.6.

e Let us now look at some non-examples of runs. The following is not a run
of Prys since the second message, which has been sent by the intruder to A,
cannot be constructed by I from the rest of available information. Only B can
decrypt the first message and learn m, which is a fresh nonce generated by A

and so is unavailable to the intruder at any previous time.

(h,o,1) AV B : (m) {A m}pu,
(m,0,2) A 7 B : {m,m} pusk,

The following is not a run of Prys for the simple reason that property of unique

origination of nonces is not maintained.

(m) {Av m}Puka
{Aa m}puka
(m) {m7 m}pUbkA

{ma m}pubkA

~

3
o o

0
o= =

The following is an easy consequence of the definition of runs.

Proposition 2.2.18 Suppose £ = e1---¢€ is a run with respect to a state s. Then
for all i <k, NT(e;) N ST (infstate(s,e1---e; 1)) = 0.

Proof: We first prove that ST (infstate(s,e;---€; 1)) N To = (ST(s) N Ty) U
NT(ey---e;q). For this it suffices to prove that for any sequence of actions 7,
ST (update(s,n)) N Ty = (ST (s)NTo) UNT(n). For this, we first observe that for all
states s and actions a, ST (update(s,a))NTy = (ST (s)NTo)UNT (a). Now the state-
ment is proved by an easy induction on |n|. The statement is immediate for n = . If
n = n'-a then we note that update(s,n) = update(s', a) where we denote update(s,n')
by s'. Therefore ST (update(s,n)) N Ty = (ST(s") N Ty) U NT(a). Now NT(n) =
NT(n') U NT(a), and by induction hypothesis, ST(s") N Ty = ST(s) U NT'(n'), and

thus the statement immediately follows.
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Using the above fact, we prove the proposition. Since £ has the unique origina-
tion property, it is clear that NT'(e;) N ST(s) = ) and NT'(e;) N NT (e;) = 0 for all
j < i. This implies that NT(e;) N ST (infstate(s,e;---€; 1)) = 0. O

Another aspect of our definition of runs is worth highlighting. We allow events
to have more than one occurrence in a run (as long as they do not generate fresh
nonces). This is not strictly necessary, since there is no information gain in re-
peating the same event many times. But we retain this definition, as imposing a
condition on unique occurrence of events would make some of our definitions and
proofs considerably messier. The following propositions suggest a way of removing
duplicate events from a run in such a manner that the reduced run is leaky iff the

original run is.

Definition 2.2.19 The function red : Fvents — Events is defined as follows:
e red(e) =e.

red(&) - e if e € Fvents(red(&))
red(&) otherwise

e red({-e) = {
red(§) is called the reduced form of &. We call € a reduced run iff red(§) = &.

It is easy to see that for any &, Events(§) = FEvents(red(£)) and red(§) has at

most one occurrence of each event.

Proposition 2.2.20 Suppose £ is a run with respect to sg. Then:
1. infstate(sy, &) = infstate(sg, red(€)), and
2. red(§) is also a run with respect to s.

Proof:

1. This is quite easy to prove. We prove it by induction on the length of £&. The
base case is trivial, since red(¢) = . For the induction step, there are two

cases to consider:

e Suppose £ =" -e and e € Events(red(£')). Then red(&) = red(¢'). There-
fore infstate(sg,red(€)) = infstate(so,red(£')). Since infstate(sy,&') =
infstate(sg, red(¢')), by induction hypothesis, the desired result will follow
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if we show that infstate(sg, &) = infstate(sg,£’). Denote infstate(sg, &) =
s and infstate(sy,&') = s’ for notational convenience. Let us consider
the case when act(e) = A!B:(M)t. The case when e is a receive event
is similarly handled. Since e € Fuvents(red({')), e € Fvents(£') as well.
Now if M were not empty, then it would mean that two distinct event
occurrences of £ generate the same new nonce (or key), which would be
a violation of the unique origination property of the run &. Thus M = (.
Further it follows from e € Events(£') and the definition of update that
t € s/yNs’. From the definition of update and the fact that M = (), we also
see that sy = 'y U{t}, sy = 7 U{t} and s¢ = s, for all C € Ag\ {4, I}.

Since t € s, N s}, it is clear that s = s’ and we are through.

e Suppose £ =& -e and e ¢ Events(red(£')). Then red(§) = red(¢') - e. Fur-
ther since Events(&') = Fvents(red(£')), e ¢ Events(£') as well. Denote
infstate(sg,&') = s' and infstate(sg, red(¢')) = | for notational conve-
nience. Now infstate(sg, &) = update(s', act(e). But by induction hypoth-
esis, s’ = s} and therefore update(s', act(e)) is equal to update (s}, act(e)),

which is the same as infstate(sq, red(§)), by definition.

2. Since Events(§) = FEvents(red(£)), red(£) also has the unique origination prop-
erty. Further from the first part of the proposition, it follows that every event

of red(§) is enabled at the end of the sequence of events preceding it.

The secrecy problem

Definition 2.2.21 A basic term m € Ty is said to be secret at state s iff there exists
A € Ho such that m € analz(s4) \ analz(s;). Given a protocol Pr and & € R(Pr), m
is said to be secret at & if it is secret at infstate(§). € is leaky iff there exists a basic
term m and a prefix £ of & such that m is secret at £ and not secret at €.

The secrecy problem is the problem of determining for a given protocol Pr whether
some run of Pr is leaky. The secrecy problem for well-typed runs is the problem of
determining for a given protocol Pr whether some well-typed run of Pr is leaky. For

a given T C Ty, the secrecy problem for T-runs is the problem of determining for a



Chapter 2: Security protocol modelling 41

given protocol Pr whether some T-run of Pr is leaky.

Thus we say that a run is leaky if some atomic term is secret at some intermediate
state of the run but is revealed to the intruder at the end of the run. It is possible that
there are protocols for which leaks of the above form do not constitute a breach of
security. A more general notion would be to allow the user to specify certain secrets
which should not be leaked and check for such leaks. In later chapters, we prove the
decidability of the secrecy problem (defined above) for a subclass of protocols. Tt
is still not known whether there is a “reasonable” syntactic subclass of protocols
for which the more general secrecy problem (which checks for leaks of user-specified

secrets) is decidable.

Example 2.2.22
e The run & of Example 2.2.17 is leaky. This is because n is secret at the prefix
& = (m,o1,1) - (2,09, 1) - (12,09, 2) of &, whereas it is not secret at &;.

e Similarly, the run & of Example 2.2.17 is also leaky, for m is secret at the

prefix & = ((1,¢1, 1) of &, but it is not secret at ;.

2.2.2 Well-formed protocols

In the literature, protocols are informally presented as a sequence of communica-
tions of the form A— B:t. There are also some other “well-formedness” conditions
which are implicitly assumed. In this section, we formalise these criteria and explore
their consequences. The main property of well-formed protocols is that for each of
their roles and plays, every send action in it is enabled by the previous actions.
As a result, when we analyse well-formed protocols, checking enabledness of send
actions by honest agents is relatively straightforward. If e; - - - e; is a run of a well-
formed protocol Pr and e is a send event such that LP(e) C {ey, -, ek}, then as
a consequence of the propositions proved in this section, e is enabled at &. Hence
if the new terms introduced in e do not already occur in ey ---eg, then e;---¢, - €
is also a run of the protocol. Thus the task of checking whether a send event is
permissible at a given stage of a run is much simplified. In analysing a well-formed

protocol, it suffices to check the enabledness of the receive actions (corresponding to
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intruder sends). This has also been the standard practice in the analysis of security
protocols. It can be seen that it is the implicit assumption of well-formedness that

justifies this practice.

Well-formed Protocols

A communication is of the form A— B: (M)t where A,B € Ho, A # B, t € T,
and M C ST(t)N(NUSN UKjy). For a communication ¢ = A— B:(M)t, acts(c) is
defined to be A!B: (M)t and act,(c) is defined to be B?A:¢. Thus a communication
specifies a send and a corresponding instantaneous receive. Communications are not
necessarily implementable (because of the presence of the intruder), but nevertheless
their use can lead to much simpler specifications of protocols than the role-based
specifications.

For a sequence of communications §, actseq(d) is defined by induction as follows:
actseq(e) = &; actseq(d - ¢) = actseq(d) - acts(c) - act,(¢). Thus from any given
sequence of communications we can obtain a sequence of actions by splitting each
communication into a send and a corresponding receive. These sequences are used to
obtain the semantics of linear protocols (defined below), which are specified in terms
of communications. For any communication ¢, term(c) dof term(acts(c)). NT(c),
ST(c) and EST(c) are similarly defined. For any sequence of communications 0,
terms(9) o terms(actseq(d)). NT(5), ST(5) and EST () are similarly defined.

Definition 2.2.23 A linear protocol is a pair Pr = (C,§) where:

e C, the set of constants of Pr, denoted CT(Pr), is a subset of Ty with the property
that {ng, mg,kg} N C =10, and

e 0, the body of the protocol, is a nonempty sequence of communications.

Given a linear protocol Pr = (C,0), Roles(Pr), the set of roles of Pr, is defined to be
the set {nlA | A € Ho and nlA # e} where n = actseq(9).

Example 2.2.24 The protocol Prys presented earlier is a linear protocol, with the

following specification:

1. A - B (T) {A,.’I?}puka

2. B — A (U) {«T;y}pubkA
A —- B {y}puka
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The protocol Pry, presented earlier is also a linear protocol, with the following

specification:

1. A — B :(z) {A{z}puk, }pusk,
2. B - A : {m}pubkA

Even though the presentations look different, linear protocols can in fact be
viewed as a subclass of protocols as defined in Definition 2.2.2, as the following

proposition asserts.

Proposition 2.2.25 If Pr = (C,0) is a linear protocol, then (C, Roles(Pr)) is a

protocol.

The proof is by just observing the definitions. This proposition allows us to freely
use the standard notions associated with protocols (like init(Pr), for instance) for
linear protocols as well. Note that the converse of the above proposition is not true.
It is possible to come up with protocols which have no representation as a linear

protocol.

Definition 2.2.26 A sequence of actions n = ay - - - ay s said to be send-admissible
with respect to a state s iff for all i < ¢, if a; is a send action then a; is enabled at
update(s,ay -+ -a; 1). 1 is said to be send-admissible with respect to a protocol Pr iff

it is send-admissible with respect to init(Pr).

Definition 2.2.27 A well-formed protocol is a linear protocol Pr = (C,§) such that

actseq(0) is send-admissible with respect to Pr.

Proposition 2.2.28 Suppose Pr = (C,0) is a well-formed protocol. Then all its

roles are send-admissible with respect to Pr.

Proof: For simplicity of notation, let sy denote init(Pr). Let n = actseq(d). Sup-
pose 7 = aq---ay and suppose ( = a;, -

some A € Ho. By Proposition 2.2.13, it is clear that for all 7 : 1 < j < r,

-a;, is a role of Pr, ie., ( = nlA for

(update(so, a1 - --a;;))a = (update(so, a;, - a;;))a. Since Pr is a well-formed proto-

col, 1 is send-admissible with respect to Pr. The send-admissibility of ¢ now follows
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from the above equality. O

Proposition 2.2.29 Suppose Pr = (C,0) is a well-formed protocol, ¢ is a role of
Pr and o is a substitution suitable for Pr and . Then o(() is send-admissible with

respect to Pr.

Proof: For simplicity of notation, let sy denote init(Pr). Let n = actseq(d). Note
that ( = n[A for some A € Ho. Since o is suitable for Pr and (, o is defined
on all actions occurring in ¢, and o(m) = m for all m € CT(Pr). We first prove
for all prefixes (' of ¢ that o(s'y) C (8})s(4) by induction on |¢'| (where we denote
update(sg, (') by s" and update(sg, o((")) by s):

(' = ¢: In this case s’ = 5| = s9. Now it is clear that 0(C) = C and 0(K 1) = Ky(a).
Since A € Ho, o((s9)a) = CU0(K,). Further (so)y,a) 2 CU Ky4) (with
/

inequality when o(A) = I). It immediately follows that o(s,) C (s])o(a) in

this case.

¢"=("-a: Note that o({") = 0((")-0(a). For simplicity let us denote update(sq, (")
by s" and wupdate(sy,o(¢")) by s{. We need to prove that o(sy) C (s})s(a)

assuming that o(s"}) C (sY)s(a)-
Now if a = A!B: (M)t then s’y = 'y UM U {t}. Since a(s’jl) C (s))s,, and

since o(s13) = o(s4) Uo(M) U {o ()} and (s})ogy = ()or Uo(M) U {o(0)}
(because o(a) = o(A)lo(B): (a(M)o(t)), it follows that (I(‘?A) C (57)o(a)

The case when a = A?B:t is identically handled. This proves the induction

case.

From Proposition 2.2.28 it follows that ( is send-admissible. Now consider any
prefix (' - a of ( with a € Send. For simplicity let us denote update(sg, (') by
s' and update(sy,o(¢")) by ). We know that term(a) € s', UNT(a). Therefore
term(o(a)) = o(term(a)) € o(s'y U NT(a)). But item 3 of Proposition 2.3.6 says
that o(T) C o(T) for any o and T. Further o(s', U NT(a)) = o(s',) U NT(o(a))
and by what has been proved above o(s’y) C (8])s(a). Putting all this together
we see that term(o(a)) € (8))oa) U NT(0(a)). This shows that o(C) is also send-

admissible. O
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Tagged Protocols

While well-formed protocols enforce a reasonableness condition at the level of
protocol specifications, we must note that they still allow for quite unreasonable
behaviours. Substituting encrypted terms for nonces can give the intruder the
ability to circumvent the protocol. For instance, a communication of the form
A— B:{(A,{z}g)}r in the protocol allows the intruder to capture it and send it
on to B as: I—B:{(I,{(A,{z}B)}B)}B. On receipt B will interpret (A,{z}p) as
a nonce and act accordingly. Depending on the situation, such a possibility might

have undesirable consequences. For example, consider the following protocol:

1. A = B :(x) {}pubky

2. B - A : {2}k an
B receives a nonce encrypted in its own public key and sends it back to the sender
encrypted in the key k4p shared by them. Consider the following run now (let ry

denote the initiator role, and 7, the responder role):

m,o,1) A L B (m) {m}pum,
m,o0,1) B 7 A : {m} puk
m,0,2) B ! A : {m}r,s
m,o 1) B 7 A {{m}eantpube,
(m2,0,2) B I A {{m}tean teas

At the end of the run above the intruder manages to learn {{m},,}x,,. Since

(
(
(
(

kap = kg, using the reduce rule we say that m € 57, where s is the state at the end
of the above run. This situation arises because B interprets {m},, as a nonce and
encrypts it and hands it over to the other party, in effect decrypting the message
for the intruder. It is thus useful to look at ways to prevent such attacks from
happening. Tagging is one such mechanism that seeks to distinguish between terms
of different structure and prevent attacks such as the above. More specifically, tags
are just constants which act as message identifiers and are attached to some of the
encrypted subterms of messages which are communicated during a run. The use
of tags has the effect of preventing the intruder from passing off a term o({t};) as
o'({t'}x) in some run of a protocol while {¢}; and {#'}; are intended to be distinct
terms in the protocol specification. We also use tagging to associate every receive
action occurring in a run with its corresponding send (if there exists one).

To precisely highlight the assumptions used in the decidablity proofs in later

chapter, we define two tagging schemes, one of which subsumes the other.
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Definition 2.2.30 A well-formed protocol Pr = (C,0) is called a weakly tagged
protocol iff for all t € EST(J) there exists ¢, € C such that:

o forallt,t' € EST()), ifc, =cy thent =1, and

e forallt e EST(5): t = {(ct,u)}x for some u and k.

Definition 2.2.31 A well-formed protocol Pr = (C,0) with § = ¢1 -+ ¢y is called a
tagged protocol iff for all t € EST() there exists ¢, € C, and for all i < { there
exists n; € NT(¢;) N SN such that:

o foralli,j < (,t € EST(c;), and t' € EST(c;): if ¢, = ¢y thent = t' and

1 =7, and
e foralli </ and allt € EST(¢;): t = {(cy, (ns,u)) }x for some u and k.

It is clear that every tagged protocol is also weakly tagged. Hence all the results
which we prove for weakly tagged protocols hold for tagged protocols as well.

The weak tagging scheme which we have presented is essentially derived from the
schemes presented in [HLS00] and [BP03], whereas there are some new features in
the second tagging scheme that we have presented. Most of the standard protocols
occurring in the literature (see [CJ97] for example) can be easily tagged to obtain
“equivalent protocols”, such that for any run £ of the original protocol which involves
only honest agents, the tagged version of £ is a run of the transformed protocol, and
for all runs £ of the transformed protocol, the untagged version of £ is a run of
the original protocol. (Thus the transformation does not limit the honest agents’
capabilities while at the same time not introducing more attacks). But we should
note that for some protocols which contain “blind copies” like the Woo-Lam
protocol IT (as presented in [CJ97]) — the second tagging scheme cannot be effected
to get an equivalent tagged protocol. The problem would occur if an agent A cannot
decrypt an encrypted term which it is blindly passing on. The second tagging scheme
requires a distinct tag to be added for each ¢;, but A cannot effect the retagging.
But on the other hand, we can always apply the weak tagging scheme to any well-
formed protocol to get an equivalent weakly tagged protocol. The problem of blind
copies does not arise now, because the tags do not depend on the communication
but only the structure of the encrypted terms. So there is no need to change the

tags of terms which are blindly passed on.
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An important point worth noting here is that including the tags in the protocol
specification stage rather than later, in the run generation stage, means that the
legality of the runs (with respect to the tagging scheme) can be enforced by checks
performed by the honest participants of the protocol.

It should also be noted that sequence numbers are used in an essential way in
the second tagging scheme. Even though the tagging scheme entails unboundedly
many new tags to be used in protocol runs, still it does not involve much cost. Since
sequence numbers are not required to be unguessable, even simple schemes like using
a counter suffice to generate an unbounded number of them. This is different from
generating nonces, where the real hard work is in ensuring unguessability.

The main purpose of the tagging schemes is to ensure the following properties of
runs of tagged protocols. These properties are easy consequences of the definition
of tagged protocols (and weakly tagged protocols), and are very important for the

decidability proofs in the later chapters.

Proposition 2.2.32
e Suppose Pr = (C,0) is a weakly tagged protocol. Then for all o,c" suitable for
Pr and for all t,t' € EST(9), if o(t) = o'(t') then t =1

e Suppose Pr = (C,cy---¢p) is a tagged protocol. Then the following statements
hold:

— for all o,0" suitable for Pr, for alli,j < ¢, for allt € EST(¢;) and for all
t' e EST(c)), if o(t) =o' (t') thent =t" and i = j.
— Suppose ey - - - e, is a well-typed run of Pr. For all receive events e (k < r),
0.

there is at most one send event e; such that EST (e;) N EST (ex) #

Proof:

e Suppose t,t' € EST(d) and o, o' suitable for Pr such that o(t) = o'(¢').
By definition of weakly tagged protocols, it follows that ¢ = {(c;,u)}, and
t'" = {(cy,u') }y for some u,u', k and k'. It follows that o(c;) = o'(cy). But
since o and ¢’ are suitable for Pr, and since ¢;, ¢y € C, o(¢;) = ¢; and o'(cy) =
cy. Therefore ¢; = cy. Now it follows from the definition of weakly tagged

protocols that t = t'.

e We now take up the proofs of the statements relating to tagged protocols.
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— Suppose i,j < {, t € EST(¢;), t' € EST(¢;) and o, o' suitable for Pr
such that o(t) = o'(t'). By definition of tagged protocols, it follows that
t = {(c;,u)}r and ' = {(cp,u)}p for some w,u', k and k'. Tt follows
that o(c;) = o'(cy). But since o and o' are suitable for Pr, and since
¢, ¢ € C,o(cy) = ¢, and o'(cy) = cy. Therefore ¢; = ¢y. Now it follows

from the definition of tagged protocols that t = ¢’ and ¢ = j.

— Suppose e - - - e, is a well-typed run of Pr and suppose there is a receive
event e, and two send events e; and e; (with i # j) such that neither
EST(e;) nor EST (e;) is disjoint from EST(ey). Suppose t; € EST (e;) N
EST(ey) and t; € EST(e;) N EST(e)). From the definition of tagged
protocols it is clear that for all events e of £, there exists a nonce n such
that for allt € EST(e), t = {(ct, (n,u))}x for some u and k. Further if e is
a send event, n € NT'(e). Thus there exist n, € NT(e;) and n; € NT(e;)
such that ¢; = {(c;,, (ni, w;)) i, and t; = {(cy;, (nj,u;5)) }x, for some u;, u;,
k; and k;. Now both t; and ¢; belong to EST (e ), therefore it follows that
n; = n;. But then n; € NT(e;) N NT'(e;), which violates the property of

unique origination of nonces. This contradicts the fact that £ is a run.

This contradiction leads us to conclude that there is at most one ¢ such

that EST (e;) N EST (ey) # 0.

2.3 Properties of synth and analz

In this section, we prove several useful results about synth and analz proofs, which
will be used throughout the rest of the thesis.

We start off with the following simple observation:

Fact 2.3.1 For any set of terms T and any term t € synth(T), at least one of the

following conditions holds:
e tcT.

e ¢ is of the form (t',t") and {t',t"} C synth(T).
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o ¢ is of the form {t'}r and {t',k} C synth(T).

This fact follows immediately from the definition of synth-proofs. In many situ-
ations, this fact helps us to replace induction on synth-proofs by (the much simpler)
induction on structure of terms.

Some basic facts about the synth and analz operators are proved in the following

proposition.
Proposition 2.3.2 Let T,T7' C T andt € T. Then the following properties hold:
1. T C analz(T).
2. T Csynth(T).
3. If T CT', then analz(T) C analz(T").
4. If T CT', then synth(T') C synth(7").
5. analz(analz(T')) = analz(T).
6. synth(synth(T")) = synth(T').
7. t € synth(T) iff t € synth(T' N ST(t)).

Proof: The statements relating to analz are proved by a simple induction on analz-
proofs, and the statements relating to synth are proved by a simple induction on the

structure of terms. We just prove statements 5 and 6 to give a flavour of the proofs.

Proof of statement 5: 1t is immediate that analz(7T") C analz(analz(T)), from state-
ments 1 and 3. We prove the other inclusion. Suppose ¢ € analz(analz(T)).
Suppose 7 is an analz-proof of analz(T') F ¢. We prove by structural induction
that for every subproof w of m with root labelled analz(T) - r, r € analz(T).
From this it follows that ¢ € analz(T) as well.

