
Dolev-Yao theory with associative blindpair operators

A Baskar
1
, R Ramanujam

2
, and S P Suresh

3 †

1
BITS Pilani K K Birla Goa Campus

2
Institute of Mathematical Sciences, Chennai

3
CMI and CNRS UMI 2000 ReLaX

Abstract. In the context of modeling cryptographic tools like blind signatures and

homomorphic encryption, the Dolev-Yao model is typically extended with an oper-

ator over which encryption is distributive. The intruder deduction problem has a non-

elementary upper bound when the extended operator is an abelian group operator.

Herewe show that the intruder deduction problem isDEXPTIME-completewhenwe

restrict the operator to satisfy only the associative property. We propose an automata-

based analysis for the upper bound and use the reachability problem for alternating

pushdown systems to show the lower bound.

1 Introduction

In the use of logic as a tool for analyzing security of communication protocols, cryptography

is abstracted using a term algebra. In these Dolev-Yao style models [11] for cryptographic pro-

tocols we use a term algebra containing operations like pairing, encryption, signatures, hash

functions, and nonces to build terms that are sent as messages in the protocol. The adversary

against a protocol is modeled as a powerful intruder who can control the entire network, and

can encrypt and decrypt at will; however, the cryptographic means used are assumed to be

perfect. Therefore, while the intruder may not have access to actual private keys possessed by

the “honest” participants, he has access to the structural patterns of terms thatmay be derived

from the ones sent by the participants. Since these models are used for algorithmic analysis,

the following intruder deduction problem is of basic interest: given a finite set of termsX and

a term t, is there a way for the intruder to derive t fromX?

In the basic Dolev-Yao model, the main operators are pairing and encryption, but these

two do not interact with each other, in the sense that the encryption of a paired term is no

different from that of any other term. The Dolev-Yao model abstracts away from the details

of the encryption schemes used. However, the scheme used by participants would be known

to the intruder, who can well make use of this information. In Dolev-Yao theory, the terms

{t}k and {t′}k′ are assumed to be distinct, unless t = t′ and k = k′. However, this is in

general not true of cryptographic schemes such as the RSA. The algebraic properties of the
encryption operator may well dictate the use of an equational theory to which the intruder

has access. In such a context, interaction between encryption and other operators may be

important. The reader is referred to the excellent survey [10] for studies of this kind.

One way of studying such interaction is by considering an extension of the Dolev-Yao

term algebra with additional operators that interact in some specific way with encryption.

†

Partially supported by an Infosys Grant

For instance, [12] study an abelian group operator+ such that {t1+ · · ·+ tn}k = {t1}k+
· · ·+{tn}k, i.e. encryption is homomorphic over+. They employ a very involved argument

and prove the intruder deduction problem in the general case to be decidable with a non-

elementary upper bound.They also give adexptime algorithm in the casewhen the operator

is xor, and a ptime algorithm in the so-called binary case.

In this paper, we study an associative blind pair operator + in which encryption is dis-

tributive.This operator satisfies two equations{t+t′}k = {t}k+{t′}k and (t1+t2)+t3 =
t1+(t2+t3).We show the intruder deduction problem for theDolev-Yao term algebra with

this extended operator is decidable in exponential time. The standard strategy consists of two

steps. The first step is to prove the so-called locality property [13, 8, 5], if t is derivable from
X , then there is a special kind of derivation (a normal derivation) π such that every term oc-

curring in π comes from S(X ∪ {t}), where S is a function mapping a finite set of terms

to another finite set of terms. Typically S is the subterm function st, but in many cases it is a

minor variant. The second step is using the locality property to provide a decision procedure

for the intruder deduction problem.

Our system does not have an obvious locality property, so we cannot follow the standard

route to decidability. The first contribution of this paper is to show a way of working around

this difficulty by proving a weak locality property: we define a function S which maps every

finite set of termsX to an infinite set of terms S(X). We then prove all terms occurring in a

normal derivation of t fromX are fromS(X ∪{t}), and the set of terms inS(X ∪{t}) are
derivable fromX is regular. This facilitates an automaton construction and yields a decision

procedure for checkingwhether t is derivable fromX . The second contribution is to settle the

complexity of the intruder deduction problem by proving dexptime-hardness by reduction

from the reachability problem for alternating pushdown systems.

In [1], generic decidability results are given for the intruder deduction problem for con-

vergent subterm theories and locally stable equational theories. Later in [9], similar results

have been attained for monoidal theories. But our system does not belong to any of these

subclasses. In [7], a generic procedure for the intruder deduction problem (deducibility) is

given for arbitrary convergent equational theories. This procedure might not terminate but

whenever it terminates it gives the correct answer. For the blind signature theory, this proce-

dure terminates and it is implemented in polynomial time. But the modeling of blind signa-

tures using the associative blind pair operator is different and hence the results in this paper.