Suppose w is a subproof of m with root labelled analz(T')  r such that for
all proper subproofs w; of @ with root labelled analz(T") - ry, r; € analz(T).

Then we prove that r € analz(T) as well.

e Suppose w is the following proof:

———Ax,
analz(T) Fr
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Then r € analz(T') by definition and we are through.

e Suppose w is the following proof:

(1)

anaIz(T). = (r,r")
analz(T) +r

split,

By induction hypothesis (r, ') € analz(T') and thus it immediately follows
by definition of analz-proofs that r € analz(T) as well.

e Suppose w is the following proof:

(Wl) (w2)
anaIz(T:) = {r}k analz(.T) -k
analz(T) Fr decrypt

By induction hypothesis {{r};,k} C analz(T') and thus it immediately
follows by definition of analz-proofs that r € analz(T).

e Suppose w is the following proof:

(1)

analz(T) F {{r}e}s
analz(T) - r

reduce

By induction hypothesis {{r};}z € analz(T') and thus it immediately
follows by definition of analz-proofs that r € analz(T).

Proof of statement 6: 1t is immediate that synth(7") C synth(synth(7)), from the
statements 2 and 4. We now prove by induction on the structure of terms
that if ¢ € synth(synth(7)) then ¢ € synth(T"). From Fact 2.3.1, it suffices to

consider the following three cases:

t € synth(T): Then the conclusion trivially follows.

t is of the form (t',t") and {t',t"} C synth(synth(7")): By induction hypothe-
sis, it follows that {¢',#"} C synth(T'). It now immediately follows from
the definition of synth-proofs that ¢ € synth(T').



Chapter 2: Security protocol modelling 51

t is of the form {t'}y and {t', k} C synth(T): By induction hypothesis, it fol-
lows that {t', k} C synth(T"). It now immediately follows from the defini-
tion of synth-proofs that ¢ € synth(T).

It immediately follows from the above proposition that T' = synth(analz(T)) is
closed under synth. The following proposition says that it is closed under analz as
well, thus immediately implying the important statement that T = T for all sets of

terms 7.

Proposition 2.3.3 For all T C T, analz(T) =T.

Proof: From item 1 of Proposition 2.3.2, T C anaIz(T). We prove the other
inclusion now. Suppose t € analz(T). Suppose 7 is an analz-proof of T  ¢t. We
prove by structural induction that for every subproof w of © with root labelled
T+ r,reT. From this it follows that t € T as well.

Suppose w@ is a subproof of 7 with root labelled T+ r such that for all proper
subproofs w; of w with root labelled T - ry, r; € T. Then we prove that »r € T
as well. We only consider the case when the rule applied at the root of w is Ax, or

decrypt. The other cases can be similarly handled.

e Suppose w is the following proof:

Ax,

TkHr

Then r € T by definition and we are through.

e Suppose w is the following proof:
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T F (ty,t2)

split; (i = 1,2 T e Ax
Trt, ( ) TU{t}Ft

T+t T+t

T+ {t THE pair
{ }; = decrypt T F (ty,12)
TH {{the)e THt TEHE encrypt
—Tr: reduce T+ A{t}

Figure 2.4: yields-rules.

By induction hypothesis {{r}s,k} € T. From the definition of synth-proofs
it follows that for all atomic terms m, if m € T = synth(analz(T)), then
m € analz(T). Since k is an atomic term, it follows that k € analz(T). Since
{r}x € synth(analz(T")), it follows by Fact 2.3.1 that either {r}, € analz(T) or
{r,k} C synth(analz(T)). In the first case, since k € analz(T), it follows that

r € analz(T) C T. In the second case also r € T and we are through.

Following [Pau98|, we have taken synth(analz(7")) as the set of terms which can
be built from 7. This means that we are considering only “normal proofs” in
which all the analysis rules are applied before the synth rules  in building up new
terms from old. An alternate approach would be to consider proofs which involve
synth and analz rules applied in an arbitrary order. This approach is also common in
the security protocol literature. (For example, [FHG99] and [DLMS99] follow this

approach.) We now show that both the approaches are equivalent.

Definition 2.3.4 An yields-proof m of T &+ t is an inverted tree whose nodes are
labelled by sequents and connected by one of the yields-rules in Figure 2.4, whose
root is labelled T = t, and whose leaves are labelled by instances of the Ax rule. For

a set of terms T, T is the set of terms t such that there is a yields-proof of T F t.

Proposition 2.3.5 For all sets of terms T, T = T.
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Proof: The inclusion from left to right is trivial, since both the analz-rules and the
synth-rules are included in the yields-rules.

We consider the inclusion from right to left now. From item 6 of Proposition 2.3.2
it follows that synth(T) C T. Proposition 2.3.3 says that analz(T) C T. It follows

as an immediate consequence of this that T CT. O

Proposition 2.3.6 Suppose T is a set of terms and o is a substitution such that
o(t) is defined for allt € T. Then

1. o(analz(T)) C analz(a(T)).

2. o(synth(T)) C synth(o(T)).

3. o(T) C o(T).

Proof: We first note the following simple facts: if ¢ € T then o(t) € o(T);
o((t, 1) = (o(1),0(t); o({t}) = {o (D) Yoy o({{thi}e) = Ho (D) ko Vo

From these it follows that if Tri is a analz-rule, so is —U(T) Fo(?)
Tt o(T) F o(t)

A similar statement holds for binary analz-rules and for synth-rules as well (both

unary and binary). Statements 1 and 2 immediately follow from these observa-
tions. Statement 3 can now be proved as follows: o(T) = o(synth(analz(T))) C
synth(o(analz(T))) C synth(analz(o(T))) = o(T). O

Proposition 2.3.7 For all sets of terms T and terms t, if t € ST (synth(T')) then
either t € ST(T) or t € synth(T).

Proof: Supposet € ST (synth(7T")). We prove by induction on the structure of terms
that for all r, if r € synth(7) and ¢t € ST (r) then either ¢t € ST(T) or t € synth(T').

Bt Fact 2.3.1, it suffices to consider the following three cases:
r € T: Then clearly t € ST(T).

ris of the form (r',r") and {r',r"} C synth(T'): There are two cases to consider. If
t =r = (r',r") then clearly ¢t € synth(T"). Otherwise t € ST (r) = ST(r") U
ST (r") and now we can apply to the induction hypothesis and conclude that
t € ST(T) or t € synth(T).
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r={r'}x and {r', k} C synth(T'): This case is handled the same way as the previous

one.

Proposition 2.3.8 For all sets of terms T and terms {t}x, if {t}r € ST (synth(T))
then either {t},, € ST(T) or {t,k} C synth(T).

Proof: Suppose {t}; € ST (synth(7")). From Proposition 2.3.7 we conclude that
either {t}, € ST(T) or {t}y € synth(T). But if {t}, € synth(T) then either
{t}y € T C ST(T) or {t, k} C synth(7T), from Fact 2.3.1. O

Proposition 2.3.9 Suppose T C Ty. Then ST (synth(T)) C synth(T).

Proof: From Proposition 2.3.7 it follows that ST (synth(T")) C ST(T) U synth(T).
But since T consists only of atomic terms, ST(T) = T C synth(7') and hence the

result follows. O

Definition 2.3.10 A term t is a minimal term of a set T of terms iff t € T and
t & synth(T'\{t}), i.e. t cannot be “built” from the other terms in T. min(T) denotes

the set of minimal terms of T'.

The following fact follows immediately from the definition of minimal terms.

Proposition 2.3.11 Suppose T is a set of terms and t € min(T). Then the follow-

ing conditions hold:
o Ift is of the form (t',t") then either t' ¢ T ort" ¢ T.

o Ift is of the form {t'}, then either t' ¢ T ork ¢ T.

Proposition 2.3.12 Suppose T is a set of terms and t € min(analz(T)). Then one
of the following conditions hold:

e te.

o t = {t'}y for some t' k such that either t' ¢ analz(T) or k ¢ analz(T).
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Proof: Suppose t € min(analz(T)) is of the form (#',¢"). Since ¢t € analz(T),
{t',#"} C analz(T'). But this contradicts item 1 of Proposition 2.3.11. O

Proposition 2.3.13 For any set of terms T, the following properties hold:
1. T C synth(min(T)).
2. synth(T") = synth(min(7)).
3. T = synth(min(analz(T))).

Proof: We prove by induction on the structure of terms that for all t € T', ¢ belongs
to synth(min(7)). If t € TN, then clearly ¢ € min(T) C synth(min(7T)). Ift = (¢, ")
belongs to min(7T") then we are through. Otherwise {¢',¢"} C T and by induction
hypothesis {t',#"} C synth(min(T')) and therefore t = (#',t") € synth(min(T)) as
well. A similar argument works for the case when ¢ = {t'}.

Now it is clear that min(7T") C T and thus synth(min(7)) C synth(7'). On the
other hand, it follows from item 1 above that synth(7") C synth(synth(min(T))) =
synth(min(7")). Thus synth(7") = synth(min(7")). Substituting analz(T) in place of T
in the above equation, it follows that T = synth(analz(T)) = synth(min(analz(T))).

(]

We introduce the following bit of terminology before we get to our next propo-

sition.

Definition 2.3.14 A set of terms T is said to unravel another set of terms T" iff
there exists a term t and a key k such that {t}; € analz(T") and k € analz(T). Two
sets T and T are said to be mutually independent if neither T nor T' unravels the

other.

Proposition 2.3.15 Suppose T and T' are two mutually independent sets of terms.
Then analz(T' UT") = analz(T) U analz(T").

Proof: The inclusion from right to left is obvious. We now consider an arbitrary
t € analz(T'UT") and show that ¢ € analz(T") Uanalz(7"). Suppose 7 is an analz-proof
of TUT'Ft. We prove by structural induction that for every subproof @ of © with
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root labelled TUT' F r, r € analz(T') Uanalz(T"). Therefore ¢ € analz(T") Uanalz(T")
as well.

Suppose w is a subproof of 7 with root labelled 77U T" F r such that for all
proper subproofs w; of @ with root labelled T UT" & rqy, ry € analz(T') U analz(T").
Then we prove that € analz(T")Uanalz(7") as well. We only consider the case when
the rule applied at the root of w is Ax, or decrypt. The other cases can be handled

similarly.

e Suppose w is the following proof:

— A
TUT kFr
Then r € TUT' C analz(T') U analz(T").

e Suppose w is the following proof:
(wy) (w2)

TUT F{r}y TUTFFk

decrypt
TUuT Fr

By induction hypothesis {{r}, ¥} C analz(T") Uanalz(7"). Since T and T" are
independent, it can neither be the case that {r}, € analz(T) and k € analz(T"),
nor can it be the case that {r}, € analz(T') and k € analz(T). Hence either
{{r}s, k} C analz(T) or {{r}s, k} C analz(T"). It follows immediately that
r € analz(T) U analz(T").



Chapter 3

Undecidability results

In this chapter we prove that the secrecy problem for security protocols is in
general undecidable. In fact we prove that the secrecy problem is undecidable even
when we consider only well-typed runs or when we consider only boundedly many
nonces and keys.

It might be surprising at first glance that a simple property like secrecy (which
is only slightly more complex than reachability) should turn out to be undecidable.
It is all the more surprising since protocol specifications prescribe set patterns of
communication for the different agents. Even though factors like unbounded nonces
or unbounded message length enter the picture, it seems unlikely at first glance that
the protocol specifications can force such unbounded behaviour. If that was possi-
ble, it would mean that our “language” for specifying protocols has a considerable
amount of inherent programming ability.

We will see in this chapter that one can actually define protocols whose runs
can code up an unbounded amount of information. We will see that the style of
presenting a protocol as a set of roles hides a lot of programming ability. The
crucial point about this style of presentation is that in some situations, the question
of whether an instance of a particular action (which occurs in the specification of
a protocol) occurs in any run of the protocol can be determined only by run-time
considerations (in contrast to well-formed protocols, where we know that for every
protocol action, there is always one scenario in which some instance of the action is

enabled). This contributes primarily to undecidability.

o7
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In fact, in the literature, we have found that the undecidability results are usu-
ally proved using a syntax of protocols close to the set-of-roles style of presentation,
whereas the linear style of presentation is favoured in work on decidability, or anal-
ysis of protocols. Thus the undecidability results provide us with much insight into
the modelling of protocols.

The undecidability result for well-typed runs was first proved by [CDL*99] (see
also [DLMS99]) in the setting of multi-set rewriting. We use a different reduction
from that used in [CDL"99]. Our reduction is much simpler than the ones currently
found in the literature. To our knowledge, ours is also the first detailed proof of
this result, a fact which can be attributed to the simplicity of our reduction. The
undecidability result for unbounded length of messages has been proved in various
places, including for instance, [HT96] and [ALV02].

Two-counter machines

Our undecidability results use a reduction from the reachability problem for
two-counter machines. We recall the relevant definitions below:

A two-counter machine is a tuple M = (Q, F, g, 0) where:

Q is a finite set of states,

F C (@ is the set of final states,

qo € @ is the initial state,

§CQx{0,1}2x Q x {-1,0,1}? is the transition relation with the condition

that whenever (q,1i1,142,¢, j1,J2) € d then jp = —1 implies iy = 1, for k = 1,2

(we can decrement a positive counter only).
The other standard notions relating to two-counter machines are defined below:

e A configuration of a two-counter machine M = (Q, F, qq, 9) is a triple (¢, n, no)

with ¢ € @, nx € N (the ni’s are counters).

e For a configuration (g, ny,ny) of M and a transition ¢t = (q, i1, i, ¢, j1, j2) € 0,
t is enabled at (q,nq,ny) iff for £ = 1,2, iy, = 0 iff oy, = 0. Whenever ¢ is

enabled at (g, nq,ny) we have the reduction (g, ny, ng)é(q’, ny + j1,ng + j2)-

e A configuration (q,n,nsy) is reachable if (qg, 0,0)—=(q, n1, ny) .



Chapter 3: Undecidability results 59

e A configuration (g, ny,ny) is final if g € F.

e The reachability problem for two-counter machines is the problem of deter-
mining for a given two-counter machine M = (Q, F,qo,d) whether a final

configuration of M is reachable.

We assume the well-known fact that the reachability problem for two-counter

machines is undecidable.

3.1 Undecidability for well-typed runs

Let M = (@, F,qo,d) be an arbitrary two-counter machine. We will define a
protocol Pry, = (C,R) such that a final configuration of M is reachable iff there is
a well-typed leaky run £ of Pry,. As we will see in the proofs which follow, crucial
use is made of the fact that there are unboundedly many nonces in N.

Before defining the actual reduction, we set up some basic notation: For sim-
plicity, assume () C N. Let z and d be fixed nonces from N. We fix honest agents
A, B (and therefore the shared key k4p.) Then we define the following terms:

for any u,u' € N, and g € Q, g, u, o] & {(q, (u,0/)) by

for any u,u’' € N,  [u,u/] = {(u, u') b ean-

The protocol Pry, is defined as follows:

Definition 3.1.1 Pry, & (C,R) where:

e C=QU{A, B,z d} and

e R={ntuU{m |tedtU{ns| feF} where:

def

-y = A'B:[d,d],|q,z 2], [d,d].
— for each transition t = (q, 11,12, q', j1,j2) € §, 0y Lo with:
n

a = A?B:[uqy, 1], [q, wy, ws, [ug, vs];
a' = AlB:(M) [uy, vi], [¢', wy, wy], [uh, v)]

where M = {v,, | k € {1,2} and jx = 1}, and the following conditions
hold for k € {1,2}:
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if i, = 0 and jp = 0 then

wp =wy, =z and ug = vy = uy, = v, =d;
if i, = 0 and jp =1 then

up = wg = 2, u, = v =d, v, = wy, and

vy, does not belong to C;
if i, = 1 and j = 0 then

Wy, = Wy = Vg, U = v, =d, and

ug and vy are distinct nonces not belonging to C;
if ig = 1 and jp = 1 then

Wy = v = Uy, W = vy, and

uk, v and vy, are distinct nonces not belonging to C;
if ig = 1 and j, = —1 then

W = Uk, Wy, = Ug, U, = vy, =d, and

ug and vy are distinct nonces not belonging to C.

For any n; as given above, and k € {1,2}, the notation inctry(n,) is used

to denote wy and the notation outctry(n,) is used to denote wy,.
— For each f € F, ny © o d - a" where:
a = A?B:[f,wy, ws];
o = ALB:({2}) {2 }irn;
a" = AB:x

where x, wy and we are distinct nonces not occurring in C.

The role corresponding to the transition (¢,0,1,¢',1, —1) is presented by way of
example:
A?B:[d,d],[q, z, va], [ua, va;
AlB:({v1}) [z, v1l. [¢', 1, ua), [d, d].
The role corresponding to the transition (¢, 1,1,¢’,1,1) is another example:
A?B: [uy, ], [q, v1, va], [ug, val;
AlB: ({v1,05}) [vr, 01, [q', v, 03], [v2, 05)].
The role ny starts off the simulation of the two-counter machine. The role 7y

checks if a final configuration with state f is reached and if so signals it by contriving

to “leak” a fresh nonce. The role 7, simulates the transition ¢ € 9.
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Lemma 3.1.2 Suppose & is a run of Prys and s = infstate(§). Then ksp & analz(sy)

(and hence kap & 57 as well).

Proof: The proof is by induction on |£]. For £ = ¢, by definition s; = (init(Pr)); =
KrUCU{ng,mp,ko} and thus it is clear that ksp ¢ analz(s;). Suppose & = &' -e
with s' denoting infstate(§'). By induction hypothesis kap ¢ analz(s)). Further
s; C sy U {term(e)}. But term(e) is a tuple of terms of the form [g, u,u'] or [u, u/]
or {z}x,, or x (with x € N). Thus it is clear that s, and {term(e)} are mutually
independent sets of terms (since k45 ¢ analz(s)) and analz(term(e))NK = (). By ap-
plying Proposition 2.3.15 and using the fact that ka5 & analz(s}) Uanalz({term(e)}),

we conclude that k,p & analz(sy). O

Definition 3.1.3
1. We say that a number n is represented in an information state s by a nonce u
if there exist distinct nonces uq, . .., u, such that ug = z, u, = u, and for all

i <mn, (U, U] € 57

2. We say that a configuration (q,n,n') is represented in an information state s by

the term [q, u, '] if u represents n in s, u' representsn’ in s, and [q,u,u'] € 57.

3. We say that a number n is represented in a run & of Prys by a nonce u if n is

represented in infstate (&) by u.

4. We say that a configuration (q,n,n') is represented in a run & of Pry by the

term [q,u, u'] iff (¢, n,n') is represented in infstate(€) by [q, u, u'].

From the definition it follows that in all states s, z represents only 0 and 0 is
represented only by z.

The following lemma states that the role 7, faithfully simulates the transition .

Lemma 3.1.4 Suppose & is a run of Pry, with s = infstate(§), t = (q, i1, 12, ¢, j1, Jo)
is a transition of M, ny = a - d', and (g, n1,n9) is a configuration of M represented

m s.

1. If t is enabled at (q,nq,ns) then there is a well-typed substitution o suitable
for Prys and ny such that:

e o(inctry(n,)) represents ny in s (for k =1,2),
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o o(a) is enabled in s and o(a') is enabled at update(s,o(a)), and
o o(outctry(n,)) represents ny + jy in update(s,o(n.)) (for k =1,2).

2. If there is a substitution o suitable for Pry, and ny such that o(inctrg(n;))

represents ny in s (for k =1,2) and o(a) is enabled in s, then t is enabled at

(q,m1,n2).
Proof: Suppose t = (q, 1,42, ¢, j1,j2) and suppose

a = A?B:[uy, 1], [q, w, wa], [ug, va;
a' = AlB: (M) [uy, v}, [¢', wy, wy], [uj, v)]

1. Suppose t is enabled at (g, ni,n2). This means that for £ = 1,2, i, = 0 iff
n, = 0. Let r, be a nonce which represents n; in s. We define a substitution
o suitable for Pry, and n, as follows:
o for k =1,2, o(wy) = ry,
e o is identity on C,

e for each distinct m € M, o(m) is a distinct nonce not occurring in ST'(s)

(Note that here we are crucially using the fact that NV is an infinite set.),

o for k =1,2,if i, = 1 then o(uy) = r}, where 7, is some nonce representing
ni — 1 in s such that [r},ry] € 57 (since nx # 0 and since 7 represents

ni in s, there has to exist at least one such r}).

It is clear that o is a well-typed substitution suitable for Pry, and 7;. Let

~

s' = update(s,o(a)) and s" = update(s',o(a’)).

e From the definition it is immediate that o(inctr(7;)), which is the same

as o(wyg), represents ny at s, for k =1, 2.

e We now prove that o(a) is enabled at s and o(a') is enabled at s'. Since
[q, 71, 19] represents (q,nq,n9) in s, [q,r1,79] € 57. For k=1,2,if i), =0
then u, = v, = d and so [o(ug),o(vr)] = [o(d),o(d)] = [d,d]. Now
from the definition of Pry, it follows that the first event of any run can
only be of the form (ny,0,1) for some substitution o. Call this event
e. But e is a send event and [d, d| € analz({term(e)}). Hence it follows

that [o(uy,o(vx)] = [d,d] € 57. Otherwise, iy, = 1 and now wy = vy
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by the definition of Pry;, and therefore [o(uy), o(vg)] = [o(uk), o(we)] =
[}, 7] € 57 (by definition of o). From this it follows that a is enabled at s.
Also by definition of o, o(M)N ST (s) = (. Also it is quite easy to verify
that term(a’) € term(a) U M U{kap}. But term(a) UM U {kap} C ¢4

and thus ' is enabled in s'.

e Now we prove that o(outctry(n;)) = o(wy,) represents ng + ji in s” (for
k=1,2). If jp = 0 then wy = wy, for k = 1,2 (by definition of Pry,).
Hence it follows that o(w),) represents ny + ji in s'. If j, = —1 then
by definition of o, o(uy) represents ny — 1 = ny + ji in s. By definition
of Prys, w), = uy and thus it follows that o(wj,) represents ny + ji in s
and hence in s” as well. If ji = 1 then observe that [o(u}),o(v})] € 57,
wj, = v}, wy, = uj, and o(wy) represents ny in s and hence in s” as well.

Therefore o(w),) represents ny + jr, = ng + 1 in s".

2. Suppose o is a substitution suitable for Pry; and 7; such that for £ = 1,2,
o(inctri(n;)) = o(wy) represents ny at s, and such that o(a) is enabled at s.

We need to show that 7, = 0 iff n, = 0.

Suppose i = 0. Then by definition of Pry;, wy = z, and hence o(wy) = =z.
Since z represents only 0 in any state and we are given o(wy) represents ny, at

s, ng = 0.

Suppose i, = 1. Then by definition of Pry;, we have that wy = v, and
uy, # v. Also since o(a) is enabled at s, it follows that [o(uy), o (vg)] € 57 and
that [q,0(wq),0(ws)] € 7. It can be easily seen (from the definition of Pry,
and from Lemma 3.1.2) that for all terms of the form [q,¢,#'] € ST (s), t # d
and t' # d. Tt can also be seen that if [¢t,¢'] € ST(s) such that ¢t = ¢’ then
t = d. From these facts and the fact that o(vy) = o(wy), we conclude that
o(ug) # o(vg). Again it can be easily checked that for all terms [t,#'] € ST (s),
t' # z. Thus it follows that o(vx) # z and hence o(wy) # z. But we are given
that o(wy) represents ny in s. Since only z represents 0 in any state, it has to
be the case that ny # 0.
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Theorem 3.1.5
1. (0, 0,0)5(q,n1.ny) iff (q,n1,n3) is represented in some run of Pry iff it is

represented in some well-typed run of Pry,.

2. A final configuration is reachable in M iff there is a leaky run of Prys iff there
18 a well-typed leaky run of Pry,.

Proof:

1. We first prove that if (go,0,0)>(q,n1, 1) then there is a well-typed run of

Prys in which (g, ny, ny) is represented.

Let m be the length of the derivation (gg,0,0)—(q, n1,n). We prove the
result by induction on m. The base case is when m = () in which case ¢ = ¢q
and n; = ny = 0. Then the run (7, 0, 1) satisfies the statement of the theorem,

for any well-typed substitution ¢ which is identity on C.

Suppose (o, 0,0)— (g, ny, ng)—t>(q’, ny,nb). It is clear that there is a run & of
Prys in which (g, m1, ny) is represented, by the induction hypothesis. Let s =
infstate(&). Let t = (q,41,12,4', j1,J2) and 1, = a - a’. By lemma 3.1.4, there is
a well-typed substitution o suitable for Pry; and 7, such that o(a) is enabled at
s, o(a') is enabled at update(s, o(a)), and o(outctrg(n;)) represents ng+j, = nj,
in update(s,o(n;)). Letting e = (n,0,1) and € = (1, 0,2) it is easy to see

that £ - e - € is a well-typed run of Pry,. Further, since [¢/,o(w}),o(wh)] €

(infstate(€ - e - €'));, it is clear that (¢’, n’, n)) is represented in £ - e - €.

We now prove that if there is a run of Pry, in which (g, n1,ns) is represented
then (o, 0,0)—=(g, 1, ny). We prove the result by induction on ||, where &

is a run of Pry,.

The base case is when [£] = 0 and then the statement is vacuously true since

no configuration is represented in &.

Suppose (¢',n),n5) is represented in a run & = &" - e of Pry,. Let s” and
s’ denote infstate(£") and infstate(£'), respectively. Let [¢', w!, w}] represent
(¢',ny,ny) in &. By Lemma 3.1.2 we see that [¢',w],w)] € analz(s}). If
(¢',n), n}) is already represented in £” then by induction hypothesis (¢', n, n))
is reachable from (g, 0,0). Otherwise it follows that [¢, w!, w}] € analz(s}) \
analz(s?). Since a term of the form [g, w}, wj] does not occur inside an encryp-

tion in any event of the protocol, it follows from the above fact that in fact
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¢, wi, wh] € analz({term(e')}). It is also clear that €’ is a send event, so we

have to consider only the following two cases:

¢’ = (ny,0,1): Then it is clear that (¢’,n,n}) = (go,0,0) and hence that

(¢',n’,nb) is vacuously reachable from (g, 0,0).

e = (n,0,2) for somet € §: Let t = (q,i1,12,4', j1, j2) and let n, = a-d'. Tt is
clear that o(outctrg(n;)) represents nj, for k = 1,2. Further for k = 1, 2,
ny, = ng + jr where o(inctri(n;)) represents ny in infstate(£"). Since €’
is enabled at &”, it has to be that e = (1, 0,1) occurs in £". Further
(since o(outctry(n,)) represents ny + jj in s' for £ = 1,2) it is clear that
o(inctri(n;)) represents ny in s” for k = 1,2. In fact, there is a proper
prefix & of £” such that (¢, nq, ny) is represented in infstate(&;), and act(e)
is enabled at infstate(&;). By induction hypothesis we have that (g, nq, ns)
is a reachable configuration and by lemma 3.1.4, we know that ¢ is enabled
at (q,n1,ns). Therefore (g, nl,nQ)A(q’,nl + Ji,n9 + Jo) = (¢, nl,nb).

Thus (¢', n',nb) is also a reachable configuration.

2. We first prove that if a final configuration is reachable in M then there is a well-
typed leaky run of Pry,. Suppose a final configuration (f, ny, ny) is reachable
in M. Then there is a well-typed run £ of Pry, representing (f, ny,ns). Thus
[f,ri,ma] € m for some nonces r; and ry, and hence e; - ey - e3 is
enabled at &, where e; = (ny,0,1) for i = 1,2,3 and some well-typed o such
that o(z) # o(y) for all y # x. Tt then follows that & - e; - e - e3 is also a
well-typed run of Prys, and by definition of Prj, this run is patently leaky.

We now prove that if there is a leaky run of Pry; then a final configuration
is reachable in M. Suppose there is a leaky run £ of Pry,. According to
the definition of Pry,, this means that some instance of n; for f € F has
been played out as part of £&. But this means that some configuration of the
form (f,ny,ny) is represented in & which implies that a final configuration is
reachable in M.

The main conclusion of this section is stated below.
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Theorem 3.1.6 The general secrecy problem and the secrecy problem for well-typed

runs are undecidable.

Proof: The statement immediately follows from item 2 of Theorem 3.1.5 and the

fact that the reachability problem for two-counter machines is undecidable. O

3.2 Undecidability with bounded nonces

In this section we prove that for any fixed (even finite) 7" C Ty, the secrecy prob-
lem for T-runs is undecidable. The proof is again a reduction from the reachability
problem for two-counter machines. For the purposes of coding up arbitrary two-
counter machines, we assume that x, z, u; and uy are fized, distinct nonces which
belong to T'N N.

Let M = (Q, F,qo,0) be a two-counter machine. For simplicity we assume that
@ € N. We will define a protocol Pry; = (C,R) such that a final configuration of
M is reachable iff there is a leaky T-run of Pry;. As we will see in the proofs which
follow, crucial use is made of ill-typed substitutions.

Before defining the actual reduction, we set up some basic notation: We fix
honest agents A, B and the long-term shared key k,5. Then we define the following

terms (coding up natural numbers):

0=z
i+1=(12).
def
for any terms t1,ts,t3, [t ta,t3] = {(t1, (ta, t3)) b eop-

The protocol Pry, is defined as follows:

Definition 3.2.1 Pry, & (C,R) where:

e C={A B,z} and

o R={ntuU{n | tedtu{ns|feF} where:

— 1o déf A!BZ[@,Z,Z],

— for each transition t = (q,11,12,¢', j1,72) € §, m L oo with:

A?B:[q, wy, wyl;
AlB:[q', wy, wy)
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where, for k € {1,2}, the following conditions hold:

if i, =0 and jp =0 then wy, = wy, = z;
if i =0 and jp = 1 then wy = z and wj, = (2, 2);
if i, =1 and jp = 0 then wy = wj, = (ug, 2);

if ik =1 and jp = 1 then wy = (ug, 2) and wy, = ((ug, 2), 2);

if ik =1 and jp = —1 then wy = (ug, 2) and wj, = ug.

For any n; as given above, and k € {1,2}, the notation inctry(n,) is used
to denote the term wy, and the notation outctry(n,) is used to denote the
term, wy,.

def .
— For each f € F,ny = a-ad' -a" with:

a=A’B: [i, Uy, UQ],'

a' = AB:({z}) {7},
a" = AB:z.

The role corresponding to the transition (¢,0,1,¢',1, —1) is presented by way of

example:

A?B:q, 2, (ug, 2)];
AlB:[¢, (2, 2), ua].

The role corresponding to the transition (¢, 1,1,¢’,1,1) is another example:

A?B:q, (u1, 2), (ug, 2)];
AlB:[¢, ((u,2), 2), ((ue, 2), 2)].

The role 7y starts off the simulation of the two-counter machine. The role 7y
checks if a final configuration with state f is reached and if so signals it by contriving

to “leak”a freshly minted nonce. The role n; simulates the transition ¢ € 9.

Lemma 3.2.2 Suppose £ is a run of Pry and s = infstate(§). Then kap ¢ analz(s;)

(and hence kap & 57 as well).

The proof is on the same lines as the proof of Lemma 3.1.2.

Definition 3.2.3

1. We say that a configuration (q,n,n’) is represented in an information state s

if the term [q,n,n'] € 57.
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2. We say that a configuration (q,n,n') is represented in a run & of Pry if

(q,n,n') is represented in infstate(E).

The following lemma states that the role n, faithfully simulates the transition ¢.

Lemma 3.2.4 Suppose & is a run of Pry, s = infstate(so, &), t = (q, 41,92, ¢, j1, J2)
is a transition of M, ny = a-a' and (q,n1,n2) is a configuration of M represented
in s. Then t is enabled at (q,ny,ny) iff there is a T-substitution o suitable for Pry,

and n; such that:

e o(inctrg(n,)) represents ny in s (for k=1,2),
e o(a) is enabled in s and o(a') is enabled at update(s,o(a)), and

e o(outctry(m;)) represents ny + ji in update(s,o(n,)) (for k=1,2).
Proof: Suppose t = (q, 1,42, ¢, j1,j2) and suppose

a = A?B:[q,wy, wal;
a' = AlB:[q', wy, wy]

Suppose t is enabled at (g, nq,ny). This means that for k = 1,2, i, = 0 iff n, = 0.

We define a substitution o as follows:

z ifi, =0
for k=1,2 o(ux) = "
np — 1 ifip =1
Further we let o be identity on C. It is easily seen that o is a T-substitution
suitable for Pry, and ;. (Note that in general o will be an ill-typed substitution.) Let

s' = update(s,o(a)) and s" = update(s',o(a)).

e If i, = 0 then w; = 2z, and since in this case ny = 0 as well it is immediate
that o(inctri(n,)) represents ny in s. If iy = 1 then wy = (uy, 2), and since

o(ug) = ng — 1 it is clear that o(inctrg(n;)) represents ny in s.

e We are given that (g,n;,n2) is represented in s, i.e., [¢,n1,n5] € 57. But
since o(wy) = ny for k = 1,2, it is easy to see that o(a) is enabled at s. Since

o(term(a')) € {z, kap}, it is immediate that o(a’) is enabled at update(s, o(a)).

e If j, = 0 then outctry(n;) = inctrg(n;) and thus o(outctry(n;)) represents ny =
ng+ i in s". If jp = 1 then outctry(n;) = (inctrg(n;), 2z) and thus o(outctr(n;))
represents ng + 1 = ny + ji in s”. If j, = —1 then inctrg(n;) = (outctri(n;), 2)

and thus o(outctry(n;)) represents ny — 1 = ny + j in s".
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Suppose o is a substitution suitable for Pry, and n; such that for £ = 1,2,
o(inctrg(n;)) = o(wg) represents ny at s. We need to show that iy = 0 iff ny, = 0.

Suppose i, = 0. Then by definition of Pry;, wy = z, and hence o(wy) = 2. Since

z represents only 0 in any state and we are given o(wy) represents ny at s, ng = 0.

Suppose ng = 0. Since o(wy) represents ny = 0 at s and since only z represents

0 in any state, o(wg) = z. But according to definition of Pry, either wy = z or

wg = (ug, 2). So o(wy) = z only when wy = 2, and this happens only when i, = 0.

O

Theorem 3.2.5
1. (o, 0,0)—=(q, ny, ny) iff there is a T-run & of Pry in which (g, ny, ng) is rep-

resented.

2. A final configuration is reachable in M iff there is a leaky T-run of Pry,.

Proof:

1. We first prove that if (go,0,0)—>(q,n1,n2) then there is a T-run of Pry, in

which (g, ny,ns) is represented.

Let m be the length of the derivation (go,0,0)— (g, n1,n). We prove the
result by induction on m. The base case is when m = 0 in which case ¢ = qq
and n; = ny = 0. Then the run (7, 0, 1) satisfies the statement of the theorem,

for any T-substitution o which is identity on C.

Suppose (qo,0,0)Q(q,nl,ng)#(q’,n’l,ng). It is clear that there is a run
& of Pry in which (g,m1,n9) is represented, by induction hypothesis. Let
s = infstate(§). Let t = (q,141,142,¢',j1,7J2) and 7, = a - a’. By lemma 3.2.4,
there is a T-substitution o suitable for Pry, and 7, such that o(a) is enabled at
s, o(a') is enabled at update(s, o(a)), and o(outctrg(n;)) represents ng+j, = nj,
in update(s,o(n;)). Letting e = (n,0,1) and € = (1, 0,2) it is easy to see

that £ - e - ¢ is a well-typed run of Pry,. Further, since [¢/,o(w}),o(wh)] €

(infstate(€ - e - €'));, it is clear that (¢’,n),n}) is represented in & - e - €.

We now prove that if there is a run of Pry, in which (g, n1,ns) is represented
then (go,0,0)—(g, ny,ny). We prove the result by induction on ||, where &

is a run of Prj,.



Chapter 3: Undecidability results 70

The base case is when [£] = 0 and then the statement is vacuously true since

no configuration is represented in &.

Suppose (¢',n},n,) is represented in a run & = &" - e of Pry,. Let s and
s denote infstate(£") and infstate(£'), respectively. Let [¢', w], w}] represent
(¢',n,nh) in &. By Lemma 3.2.2 we see that [¢',w),w)] € analz(s}). If
(¢, n’, nb) is already represented in £” then by induction hypothesis (¢', n}, n})
is reachable from (g, 0,0). Otherwise it follows that [¢, w), w}] € analz(s}) \
analz(s}). Thus it must be the case that [¢', w), w}] € analz({term(e')}). Tt is
also clear that €’ is a send event, so we have to consider only the following two

cases:

e’ = (no,0,1): Then it is clear that (¢’,n},n}) = (go,0,0) and hence that

(¢',n},ny) is vacuously reachable from (g, 0,0).

e = (m,0,2) for somet € §: Let t = (q,11,12,¢, j1,j2) and let n, = a-a’. It is
clear that o(outctry (1)) represents n) for k = 1,2. Further for k = 1,2,
nj, = ny + jr where o(inctri(n;)) represents ny in infstate(£"). Since ¢’
is enabled at £”, it has to be that e = (1, 0,1) occurs in £”. Further
(since o(outctry(n;)) represents ny + ji in s' for £ = 1,2) it is clear that
o(inctri(n;)) represents ny in s” for k = 1,2. In fact, there is a proper
prefix & of £” such that (g, ny, n9) is represented in infstate(&;), and act(e)
is enabled at infstate(&;). By induction hypothesis we have that (g, ny, ns)
is a reachable configuration and by lemma 3.2.4, we know that ¢ is enabled
at (q,n1,ns). Therefore (g, m,ng)L)(q’,n] + j1,n9 + Jo) = (¢',ny,nl).

Thus (¢', n,nb) is also a reachable configuration.

2. We first prove that if a final configuration is reachable in M then there is a
leaky T-run of Pry;. Suppose a final configuration (f,ni,ns) is reachable in
M. Then there is a T-run £ of Pry, representing (f,nq,ns). Thus [f,r,79] €
m for some nonces r; and 79, and hence e; - €5 - e3 is enabled at
&, where e; = (ny,0,i) for i = 1,2,3 and some T-substitution o such that
o(x) ¢ C. It then follows that & - e; - ey - e3 is also a T-run of Pry,, and by
definition of Prj, this run is patently leaky.

We now prove that if there is a leaky run of Pry; then a final configuration
is reachable in M. Suppose there is a leaky run £ of Pry,. According to

the definition of Pry,, this means that some instance of n; for f € F has
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been played out as part of £&. But this means that some configuration of the
form (f,n1,n9) is represented in & which implies that a final configuration is
reachable in M.

The main conclusion of this section is stated below.

Theorem 3.2.6

The secrecy problem for T-runs is undecidable.

Proof: This immediately follows from item 2 of Theorem 3.2.5 and the fact that

the reachability problem for two-counter machines is undecidable. O

3.3 Discussion

The idea of using two-counter machines in the undecidability results is from
[ALV02], where the undecidability result for unbounded message length is proved
using them. The reduction used in our proof is slightly different ~ we code up num-
bers using repeated tupling, whereas in [ALV02], they are coded up using repeated
encryption.

The use of two-counter machines in the other undecidability result is a new idea.
Existing proofs of this result use reductions from Turing machines or some problems
in logic, and the reductions in those proofs are considerably harder than ours.

An interesting point about the proofs in this chapter is that the protocols which
were used to code up two-counter machines do not use our definition of secrecy in
an essential manner. Reachability is all that really matters. Let us formally define

the reachability problem for security protocols:

Definition 3.3.1 (The reachability problem) Given a protocol Pr = (C,R) and
an action a, we say that a is reachable in Pr iff there is a role n of Pr, a substitution
o suitable for Pr and n, a number lp < |n|, and a run & of Pr such that n(lp) = a
and (n,0,lp) € Events(£).
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The reachability problem is to determine whether a is reachable in Pr, given a
protocol Pr and an action a.
The reachability problem for well-typed runs (7-runs for a fixed T)) is defined

similarly by restricting the set of runs under consideration.

The reachability problem for well-typed runs (as well as that for all runs, and
all T-runs for fixed T') is undecidable. The same reduction used earlier suffices to
prove the undecidability of this problem as well. We only have to appeal to the fact
that the following problem is undecidable: Given a two-counter machine M and a
state q of M, determine whether a configuration with state q is reachable in M.

In fact, for any logic which is powerful enough to express the reachability prop-
erty, its verification problem is undecidable in the same settings considered in this

chapter.



Chapter 4

Decidability with unboundedly

many nonces

In this chapter, we deal with the problem of unbounded nonces. We prove that
the tagging scheme introduced in Definition 2.2.31 ensures the decidability of the
secrecy problem for well-typed runs, even in the presence of unboundedly many

nonces.

4.1 The bounded length case

We first prove the decidability of a restricted secrecy problem — that of checking
for a given protocol Pr and a number r whether there is some well-typed leaky run
of Pr of length bounded by r. The trouble is that the set of such runs is still infinite.
We show that we can always suitably rename nonces and keys occurring in runs
with nonces and keys from a fixed finite set. Since there can only be finitely many
well-typed runs which can be thus formed, we get the desired decidability result.

Fix a tagged protocol Pr = (C, ) for the rest of the section. For any number r,
R, (Pr) o {¢ is a well-typed run of Pr | |£| < r}. For any T C T and any number
r, we define R (Pr) to be {£ | £ is a well-typed T-run of Pr of length at most r}.

Suppose we fix a finite T C Ty and a number r. It is clear that there are at
most by = (|T])/FSTONTol T_gubstitutions suitable for Pr. |EST(8) N Tl is an upper

bound on the number of basic terms which occur in a role and hence are in the

73
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domain of some T-substitution suitable for Pr. It now follows that there are at most
by = 2- - by T-events, where / is the length of §. This bound easily follows from the
fact that the set of distinct (1, 7) pairs where 7 is a role of Prand 1 < || < |n|is 2- /.
This coupled with the number of T-substitutions gives us b,. From this it easily
follows that there are at most (b, + 1)” runs in R (Pr). Thus we see that R (Pr) is
a finite, effectively constructible set, and therefore the problem of checking whether
there is a leaky run in R (Pr) is decidable.

Below we explain how to define a finite set 7'(r) for any given number r such that
R, (Pr) has a leaky run iff Ry " (Pr) has a leaky run. Suppose w is the maximum size
of any term occurring in the specification of Pr, and suppose p is the maximum length
of any role of Pr. Given r, fix four sets NT'(r) C N\C, SN(r) C SN\C, Ky(r) C K,\C
and Ag(r) C Ag\ C such that |[N(r)| = |SN(r)| = |Ko(r)| = |Ag(r)|=7r-p- (w+2).
(The reason for choosing this specific number will become clear as we develop the
proof of the following lemma.) T'(r) is defined to be N(r)USN (r)U Ko(r)U Ag(r)U
CT(Pr).

Lemma 4.1.1 For any r € N, if R, (Pr) has a leaky run then so does R;F(T)(Pr).

Proof: We first set up some notation which we use locally in this proof: for any
action a of the form A!B: (M)t or A?B:t, parties(a) (the set of apparent (not actual)
participants in the action a), is defined to be {A, B}. For any sequence of actions

n=a---a parties(n) = U parties(a;). Let us define the domain of n for any
1<i<t
n € Pr to be (ST(n) U parties(n)) N Ty. Note that for all n € R, the domain of n

contains at most p - (w + 2) terms. It clearly suffices to consider events of Pr of the
form (7,0, lp) where the domain of ¢ is restricted to the domain of 7. Let us call
such events as domain-restricted events. A run composed only of bounded-domain
events is called a domain-restricted run.

Let us define the range of a run & to be the union of the ranges of all substitutions
o such that (n,0,lp) € Fvents(§) for some n and Ilp. (Note that by range of a
substitution o, we mean the set {o(z) | z € Ty and o(z) is defined}.) If we consider
a domain-restricted well-typed run £ of length at most r, then it is clear that the
range of £ has at most 7 -p - (w + 2) terms. Now 7'(r) contains r - p - (w + 2) nonces
and the same number of sequence numbers, keys and agent names. Therefore there
exists at least one injective, well-typed substitution from the range of & to T'(r).

Fix one such substitution 7 for each such bounded-domain run & € R, (Pr).
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(It is the renaming map associated with £.) For any such run £ = e;---e; with
e; = (mi, 04, lp;) for each ¢ < k, define 7¢(§) to be the run 7¢(e;)---7¢(ex) where
Te(e;) = (mi, 7e © 0y, lp;) for each i < k (for each z € T, (¢ 0 0;)(x) is defined to be
e(03(2))).