In [2], Dolev-Yao model is extended with an operator which is associative, commutative and

idempotent but this operator doesn’t interact with the encryption operator.

In earlier work in [4], we proposed similar system described in this paper, but we im-

posed a restriction on the blind pair operator: one of the components in the blind pair is

always of the form n or {n}k where n is an atomic term and the only rule that involves dis-

tributing an encryption over a blind pair is the derivation of [{t}k, n] from [t, {n}inv(k)] and
k. This restricted system also satisfies a locality property and using that we get a ptime algo-

rithm. It turns out that the considered restriction well suffices for the use of blind signatures

in applications like voting protocols. In [5], the blind pair operator proposed did not have

associativity property and the intruder deduction problem is DEXPTIME-complete but the

operator might not satisfy associative property. The strategy is used here is similar to [3].

In Section 2, we present the basic definitions related to the Dolev-Yao system with the

blind pair operator which is associative and in which encryption distributes. In Section 3, we

prove a normalization result and a weak subterm property. Section 4 contains details of an

automaton-based dexptime decision procedure for the intruder deduction problem. Sec-

tion 5 contains the dexptime[6] complexity lower bound.

2 The Dolev-Yao framework and the intruder deduction problem

Assume a set of basic terms B, containing the set of keysK. Let inv be a function onK such

that inv(inv(k)) = k. The set of terms T is defined to be:

T ::= m | (t1, t2) | {t}k | t1 + t2 . . .+ tl

wherem ∈ B, k ∈ K, and {t, t1, . . . , tl} ⊆ T .

Definition 1. The set of subterms of t, st(t), is the smallest Y ⊆ T such that

– t ∈ Y ,
– if (t1, t2) ∈ Y , then {t1, t2} ⊆ Y ,
– if t1 + t2 + · · ·+ tl ∈ Y , then {ti + ti+1 . . .+ tj |1 ≤ i ≤ j ≤ l} ⊆ Y , and
– if {t}k ∈ Y , then {t, k} ⊆ Y .

The set of subterms of X , st(X), is
⋃
t∈X st(t) and its size is at most (

∑
t∈X |t|)2.

For simplicity, we assume henceforth that all terms are normal. These are terms which do not

contain a subterm of the form {t1 + t2}k. For a term t, we get its normal form by “pushing

encryptions over blind pairs, all the way inside.” Formally, it is defined as follows:

Definition 2. The normal form of a term t, denoted by t↓, is defined inductively as follows.

– m↓= m form ∈ B
– (t1, t2)↓= (t1↓, t2↓)
– (t1 + t2)↓= t1↓ +t2↓

– {t}k↓=

{
{t1}k↓ +{t2}k↓ if t = t1 + t2, for some t1 and t2
{t↓}k otherwise

The rules for deriving new terms from existing terms are given in Figure 1. The rules on the

left column is referred as synth-rules as the conclusion of the rules contain its premises as sub-

terms. The rules on the right column is referred as analz-rules as the conclusion of the rules

are subterms of the left hand premise.

We like to emphasize that the subtle difference between the analz-rules for the pair oper-
ator (t0, t1) and blind pair operator t0 + t1. If we have (t0, t1) then we can derive t0 using
split0 rule and t1 using split1 rule. But to derive t0 from t0+ t1 using blindsplit1 rule, we also
need t1 (and similarly to derive t1 from t0 + t1 using blindsplit0 rule, we also need t0).

Definition 3. A derivation or a proof π of a term t from a set of terms X is a tree

– whose nodes are labeled by sequents of the form X ` t′ for some t′ ∈ T and connected
by one of the analz-rules or synth-rules in Figure 1,

– whose root is labeled X ` t, and
– whose leaves are labeled by Ax rule in Figure 1.

Ax (t ∈ X)
X ` t

X ` t X ` k
encrypt

X ` {t}k↓

X ` {t}k↓ X ` inv(k)
decrypt

X ` t

X ` t0 X ` t1
pair

X ` (t0, t1)

X ` (t0, t1)
split

i
X ` ti

X ` t0 X ` t1
blindpair

X ` t0 + t1

X ` t0 + t1 X ` ti
blindsplit

i
(i = 0, 1)

X ` t1−i

synth-rules analz-rules

Fig. 1. Deduction System

We useX ` t to denote that there is a proof of t fromX . For a set of termsX , cl(X) = {t |
X ` t} is the closure of X .

Example 1. LetX = {a + b, {b}k, k, inv(k)} and t to be a, then the following derivation
shows thatX ` t.

Ax
X ` a+ b

Ax
X ` k

encrypt
X ` {a}k + {b}k

Ax
X ` {b}k

blindsplit
X ` {a}k

Ax
X ` inv(k)

decrypt
X ` a

Definition 4. The intruder deduction problem is the following: given a finite setX ⊆ T and
t ∈ T , determine whether X ` t.

3 Weak Locality Property

As we have mentioned earlier, our derivation system lacks the locality property but we prove

a weak locality property in this section and use it to solve the intruder deduction problem.

Even if there are derivations ofX ` t with out the weak locality property, there will be one
derivation of X ` t with the weak locality property. Such a derivation will not have a few

patterns (for example split rule will not be applied immediately after a pair rule). If any such

pattern occurs, we argue there is a way to get rid of it without changing the final conclusion

of the derivation. This is achieved by providing a set of transformation rules which dictate

how to replace forbidden derivations by acceptable derivations. We formalize these concepts

below.

Definition 5. A transformation rule is a pair of proofs (π1, π2) such that the roots of π1 and
π2 are the same. Any subproof that matches a pattern of π1 is meant to be replaced by the π2.

A proof π is a normal proof if transformation rules in Figure 2 and Figure 3 cannot be applied
to π. The transformation rules in Figure 2 are from [5] and the transformation rules in Figure
3 are included to handle the associative property of the blind pair operator.

The derivation provided in Example 1 is not a normal proof as we can apply transformation

rule in the last row of Figure 2 (for blindsplit rule which is followed by the decrypt rule).Here

is the result of applying this transformation rule for the proof in Example 1.

Ax
X ` a+ b

Ax
X ` k

encrypt
X ` {a}k + {b}k

Ax
X ` inv(k)

decrypt
X ` a+ b

Ax
X ` {b}k

Ax
X ` inv(k)

decrypt
X ` b

blindsplit
X ` a

The above derivation is still not a normal proof as the second transformation rule in Fig-

ure 2 can be applied. If we apply this transformation rule, we will get the following proof.

Ax
X ` a+ b

Ax
X ` {b}k

Ax
X ` inv(k)

decrypt
X ` b

blindsplit
X ` a

The above proof is a normal proof as no transformation rule can be applied.

Lemma 1. For a given X ∪ {t} ⊆ T , if X ` t, then there is a normal proof for X ` t.

Proof. If a proof forX ` t is not a normal proof, thenwe apply the transform rules in Figure

2 and Figure 3 as long as possible. But it is not clear whether this procedure will terminate and

eventually lead to a normal proof. We define a measure for every proof such that application

of transformation rule reduces the measure of the proof. This will immediately lead to that

the above procedure terminates.

For every proof π, we define a measure, d(π), recursively as follow:

– if the last rule of π is anAx rule, d(π) = 1,
– if π has only one immediate subproof π′ then d(π) = d(π′) + 1,and
– if π has immediate subproofs π′ and π′′ and r is the last rule of π, then

d(π) =


d(π′) + d(π′′) + 2 if r = blindpair
2d(π

′)+d(π′′)
if r = encrypt or decrypt

d(π′) + d(π′′) + 1 otherwise

The above definitionmight look cryptic at first: for instancewhy the encrypt/decrypt rule

increases themeasure exponentially.We are using the subproof δ twice on the right hand sides
of the last four transformations. So additive increase will not help our objective: the measure

should decrease after applying the transformation rules. But fortunately the encrypt/decrypt