Now for every bounded-domain run ¢ € R, (Pr), it is a simple matter to check
that for any prefix ¢ of £, A € Ag and t € T, we have t € (infstate(£')) iff
7¢(t) € (infstate(re(€'))) 4. Also t is leaked in & iff 7¢(t) is leaked in 7¢(§). From this
it easily follows that 7¢(§) is in fact a run of Pr (and so belongs to R;F(T)(Pr)) and
that it is leaky if and only if £ is leaky.

Thus we have shown that if there is a leaky run in R, (Pr), then there is also a
leaky run in Rz(r)(Pr). O

From the above discussion we conclude the following:

Theorem 4.1.2 The problem of checking for a given protocol Pr and a given bound

r whether there is a well-typed leaky run of Pr of length bounded by r, is decidable.

Note that we can also take p = £ in the above proof. So if we fix Pr with its
parameters ¢ and w, and if we fix an r, then the size of |T'(r)|is4-r-0- (w+2) +
|CT(Pr)|. If we now let by = (|T'(r)])/PST@)7ol and by = 2- £ - by, then it suffices to
search at most (by + 1) runs to see if there is a leak. Letting cp, be the maximum
of |[EST(0) N Ty|, w and |CT(Pr)|, we see that it suffices to search O((¢-r - cp,)" )

runs for a leak.

4.2 Decidability for good runs

In this section, we define the notion of a good run and prove some basic properties
of good runs. We also prove that the problem of checking whether there is a good

leaky run of a given tagged protocol is decidable.

Definition 4.2.1 Suppose Pr = (C,0) is a tagged protocol and & = ey ---¢ey is a
well-typed run of Pr. Fori,j <k, e; is called a good successor of e; (and e; a good

predecessor of €;) iff i < j and at least one of the following conditions holds:
® C; —7y €.

e ¢; is a send event, e; is a receive event, and EST (e;) N EST (e;) # 0.
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For i <k, e; is called a good event in & iff either » = k or there is some j > i such
that e is a good successor of e;. e; is called a bad event iff it is not a good event. A
run & is called a good run iff all its events are good. A subsequence ey ---e, of & is

called a good path iff for all j < r, ej11 is a good successor of e;.

Note that a good successor of a send event need not necessarily be a “matching”
receive event. Also note that there might be multiple occurrences of the same event
in a good run. This might look a bit strange at first glance. But the right way to
view this definition is that a bad event definitely signifies something “bad” in terms
of the intruder behaviour. In particular, it means that the intruder is playing an
active role (generating a new message, or tampering with some earlier message) with
regard to that particular event, and is not simply relaying it from someone else to
the receiver. Such bad behaviour on the part of the intruder also makes it hard to
compute bounds on the length of runs. While good runs do not necessarily eliminate
all such “bad” behaviour, enough bad behaviour is eliminated so as to ease the task
of computing bounds on the length of good runs, as we will see in the rest of the
section.

Note that all good runs are well-typed by diktat. In a later section we will prove
that if a tagged protocol has a well-typed leaky run then it has a good leaky run.

The following propositions list some useful properties of good runs.

Proposition 4.2.2 Suppose Pr = (C,¢; -+ - ¢) is a tagged protocol and & is a well-
typed run of Pr. Then all good paths in & are of length at most 2 - /.

Proof: For convenience, define the following notation: for all 7 : 1 < ¢ < /|
(9.i_1 def actg(c;) and ag; def act,(¢;). Note that actseq(cy - --¢;) = ay - - - agy. Sup-
pose e; -+ -e, is a good path in & with e; = ((;, 04, Ip;) for all i < r. Since for all
J < r, e; is an event of Pr, it is clear that there exists some 7; < 2 ¢ such that
Gillp;) = ai,.

We now show that for all j < r, i; < 441, using the fact that e;;, is a good

successor of e;. There are two cases to consider:

ej —>¢ €j417 In this case it is clear that ¢; = (jy1, 05 = 0j41 and Ip; . = Ip; + 1.
Now (; is a role of Pr and hence a subsequence of a; - - -as,. Thus a;, occurs

earlier in a; - - - ao.y than iy and hence 1; < ;.

act(ej) € Send, act(ej11) € Rec and EST(e;) N EST (1) # 0: It is clear now that
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a;; is a send action and a;, ., is a receive action, and also that a;_, 1 is a
send action with term(a;;,, 1) = term(a;;,,). Thus it follows that there exist
t € EST(a;;) and t' € EST(a;;,,-1) such that o;(t) = 0;41(¢'). But from item
1 of Proposition 2.2.32, it follows that ¢t = ¢’ and |i;| = [i;41 — 1]. Since both
a;; and a;;, 1 are send actions, both the indices are odd. Hence it follows

that ij = ’ij+1 — 1. This shows that ij < ’ij+1.

From this it follows that there is a sequence i; < --- < 4, < 2-/¢ such that for all
j <, ¢(lp;) = a;,. This suffices to prove that r < 2 (. O

Lemma 4.2.3 Suppose Pr = (C, ¢y ---¢) is a tagged protocol and & is a good run
of Pr. Then |£] < 226+1 — 1.

Proof: Suppose £ = e ---e. Since £ is a good run of Pr, all the events e; (i < k)
are good. This means that for all ¢« < k, there is some j : 7 < j < k such that ¢;
is a good successor of e;. It easily follows that for all + < k, there is a good path
frm e; to e,. Forall 7 : 0 < ¢ < 2 -/, define the set E; to be the set of events e
occurring in £ such that the shortest good path from e to e is of length 7. From
Proposition 4.2.2 we know that all good paths of £ are of length at most 2 - ¢. Thus
the set of events occurring in £ is partitioned by the sets Fy,..., Es,. Now since
every good run is also a well-typed run by definition, we can apply item 2 of Propo-
sition 2.2.32 and conclude that for every receive event e occurring in £ there is at
most one send event €’ in £ such that EST(e) N EST(e') # (0. Further for every
event e there is at most one e’ such that ¢’ —, e. Thus every event occurring in &
has at most two good predecessors, and thus for all i < 2-¢, |E; 1| < 2-|E;|. Thus it
is easy to see by induction that for all i < 2-/, |E;| < 27, and that |£] < 2241 1. O

Lemma 4.2.3 and Theorem 4.1.2 immediately imply the following theorem.

Theorem 4.2.4 The problem of checking for a given tagged protocol Pr whether
there is a good leaky run of Pr is decidable.

4.3 Reduction to good runs

In this section we prove that if a tagged protocol has a well-typed leaky run then

it has a good leaky run. As proved in the previous section, checking whether a tagged
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protocol has a good leaky run is decidable, and hence the reduction presented in
this section yields the decidability of checking whether a tagged protocol has a well-
typed leaky run. In the next chapter we prove that if a tagged protocol has a leaky
run then it has a well-typed leaky run, thus proving the decidability of the secrecy
problem for tagged protocols.

Suppose £ is a well-typed bad run of a tagged protocol Pr and e is a bad event.
The key to eliminating this event is to prove that, under certain conditions, the
messages of & which come after e can be constructed by the intruder using just the
basic terms learned from e instead of term(e). Therefore we first look at how terms

can be eliminated appropriately.

4.3.1 How to eliminate terms

Suppose T is a set of terms and u is a term such that u € T. Can we remove
a term ¢ (with the property that EST(t) N EST(u) = () from T but add a set of
atomic terms T' such that it is still the case that u € (T'\ {t}) UT'? The following
lemmas show that under some additional assumptions this is possible. They will
be crucially used later in the reduction to good runs. We split the task mentioned
above into two parts, first handling the case when u € analz(T") and then considering
what happens when u € T. The additional assumptions in the following lemmas are
not strong enough to prove that if u € analz(T) then u € analz((T'\ {t}) UT"), but
we can still prove that either u € analz((T \ {t}) UT") or u € ST(t). Fortunately
this suffices to prove that whenever u € T, u € (T \ {t})UT".

Lemma 4.3.1 Suppose T = (analz(S; U {t}) \ analz(Sy)) N Ty for some S1,S2 C T
andt e T.

1. Letu be a term and let m be an analz-proof of S1USyU{t} F u such that for all
k€ ST(S,U{t})NK for which k labels a non-root node of 7, k € analz(S;U{t}).
Then u € (analz(S, U {t}) N ST(t)) Uanalz(S; U S, UT).

2. Let u be a term such that u € synth((analz(S;U{t})NST(t))Uanalz(S;US,UT))
and EST(u) N EST(t) =0. Thenu € S;US;UT.

Proof:

1. Suppose 7 is an analz-proof of S; U Sy U {t} = u. We prove by structural
induction that for every subproof w of = with root labelled S; U Sy U {t} I w,
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we have w € (analz(S; U {t}) N ST(t)) Uanalz(S; U Sy UT). Suppose w is a
subproof of = with root labelled S; U Sy U {t} F w such that for all proper
subproofs w; of w the statement of the lemma holds. Then we prove that
it holds for @w as well. We only consider the cases when the rule applied at
the root of w is Ax, or decrypt. The other cases can be handled by a routine

application of the induction hypothesis.

e Suppose w is the following proof:

A
S] USQU {f} Fw

Then w € S; U Sy U {t}. If w =t then w € analz(S; U {t}) N ST(t). If
w € S U Sy then w € analz(S; U S, UT).

e Suppose w is the following proof:

(zo1) (72)

SlLJSQU{t}'_U}

decrypt

By induction hypothesis {w}; € analz(S; U {t}) Uanalz(S; U S, UT) and
E € analz(S] U {t}) U anaIz(S] U SQ U T)

{w}y € analz(S; U Sy UT): If k € analz(S;US,UT) then w is in the same
set as well and we are done. If on the other hand k € analz(S, U{t}),
then k& € K N (analz(S;) U (analz(S; U {t}) \ analz(S;))). But this
implies that k € analz(S; UT) C analz(S; U S, UT) and hence w is

also in the same set.

{w}y € analz(S; U {t}) N ST(t): It is evident that &k € ST(S; U {t}).
Thus by assumption k € analz(S; U {t}) and hence w is also in the
same set. Clearly w € ST(t) as well.

2. Let us denote by W the set ((analz(S, U{t}) N ST(t)) Uanalz(S; U S, UT))N
ST(u). It is clear that u € synth(W). Now w € ST (u) for every w € W, and
since EST (u) N EST(t) = () it is also the case that EST (w) N EST(t) = 0. We
prove below that W C S; U Sy U T'; this suffices to prove that u € S; U Sy UT.

So suppose w € W. Then w € analz(S; US,UT) U (analz(S; U{t})NST(t)). If
w € analz(S;US,UT') we are done. Suppose w € analz(S;U{t})NST(t). In this
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case, as observed above EST(w) N EST(t) = 0, and hence from w € ST(t)
it follows that EST(w) = (. This means that w is just a tuple of atomic
terms. In this case it is clear that w € synth(analz({w}) N 7). But then
analz({w}) N Ty C analz(S; U {t}) N Ty C analz(S; UT). This implies that
w € S, USy UT and the proof is done.

The following lemma is vital in proving that if m is secret at a run £ of a
protocol Pr, then m is also secret at &', where £ is got by eliminating some events

and renaming some atomic terms of &.

Lemma 4.3.2 Suppose S is a set of terms and T C analz(S) N Ty. Suppose T is a
well-typed substitution with the property that for all x € To\ T, 7(x) = x and for all
x €T, 7(x) € S. Then for all t € analz(7(S)), there exists r € analz(S) such that
T(r) =t.

Proof: Suppose 7 is an analz-proof of 7(S) F t. We prove by structural induction
that for every subproof @ of m with root labelled 7(S) F w, there exists r € analz(S)
such that 7(r) = w. Suppose w is a subproof of = with root labelled 7(S) F w such
that for all proper subproofs w; of w the statement of the lemma holds. Then we
prove that it holds for @ as well. We only consider the cases when the rule applied
at the root of w is Ax, or decrypt. The other cases can be handled by a routine

application of the induction hypothesis.

e Suppose w is the following proof:

7(S) Fw

Then w € 7(S) which means that there exists 7 € S C analz(S) such that

7(r) = w.
e Suppose w is the following proof:

(YDl) (w2)

f(S)F fu)  HS)FR
7(S) Fw

decrypt
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By induction hypothesis there exist r', 7" € analz(S) such that 7(r') = {w}y
and 7" = k. Since 7 is well-typed, 7’ is of the form {r}, with 7(r) = w and

7(k') = k, and r" is of the form k”. We need to prove that r € analz(S).

— Suppose k' € T. It then follows that &' € Ky and hence it follows that
k' = k' and that k' € analz(S) (since T C analz(S)). Coupled with the
fact that {r}y € analz(S), we have that r € analz(S).

— Suppose k' € T. From the definition of 7 we see that k' = k. Thus
{r} € analz(S).
If k" € T, then since 7(T) C S C analz(S) it follows that k € analz(S).
If k" ¢ T, from the definition of 7 it follows that k" = k, and thus it is
again clear that k € analz(9).
Coupled with {r}, € analz(S), this implies that r € analz(S), as desired.

4.3.2 Reduction to good runs

In this subsection we proceed to prove the reduction to good runs using the

properties proved in the previous subsection.

Lemma 4.3.3 Suppose Pr = (C, ¢y -+ -¢) is a tagged protocol which has a well-typed

leaky run. Then it also has a good leaky run.

Proof: We fix the following notation for the rest of the proof. Fix a well-typed leaky
run § = ey -+ - e, of Pr, none of whose proper prefixes is leaky. Let e; = (n;, 0y, Ip;)
for j < k. For any j < k, t; = term(e;). For any j : 1 < j < k, & denotes
ey ---e;, s; denotes infstate(§;) and T; denotes (s;);. Fori,j:1<i <j <k, sz
denotes ey - -e;_1€;41---€; if i < jand & if i = 7, s;’ denotes infstate(f]i) and
T; " denotes (s;");. We also denote init(Pr) by sq and (s9); by Tp.

Suppose £ is not a good run. This means that there is a bad event in &. Let
r = maz({i < k| e is abad event of £}); that is, r is the index of the latest bad
event in £. Notice that by definition e is a good event, and hence r < k. Define T
to be (analz(7,) \ analz(T, 1)) N Ty. Since &, is not leaky, it follows that no m € T
is secret at & ;. Thus it has to be the case that T C NT(e,) C N U SN U K.
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Let 7 be a substitution which maps every n € TN N to ng, every m € T'N SN
to mg and every k € T'N Ky to kg and is identity on all the other terms. (Recall
that ng, mg, and kg are fixed constants in the intruder’s initial state.) For all j < k,
we define €} to be (n;, 7 00y, lp;), where (7 00;)(t) = 7(0;(t)) for all t. We define
§' =€) - -e). Analogous to the notations based on &, we define the notations ¢, &7,
st T (€)),7, (s);" and (T");" based on ¢

We now show that (¢),") is a (well-typed) run of Pr and that it is leaky; but
the index of the latest bad event (if any) in (¢')," is less than 7, and hence we can
repeat the process on the new run, eventually obtaining a good run.

We now prove that (£')," is a run of Pr and that it is leaky, thus concluding the
proof of the theorem.

Claim: (¢')," is a run of Pr:

Proof of Claim: Since ¢ is a run, it follows that NT(e;) N ST (init(Pr)) = 0 for all
i <k, and that NT(e;) " NT(e;) = 0 for all i < j < k. Since T'C NT'(e,) it follows
that 7N NT(e,) = 0 for all ¢ # r. Tt thus follows that NT'(e)) = NT(e,) for all
q # r. It is now easy to see that for all i < k,i # r, NT'(e}) N ST (init(Pr)) = () and
that forall i < j < k,i,j #r, NT(e;)NNT(¢;) = 0. Thus (£')," satisfies the unique
origination property. We concentrate on proving that all its events are enabled at
the end of the preceding events.

By definition of bad events it follows that e, # e, and for all ¢ : r < ¢ < k, ¢,
is not a good successor of e,. This implies in particular that for all ¢ : r < ¢ < k,

(e, —¢ e4). From this it also follows that for all ¢ : r < ¢ < k&, ﬁ(eriueq), ie.,
e, ¢ LP(e,).

e We first consider the case when e, is a receive event. Then by Proposi-
tion 2.2.14, T, = T,_; and thus T' = (). Then it is clear that 7 is the identity
map on terms. Hence &' = £. It suffices to prove that £, " is a run of Pr. Firstly
it is clear that &, _; is a run of Pr. Consider a ¢ such that r < ¢ < k. Since
all events in LP(e,) occur in &, | and e, ¢ LP(e,), it follows that all events

in LP(eq) occur in £ 7.

Now if e, is a receive event, then since T, = T,_, it is clear that Tq’f] =T,
and hence ¢, € T, ";. This suffices to show that e, is enabled at £ ;. If e, is

a send event, then since plays of Pr are send-admissible, e, is enabled at f;f].

e Let us now consider the case when e, is a send event. We first show that £ _,
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is a run of Pr. Since T'C NT(e,) and since NT(e,)N ST (s, 1) =, 7 does not
affect any term occurring in &, . Hence it follows that for all ¢ <, 1, = 1,
sq = 8y, and T, = T,. Thus for all ¢ < r, e is enabled at £ ;. This means

that £, is a run of Pr.

We now show that for all ¢ : r < ¢ < k, €] is enabled at (£'),",). We first
note that for any i < j <k, e; = ¢; iff € = €}, e; € LP(e;) iff e € LP(e}),
and EST(e;) N EST (e;) # 0 iff EST(e;) N EST(€;) # 0. These statements

immediately follow from the definitions.

Fix a ¢ such that r < ¢ < k. There are two cases to consider:

— If ¢, is a receive event, then it is clear that ¢, € synth(U) where U =
analz(T,_y) N ST(t,). Consider some v € U and an analz-proof = of
T,—1 b u. It is clear that for all keys k, if k£ € (sq)a for some A € Ag then
k € (s0)p for some B € Ag. Further for any index 4, if K € NT(e;), then
k € Ky and hence k = k. So we can say that for any k € K, if k € (s;) 4
for some A € Ag then k € (s;) 5 for some B € Ag. Further note that if k €
ST(s;) then k € (s;) 4 for some A € Ag, and therefore k € (s;)4 as well.
Now since &, is not leaky, it follows that whenever k£ € ST'(s,) for some
r < qand k € analz(T,, ;) then k € analz(T,). Thus T, , T, 1\ T}, t,, T,
u and 7 play the role of S, Sy, t, T, u, and 7 respectively in item 4.3.1
of Lemma 4.3.1 and we get u € (analz(T,) N ST(t,)) Uanalz(T,"}). Thus
tq € synth((analz(7,) N ST (t,)) Uanalz(T,”; UT)). Now since e, is not a
good predecessor of e,, EST(t,) N EST(t,) = (. Thus the conditions of
item 2 of Lemma 4.3.1 are fulfilled, and hence ¢, € W Applying
Proposition 2.3.2 and using the fact that 7(T) C T, we conclude that

ty =1(ty) € T(T, ) UT(T) = (1"),”,. Hence e is enabled at (&), 7.

— If e, is a send event then e is also a send event. Now since plays of Pr

are send-admissible it immediately follows that t; € (7"),",. Hence e, is

enabled at (¢'),"

q—1-

This proves that (£')," is a run of Pr.

Claim: (¢'), " is leaky.

Proof of Claim: We first prove that some m which is secret at & _; belongs to
analz(T,," UT). If e, is a receive event, then by Proposition 2.2.14 it follows that

Ty =T, " and hence there is some m which is secret at &,_; and which belongs to
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analz(7,,"). (This follows from the fact that & is itself leaky). Suppose now that
e, is a send event. Consider an analz-proof of T}, = m' for some m' which is secret
at & 1. Let m be a subproof of this proof with the property that the root of 7 is
labelled by some m which is secret at &,_; and none of the m” labelling the nonroot
nodes of 7 is secret at & ;. Then it is clear that T, 1, Ty \ 1), t,, T, m and =
play the role of Sy, So, t, T, u and 7 respectively in item 4.3.1 of Lemma 4.3.1 (if
k labels a node of 7 and if k € ST(s,) then since k is not secret at &, ; it follows
that k € analz(7,)) and we get m € (analz(T,) N ST (t,)) Uanalz(T, "UT). But since
& is not leaky, m ¢ analz(7,). Thus m € analz(7, " U T). From this it follows that
7(m) € analz((T"),").

We now prove that 7(m) is secret at (£'),",. Since m is secret at §_; and
T C analz(T,) C analz(T}_,), it follows that m ¢ T. Therefore 7(m) = m. Since
m is secret at &1, it is clear that m ¢ analz(Ty_;). Now we observe that T C
analz(7T,) N Ty C analz(Ty 1) N Ty. Further 7 is a well-typed substitution such that
forall z € To\ T, 7(x) = x and for all x € T, 7(x) € Ty_y. Thus Ty, T and 7
satisfy the conditions of Lemma 4.3.2, and we thus see that whenever ¢ € analz(7},_,)
there exists r € analz(T;_,) with 7(r) = t. When ¢ = m, it immediately follows that
r = m as well. This coupled with the fact that m ¢ analz(T} 1) implies that
m ¢ analz(7}_,). From this it follows that m ¢ analz((7"),",) as well, and thus that
7(m) = m is secret at (£'),",. This concludes the proof that (£')," is leaky.

We have thus proved the reduction to good runs. O

Lemma 4.3.3 and Theorem 4.2.4 immediately yield us the following theorem.

Theorem 4.3.4 The problem of checking for a given tagged protocol Pr whether
there is a well-typed leaky run of Pr is decidable.

We conclude this section by some remarks on the complexity of the problem and
on the generalisability of the result.

We saw that the length of a good run of a protocol Pr = (C,d) with |§] = ¢
is 22441 — 1. Further at the end of Section 4.1 we saw that for checking a leak in
well-typed runs of Pr of length bounded by r, we have to search O((¢-7-¢p,)" ") runs
for a leak, where cp, is a constant depending on the protocols. (We can assume that
it is at most ¢, for simplicity). From this we see that the complexity of the secrecy

problem for tagged protocols is 22° " Thus we see that a naive implementation of
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the above decision procedure gives a double exponential algorithm.

When the secrecy problem was defined in Section 2.2, it was remarked that a
more general notion of secrecy is to allow the user to specify the secret which should
not be leaked. In fact, in Chapter 6 we define a logic using which we can specify such
a more general notion of secrecy, and other interesting properties like authentication
as well. We also prove in Section 6.4 that some of the results proved in Section 5.1
(which are specific to the secrecy problem as defined in Section 2.2) generalise to
the logic introduced in Chapter 6.