·
·
·
π0

X ` t0

·
·
·
π1

X ` t1
pair

X ` (t0, t1)
split

i
X ` ti

·
·
·
πi

X ` ti

·
·
·
π0

X ` t

·
·
·
π1

X ` k
encrypt

X ` {t}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t

·
·
·
π0

X ` t

·
·
·
π0

X ` t0

·
·
·
π1

X ` t1
blindpair

X ` t0 + t1

·
·
·
δ

X ` ti
blindsplit

X ` t1−i

·
·
·
πi

X ` t1−i

·
·
·
π′

X ` t′

·
·
·
π′′

X ` t′′

blindpair
X ` t′ + t

′′

·
·
·
δ

X ` k
encrypt

X ` {t′}k↓ +{t′′}k↓

·
·
·
π′

X ` t′

·
·
·
δ

X ` k
encrypt

X ` {t′}k↓

·
·
·
π′′

X ` t′′

·
·
·
δ

X ` k
encrypt

X ` {t′′}k↓
blindpair

X ` {t′}k↓ +{t′′}k↓

·
·
·
π′

X ` {t′}k

·
·
·
π′′

X ` {t′′}k
blindpair

X ` {t′}k + {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′ + t
′′

·
·
·
π′

X ` {t′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′

·
·
·
π′′

X ` {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′′

blindpair
X ` t′ + t

′′

·
·
·
π′

X ` {t′}k + {t′′}k

·
·
·
π′′

X ` {t′}k
blindsplit

0
X ` {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′′

·
·
·
π′

X ` {t′}k + {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′ + t
′′

·
·
·
π′′

X ` {t′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′

blindsplit
0

X ` t′′

·
·
·
π

X ` {t′}k + {t′′}k

·
·
·
π′

X ` {t′′}k
blindsplit

1
X ` {t′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′

·
·
·
π

X ` {t′}k + {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′ + t
′′

·
·
·
π′

X ` {t′′}k

·
·
·
δ

X ` inv(k)
decrypt

X ` t′′

blindsplit
1

X ` t′

Fig. 2. Transformation rules

·
·
·
π′

X ` t1 + t2

·
·
·
π′′

X ` t3
blindpair

X ` t1 + t2 + t3

·
·
·
δ

X ` t2 + t3
blindsplit

1
X ` t1

·
·
·
π′

X ` t1 + t2

·
·
·
δ

X ` t2 + t3

·
·
·
π′′

X ` t3
blindsplit

1
X ` t2

blindsplit
1

X ` t1

·
·
·
π′

X ` t1

·
·
·
π′′

X ` t2 + t3
blindpair

X ` t1 + t2 + t3

·
·
·
δ

X ` t1 + t2
blindsplit

0
X ` t3

·
·
·
π′′

X ` t2 + t3

·
·
·
δ

X ` t1 + t2

·
·
·
π′

X ` t1
blindsplit

0
X ` t2

blindsplit
0

X ` t3

·
·
·
δ

X ` t1 + t2 + t3

·
·
·
π′

X ` t1

·
·
·
π′′

X ` t2
blindpair

X ` t1 + t2
blindsplit

0
X ` t3

·
·
·
δ

X ` t1 + t2 + t3

·
·
·
π′

X ` t1
blindsplit

0
X ` t2 + t3

·
·
·
π′′

X ` t2
blindsplit

0
X ` t3

·
·
·
δ

X ` t1 + t2 + t3

·
·
·
π′

X ` t2

·
·
·
π′′

X ` t3
blindpair

X ` t2 + t3
blindsplit

1
X ` t1

·
·
·
δ

X ` t1 + t2 + t3

·
·
·
π′′

X ` t3
blindsplit

1
X ` t1 + t2

·
·
·
π′

X ` t2
blindsplit

1
X ` t1

Fig. 3. Transformation rules for the associative case

rule on the left hand side builds on a bigger subproof whereas the encrypt/decrypt rule on

the right hand side builds on smaller subproofs. By using this observation, we have defined

the measure so that it would reduce even though δ is appearing more than once on the right

hand side of the transformation rules.

Now we prove the application of the transformation rules reduces the measure of the

proof. It is easy to see that the measure goes down for the first three rules in Figure 2. So we

consider transformations in the fourth row and fifth row. We observe that the measure of

the proof on the left is 2d(π
′)+d(π′′)+d(δ)+2

, while the measure of the proof on the right is

2d(π
′)+d(δ) + 2d(π

′′)+d(δ) + 2. Let d(π′) = m, d(π′′) = n, and d(δ) = p, and assume

without loss of generality thatm ≥ n. Then (sincem,n, p > 0) 2m+n+p+2 > 2m+p+1 +
2 ≥ 2m+p+2n+p+2. The argument for the last two transformations in Figure 2 is similar.

Nowwe consider the transformations in Figure 3. The measure of the proof on the left is

d(π′) + d(π′′) + d(δ) + 3, while the measure of the proof on the right is d(π′) + d(π′′) +
d(δ) + 2.

We introduce a bit of notation first to conveniently state the weak locality lemma.We say that

a proof π ofX ` t is purely synthetic if either it ends in an application of the blindpair or
pair rules, or it ends in an application of the encrypt rule and t↓ is not a blind pair. A keyword

is an element of K∗. Given a term t and a keyword x = k1 · · · kn, we use {t}x to denote

{· · · {t}k1 · · · }kn .

Lemma 2. Let π be a normal proof of t fromX , and let δ be a subproof of π with root labeled
r. Then for every u occurring in δ, the following hold:

1. Either u ∈ st(r), or there are p ∈ st(X) and keyword x such that u = {p}x,
2. if δ is not a purely synthetic proof, then there exist p ∈ st(X) and keyword x such that
u = {p}x, and

3. If the last rule of δ is the decrypt or split rule with the le� side premise X ` r1, then
r1 ∈ st(X).

Proof. We assume the claim for every proper subproof of δ and prove it for δ itself.Moreover,

the second part of the claim is stronger than the first part. So we prove only the second part

if δ is not a purely synthetic proof.

– Suppose δ is of the following form:

Ax
X ` r

Then r ∈ X ⊆ st(X), and we are done.
– Suppose δ is the following form (and r = (r′, r′′)):

··· δ
′

X ` r′
··· δ
′′

X ` r′′
pair

X ` r
In this case, δ is a purely synthetic proof. We aim to prove that for every u occurring in

δ, either u ∈ st(r) or there are p ∈ st(X) and keyword x such that u = {p}x↓. But
any such u either occurs in δ′ or δ′′ or is the same as r. In the first case, by induction

hypothesis, u ∈ st(r′) or there exist p ∈ st(X) and keyword x such that u = {p}x↓.
But since r′ ∈ st(r),u ∈ st(r) oru = {p}x↓, andwe are done.We argue similarly in the

second case. Finally r ∈ st(r), and so we are done in the third case as well, when u = r.
– Suppose δ is of the following form:

··· δ
′

X ` (r, r′)
split

X ` r

We have to consider the following cases:

1. Suppose δ′ is not a purely synthetic proof. By induction hypothesis, for every u oc-
curring in δ′ there are p′ ∈ st(X) and keyword x′ such that u = {p′}x′ ↓. In
particular, there are p ∈ st(X) and keyword x such that (r, r′) = {p}x↓. But this
means that x = ε and (r, r′) = p ∈ st(X). So r ∈ st(X) as well. Thus we have
proved that for every u occurring in δ, there are p ∈ st(X) and keyword x such that
u = {p}x↓. We have also proved that the major premise of the last rule is in st(X).

2. Suppose δ′ is a purely synthetic proof. But then the last rule of δ′ the pair rule, and
therefore one of the premises of the last rule of δ′ has to be r but this would violate
the normality of δ, as the transformation rule specified in the first row of Figure 2

can be applied to δ. So this case is not possible.

– Suppose δ is of the following form (and r = r′ + r′′):

··· δ
′

X ` r′
··· δ
′′

X ` r′′
blindpair

X ` r

We argue exactly as in the case when the last rule of δ is a pair.
– Suppose δ is of the following form:

··· δ
′

X ` r + s

··· δ
′′

X ` s
blindsplit1

X ` r
We have to consider the following cases:

1. Suppose δ′ is not a purely synthetic proof. By induction hypothesis, for every u oc-
curring in δ′, there are p′ ∈ st(X) and keyword x′ such that u = {p′}x′↓. We turn

our attention touoccurring in δ′′. By inductionhypothesis, eitheru ∈ st(s)or there
are v ∈ st(X) and keyword y such that u = {v}y↓. But note that s ∈ st(r + s),
and there are p ∈ st(X) and keyword x such that r + s = {p}x. Therefore, if
u ∈ st(s), clearly there are v′ ∈ st(X) and a keyword x′ such that u = {v′}x′ .
It also immediately follows that r = {q}x ↓ for some q ∈ st(X). Thus we have
proved that for every u occurring in δ, there are p ∈ st(X) and keyword x such that
u = {p}x↓.

2. Suppose δ′ is a purely synthetic proof. But then the last rule of δ′ is not the encrypt
rule, and hence the last rule of δ′ is an instance of the blindpair rule but this would
violate the normality of δ, as the transformation rule specified in the third row of

Figure 2 can be applied to δ. So this case is not possible.

– Suppose δ is of the following form (and r = {r′}k↓):

··· δ
′

X ` r′
··· δ
′′

X ` k
encrypt

X ` r

We have to consider the following cases:

1. Suppose r is not a blind pair, and hence δ is a purely synthetic proof. Then we aim
to prove that for every u occurring in δ, either u ∈ st(r) or there are p ∈ st(X) and
keywordx such thatu = {p}x↓. But any suchu either occurs in δ′ or occurs in δ′′ or
is the same as r. In the first case, by induction hypothesis, either u ∈ st(r′) or there
exist p ∈ st(X) and keyword x such that u = {p}x↓. But since r′ ∈ st({r′}k), the
desired conclusion follows. We argue similarly in the second case, when u occurs in
δ′′. Finally r ∈ st(r), and so we are done in the third case as well, when u = r.