We would ideally like to similarly extend the results of this chapter. But not all
the proofs in this chapter can be adapted to the generalised situation. For instance,
the proof of Lemma 4.3.3 crucially uses the fact that we start out with a leaky well-
typed run of the given protocol, none of whose proper prefizes is leaky. We then
show that if this is not a good run, we can do some transformations to eliminate
a bad event and still have a leaky run. Among the many secrets which are leaked
in the original run, it is possible that some are not leaked in the new run. This
can happen especially if its being leaked depends on an eliminated bad event. We
are only assured that at least one secret is leaked in the new run as well. So if we
allow the user to specify the secret which should not be leaked, it is possible that
there is some bad run which leaks the secret but on eliminating some bad events,
the new run no longer leaks that particular secret (even though it is guaranteed to
leak some other secret). A further difficulty is that even the proof which shows that
we can eliminate a bad event to form a new run of the protocol depends on our
starting out with a run none of whose proper prefixes are leaky. Notwithstanding
these difficulties, we still believe that the decidability result of this chapter can be
generalised appropriately, and that the ideas introduced in this chapter will lead us

to new insights which will help solve the generalised problem.



Chapter 5

Decidability with unbounded

message length

In this chapter, we deal with the problem of unbounded message length, which
causes undecidability even if we assume a fixed finite set of nonces, as proved in
Section 3.2. Even though protocol specifications contain only messages of bounded
length, still the intruder can force runs to contain unboundedly long messages by
repeated use of ill-typed substitutions. This is the heart of the problem.

In the first section, we prove that the tagging scheme which we have introduced
earlier ensures that we can work only with well-typed runs. Specifically, we prove
that every run of a tagged protocol has an “equivalent” well-typed run, with the
property that the original run is leaky iff its well-typed counterpart is leaky. This
proves that the general secrecy problem (with no restrictions on the set of runs
considered) is decidable for the class of tagged protocols.

In the second section, we approach the problem of unbounded message length
from a different angle. We define a semantically motivated equivalence relation on
the set of terms, with the property that it is of finite index if we assume only a fixed
finite set of nonces and keys. The crucial property of the equivalence relation is that
if two terms are equivalent then the set of basic terms which can be “learnt” from
either of them is the same. The equivalence also leads to a notion of normal terms,
and thence to a notion of normal runs. We then prove the following semantic result:
if every run of Pr is equivalent to a normal run of Pr, then we need only consider

a finite set of runs of Pr to check for leakiness. This yields the decidability of the

86
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secrecy problem for the semantic subclass of protocols whose set of runs has this

kind of closure property.

5.1 Reduction to well-typed runs

We prove in this section (in Subsection 5.1.2, to be more specific) that if a tagged
protocol has a leaky run then it has a well-typed leaky run.
We use the following basic definition throughout this section. For any substitu-

tion o and any nonce z, define o, (which is easily seen to be well-typed) as follows:

z ifxeNando(x)g N

o(x) otherwise

‘v’xE‘TO:UZ(:c):{

5.1.1 Typing proofs

In this subsection, we introduce a notion of type for analz-proofs and prove some
basic properties of them. Of special interest are the so-called well-typed proofs. They
prove useful in coming up with a well-typed run “equivalent” to a given run of a

tagged protocol.

Definition 5.1.1 A type is a pair of the form (o,r) where r is a term and o is a
substitution suitable for r. Given a set of types P, terms(P) dof {o(r) | (o,7) € P}
and for any z € N, terms,(P) dof {o.(r) | (o,7) € P}.

By definition, o is suitable for r iff o(r) is defined. Throughout this section,
we will implicitly use the fact that if o(r) is defined, then o(ry) is defined for any
r € ST(T)

Definition 5.1.2 A type (o,7) matches a term t at the outermost level iff o(r) =t
andr € N =1t ¢& N.

The following lemma is a trivial observation which follows from the definition

above and the definition of substitutions:

Lemma 5.1.3 Let (0,7) match t at the outermost level. Then the following condi-

tions hold:

o ifte K thenr € K,
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e ifte SN thenr € SN,
e ift is of the form (t',t") then r is of the form (r',r"), and
e ift is of the form {t'}y then r is of the form {r"}».

Definition 5.1.4 Suppose P is a set of types and 7 is an analz-proof of terms(P) -t
for some term t. We define typesp(m) (the types of m with respect to P) by induction
as follows.

We also observe the following properties which can be trivially checked by follow-

ing the definition: for all (o,1) € typesp(m):

2. there exists a term u such that r € ST (u) and (o,u) € P, and

3. forall z € N, o,(r) € analz(terms,(P)).

e Suppose m s the following proof:

Ax,
terms(P) -t

Then (o,1) € typesp(n) iff (o,7) € P and o(r) = t.
e Suppose m is the following proof:

(1)

terms(P) = (t,t")
terms(P) -t

Then (o, 1) € typesp(m) iff there exists ' such that (o, (r,1")) € typesp(m).

e Suppose m is the following proof:
(m1) (72)

terms(P) F {t}y terms (P) & k decrypt
terms(P) -t
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Then (o,1) € typesp(m) iff there exist keys k', k" and a substitution o" such
that (o, {r}x) € typesp(m) and (0", k") € typesp(ma)

e Suppose m is the following proof:

(1)

terms(P) F {{t}x}%
terms(P) -t

reduce

Then (o,r) € typesp(m) iff there exists a key k' such that (o, {{r}x}w €
typesp(my).

7 18 said to be well-typed with respect to P if there exists a type (o,r1) € typesp(m)

such that r matches t at the outermost level.

We note the following trivially provable consequence of the definition of types.

Lemma 5.1.5 Suppose that P and P' are sets of types such that P C P' and t is a
term such that there exists a proof of terms(P) & t which is well-typed with respect
to P. Then there exists a proof of terms(P') b t which is well-typed with respect to
P'. (We will refer to this as the upward closure property of well-typed proofs).

Lemma 5.1.6 Suppose P is a set of types, and u; € analz(terms,(P)) for some
z € N. Then there exists (o,r) € P and r; € ST(r) such that 0,(r1) = u; and
o(r) € analz(terms(P)).

Proof: Letting T denote terms(P) and T, denote terms,(P), we prove by induction
on analz-proofs that for any analz-proof m whose root is labelled 7T, I u; there exists
(o,7) € P and r € ST(r) such that o(ry) € analz(T') and o,(r;) = u;. We only
look at the cases when the rule applied at the root of 7w is Ax, and decrypt. The

other cases are handled by a routine application of the induction hypothesis.

e Suppose 7 is the following proof:

— Ax,
Tz F (5}

Then it follows that u; € T, i.e., there exists (o,7) € P such that o,(r) = u;.
But (o,71) € P implies that o(r;) € T C analz(T'), and we are through.
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e Suppose 7 is the following proof:
(m1) (72)

T, -{u T,k
{urbe decrypt
Tz F U1

By induction hypothesis there exists (o,7) € P and ry € ST(r) such that
o(ry) € analz(T) and o,(rs) = {u1}r. From this it clear that ry is of the
form {ry}. Therefore o(ry) = o({ri}x) = {o(r1)}su). It is also clear that
there exists (o',r') € P and r; € ST(r') such that o(r}) € analz(T') and
o' (r!) = k. From this and the definition of o, it follows that o(r}) = k. Also
from the fact that o,(k') = k it follows that o(k') = k. Thus we have that
{o(r1)} € analz(T) and k € analz(T) and it follows that o(r;) € analz(T).

Since o0,(ry) = {u}y it also follows that o,(r1) = u;.

Definition 5.1.7 A set of types P is said to be confusion-free iff for all (o,r) and
(o', r") belonging to P and for all ry € EST(r) and vy € EST(r'), o(r1) = o'(r}) =

r=7.

Lemma 5.1.8 Suppose P U {(c,u)} is a confusion-free set of types such that every
t belonging to min(analz(terms(P))) has an analz-proof that is well-typed with re-
spect to P. Suppose further that ¢(u) € terms(P). Then for any z € N, ¢, (u) €
terms,(P)U{z}.

Proof: We fix a z and let T denote terms(P) and T, denote terms,(P) throughout
this proof. Note that ¢(u) € T = synth(min(analz(T))). We now prove that for
all t; € synth(min(analz(7))) such that ¢t; = ¢(u;) for some u; € ST (u), ¢,(u1) €
T, U {z}. Now we do an induction on the structure of terms, based on Fact 2.3.1.
(We recall that according to Fact 2.3.1, whenever ¢t € synth(T) then ¢t € T, or
t=(¢',t") and {t',t"} C synth(T'), or t = {t'},, and {t', k} C synth(T).)

We first consider the case when ¢; € min(analz(7')). For any such #;, it follows by

assumption that there is an analz-proof w of 1" t; that is well-typed with respect
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to P. Let (0,71) € typesp(w) be a type which matches ¢; at the outermost level.
It follows from the definition of types that o,(r,) € analz(T,) C T, U {z}. It is also
clear from the definition of types that o(r;) = t; = ¢(u;). Now there are two cases to
consider, by Proposition 2.3.12 (which, we may recall, says that if ¢ € min(analz(T))
then ¢ € Ty or t is an encrypted term):

t1 € To: It has to be the case that r; € Ty. Since (o, ) matches ¢; at the outermost
level, it follows that r; € N = ¢; € N. Thus it follows that o,(r1) = t;.
Now either ¢,(u1) = z or ¢,(u1) = ¢(u;) = t = o0,(r1). So in either case
() € T U{z}.

t1 € EST(T): Here there are two cases to consider:

uy € N: Then it is clear that ¢,(u;) = 2. It immediately follows that ¢, (u;) =
zeT,U{z}.
uy € EST(u): Since (o,71) matches #; at the outermost level, it follows that

ry is of the form {rs}y, from Lemma 5.1.3. From the definition of types
it follows that there exists r such that (o,7) € P and ry € EST(r). Now

since the set P U {(¢,u)} is confusion-free and o(r) = ¢(uq), it follows
that r; = uy. It is thus clear that for all x € ST (r1)NTy, o(x) = ¢(z), and
therefore o, () = ¢,(z). From this it follows that ¢, (u;) = ¢, (1) = o,(r1).

Therefore ¢,(uy) € T, U {z}.

Now we consider the case when #; is of the form (#),¢!) and #and #] belong
to synth(min(analz(7T"))). Now either u € N or u is of the form (u/,u"). If u € N
then ,(u) = z € T, U {z}. Otherwise ¢(u') = #, and ¢(u") = #, and by induction
hypothesis both ¢, (u') and ¢(u") belong to T, U {z}. But now it immediately follows
that ¢(u) = (¢(u'),<(u")) € T, U {2}

The case when t; is of the form {#}}, is identically handled. This concludes the
induction step and the proof. O

5.1.2 Reduction to well-typed runs

We prove the following lemma in this subsection.
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Lemma 5.1.9 If a weakly tagged protocol Pr has a leaky run, then it has a well-typed

leaky run.

For the rest of this section, we fix a weakly tagged protocol Pr = (C,4) and a
run £ = e; - - - e of Pr with e; = (m;, 0y, Ip,) for all i < k. We also fix the following
notations related to & for the rest of the discussion. For any j : 1 < 57 < k,
§; denotes e;---e;, s; denotes infstate(§;), T; denotes (s;);, a; denotes n;(lp;),
rj denotes term(a;), and t; denotes o;(r;). Similarly (e;)n, denotes (1, (05)nq: Ip;);
(&;)n, denotes (e1)n, - - (€5)ng, (5;)n, denotes infstate((&;)ny), (T5)n, denotes ((Sj)ng)1s
and (t;)n, denotes (o;)n,(rj). To and (Tp)a, denote (so(Pr))s; and op and (o),
denote the identity substitution. Further, for each i : 0 < i < k, we define a set of
types P; as follows: Py = {(0g,m) | m € Ty}; fori:1<i<k, P,=F, 1U{(0;,ri)}
Proof: We aim to prove that the sequence (§)a, o (&k)n, 1s @ run of Pr which is
leaky iff £ is leaky. It is well-typed by construction. We only have to prove that it

is a run of Pr and it is leaky if and only if £ is leaky:.

Claim: (§),, is a run of Pr.

0

Proof of Claim: Firstly we observe that the run ¢ has the unique origination
property. Further NT'(e;) = NT((e;)n,) for all i < k. Thus it immediately
follows that (£),, also has the unique origination property. We now concentrate

on proving the enabledness of the events in (£),,.

It is clear that for all i < k, (e;)n, is an event of Pr, since it is clear from

no
the definitions that (o;),, is suitable for Pr and 7;. We only have to prove
that for all i < k, (e;)n, is enabled at (e1)n, - - (€;_1)n,- Suppose e; is a send
event. Send-admissibility of plays of well-formed protocols ensures that (e;)a,

is enabled at (& _1)n,-

So we only need to consider the case when ¢; is a receive event. We need
to prove that (t;)n, € (Ti_1)n, For this, observe that o;(r;) = t; € T;_;.
Now it follows from Proposition 2.2.32 (an immediate consequence of the weak
tagging scheme) that P; is a confusion-free set of types. Further it follows from
Lemma 5.1.10 (to be proved later) that for all ¢ belonging to min(analz(7;_+)),
there is an analz-proof of T;_; - ¢ that is well-typed with respect to P;. Thus we
can apply Lemma 5.1.8 and it follows that (¢;)n, = (04)ng (1) € (Ti-1)ne U {no}-
But ng € Ty and hence ng € (T;_1)n,. Thus it follows that (;)a, € (Tj—1)ne-
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Claim: (§),, is leaky iff £ is leaky.

0

Proof of Claim: We prove this by showing that for all 7 : 1 < i < k,
T.NTy = (T;)n, N To. Since the initial states of both runs and the new nonces

generated at each event of both runs are the same, it immediately follows that
&ng 18 leaky iff € is.

Suppose m € T; N Ty. Then it is clear that m € min(analz(7;)). From
Lemma 5.1.10 it is clear that there is an analz-proof 7 of 7T; + m that is
well-typed with respect to ;. Let (0,7) € typesp (7). It is clear that r € N
as well and that o, (r) = m. But now it follows from the definition of types

that m € analz(T},,). This shows that T; N Ty € (T})n, N To-

Now suppose m € analz((7;),,)N7y. By Lemma 5.1.6 it follows that there exists
(o,7) € P and ry € ST(r) such that o(ry) € analz(7;) and o,,(r1) = m. Now
if m = ng then m € Tj. If m # ng then it follows that o(r;) = g,,(r1) = m.

But then we have that m € analz(T;). This shows that (T;),, N 7o € T; N 7o

and hence the claim follows.

This completes the proof of the lemma, assuming Lemma 5.1.10. O

Lemma 5.1.10 For all i : 1 < i < k and for all t € min(analz(T})), there is an
analz-proof of T; & t that is well-typed with respect to P;.

Proof: The proof is by induction on 1.

Base case: i = 0: If t € analz(Ty) then for any analz-proof 7 of Ty - ¢, (0, t) belongs
to typesp, (m). Clearly (0g,t) matches ¢ at the outermost level and thus 7 is

an analz-proof of Ty F ¢ that is well-typed with respect to F.

Induction case: Assume that i > 0 and that for all j < ¢ and ¢ € min(analz(7})),
there is an analz-proof of T} - ¢ that is well-typed with respect to P;. By the
upward closure property of well-typed proofs, we see that for all such #, there
is an analz-proof of T; - £ that is well-typed with respect to P;. Now suppose
t € min(analz(T;)) \ analz(7; ;) and 7 is an analz-proof of T; - ¢t. Then we
prove by induction on proofs that for all subproofs @ of © with root labelled
T, & u, either u € T;_; or there is an analz-proof of T; F u that is well-typed

with respect to P;. For this we assume that for all proper subproofs @’ of
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w with root labelled T; F «', ' has this property and use it to prove that u
itself has this property. Once we prove this the desired result follows, since it
cannot be the case that ¢, which is assumed to be a minimal term in analz(7'),
belongs to synth(analz(7; 1)) C synth(analz(T;) \ {t}).

e Suppose w is the following proof:

— Ax,

T, Fu

Then u € T;. By definition of types, typesp (w) # (). By Lemma 5.1.11
(which is proved next) it follows that either u € T;_; or @ is well-typed

with respect to P;, and we are through.

e Suppose w is the following proof:

(1)

T; = (u,u)

split
T;Fu ]

By induction hypothesis either (u,u') € T; ; or there is an analz-proof
p1 of T; b (u,u) that is well-typed with respect to P;. In the first case
u € analz(T; 1) = T, 1 and we are done. In the second case, we have the

following proof p of T; - w:

(p)

T; = (u,u')

split
T, Fu !

By definition of types, typesp. (p) # 0. It follows from Lemma 5.1.11 that
either u € T; 1 or p is well-typed with respect to F;, and we are through.

e Suppose w is the following proof:

(YDl) (w2)

T - {u T, -k
{ube decrypt
T, Fu
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By induction hypothesis either there is an analz-proof of T, F k that

is well-typed with respect to P, or k € T;_;. In the first case we are
done. In the second case, we note that k is a basic term, and hence
k € T,y = k € min(analz(T;_,)). The induction hypothesis (on i — 1)
and the upward closure property of well-typed proofs assure us that there
is an analz-proof p, of T; - k that is well-typed with respect to P; in this
case also. Similarly, by induction hypothesis either {u}, € T;_; or there
is an analz-proof p; of T;  {u}, that is well-typed with respect to P;.
In the case where {u}, € T; 1, if u € T; | we are done. Otherwise
{u}r € min(analz(7;_1)), and the induction hypothesis (on i — 1) and the
upward closure property of well-typed proofs assure us that there is an

analz-proof p; of T; b {u}, that is well-typed with respect to P;. Given

p1 and py, we can build the proof p as follows:

() (p2)

T - {u T, -k
{ube decrypt
T, Fu

By definition of types it is clear that typesp (p) # 0. It follows from
Lemma 5.1.11 that either v € T; | or p is well-typed with respect to P,

and we are through.

e Suppose w is the following proof:

(1)

Ti - {{ulelz
T+ u

reduce

By induction hypothesis either {{u};}z € T;_; or there is an analz-proof
p1 of T; = {{u}y}; that is well-typed with respect to P;. In the first case,
it is clear that u € analz(T,_;) = T; ;. We now show that the second
case cannot arise at all for the following reason: by induction hypothesis
there exists (o,7) € typesp (p1) which matches {{u};}; at the outermost
level. So r is of the form {r'};,. But then since Pr is a tagged protocol
and {r'}x € EST(6), r'" is of the form (c,r") for some ¢ € C and some r".
It also follows from the definition of types that o(r) = {{u}x}z, but this
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would mean that o(c,r”) = {u}g, an impossibility. Thus the second case

cannot arise at all and we are done.

This concludes the induction step and the proof. The lemma is thus proved, assum-

ing Lemma 5.1.11. O

Lemma 5.1.11 Suppose 1 < i < k and t € analz(T;) such that there is an analz-
proof w of T; =t with typesp (1) # 0. Then either m is well-typed with respect to P,
orteT; 1.

Proof: Suppose (0,7) € typesp (7). If (o,7) matches ¢ at the outermost level, then
7 is well-typed with respect to P;. Otherwise it has to be the case that » € N and
t ¢ N. Since o(r) =t and r # t, it cannot be the case that 0 = 0. Hence 0 = o
for some 7 > 1. It is clear from the definition of types that there exists u such that
r € ST(u) and (o,u) € P,. Since 0 = 0j, u = rj. But now r € ST(r;) N N
and o;(r) ¢ N, so it follows from Lemma 5.1.15 (which is proved later) that
t = oj(r) € T,y C T, 4. Thus the lemma is proved, assuming Lemma 5.1.15.

O

The following definition and the next two lemmas are preparatory to proving
Lemma 5.1.15.

Definition 5.1.12 We say that a term t originates at i < k in & iff t € ST (e;) and
forall j < i, t & ST(e;).

Lemma 5.1.13 Suppose e; is a send event for some i : 1 < i < k and there exists
n € ST (r;) NN such that o;(n) ¢ N. Then i > 1 and there exists j : 1 < j < i such
that n € ST (r;) and o;(n) = oj(n).

Proof: Since o;(n) ¢ N, it follows from definitions that n ¢ NT(a;) (otherwise
o; would not be suitable for a; and hence e; would not be an event). Also the
run & has the property of unique origination of nonces, and hence, it follows that
n ¢ CT(Pr). But the fact that n € ST(r;) implies (again by the send-admissibilty
of roles of well-formed protocols) that n € ST (n;(Ip)) for some Ip < Ip;,. But then,
since LP(e;) C {ey,...,e; 1}, it follows that e = (n;, 04, Ip) € {e1,...,e; 1} and thus
there exists j : 1 < j < ¢ such that n € ST(r;) and o;(n) = 0;(n). O
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Lemma 5.1.14 Suppose a term t originates at a receive event e; for some i < k.
Then t € T; 1, and further, if t = {u}y for some u and k then {u,k} CT; ;.

Proof: It is clear from the definition of runs that since e; is a receive event,
t; € Ty 1. Tt is also clear that t € ST(t;) C ST(T; ) and therefore by Proposi-
tion 2.3.7 it follows that t € ST (analz(T; 1)) or t € T; ;. (Recall that according to
Proposition 2.3.7, whenever r € ST (synth(7T)) then r € synth(7T) U ST(T).) Now
analz(T') C ST(T) (and hence ST (analz(T)) = ST(T)) for any set of terms 7', and
therefore it follows that either t € ST(T; 1) ot t € T; ;. Now since t originates
at e;, it cannot be the case that t € ST(T; ;). Therefore t € T,_,. Further if
t = {u}y we can apply Proposition 2.3.8 to ¢ and analz(7; ;) and conclude that
{u,k} C synth(analz(T; 1)) = T; ;. (Recall that according to Proposition 2.3.8,
whenever {r}, € ST(synth(T)) then r € ST(T) or {r,k} C synth(T). Further, in
the present case t ¢ ST(T; 1) = ST (analz(T;_1)). Hence the conclusion.) O

Lemma 5.1.15 If 0;(n) ¢ N for some i :1 < i <k andn € ST(r;) NN, then
0'1(77) S 7},].

Proof: The proof is by induction on 1.

Base case: i = 1: Suppose there exists n € ST (r;) N N such that o;(n) ¢ N. We
first note that e; cannot be a send event for then, by Lemma 5.1.13, it would
follow that ¢ > 1, contradicting the fact that i = 1. Thus e; is a receive event,
and hence t; € T;_; and since T;_; = T, C Ty it follows from Proposition 2.3.9
that t € T; ; for all t € ST(t;) and in particular o;(n) € T; ;. (Recall that
according to Proposition 2.3.9, whenever T' C Ty, ST (synth(7")) C synth(7T).)

Induction case: Suppose 7 > 1 and the statement of the lemma holds for all j < 7.
Suppose there exists an n € ST (r;) N N such that o;(n) ¢ N. There are two

cases to consider here:

e; is a receive event: In this case it is clear that ¢; = o;(r;) € T, ;. Now if
n occurs unencrypted in r;, 0;(n) € T, , as well and the induction case
is through. Otherwise let {u}; be the smallest encrypted subterm of r;
containing n. Let o;({u}y) originate at some j < . There are two cases

to consider here:
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e;j s a receive event: In this case, it follows from Lemma 5.1.14 that
o;(u) € Tj_; and since {u};, is a minimum encrypted term containing
n as a subterm, n € analz(u) and hence o;(n) € T, | C T; ;.

e; is a send event: Now it cannot be the case that o;({u}y) € ST (0;(m))
for some m € ST(r;) NN, since it is in violation of Lemma 5.1.13. It
also cannot be the case that there is some {u'}p € ST(r;) such that
{u'}r # {u}y and o;({u}y) = o;({u'}x), since it is in violation of
Proposition 2.2.32. The only remaining case is that {u}, € ST(r;)
and o;({u}g) = 0;({u}x) in which case it follows that o;(n) = o;(n).
Also note that since e; is a receive event, j < i. Hence by induction
hypothesis o;(n) € Tj 1 C T;_;.

e; 1s a send event: Since o;(n) ¢ N, it follows from Lemma 5.1.13 that there
is a j < i such that n € ST(r;) and o,(n) = o0;(n). Thus it follows by
induction hypothesis that o;(n) € T;_y C T;_;.

This completes the proof of the lemma. O

Of course the statement of Lemma 5.1.9 holds for tagged protocols as well. This
combined with Theorem 4.3.4 leads to the following result, which is the central result
of the thesis.

Theorem 5.1.16 . The general secrecy problem (with no restriction on the set of

runs considered) is decidable for the class of tagged protocols.

5.2 An approach based on equivalence on terms

As mentioned earlier, we approach the problem of unbounded message length
in a different manner in this section. We define an equivalence relation on terms
based on which we obtain a subclass of protocols for which the secrecy problem is
decidable, under the assumption that the keys and nonces used come from a fixed
finite set.

The equivalence relation is based on the following semantic motivations: In
typical protocols the term (¢,¢) is not construed as conveying more information
than the term ¢ alone. Even in the rare case where it conveys more information, it

does so only in an indirect manner. For instance, the same term repeated twice in a
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message might signify some control information. In that case, we can use some more
direct scheme to convey that information. A similar argument holds for repeated
encryptions with the same key as well. Extending this line of thinking, we see that
a term of the form {{({m,n}i, m)}r}r conveys really the same information that
{{m,n}p }, does. It can be seen that it is reasonable to equate the two terms, since
an agent with a given set of keys learns the same basic terms from both these terms.

These considerations lead us to our definition of the equivalence relation, which
is meant to enforce a reasonableness condition on the kinds of messages that can be
constructed. We leave open the question of how these rules can be implemented so
that only reasonable messages are used. Even if we restrict the protocol specifica-
tions to refer only to normal terms (which formally stand for “reasonable messages”),
the runs of the protocol might not contain only normal terms. It can be seen that
such a situation might arise only due to the actions of an unrestricted intruder. One
possible way of enforcing the use of normal terms in all the runs is to offer only some
restricted kinds of message building capabilities to the users of the protocol, at the
implementation level. There are many other ways of achieving the same result, and
the decidability result that we prove in this section applies irrespective of the specific
scheme used to implement this. The result is proved for a general semantic class of
protocols (informally, these are protocols which have “normal representatives” for
any of their runs).

We set up the following notation and terminology for this section: We say that
a key k encrypts in a term t if ' : {t'}, € ST(¢).

Given a term t and a key k define ¢t_, by induction as follows: for m € 7,
m_p = m; (t,t")_p = (t_g,t' ,); and ({¢t}x)_x is defined to be t_ if £ = k', and
{t_k}r otherwise. Thus ¢_j is the term ¢ with all encryptions by key k& removed.

The encryption depth of a term is defined by induction as follows:

encdepth(m) = 0 for m € Ty;
encdepth((t,t")) = maz(encdepth(t), encdepth(t')); and
encdepth({t}r) = encdepth(t) + 1.

We also fix a finite set 7" C 7T, of size B. Throughout this section we will only
consider terms ¢ with the property that ST(¢) C T

Definition 5.2.1 An =-proof is an inverted tree whose nodes are labelled by equa-

tions of the form r ~ r' and connected by one of the rules in Figure 5.1 and whose
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Axioms
Rules
Al
o Aot Ry
t’ ~ 1
- A2
(tat)f\/t tNt’ tht” R2
t ~ 7(/.II
(t’t’) ~ (tlat) A3 / /
t] ~ tl t2 ~ tQ R3
e SR
t~t
< s R4
t ~ t’
{the ~ {t_r}x AS {the ~ {t'}e

Figure 5.1: Axioms and rules for =-proofs.

leaves are labelled by instances of the axioms in Figure 5.1.
We say that t = t' iff there is an =-proof whose root is labelled by t ~ t'. We
say that t =, t' iff there is an =-proof whose root is labelled by t ~ t', and none of

whose leaves are labelled by the axioms A2 and A5.

Definition 5.2.2 Any term which has a subterm of the form (r,r) or of the form
{r}r with k encrypting in v is said to be a redex. A term t is said to be normal if
there is no t' such that t =, t' and t' is a redex. A substitution o is normal iff for
all x € Ty: if o(x) is defined then it is normal. An event e = (n, o, lp) is normal if
o is normal, and a sequence of events & is normal iff all the events occurring in it

are normal.

The main function of the equivalence relation is to ensure two things: the tupling
operator works with sets of terms now rather than lists, which is ensured by Axioms
A2 to A4; the depth of the encryption operator is bounded. The latter is achieved
by the axiom A5, which ensures that if we consider a basic term m occurring in two
equivalent terms ¢ and ¢', the same keys encrypt m in both ¢ and #'. Thus it easily
follows that for any set of terms 7', analz(T' U {t}) N Ty = analz(T U {t'}) N Ty. This
property is crucial for our later development.

We first observe the following property which follows immediately from the def-
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initions.

Proposition 5.2.3 For any two terms t and t', if t =1 t' then t is normal iff t' is

normal.

Lemma 5.2.4 For any normal term t, encdepth(t) < B.

Proof: This is quite easy to see. Firstly note there are at most B keys in 7. Now
the result can be proved by a a trivial induction on the structure of terms as follows:

If t € T then of course encdepth(t) =0 < B.

Suppose t is of the form (r,r’). We first claim that r and r’ are normal terms.
For, suppose r were not a normal term, for example. Then there is a redex u such
that 7 = u. But now (r,r') =1 (u,r’). Since u is a redex, (u,r') is also a redex, and
hence ¢ would itself be a nonnormal term. This contradiction leads us to the fact
that 7 and ' are normal terms. Therefore encdepth(r) < B and encdepth(r') < B,
by induction hypothesis. Thus encdepth(t) = maz(encdepth(r), encdepth(r')) < B.

Suppose t is of the form {r};. Then as before we can show that r is a normal
term. So encdepth(r) < B. But since t is a normal term, it follows that it is not a
redex. From this it follows that k& does not encrypt in 7. Thus encdepth(r) is strictly
less than B. From this it follows that encdepth(t) < B. O

Lemma 5.2.5 The equivalence relation = on terms is of finite index. Further there

15 a bound on the size of normal terms.

Proof: It is easy to see that every term is equivalent to a normal term. We
now show that the set of normal terms is finite, which will immediately imply the
statement of the proposition. We will also simultaneously prove that each normal
term is of bounded size (which depends only on T'.)

Recall that |T'| = B. Let us denote by NN; the set of normal terms of encryption
depth i. We show below that there is a bound f; on the size of the terms in ;.
Since all normal terms are encryption depth at most B, the number fz is a bound
on the size of normal terms.

Consider a term ¢ in Ny. Clearly ¢ is built up using only the pairing construct,
with no basic term having more than one occurrence. Thus ¢ can be viewed as a
binary tree with at most B leaves. The size of such a tree can be at most 2 - B.
Thus we can let fo =2 B.
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Consider a term t in N;. Suppose the set N;_; is of size at most g;_1. Now we
note that any term in N; can be built from terms of the form {r}, (with r € N; ;)
using the pairing construct repeatedly. The number of terms of the form {r}; with
r € N; i is at most B-g; 1 (since any of at most B keys can be used to encrypt any
of the at most g; ; terms from N; ;). Now since ¢ is normal, it follows that there is
at most one occurrence of each of the above B - ¢g; | terms in . Thus ¢ can again
be viewed as a binary tree with at most B - g;_; leaves. The size of ¢ cannot exceed
2 - B - g;_1. This number can be chosen as f;.

We now show how to determine g¢; from f;, for each ¢. We first look at the
different “structures” of size f; that can occur. A loose upper bound is the number
i)

of binary trees with at most f; leaves. This gives us a bound of in(fz . Now we can

map each of the leaves of these trees to any one of the B basic terms to form terms
. . O(f;)
in V;, so we get an estimate of Bfi for g;.

This completes the proof of this lemma. O

While the bounds arrived at in the above lemma suffice for our decidability
results, they are clearly not practical. More work needs to be done in coming up
with protocol-specific equivalences which yield practical bounds.

We now come to the second part of our endeavour, which is to prove that if £
and & are equivalent runs, then £ is leaky iff £ is. We say that ¢ = o' for two
substitutions o and ¢’ iff their domains of definition are the same and for all x € T,
if o(z) is defined then o'(z) = o(z). We say that (n,0,lp) = (1, o', lp") iff n = 7,
Ip =1p', and 0 = ¢'. Given two sequences of events £ =e;---¢, and & = ¢} ---¢€},
we say that & = ¢ iff for all i < k, e¢; = €.

We now prove the crucial semantic property of the equivalence on runs. Prepara-

tory to that is the following property of equivalent terms.

Proposition 5.2.6 Suppose t and t' are two terms with t = t'. Suppose U is a set
of basic terms. Then analz(U U {t})NT = analz({U U {t'})NT.

Proof: We note that it suffices to prove the statement when ¢ is of the form {r},
and t' is of the form {r_,},. Then a trivial induction on =-proofs yields the desired
result.

We now proceed to prove that analz(U U {{r},})NT = analz(UU{{r_x}r})NT.

At the outset there are two cases to be considered:
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e Suppose k ¢ U. Then analz(U U {{r};}) = analz(U U {{r_x}x}) = 0, so we get

our result.

e Suppose k € U. We now prove by induction on the structure of terms that
analz({UU{r})NT = analz(UU{r_x})NT. The desired result follows since the
presence of k in U ensures that analz(UU{r_,})NT = analz(UU{{r ;}+})NT.

When r € T then r_, = r, so it immediately follows that analz(U U {r}) =
analz(U U {{r_x}+}).

When r = (u,u') then r_ = (u_g,u" ). By induction hypothesis we know
that analz(U U {u}) NT = analz(U U {u_x}) N T, and that a similar property
holds for u'. The result now follows by noting that analz(U U {(u,u")}) N T =
(analz(U U {u}) Uanalz(U U {v'})) N T, and that a similar property holds for
(u—p, u’y)-

When r = {u}y, there are two cases to consider. If k' = k then r_; = u_y.
By induction hypothesis analz(U U {u})NT = analz(U U {u_,}) NT. But the
presence of k in U ensures that analz(UU{u},)NT = analz(UU{u})NT. From
this the desired result follows. If &' # k then r_, = {u_j}p. By induction
hypothesis analz(U U {u}) NT = analz(U U {u_,}) NT. Again a case analysis
based on whether &’ belongs to U or not yields the desired result.

Proposition 5.2.7 Suppose Pr is a protocol and & and & are runs of Pr such that
& =¢. Then (infstate(&))a NT = (infstate(§))a NT for all A € Ag. Further £ is
leaky iff & is leaky.

Proof: We prove the proposition by induction on the length of the runs. In the
base case £ = &' = ¢ and therefore clearly infstate(§) = infstate(¢') = init(Pr) and
the proposition is true. For the induction step suppose that £ =& -e and £ = &) - ¢
with e = ¢’ and & = £. Fix an A € Ag. By induction hypothesis we see that
(infstate(&1))a N'T = (infstate(€]))a N'T. Let this set be denoted by U. Now we
only consider the case when e is a receive event by A. Let ¢t = act(e) and t' = act(e').

Clearly t = ¢'. Then we note that (infstate(£))4 N'T = analz(U U {t}) N T, and that
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a similar property holds for £'. It immediately follows from Proposition 5.2.6 that
(infstate(€)) 4 NT = (infstate(€")) 4 N T.

We now claim that if e; ---e, = €] --- ¢} then for all i < k, NT(e;) = NT(e}).
This is easy to see. If we let ¢; = (m;, 04, 1Ip;) and € = (n, 0!, Ip}), then for all

m € NT(n;(Ilp;)), o(m) € T. But o(m) = o'(m) and, since m € Ty, it can only be
the case that o(m) is the same as o’(m). This shows that NT'(e;) = NT'(e}).
The above two facts immediately imply that £ is leaky iff £’ is leaky. O

We now define a semantic subclass of protocols, the class of =-invariant proto-

cols.

Definition 5.2.8 A protocol Pr is said to be =-invariant iff for all runs & of Pr,

there is a normal run of & of Pr such that £ = ¢£'.

It immediately follows that, given an =-invariant protocol Pr, checking whether
there is a leaky run of Pr boils down to checking whether there is a normal leaky
run of Pr. Now the set of normal events of Pr is bounded in number (the bound
depending on the number fg derived in Lemma 5.2.5 and the specification of Pr).
But this does not mean that the set of normal runs of Pr is a finite set. The problem
arises because the same event may occur many times in a run (as long as it does
not generate any new nonces), and so there is no bound on the length of the runs
that we have to consider. A solution to this problem is provided in the proof of the

following theorem.

Theorem 5.2.9 The problem of checking whether a given =-invariant protocol has

a leaky run is decidable.

Proof: Given an =-invariant protocol Pr, it suffices to check whether there is a
normal leaky run of Pr or not. We now show that this is equivalent to checking
whether there is a reduced normal leaky run of Pr or not. We recall that a reduced
run is a run with all duplicate occurrences of events removed. Since there are only
boundedly many normal events, and since there is at most one occurrence of any
event in a reduced run, the set of reduced normal runs of Pr is finite, and thus we
obtain decidability.

It follows from Proposition 2.2.20 that if £ is a run of Pr so is red(£). We
now prove that £ is leaky iff red(§) is leaky. Suppose & is leaky. This means that
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there is a basic term m and a prefix & of £ such that m is secret at & and not
secret at £. From Proposition 2.2.20 we see that infstate(§) = infstate(red(£)) and
infstate(§') = infstate(red(&')). Thus it follows that m is secret at red(¢') and not
secret at red(£). Further it is clear from the definitions that red(¢’) is a prefix of
red(£). Thus red(£) is also leaky.

Suppose on the other hand that red(€) is leaky. This means that there is a basic
term m which is secret at some prefix of red(£) but not secret at red(£). We now
use the fact (which immediately follows from definitions) that any prefix of red()
is of the form red(¢') for some prefix £ of £. Thus we see that m is secret at red(¢')
and not secret at red(£). From Proposition 2.2.20, it follows that m is secret at &'
but not secret at £&. This means that £ is leaky.

So we see that there is a normal leaky run of Pr iff there is a reduced normal

leaky run of Pr, and this completes the proof of the theorem. O

The work in this section suggests an approach to the verification of security
protocols. To make this relevant to practice, much more work needs to be done to
yield better bounds on the size of terms. This might entail changing the definition
of the equivalence relation suitably (perhaps with some specific classes of protocols
in mind). Further we need to come up with syntactic conditions on protocols which

ensure that they are =-invariant. It is needed because as of now we do not have
any method of effectively checking whether a given protocol is =-invariant or not.
We conclude by saying that the development in this section sets up a framework for
the verification of security protocols, and that there is still some way to go before

we obtain results which are relevant to practice.



Chapter 6

Reasoning about security

protocols

In this chapter, we develop a logic for specifying interesting properties of proto-
cols and reasoning about them. We also show that some of the decidability results

of the earlier chapters extend to the verification problem for the logic.

6.1 Motivation

In chapter 1, we briefly saw some of the approaches to logical reasoning of security
protocols: namely, automated theorem proving and belief logics. We also pointed
out some of the strengths and drawbacks of each approach. We take a fresh look
at these approaches in the light of the developments and results of the preceding
chapters.

We saw in Chapter 2 that modelling security protocols is fairly intricate. The
technical results proved in the other chapters also rest on some nontrivial analysis
based on the model. In such a situation, an automatic choice for reasoning about
protocols is a highly expressive logic like first-order logic or higher-order logic (which
are typically used by automated theorem provers). But as was already pointed out,
it requires expert knowledge to work with these logics. A further drawback is that
the added expressive power usually brings undecidability in its wake, and thus a

fully automated approach to protocol verification cannot be based on such a logic.

106
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On the other hand, as we already pointed out, belief logics work with fairly
abstract modalities like knowledge, belief, awareness, etc. It is not clear whether
these are at the core of reasoning about security protocols. The analysis involved
in the proofs of the various technical results that we saw earlier suggest that the
explicit information present in the agents’ state is crucial to much of the reasoning
about protocols. We base our logic on this. Thus ours is an explicit-information
based logic in that we focus on the explicit information available in each agent’s
state at any point of a protocol run, rather than on the epistemic attitudes of the
different agents. The crucial security properties also involve a notion of time, so
the logic needs some way of referring to the future and past. Here again, we see
that temporal modalities like the nexttime and until modalities of LTL, and complex
temporal reasoning involving them are not crucial to the analysis of protocols. We
thus choose to endow the logic with the simple tense logic modailties F (referring to
some time in the future) and P (referring to some time in the past).

[RS01] is an attempt to develop a simple modal logic along these lines. The
main feature of the logic is the modality has, which refers to the explicit information
available to an agent at a state. For instance, the formula A has m says that the
term m is in A’s database in the current state. More interestingly, the formula
A has (B has m) says that A has explicit information about B having access to m.
But the technical treatment in [RS01] is unnecessarily complicated because has is
treated as a modality, and can thus be iterated. It is also not clear whether iterating
the has modality lies at the core of reasoning about security protocols.

The logic which we describe in this chapter follows the information based ap-
proach, but does not treat has as a modality. Instead it is a special kind of atomic
proposition. Our aim in defining this logic is to come up with a core logic for security
protocols with the property that most of the technical results proved in the earlier
chapters (about the secrecy problem) generalise to the logic. But at the same time
the logic should have enough expressive power such that the basic security prop-
erties can be naturally expressed in it. The different choices made in defining the
elements of the logic have the above two requirements in mind.

Before we define the logic proper (in the next section), we motivate it by describ-
ing a much simpler logic which helps us understand the issues involved. The syntax
of the logic has basic propositions of the form A has m and a where A € Ag, m € T,

and a € Ac. Further the set of formulas is closed under the usual boolean operators,
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the future modality F, and the past modality P. The formulas are interpreted over
instants of runs of a protocol, i.e., (£, i) where £ is a run of a protocol and 0 < i < |€].
We say that the formula A has m is satisfied at (£, ) iff m € (infstate(&;)) 4 (where
&; is the prefix of £ of length 7). (&, 1) satisfies a iff act(e;) = a (e; being the ith event
of £). The formula Fa is satisfied at (£, 1) iff « is satisfied at (£, j), for some j > i.
Similarly, Pa is satisfied at (€, 1) iff « is satisfied at (&, ), for some j < i. The dual

modalities G and H are defined by: Ga © F-a and Ho & —-P-a. A protocol

Pr satisfies a formula « if (£, 0) satisfies o for all runs £ of Pr. This is basically a
tense logic with the past operator and some specialised atomic propositions to talk
about security.

Several basic security properties can be specified in this logic. The formula
—F(I has m) says that the basic term m is never learnt by the intruder in the course of
a run. This is a rudimentary form of secrecy. A rudimentary form of authentication
is specified by the formula G(A?B:t D P(B!A:t)). This says that if A receives t
purportedly from B at some point of a run, then B actually sent it intended for A at
some time in the past. We can even define more complicated forms of authentication
in the logic. With respect to the Needham-Schroeder protocol Prys the following
formula « says that if some instantiation of the responder role is played, then an

appropriate instantiation of the initiator role has also been played to completion.

a ¥ GB?A:{n}yum, O
P(A!B:{n}pupi,, A P(A?B:{m,n}pupr , AN P(A!B: (m){m}pusi,)))]

This is just representative of the kind of properties that can be specified. Other
forms of protocol-specific authentication properties can be specified using the logic.
But the main drawback of the logic is that the formulas mention concrete terms
actually communicated during a run. This makes the task of specifying abstract
security properties in the logic much harder. Further, since there are potentially in-
finitely many concrete terms, we need a logical device like quantification over terms
to express properties about all terms. In the logic that we introduce next, we solve
these problems by mentioning only abstract terms mentioned in the protocol speci-
fication. Further, instead of a quantification on terms we have a quantification over
substitutions. Recall that substitutions are the unknown elements at the level of
protocol specifications, since they serve to introduce different terms in the protocol
runs. These features enable the proposed logic to naturally specify abstract prop-

erties of protocols with reference to the runs of the protocol. Thus our approach
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combines some of the advantages of BAN-style logics (ability to specify abstract
properties) with some of the advantages of the logic presented above (formulas can
be easily and naturally interpreted over runs of a protocol, even though concrete
terms not in mentioned in the formula (or the protocol specification) occur in the

run).

6.2 A modal logic for security protocols

In this section, we develop a logic keeping the points raised in the above discus-
sion in mind. The logic is designed to specify abstract properties of protocols. Thus

the formulas need to talk about terms, actions, etc. but in an abstract way.