2. Suppose r is a blind pair, and hence δ is not a purely synthetic proof. We aim to

prove that for every u occurring in δ, there are p ∈ st(X) and keyword x such that
u = {p}x↓. We consider the following sub-cases:

(a) Suppose δ′ is not a purely synthetic proof, and for every u occurring in δ′, there
are p′ ∈ st(X) and keyword x′ such that u = {p′}x′ ↓. In particular, there

are p ∈ st(X) and keyword x such that r′ = {p}x ↓. But this means that

r = {p}xk↓. Suppose u occurs in δ′′. Since k is atomic, the last rule of δ′′ is
an analz rule. So there are q ∈ st(X) and keyword y such that u = {q}y ↓.
Thus we have proved that for every u occurring in δ, there are p ∈ st(X) and
keyword x such that u = {p}x↓.

(b) Suppose δ′ is a purely synthetic proof.We note that r′ is a blind pair, and hence
the last rule of δ′ is not encrypt (since δ′ is purely synthetic). The only other
possibility is that the last rule of δ′ is blindpair. But that would violate the nor-
mality of δ, as the transformation rule specified by the fourth row of Figure 2

can be applied to δ. So this case is not possible.
– Suppose δ is of the following form:

··· δ
′

X ` {r}k

··· δ
′′

X ` inv(k)
decrypt

X ` r
We first note that inv(k) is an atomic key. Hence the last rule of δ′′ should be an analz
rule. Hence for every u occurring in δ′′, there exist p ∈ st(X) and keyword x such that
u = {p}x↓.
We now consider δ′. The last rule of δ′ cannot be a blindpair rule, since the transforma-

tion rule specified by the fifth row of Figure 2 can be applied to δ, thereby contradicting
the normality of δ. Nor can the last rule of δ′ be an encrypt rule; otherwise, the transfor-
mation rule specified by the second row of Figure 2 can be applied to δ and this would
contradict the normality of δ.
The remaining possibility for the last rule of δ′ is one of split or decrypt or blindsplit. In
the first two cases, we knowby induction hypothesis that themajor premise r1 of the last
rule of δ′ is in st(X). Hence {r}k, as well as r, are in st(X) as well.
We now consider the case when the last rule of δ′ is blindsplit0 (the proof is similar when

the last rule of δ′ is blindsplit1). Let r1 be themajor premise and r2 be theminor premise

of this rule. Now it cannot be the case that r1 is of the form {r}k + {r′}k. For, in that
case r2 would have been {r′}k, and the transformation rule specified by the sixth row of

Figure 2 can be applied to δ, and this would contradict the normality of δ.
We also know from the induction hypothesis (applied to δ′), there are p ∈ st(X) and
keyword x such that r1 = {p}x. But since r1 is of the form {r}k + r2, where r2 is not
of the form {r′}k for any r′, we conclude that x = ε and r1 = p ∈ st(X). It follows
that r ∈ st(X) as well. ut

4 Blind pair as an associative operator: upper bound

Fix a finite set of termsX0 and a term t0. Let Y0 denotes st(X0 ∪ {t0}) andK0 = Y0 ∩ K.
In this section, we address the question of whether there exists a normal proof of t0 fromX0.

The weak locality property (Lemma 2) provides a key to the solution – every term occurring

in such a proof is of the form {p}x for p ∈ Y0 and x ∈ K∗0 .
For every p ∈ Y0, defineLp = {x ∈ K∗0 | X0 ` {p}x}. It is easy to see thatLp satisfies

the following equations:

if x ∈ Lp and x ∈ Lp′ then x ∈ Lp+p′ ,
if x ∈ Lp and x ∈ Lp+p′ , then x ∈ Lp′ ,
if x ∈ Lp′ and x ∈ Lp+p′ , then x ∈ Lp

kx ∈ Lp iff x ∈ L{p}k ,
if x ∈ Lp and ε ∈ Lk, then xk ∈ Lp, and

if the empty string ε ∈ L{p}k and ε ∈ Linv(k), then ε ∈ Lp.

If p, p′, p+p′ are considered as states andx is accepted from p as well as p′, thenwewant
x is to be accepted from p + p′. To capture this we need an and edge (labeled with ε) from
p and p′ to p + p′. This suggests the construction of an alternating automatonA such that

checkingX ` {t}x is equivalent to checking whether there is an accepting path of x from t
inA. First we recall the definition of alternating automaton and other related notions.

Definition 6. An alternating automaton is A = (Q,Σ, ↪→, F), where Q is a finite set of
states,Σ is a finite alphabet, ↪→⊆ Q×(Σ∪{ε})×2Q is the transition relation, and F ⊆ Q
is the set of final states.

For q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q, we use q
a
↪→ C to denote the fact that

(q, a, C) ∈↪→. For ease of notation, we also write q
a
↪→ q′ to mean q

a
↪→ {q′}.

Given C ⊆ Q, and x ∈ Σ∗, we use the notation q x⇒A,i C i�

– C = {q}, x = ε, and i = 0, or
– there is a transition q

a
↪→ {q1, . . . , qn} of A, y ∈ Σ∗, and i1, . . . , in ≥ 0 such that

i = i1 + · · ·+ in +1 and x = ay and for all j ∈ {1, . . . , n}, qj
y⇒A,ij Cj such that

C = C1 ∪ · · · ∪ Cn.

For C = {q1, . . . , qm} and C ′ ⊆ Q, we use the notation C x⇒A,i C ′ to mean that for
all j ≤ m, there exist ij such that qj

x⇒A,ij Cj , and i = i1+· · ·+im, C ′ = C1∪· · ·∪Cm.
We also say q x⇒A C and C x⇒A C ′ to mean that there is some i such that q x⇒A,i C and
C

x⇒A,i C ′, respectively.
We say a word x has an accepting run from q i� q x⇒A C such that C ⊆ F . For a given

q, is the set of words accepted by A with q as initial state.

L(A, q) = {x ∈ Σ∗ | q x⇒A C such that C ⊆ F}

We typically drop the subscriptA if it is clear from the context which alternating automa-

ton is referred to.

Now we construct an alternating automaton A such that Lp = L(A, p) for each p ∈
Y0. The states of the automaton are terms from Y0, and the transition relation is a direct

transcription of the equations in 1. For instance there is an edge labeled k from t to {t}k,
and there is an edge labeled ε from t to the set {t + t′, t′}. We introduce a final state f and

introduce an ε-labeled edge from t to f whenever ε ∈ Lt.

Definition 7. LetA0 be given by (Q,Σ, ↪→0, F) whereQ = Y0∪{f} (f 6∈ Y0),Σ = K0,
F = {f}, and ↪→0 be the smallest subset ofQ× (Σ ∪{ε})× 2Q that satisfies the following:

– if t ∈ Y0, k ∈ K0 such that {t}k↓∈ Y0, then t
k
↪→0 {t}k↓.

– if t, t′, t′′ ∈ Y0 such that t is the conclusion of a blindpair or blindspliti rule with premises
t′ and t′′, then t

ε
↪→0 {t′, t′′}.

– if t ∈ X0, then t
ε
↪→0 {f}.

– if k ∈ X0 ∩K0, then f
k
↪→0 {f}.

There is one issue in this automatonA0: if kx ∈ Lt then x ∈ L{t}k . These cannot be
represented directly by a transition in the automaton. Thus we define a revised automaton

that has an edge labeled ε from {t}k to q whenever the original automaton has an edge la-

beled k from t to q. In fact, it does not suffice to stop after revising the automaton once. The

procedure has to be repeated till no more new edges can be added.

Thus we define a sequence of alternating automataA1,A2, . . . ,Ai, . . ., each of which
adds transitions to the previous one, as given by the below definition.

Definition 8. For each i > 0,Ai is given by (Q,Σ, ↪→i, F) where ↪→i is the smallest subset
of Q× (Σ ∪ {ε})× 2Q such that:

1. if q a⇒i−1 C, then q
a
↪→i C .

2. if {t}k↓∈ Y0 and t
k⇒i−1 C, then {t}k↓

ε
↪→i C .

3. if k ∈ K0 and k
ε⇒i−1 {f}, then f

k
↪→i {f}.

4. if Γ ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Figure 1 (unary or
binary) whose set of premises is (exactly) Γ and conclusion is t, then the following holds:

if u ε⇒i−1 {f} for every u ∈ Γ, then t
ε
↪→i {f}.

We use ↪→i for ↪→Ai
and⇒i for⇒Ai

Lemma 3. 1. For all i ≥ 0 and all a ∈ Σ ∪{ε}, the relation a⇒i is constructible from ↪→i

in time 2O(d), where d = |Q|.
2. For all i ≥ 0 and all a ∈ Σ, the relation

a
↪→i+1 is constructible from⇒i in time 2O(d).

3. There exists d′ ≤ d2 · 2d such that for all i ≥ d′, q ∈ Q, a ∈ Σ ∪ {ε}, and C ⊆ Q,
q

a
↪→i C if and only if q

a
↪→d′ C .

Theorem 1. (Soundness) For any i, any t ∈ Y0, and any keyword x, if t x⇒i {f}, then
X0 ` {t}x↓.

Theorem 2. (Completeness) For any t ∈ Y0 and any keyword x, if X0 ` {t}x↓, then there
exists an i ≥ 0 such that t x⇒i {f}.