Syntax

We assume a countable set AS of abstract substitution names. For a term m € 7Ty,
we define type(m) to be nonce if m € N, sequence-number if m € SN, key if m € K
and agent if m € Ag.

The set of formulas ® is given by:

P =

t-Ahas-m (A€ Ag,m € Ty, 1,1/ € AS)

| t-a (a € Ac,1 € AS)

| v-x=12"  (x,2" € Ty, type(z) = type(z'),, ' € AS)

| =

laVvp

| Fa

| Pa

| ()

We introduce the other standard operators as follows: a A 3 def —(—a vV —f),

a D S ot —aVp, a=p def (a D BN D ), Gu &t —F-a, Ha of —P-a,

def

V) = =(3)-a.
The set of subformulas, the set of free substitution names, and the set of “sub-

terms” of a formula are all easily defined:

e SF(1-Ahas ' -m) = {1-Ahas i -m};
FSN(t-A has i/-m) = {1,1'};
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ST(1-Ahas t'-m) ={1-A,//-m};

e SF(1-a) = {i-a};
FSN(i-a) = {i};
ST(1-a) ={t-m |me ST(a)NTo};

o SF(—a) = {-a} U SF(a);
FSN(—a) = FSN(a);
ST(—a) = ST (a);

e SF(aV ) ={aV B}USF(a)USF(B);
FSN(aV ) = FSN(a) U FSN(p);
ST(avV p)=8T(a)UST(p);

e SF(Fa) = {Fa} U SF(a);
FSN(Fa) = FSN(a);
ST(Fa) = ST («);

e SF(Pa) = {Pa}U SF(a);
FSN(Pa) = FSN («);
ST(Pa) = ST(«);

o SF((F)a) ={(3B1)a} U SF(a);
FSN((3t)e) = FSN(a) \ {1};
ST((F)a) = ST ().

A formula « is said to be closed iff FSN(a) = ().

Semantics

A structure is a pair A = (Pr, 8) where Pr is a protocol and 8 is a set of substitu-
tions suitable for Pr. (Note that 8§ need not necessarily be the set of all substitutions
o suitable for Pr.) An A-run £ is a run of Pr such that for all (1,0, Ip) € Fvents(),
o € 8. An A-assignment 6 is a map which associates each substitution name ¢ in

AS to a substitution §, € §. (Note that for ease of notation we write 6, rather than
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6(¢).) Given a structure A = (Pr, 8), an A-assignment 6 and a substitution o € § we
define #[. := o] to be the assignment #" with the property that 6] = o and ¢/, =0,
for ' # 4.

A modelis a pair M = (A, §) where A is a structure and 6 is an A-assignment. We
say that £ is an M-run if it is an A-run. A model M = (A, 0) is said to be compatible
with a formula o iff for all .-m € ST («), 6,(m) is defined and type(6,(m)) = type(m).

Given a sequence of events £, an instant in £ is a number 4 such that 0 < i < [].

Given a formula o, a model M = ((Pr, 8), ) compatible with a;, an M-run £ and
an instant 7 in &, we define the satisfaction relation M, (§,7) = a. Suppose that
& = ey e, where for each i < k, e; = (n;, 04, Ip;). Let s; denote infstate(e; - - - €;),

for any 7 < k. We now give the inductive definition of M, (§,7) = a.
o M, (&,4) =1-Ahas /-m iff n € (s;)c (where 6, (m) =n and ,(A) = C);
e M, (&) Fe-aiffi >0, n(lp;) = a and 0,(a) = oi(a);
e M, (i) =v-x =12 iff 0,(x) =0, (2);
o M (60) = o iff M (1) 1 o
o M, (6,1) = av G (€)= o or M, (6,9) =
e M, (§,i1) = Fa iff there exists j > i such that M, (&, ) | «;
e M, (§,i) = Pa iff there exists j < i such that M, (£, 7) E o

e M, (&,1) E (F)a iff M, (€,i) = o, where M' = (A, 0[1 := o]) for some substi-
tution o € § and M’ is compatible with «.

A formula « is satisfiable iff there exists a model M compatible with «, an M-run
¢, and an instant 4 in € such that M, (£,4) = «. A formula « is valid iff M, (§,1) E «
for all models M compatible with «, all M-runs £, and all instants 7 in &.

Note that a formula « is valid iff -« is not satisfiable.

The interesting validities involve interaction of the quantifiers and modalities.
Note that (Vi)Ga = G(Vi)a and (31)Fa = F(31)a are validities. Similarly for the past
modalities. On the other hand note that (3:)Ga D G(3:)a and F(Vi)a O (Vi)Fa
are validities, but the implications do not hold the other way. A similar statement
can be made about the past modalities. This behaviour is typical of the interaction

of the quantifiers and the modalities.
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Note that even though the logic has both quantifiers and modalities, the seman-
tics is more restricted than that of first-order modal logic. The typical feature of
first-order modal logic is that the possible worlds are different first-order structures
(even under the so-called constant-domain semantics, the different worlds only share
the domain while the interpretations of the relations and constants usually vary).
In our framework, a single structure remains constant across many worlds. In this
respect, the logic presented here can be thought of as a kind of quantified proposi-
tional logic with modalities. The quantification over substitutions can be considered
as a special form of quantification over propositions.

For a structure A = (Pr, 8) and a formula «, we say that A = a iff M, (£,0) = «
for all A-assignments 6 such that M = (A, #) is compatible with a, and all A-runs .
Suppose « is a formula, A is a structure, and M = (A, ) and M' = (A, ¢') are two
models compatible with « such that for all . € FSN (), 0, = 6,. Then M, (£,7) = «
ifft M, (£,4) = « for all M-runs £ and all instants ¢ in €. Tt follows from this that
given a structure A and a formula «, to check whether A |= «, it suffices to consider
A-assignments restricted to FSN(a).

We now define several notions of validity with respect to a fixed protocol Pr.

We say that Pr = « iff (Pr,8p,) = «, where 8p, is the set of all substitutions o
suitable for Pr.

We say that Pr =, a iff (Pr,Sp,u:) E «, where Sp, ., is the set of all well-typed
substitutions o suitable for Pr.

For a fixed set T C Ty, we say that Pr =7 « iff (Pr,8p, 1) E a, where 8p, 1 is
the set of all T-substitutions suitable for Pr.

We say that Pr =T, « iff (Pr,8p,uwi7) E «, where 8p, .7 is the set of all well-
typed T-substitutions suitable for Pr.

A feature of the semantics that needs a little discussion is that the satisfaction
relation M, (&,7) = « is defined only if M is compatible with a.. Recall that the core
logic that we presented in Section 6.1 works with formulas of the form A has m,
where m € 7y. The logic we are working with is supposed to be an abstraction of the
core logic. Consider a formula of the form ¢- A has //-m. If we interpret this formula
on some model (A, #) such that 6, (m) & Ty, then we would be indirectly referring to
a nonatomic term ¢ using our formula. The definition of M being compatible with
a disallows such an indirect reference to nonatomic terms.

Note that the logic has both quantification over substitution names and equality.
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As the examples in the next section show, a combination of these two features of the
logic is crucially used in specifying properties of and reasoning about protocols. The
logic would not be as effective even if one of the two features were not present. In the
absence of the equality operator, there would be no means of relating substitution
names with one another. In the absence of quantification, the logic would not have
the ability to refer to all the substitutions of the model (there might possibly be
infinitely many of them). For instance, a typical authentication requirement would
be that for any instantiation of a responder role occurring in a run with A as the
purported initiator and B as the responder, there is an instantiation of the initiator
role in the same run with A as the initiator and B as the intended responder. Note
the crucial use of the of quantifiers (for every responder role, there is an initiator role)
and of equality (which constrain the initiator role to correspond to the responder

role).

6.3 Examples

Let us look at some examples which illustrate the use of the logic. Without loss
of generality we assume that for all models M = (A, §) compatible with a formula «,
0,(I) =1 for all -1 € ST(«). This means that we can use the name I in formulas

without prefixing it with any substitution name.

6.3.1 The Needham-Schroeder protocol

We look at the Needham-Schroeder protocol in detail now, stating several of its
properties in our logic, demonstrating that some of them are true in all runs of the
protocol, and also showing that some crucial properties fail.

The protocol is given by (C,d) where C = () and § is the following sequence of

communications.

1. A - B (37) {ij}pubklg

2. B — A (y) {may}pUbkA
3. A > B : 1Y} pubk

There are two roles in this protocol. The initiator role n; is given below:
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1. A ! B : (’l“) {A,ﬂ?}puka
2. A ? B : {z, v} pusk,
3. A ! B : {y}puka

The responder role 1, is given below:

1. B 7 A : {A,m}puka
2. B ! A ¢ (y) {2 y}pum,
3. B 7?7 A : {y}pubk,;

We will use the notation a; to denote n;(i) and b; to denote 7s(i), for 1 < i < 3.
The following is an immediate and trivial validity for this protocol, which just

says that any event in a run is preceded by its local past.

VoG A ((trai D P(e-ai1)) A (b D P(e-bi1)))]-

i=2,3

Example specifications

One of the most immediate properties that we desire of this protocol is that of
secrecy. There are two desirable secrecy requirements in this case. Secrecy for the
initiator says that all fresh nonces that are instantiated for  and not intended for

the intruder are not leaked to the intruder. It is expressed by the following formula:
SECTECY jit o (Ve)G[(¢t-ar AN =(t-B =1)) D G-I has ¢-x].

Secrecy for the responder says that all fresh nonces that are instantiated for y
and are not intended for the intruder are not leaked to the intruder. It is expressed

by the following formula:
SECTECY pesp = (Ve)G[(¢t-bg A =(t-A=1T)) D G-I has ¢-yl.

Authentication for the initiator says that for every play of the initiator role (with
an apparently honest responder) in a run of the protocol, there is a corresponding
play of the responder role in that run.

authiy < (Vo)G[(t-aa AN =(e-B=1)) D () r-a=12x N ry=1-y A

A=A N 1-B=1/-B AN P(/-by)]].

Authentication for the responder says that for every play of the responder role
(with an apparently honest initiator) in a run of the protocol, there is a correspond-

ing play of the initiator role in that run.
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auth ey o (V)G[(t-bs A=(t-A=1)) D 3 )Nz =tz N vy=1-yA

v A=1V"A N 1-B=1V-B AN P(/-a3)]].

The notable feature of the formulas is that they are quite simple and intuitive

to write, not requiring us to name any actual terms that are substituted.

Lowe’s attack

Of the above properties, secrecy for the responder is not guaranteed by the
protocol, i.e., Prys # secrecy,,,,. This can be evidenced by the following run §. In
the following, oy is a substitution such that o1(A) = A, 01(B) = I, o1(x) = m, and
01(y) = n; and o9 is a substitution such that oy(A) = A, 09(B) = B, o9(z) = m,

and o3(y) = n.
(m,o0,1) A VT2 (m) {Am}bpu,
(m2,00,1) B 7 A {A, M} pusk,
(m2,00,2) B ! A (n)  {m,n}pusk,
(m,01,2) A 7 1T {m, n}puse
(m,01,3) A U1 {n}pusk,
(2,02,3) B 7 A {n}puvk

Suppose A = (Pr,8p,) and 6 is an A-assignment such that §, = o5. Suppose
M = (A,0). Then it is clear that M, (£,3) = by A =(¢.-A = I). But on the other
hand it can be easily seen that M, (£,5) = I has ¢-y. This is easy to see since n € 37,
where s is the information state at the end of the first five events of £&. From these
two facts it follows that M, (£,0) [~ secrecy,,,, and hence that Prys [~ secrecy,,, as
well. In fact, this also shows that Prys [~u; secrecy,,,,. This is the famous Lowe’s
attack on the Needham-Schroeder protocol.

The above attack also shows that Prys [Eu auth,es,. It is clear that M, (£,6) =
t-bg A =(1-A = I). But it is also true that M, (£,0) = (V/')G[/"-a3 D '-B # 1-B].
This shows that M, (£, 0) # auth,.s and hence that Prys Eur authesy.

Secrecy for the initiator

Even though Prys £ SECTECY psp, 16 can be argued that Prys FEuw secrecy. -
The reasoning is as follows: We assume that Prys . secrecy,,; and arrive at a

contradiction. The assumption means that M, (£,0) ¥ secrecy,,; for some M =
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((Pr, 8prys,wt), #) compatible with secrecy,,;,, and some well-typed run & = ey - - - ¢,

of Prys. Let s; denote infstate(ey - - - e;) for i < k. Also let e; = ((;, 03, Ip;), for i < k.

1. We are given that M, (§,0) ¥ secrecy,,;. This means that there exist i > 0
and ¢ € A8 such that M, (§,7) = t-a1A=(1-B = I) and M, (£,4) = F(I has i-x).

2. Since M, (§,1) [ t-ay, it follows that (;(Ip;) = a1 and o;(a;) = 6,(ay).

3. Since z € NT(n:(1)), it is clear that 6,(z) € NT'(e;), and hence it follows from
the unique origination property of runs that M, (£,4") = —(I has ¢-x) for all

i" <'i. Since only {0,(A),0,() }pusk,, 5, is added to the intruder’s state by e;,
and since 0,(B) # I, it follows that M, (§,4) = —(I has ¢-z) as well.

4. Since M, (&,i) = F(I has ¢-z), there is a least j > i such that M, (&,5) E
I has t-x. Clearly j > i and M, (§,7') E —(I has ¢-x) for all j' < j.

5. Since there is a change in the intruder’s state at the jth instant, it must be
the case that e; is a send event. A further perusal of the protocol specification

tells us that e; can only take one of the following forms:

(a) (m,o0,1) with o(z) = 0,(x) and o(B) = I.
This means that 6,(x) € NT(e;) but that cannot happen because of the
property of unique origination. Hence this case cannot arise at all.

(b) (m,0,3) with o(y) = 6,(x) and o(B) = I.
In this case it is clear that there exists ¢ < j such that e, = (m,0,2).
Suppose o(z) = n and o(y) = m. Then term(e;) = {n, m}pUbka(A)' Since
e; is a receive event, {n, m}pubkaw € (s¢_1);. Tt should be noted that
m € NT(e;) and term(e;) = {6.(A), m}pubk,, . and therefore by the
unique origination property of &, it is not possible that there is a send
event e with term(e) = {n,m}yum, ,, (since m € NT'(e) would hold in

that case). Thus {n, m},u_,, & analz((s;—1)r), in particular. But this

o (A)
term belongs to (s, 1);, and hence it follows that m € (s, 1);. But then
M, (&, ¢~ 1) = 1 has v-x. Since ¢ — 1 < j, this is a contradiction to
the fact that j is the least instant in & such that M, (&, j) = I has v-x.

Therefore this case is also not possible.

(¢) (m2,0,2) with (o(y) =0,(z) or o(x) = 6,(x)) and o(A) = I.
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If o(y) = 6,(x) then it means that 6,(x) € NT (e;) but that cannot happen
because of the property of unique origination. Hence it has to be the case
that o(z) = 0,(z).

In this case it is clear that there exists ¢ < j such that e, = (12,0, 1).
Suppose o(x) = m. Then term(e;) = {I.m}pupk, - Since e is a re-
ceive event, {1, m}pubka(ﬂ) € (sg_1);- It should be noted that m € NT'(e;)
and term(e;) = {0,(A),m}pubk,, ,, With 0,(A) € Ho, and therefore by
the unique origination property of &, it is not possible that there is
a send event e with term(e) = {I,m}pubka(m. Thus {I,m}pubka(m ¢
analz((sg_1)7), in particular. But this term belongs to (s, 1);, and hence
it follows that m € (s;_1);. But then M, (£,¢ — 1) = I has ¢-x. Since
¢ —1 < j, this is a contradiction to the fact that j is the least instant in

¢ such that M, (§,7) = I has ¢-x. Therefore this case is also not possible.

This concludes the proof that Prys ., secrecy;,.;.

Secrecy for the responder

Even though Prys % secrecy,,,, it can be shown that the following slightly

weaker guarantee holds for the responder:

SECTECY o = V)V ) =(ey=1y AN V-B=T AN F(/a1)) D

G[(t-bo AN=(1-A=1)) D G—I has t-y]].

The proof is as before. We assume that Prys 7. secrecy,,,, and arrive at a
contradiction. The assumption means that M, (§,0) & secrecy,,,, for some M =
((Pr, 8prys,wi); #) compatible with secrecy;,,, and some well-typed run § = e; - - - ey
of Prys. Let s; denote infstate(e; - - - e;) for i < k. Also let e; = ((;, 03, Ip;), for i < k.

Reasoning along the lines of items 1 to 4 in the previous proof, we can show that
there exists + € AS such that M, (£,0) = (V')=(-y =1y A /'-B=1 N F(/'-a1)),
i > 0 such that M, (£,7) = v-ba A=(1-A = 1) and M, (&,7) = F(I has v-y), and j > i
such that M, (¢, j) =1 has t-y and M, (£, ") = —(1 has ¢-y) for all j' < j.

Reasoning along the lines of item 5, we see that e; can only be one of the following

forms:
(a) (m1,0,1) with o(x) = 0,(y) and o(B) = I.

It can be shown that this case cannot arise, reasoning along the lines of

item 5(a) of the previous proof.
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(b) (m,o,3) with o(y) = 6,(y) and o(B) = I.

In this case it is clear that there exists £ < j such that e, = (m1,0,1). Thus
M, (&,0) = 3 )e-y=1y N t-B=1 N F(/-a7)), which is a contradiction
to our assumption. Therefore this case cannot arise. Note that this case is
actually the problem with Lowe’s attack. If it is possible for honest agents to
initiate sessions with the intruder (this is not an improbable situation), then
Lowe’s attack exists. If we rule out this possibility (which is what the extra

assumptions in secrecy,, . do), then Lowe’s attack does not exist any more.

(c) (m2,0,2) with (o(y) =0,(y) or o(z) =0,(y)) and o(A) = I.

It can be shown that this case cannot arise as well, reasoning along the lines

of item 5(c) of the previous proof.

Authentication for the initiator

We now show that Prys =y authiy;. Consider some well-typed run £ =e; - - - e,
of Prys. Let s; denote infstate(ey - - - €;), for i < k. Also let e; = ((;, 0y, Ip;) for i < k.
Consider a model M = ((Prns, Spry.ut), ) compatible with auth;,;;. We prove below
that M, (£,0) = authini.

1. Suppose now that there exists + € A8 and i > 0 such that M, (£,7) = t-as A
—(t-B=1).

2. It easily follows that there exists an i’ < i such that M, (£,7") = ¢-ay. Using the

fact that Prys =y secrecy,,,;, we can conclude that M, (€,4') = G—(I has ¢-x).

3. Since © € NT'(n,(1)), it follows from the unique origination property of runs
that M, (¢,7") = —(I has ¢-z) for all i" < . Thus we can conclude that
M, (£,0) = G (I has 1-z).

4. Let 0,(A) = C, 0,(x) = m and 0,(y) = n. Then term(e;) = {m,n}puk,,-
Clearly {m,n}pur, € (si1);. But since m ¢ (s;_1)s, it has to be the case
that there is some send event e; (j < i) with term(e;) = term(e;). But then
e; is of the form (1, 0,2) with o(A) = 6,(4), o(z) = 6,(x) and o(y) = 6,(y).
Our proof would be complete if we showed that o(B) = 6,(B). Suppose
o(B) = D. Tt is clear that there exists ¢ < j such that e, = (19,0,1).

Here again term(e;) = {C,m}yupr,. This term belongs to (s, 1), but since
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m & (se_1)7 it follows that there is a send event ey with term(ep) = term(ey).
Then it would be the case that m € NT(ey), and by the unique origination
property of &, it follows that ¢/ = ¢'. From this it follows that o(B) = 6,(B),

and we are through.

6.3.2 The Needham-Schroeder-Lowe protocol

This is a slight modification of the Needham-Schroeder protocol, with a correc-
tion proposed by Gavin Lowe. The change in this protocol is that the responder’s
identity is included in the message sent by the responder.

The protocol is given by Prysg = (C,0) where C = ) and ¢ is the following

sequence of communications.

1. A - B (’I‘) {A,ﬂ?}puka

2. B — A (U) {B;xay}PUbkA
3. A - B : {y}pubk,;

There are two roles in this protocol. The initiator role n, is given below:

1. A ! B : (.’E) {A;-’E}pubklg
2. A 7?7 B : {Bamay}pubkA
3. A B : {y}pubk,;

The responder role 1y is given below:

1. B 7 A : {Aam}puka
2. B VA (y) {B,z,y}pubk,

As before, we will use the notation a; to denote (i) and b; to denote 1,(i), for
1< <3,

Secrecy for the initiator and responder, and authentication for the initiator and
responder, are given by the four formulas secrecy,,;,, secrecy,,g,, authin;; and auth .,
respectively. These formulas have the same definitions as earlier, except for the
change in the actions ay and by. It can be seen that the attack which leads to the
violation of secrecy,,, and auth .y, does not work anymore, with the addition of the
responder’s name in the action by, but we have to still prove that no other attacks

are possible.
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One can prove that Prys. =y secrecy;,; and Prysi Fu authi,; in exactly the
same manner as before. The nice thing is that Prys. = secrecy,,,, also holds now.
The proof is exactly along the lines of the proof of secrecy for the initiator in the

Needham-Schroeder protocol.

Authentication for responder

We now show that Prys; =y auth,.s, as well. Consider some well-typed run & =
e - ey of Prysi. Let s; denote infstate(e; - - -e;), for i < k. Also let e; = ((;, 03, Ip;)
for i < k. Consider a model M = ((Prysi, Spryq, uwt), #) compatible with auth,.s,. We
prove below that M, (£,0) = auth,g,.

1. Suppose now that there exists ¢ € A8 and i > 0 such that M, (§,7) | ¢-b3 A
(A =1).

2. Tt easily follows that there exists an ¢’ < i such that M, (£, ") = ¢-by. Using the
fact that Prys =u; secrecy,,,, we can conclude that M, (€,4') = G= (1 has 1-y).

3. Since y € NT(12(2)), it follows from the unique origination property of runs
that M, (&,7") | —(I has ¢-y) for all 7 < ¢'. Thus we can conclude that
M, (€,0) = G(T has 1-9)

4. Arguing in the lines of item 4 of the proof of authentication for the initiator
in the Needham-Schroeder protocol, we can show that there exists some j' < i
and ' € A8 such that M, (&,5") = /a3 AN/ B = 1-B Ay = 1-y. It follows
immediately from this that there exists j < j' such that M, (§,7) E ¢/ a3. Now
we note that §,(B) # I, since act(e;) € Acy,(p), and by definition 6,(B) € Ho.
Thus M, (£,7) E —(:-B = I). Now we use the fact that Prys. FEup authpg.
Thus there exists / € AS such that M, (£,5) = /A =/-A N /B =
B AN =" Ny = 0"y A P("by). Let £ < j be such that
M, (&, 0) = i"-by. Ttis clear that 6,(y) € NT(e;). But recall that e; = (1,6, 2)
and thus 0,(y) € NT(e;) as well. By the unique origination of &, it follows
that ¢ = ¢/, and thus it also follows that 6, = 6. This proves the desired

result.
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6.4 Decidability

In this section we study the verification problem of the logic in different settings
and see that all the undecidability results and some of the decidability results which
we saw in the earlier chapters go through for the logic as well.

The undecidability results are easy to show, since the reachability property (de-
fined at the end of Chapter 3) can be trivially expressed in our logic. Suppose we

are given a protocol Pr = (C,R), and an action a. Consider the following formula:

O reach df =(3)F(r-a).

Then it is clear that Pr E,; Queaen iff Pr and a form a positive instance of the
reachability problem for well-typed runs. From this it follows that the problem of
checking whether Pr =, « is undecidable. Reasoning on exactly the same lines, we
can conclude that the problem of checking whether Pr =" « is undecidable, even
for finite T' (of some reasonable size — the proof in Section 3.2 requires 7" to be of

size at least 6). We summarize the results in the following theorem.

Theorem 6.4.1 The problem of checking whether Pr =, a given a protocol Pr and
a formula « is undecidable.
For a fized T C Ty (which might even be finite), the problem of checking whether

Pr ="« given a protocol Pr and a formula o is undecidable.

We now prove that the reduction to well-typed runs described in Section 5.1
extends to our logic as well. In the proof we crucially use the following fact proved
in Section 5.1, in the proof of Lemma 5.1.9: if £ = ¢e; - - - ¢4 is a run of a weakly-tagged
protocol, then for all i < k, m N7y = @ N To (where s; = infstate(e; - - - €;)
and s} = infstate((e1)n, - (€i)ny)). We claim that it can be proved along the same
lines that mﬁ To = mﬂ To for all A € Ag, provided that ng is added to all the
agents’ initial states. We therefore make the assumption that for all protocols Pr

and for all A € Ag, ng € (init(Pr))a.

Lemma 6.4.2 For any fired T C Ty such that ng € T, for any weakly tagged protocol
Pr= (C,8) such that C C T, and for any formula o € ®, Pr =7 a iff Pr EL «.

Proof: Fixaset T C Ty such that ng € T. Fix a weakly tagged protocol Pr = (C, §)
such that C C T, and fix a formula ay. Fix a T-run £ = e;---¢; of Pr with e; =

(i, 04, Ip;) for all i : 1 < i < k. Let s; = infstate(ey - - - ¢;), for i < k. It is clear that
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o = (€1)ng *+* (€x)n, 18 a well-typed T-run. Let us denote infstate((€1)n, - (€i)ny)
by (8i)n,, for all i < k. Let A = (Pr,8p, 1) and A, = (Pr,8prwir). (Note that we
work with only well-typed substitutions in A,;.) For every A-assignment 6, let 0,
be a map such that 6,,(:) = (0(:))a, for all © € AS8. Since 0,,(¢) is a well-typed
substitution for all + € AS, it is clear that 6,, is anA,;-assignment. It is also clear
that a model M = (A, ) is compatible with a formula « iff M,, = (A, bOn,) 18
compatible with a. Throughout the proof we will also use the fact that any model
compatible with « is also compatible with any subformula of a.

We now prove by induction that for all subformulas « of «g, and for all A-
assignments 6 such that M = (A, ) is compatible with «, for all A-runs &, and for
all instants 7 in & M, (£,4) = a iff Mo, (&, %) = .

e Suppose « is of the form ¢-A has //-m. Suppose 0(') = o. Then 6,,(') =
Ono- Since M is compatible with «y, and since v-m € ST («y), it follows that

type(o(m)) = type(m). Hence it follows that o(m) = o,,(m) € Ty. Finally

note that (s;)a N7y = ((Si)ny)a N To (as explained in the discussion preceding

this lemma).

Now M, (£,i) E a iff a(m) € (s;)a N To iff on(m) € ((8i)ng)a N To iff
Moy, (&n- 1) =

e Suppose « is of the form +-a. Suppose (1) = 0. Then 6,,(1) = on,. Since
M is compatible with ag and since {v-m | m € ST(a) N Ty} C ST (), it
follows that type(o(m)) = type(m) for all m € ST (a) N Ty. Hence it follows
that o(a) = on,(a). It also follows that for all j <k, o;(a) = (0})n,(a).

Now M, (§,1) = a iff n;(lp;,) = a and o;(a) = o(a) iff on,(a) = (04)n,(a) and
ni(lp;) = a iff Moy, (&no, 1) E .

e Suppose « is of the form ¢z = /'-2'. Suppose (1) = o and 0(:') = ¢'. Then
Ono(t) = 0ny and By, (v') = o] . Also note that type(o(z)) = type(z) and

n

type(o'(2')) = type(a'). Therefore o, (7) = o(z) and o] (2') = o' (2').

Now M, (£,1) =g aiff o(z) = o' (2') iff 04, () = o] (2") iff My, (&ny, %) = .

no

e Suppose « is of the form —5. Now M, (£, i) = a/iff (by semantics) M, (€,4) = B
iff (by induction hypothesis) M,,, (&n,,7) = 5 iff (by semantics) M, (&g, 1)

Q.
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e Suppose « is of the form §V . Now by semantics M, (§,1) = « iff M, (£,4) E
g or M, (£,7) = 7. By induction hypothesis, this happens exactly when
Mg, (€ngs 1) = B or My, (&g, 7) = 7. But by semantics this happens exactly
when M, (&n,,7) = .

e Suppose « is of the form Ff.

If M, (£,7) = a then (by semantics) there exists j > i such that M, (&, j) &=
f. This implies (by induction hypothesis) that M,,, (&y,,7) = 8. But now

(by semantics) My, (&ny,7) = . In a similar manner we can prove that if

Moo, (§ng5 1) E « then M, (€,4) = a.

e Suppose « is of the form P/.

If M, (£,7) = « then (by semantics) there exists j < i such that M, (§,J)
f. This implies (by induction hypothesis) that M,,, (&y,,7) E 5. But now

(by semantics) My, (&ng,7) = . In a similar manner we can prove that if

Mg, (€ngs 1) = o then M, (€,1) | a.

e Suppose « is of the form (3:)5.

If M, (&,7) = « then (by semantics) there exists o € Sp,r such that M’ =
(A,0]r := o]) is compatible with 8 and M, (£,7) = F. This implies (by
induction hypothesis) that M| , (&n,.7) = 8. But now it is clear that o,, €

Spr,uwy,r and thus (by semantics and the fact that M; = (A, On,[t := 00n,))) it
follows that M., (&n,, 1) =

If May, (€n,7) = « then (by semantics) there exists o € Spy 4 such that
M’ = (A, 01 := o]) is compatible with 8 and M", (&,,,7) &= . But 6, for
all ©+ € AS and o are well-typed substitutions, which implies that 6 = 6,
o- Thus, letting M' = (A,0[1 := o]), we see that M" = M .
Thus we have that M, , (&,,7) = B. By induction hypothesis it follows that
M, (&,1) = 8. Thus by semantics it follows that M, (&,7) = .

and 0 = o,

T

T« for some formula o. We claim that Pr =7 « as well.

Suppose now that Pr |=
Let A = (Pr,Sp,r) and let £ be an A-run. Consider any A-assignment 6 and let
M = (A, 6) be compatible with a. By what has been proved above M, (£,0) E «
iff Mo, (£ng,0) = a. Since Pr EL, a, M, (€n,,0) | . Therefore M, (£,0) = « as

well. Since ¢ is an arbitrary A-run and f is an arbitrary A-assignment, this proves

that Pr =7 «.
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Suppose now that Pr =" a for some formula a. We claim that Pr =7, «a as
well. Let A" = (Pr, 8p .y r)and let & be an A'-run. Of course A’ = A,; where
A = (Pr,8p,r). Further & = &,,. Let 6 be a A'-assignment and let M' = (A’, )
be compatible with . Again it is obvious that # = 6,, and thus M’ = M,, where
M = (A,#0). By what has been proved above M, (£,0) = a iff My, (&,,0) = a.
Since Pr ET «a, M, (£,0) | . Therefore it follows that M,,, (£,0) = « as well.
Since £ is an arbitrary A’-run and # is an arbitrary A’-assignment, this proves that
PrEl a.

This completes the proof of the lemma. O

The above lemma shows that once we fix a T" C T, it suffices to consider well-
typed T runs of any given protocol. Of course, if we fix a finite T" C T, then for
any protocol Pr, there are only finite many well-typed T-events. But there might
still be infinitely many well-typed T-runs of Pr, since the same event may repeat
many times in a run. To get decidability in such a setting, we show that for every
protocol Pr and formula «, there is a finite-state automaton %, , with alphabet
Events(Pr) such that £ € £ (%, o) iff there is some (Pr, 8p, 1 1)-assignment 6 such
that M = ((Pr, Spr.ut.1), 0) is compatible with o and M, (£,0) = .

We now fix a finite set 7' C Ty, a weakly tagged protocol Pr (and therefore the
structure Ag = (Pr, 8p,uir)), and a formula o for the rest of the section, and take
up the construction of the automaton .o, ,,. As observed earlier, given a structure
A and a formula «, to see whether A = a, it suffices to consider A-assignments
restricted to FSN («). In the case of Aj, we need to consider only finitely many such
Ap-assignments (since Sp, ¢ and FSN (o) are finite sets, whose sizes depend only
on the sizes of Pr, oy and T'). For the rest of the section we assume that 6y, ..., 0, is
an enumeration of all the Aj-assignments 6 restricted to FSN («y) such that (A, )
is compatible with ag. We let M; = (Ao, 0;), for all i < r.

Let SF denote SF(ag). We define =SF to be the set {a | ~a € SF}U{-a|a €
SF and « is not of the form —5}. We define CL to be SF U —-SF.

An atom ¥ is any subset of CL which satisfies the following conditions:
e for all ma € CL, —a € Viff a ¢ V;
o forallavpe CL,aVvpeViffae Vorpe Vv,

e for all Fo € CL, if « € ¥ then Fa € V;
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e for all Pa € CL, if « € ¥ then Pa € W.
Given two atoms W, and W,, we say that ¥;— W, iff:
e for all Fa € CL:

— if Fa € ¥, then Fa € ¥y, and

— if Fo € ¥y and o € ¥y then Fa € W,;
e for all Pa € CL:

— if Pa € ¥, then Pa € ¥y, and

— if Pa € ¥y and a ¢ ¥, then Pa € ;.
An atom W, is an initial atom iff:

e for all Pa € CL, if Pa € ¥ then o € ¥, and
e for all formula o € CL of the form v-a, o ¢ .

(The last clause reflects the fact that a formula of the form ¢-a is true only at positive
instants.)

An atom V. is a final atom iff for all Fa € CL, if Fa € ¥ then o € V.

For 4,5 < r and + € FSN(ay), we say that 6; and 6; are :-variants if for all
1 € FSN(ayp) such that / # 2 6;(2') = 0;(1').

A molecule is a tuple of the form (&, ¥y, ---, ¥, ) such that:

e ¢ is a reduced well-typed T-run of Pr;

e for all 7 < r, ¥; is an atom such that for all atomic formulas o € CL of the
form ¢-A has //*m and v-x =1-2"s « € U; it M, (&, |€]) E o

e for all i < r and for all (F0)a € CL, (I1)a € U; iff there exists j < r such that

¢; and 0; are (-variants and o € V.

Note that since there are only finitely many reduced well-typed 7T-runs of Pr,
and since CL is a finite set, there are only finitely many molecules. We denote the
set of molecules by .Z .

Given two molecules x = (&, Wy, -+, ¥,) and x' = (¢, ¥},---,¥"), and an event
e € Events(Pr), we say that y——' iff:
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o &' =red(£-e);
e foralli <r, ¥,—WV;

e for all « < r and all atomic formulas o € CL of the form ¢-a, a € U} iff

M, (€€ |€e]) = a.
A molecule y = (&, ¥y, -+, V,) is said to be an initial molecule iff:
o {=c¢,
e for all 7 < r, ¥, is an initial atom, and
e there exists ¢ < r such that oy € V;.

The set of initial molecules is denoted by .#.
A molecule y = (§, ¥y, -, W¥,) is said to be a final molecule iff for all i < r, W,
is a final atom. The set of final molecules is denoted by .%#.

We are now all set to define the automaton.

Definition 6.4.3 (The automaton %, ,,) The automaton <, o, is given by the
tuple (M ,—, I, F) where:

e ./, the set of molecules, forms the finite set of states of the automaton,

e The relation — defined on molecules forms the transition relation of the

automaton, and

e 7 forms the set of initial states and % forms the set of final states of the

automaton.

An accepting run of the automaton on a sequence & = ey - - - ¢, from (Events(Pr))*

is a sequence of molecules g - - - xx such that:
® Yo is an initial molecule and Yy is a final molecule, and
e foralls:1<i <k, Xz'—]in'-

The language accepted by b, 4,, denoted .Z (e, o,) is the set of & € (Events(Pr))*
such that there is an accepting run of the automaton on &.
The following technical lemma shows the correctness of the automaton construc-

tion and immediately implies Theorem 6.4.5.
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Lemma 6.4.4 For any sequence & € (Events(Pr))*, £ € L (v a,) iff € is an Ay-
run and there exists i < r such that M;, (£,0) = ay.

Proof: Fixa { =ey-- e, € (Fvents(Pr))*. For all j <k, let & denote e; - - -¢;.
(=):

We first prove that if £ is in the language of the automaton then £ is a run of Pr and
for some 7 < r, M;, (£,0) = a. Suppose £ € L (pya,)- This means that there is an

accepting run of the automaton of the form xg - - xx. Let x; = (p;, 1, -+, ¥9), for
all j < k.

Claim: ¢ is an Ag-run.

Proof of Claim: We now prove that for all j <k, p; = red(§;). From this it
would follow that red(£) = pi, and since py is a run, it is easy to see that £ is

a run as well.

Since § = py = ¢, red(&) = po. Suppose p;_; = red;_; for some j: 1 < j < k.
Now &; = &1 - e;. But since Xj,]i»(j, it follows from the definitions that
pj = red(p,_1 - €;). But it is an easy consequence of the definition of red that

red(§ - €) = red(red(€) - €), and from this it follows that red(£;) = p;. This

completes the induction step and the proof of the claim as well.

Claim: M;, (£,0) = ap for some i < r.

Proof of Claim: We now prove that for all 7 < k, all @« € CL and all 7 < r,
€ \IIZ iff M;, (€, 7) E a. Since Y is an initial molecule, by definition ag € U9
for some i < r, and it immediately follows that M;, (§,0) = ap.

Fix 5 < k and ¢« < r. We prove by induction on the structure of formulas that
o€ U iff My, (€, ) E o

e If o is of the form +-A has /m or 1.z = //-2' then it follows from the
definition of molecules that o € W/ iff My, (p;,|p;]) = a. But since p; =
red(§;), it follows that infstate(§;) = infstate(p;). It now immediately
follows that a € W/ iff My, (€, §) = a.

e Suppose « is of the form ¢-a. If 7 = 0 then it follows from the semantics
that M;, (§,7) £ «, and it follows from the definition of initial atoms
that a ¢ \Ilf If 7 > 1, then it follows from qui)Xj that a € \Ilf iff

M, (pj—1-€j, |pj—1 - €j]) = a. But the semantics of a formula of this kind
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(=)

depends only on the last event e; and not on the other events in p;. It

thus immediately follows that a € U/ iff M;, (€, §) = a.

The boolean cases are handled by a routine application of the induction

hypothesis, using the fact that atoms are propositionally consistent.

Suppose «a is of the form F3. We prove by induction on k£— 75 that if a € \1177
then M;, (€,7) = a. Suppose a = F3 € WX, Then by definition of final
atom, B € ¥, By induction hypothesis (on the formulas) M;, (€, k) = 3,
and hence M;, (£,k) = a. Suppose j < k and a € \IJZ If 5 € \IJZ,
then by induction hypothesis (on the formulas) M;, (£,7) = (8 and hence
M, (&)) Ea. It g \IIZ, then since \IJ'Z?—HII'ZH, it follows that o € \IJ'ZH].
By induction hypothesis (on k& — j), it follows that M;, (£, +1) = «, and
hence M;, (£,7) E a as well.

We now prove by induction on k — j that if M;, (€, j) = a then o € W/,
If My, (&, k) = a, then by semantics M;, (§,k) = B as well. Therefore
by induction hypothesis (on formulas), it follows that § € \Ilf, and by
definition of atoms it follows that o € W¥ as well. Suppose j < k and
M, (&, §) = a. IEM;, (€,5) = B then 8 € ¥/ (by induction hypothesis on
formulas). It follows from the definition of atoms that o € U7 as well. If
M;, (&, 7) # B then M;, (&,7+ 1) E « and hence by induction hypothesis
onk—j,a € W Since W —W/T it follows from the definitions that

a € \IIZ as well.
The case when « is of the form Pf is handled similarly as above.

Suppose a is of the form (3:)3. Then a € W/ iff (by definition of
molecules) there is i < r such that §; and 6; are (-variants and 5 € \IIZ, iff

(by induction hypothesis) there is i < r such that 6; and 6, are (-variants
and My, (&, 7) = B iff (by semantics) M;, (£,7) | a.

We now prove that if € is an Ag-run and M;, (£,0) = «p for some i < r, then
€€ L(Aprg,). Foralli <randj <k, let ¥/ ={a e CL| M, (£j) | a}. For
all j <k, let p; = red(&;). Let x; = (p;, ¥4, -+, ). We claim that xq---xj is an

accepting run of .@%, ,, on the sequence .

It is straightforward to check that for all « < r and j < k, \IJZ is an atom. Further

from the fact that £ is a run, p; is a reduced run for all j < k. It now follows by
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the semantics that x; is a molecule for all j < k. From the semantics it also follows
that qui))(j forall j : 1 < j <k, and it also follows that yg is an initial molecule
and yj is a final molecule. Thus xq- - xx is an accepting run of the automaton on

€. Therefore £ € L (p, a,)-

This completes the proof of the lemma. O

Thus we see that checking whether Pr =L, ag reduces to checking whether
L ( oy —a,) 1s empty. Since the emptiness problem for finite state automata is
decidable, it follows that checking whether Pr =!I, « is decidable. This coupled
with Lemma 6.4.2 yields the following theorem, the main technical result of this

chapter.

Theorem 6.4.5 For a fived finite T C Ty, the problem of checking whether Pr =7 «

given a weakly tagged protocol and a formula o is decidable.



Chapter 7

Conclusions

We summarise the work done in the thesis below:

e We introduced a model for security protocols in Chapter 2, where we high-
lighted the role of properties like send admissibility in analysis of protocols. We
also introduced the important notions of well-formed protocols and tagged pro-
tocols, and proved some important consequences of our tagging scheme. We

also looked at important properties of the synth and analz operators.

e We gave proofs of the undecidability of the secrecy problem, both under the
setting of unboundedly many nonces but bounded message length, and bound-
edly many nonces but unbounded message length, in Chapter 3. We provided

simple and uniform proofs for both the resuts.

e In Chapter 4, we proved that the secrecy problem for tagged protocols is
decidable, when we consider only well-typed runs. We also saw a decision
procedure for solving the problem with a double exponential upper bound (in

terms of the number of communications in the protocol specification).

e In Chapter 5, we proved that for weakly tagged protocols, presence of a leaky
run implies the presence of a well-typed leaky run. We derived the fact that
the general secrecy problem for tagged protocols is decidable as a consequence
of the above result. We also looked at a semantic approach to decidability

based on an equivalence relation on terms.

130
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e In Chapter 6, we introduced a logic using which we could express many in-
teresting security properties. We saw many examples of reasoning using the

logic. We then extended some of the results of Chapter 5 to the logic.

Future directions

The most immediate improvement over the work in this thesis involves extending
the decidability result in Chapter 4 to cover other notions of secrecy and authentica-
tion. We feel that obtaining a decidable logic in the presence of unbounded nonces
will be a significant result and that it will provide significant insight into the nature
of the problem itself. We believe that such a result is eminently possible, if the logic
itself does not force undecidability. This is because the undecidability results have
to do with the inherent power of protocols to code up computations and do not
have much to do with the properties we are checking for. Since the well-formedness
conditions and other restrictions on tagged protocols restrict the intruder’s power
to code up such computations, we believe that the decidability result will extend to
the logic. But more insight needs to be developed before we can tackle the problem
formally.

Another important direction of work is to convert the decision procedure of
Chapter 4 into a practical verification algorithm which is efficient in practice. It is
possible that some notions introduced in Chapter 6 like abstract substitution names
might be of help in this endeavour.

Much more work needs to be done on formal reasoning about protocols. The
examples which we presented in Chapter 6 involved semantic reasoning. In future
work, we aim to formalise this process by introducing axioms and (probably protocol-
specific) rules using which we can carry out the reasoning in the logic. There are
further interseting technical questions like formally characterising classes of protocols
in the logic, various axiomatisability questions, decidability of satisfiability etc.

An important extension would involve extending some of the features of our
basic model. The most important of these is to consider constructed keys. In the
presence of constructed keys, synth(analz(7T")) no longer represents the closure of
the set of terms 7. For instance, letting T = {{m}n},.n, k}, m does not belong
to synth(analz(7")) but (once we set up the synth and analz-rules for constructed

keys properly) it can be seen that {n}, belongs to synth(7") and that m belongs to
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analz(synth(7)). The usual style in such a setting is to use a combined proof system
which incorporate both synthesis and analysis rules. Several of our proofs have to be
modified considerably in this new setting. We believe that the results of Chapter 5
can be easily extended in this new setting as well. But the reduction to good runs
has to be reworked to an extent. The key to proving these results would be to derive
some normal forms for these new proofs.

We hope that the ideas and results presented in this thesis will form a basis
for further improvements and eventually find their use in practical verification of

security protocols.
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