The the number of subterms isO(n2) ifX0, t0 is of sizeO(n). So we have to iterate the

saturation procedure at most 2n
2

(the number of subsets of states) times.

Theorem 3. Given a finite X0 ⊆ T and t0 ∈ T , checking whether X0 ` t0 is solvable in
time O(2n

2

) where n =
∑
t∈X0

|t|+ |t0|.

5 Blind pair as an associative operator: lower bound

In this section, we reduce the reachability problem of alternating pushdown systems to the

intruder deduction problem. The reduction is similar to the reduction in [5] with a fewmod-

ifications.

Definition 9. An alternating pushdown system (APDS) is a triple P = (P, Γ,∆), where

– P is a finite set of control locations,
– Γ is a finite stack alphabet, and
– ∆ ⊆ (P × Γ ∗)× 2(P×Γ

∗) is a set of transition rules.

We write transitions as (a, x) ↪→ {(b1, x1), . . . , (bn, xn)}. A configuration is a pair (a, x)
where a ∈ P and x ∈ Γ ∗. Given a set of configurations C, a configuration (a, x), and i ≥ 0,
we say that (a, x) i⇒P C i�:

– (a, x) ∈ C and i ≥ 0, or
– there is a transition (a, y) ↪→ {(b1, y1), . . . , (bn, yn)} ofP , z ∈ Γ ∗, and i1, . . . , in ≥

0 such that i = i1+ · · ·+in and x = yz and for all j ∈ {1, . . . , n}, (bj , yjz)
ij⇒P C .

We use (a, x)⇒PC to denote (a, x) i⇒P C for some i.

Theorem 4 ([14]). The reachability problem for alternating pushdown systems, which asks,
given an APDS P and configurations (s, xs) and (f, xf), whether (s, xs) ⇒P (f, xf), is
dexptime-complete.

We reduce this problem to the problem of checking whetherX ` t in our proof system,

givenX ⊆ T and t ∈ T .We use {c}x∧{b1}y1 ∧· · ·∧{bn}yn
Ass
=⇒ {b}y , called associative

rewrite terms, to denote the following term

{b1}y1 + {c}x + {b2}y2 + {c}x + · · ·+ {c}x + {bn}yn + {c}x + {b}y + {c}x +
{b1}y1 + {c}x + {b2}y2 + {c}x + · · ·+ {c}x + {bn}yn

where c, b1, . . . , bn, b be set of basic terms and let x, y1, . . . , yn, y be keywords.

Definition 10. Suppose P = (P, Γ, ↪→) is an APDS, and (s, xs) and (f, xf) are two con-
figurations of P . The rules in ↪→ are numbered 1 to l.

We define a set of terms X such that (s, xs)⇒P (f, xf) i� X ` {s}xse.

– P ∪ C is taken to be a set of basic terms, where C = {c1, . . . cl},
– Γ ∪{e, d} is taken to be a set of keys, such that e, d 6∈ Γ , and none of the keys in Γ ∪{e}

is an inverse of another,
– X1 = {{f}xfe} ∪ {{c}d | c ∈ C}.
– X2 = {{ci}d∧{b1}x1

∧· · ·∧{bn}xn

Ass
=⇒ {a}x | (a, x) ↪→P {(b1, x1), . . . , (bn, xn)}

is the i th rule of ↪→}, and

In the rest of the section, we assume X = X1 ∪X2 ∪ Γ ∪ {e}.

Lemma 4. If {c}d ∧ {b1}y1 ∧ · · · ∧ {bn}yn
Ass
=⇒ {b}y is an associative rewrite term inX2

and z ∈ Γ ∗ such that for all i ≤ n : X ` {bi}yize, then X ` {b}yze.

We can encrypt {c}d using the keys in ze to derive X ` {c}dze. Using blindsplit rule on
associative rewrite term, we can deriveX ` {b}yze.

Using the above lemma we can prove if (a, x)⇒i {(f, xf)}, thenX ` {a}xe.

Lemma 5. For all configurations (a, x) and all i ≥ 0, if (a, x) ⇒i {(f, xf)} then X `
{a}xe.

Proof. Weprove this by induction on i. If i = 0 then (a, x) = (f, xf) and thusX ` {a}xe,
since {f}xfe ∈ X . If i > 0, there is a rule of P , (a, y) ↪→ {(b1, y1), . . . , (bn, yn)},
z ∈ Γ ∗, and i1, . . . , in ≥ 0 such that x = yz and (bj , yjz) ⇒ij {(f, xf)} for all j ∈
{1, . . . , n}, and such that i = i1+ · · ·+ in+1. By induction we know thatX ` {bj}yjze
for all j. It immediately follows from the definition ofX2 and Lemma 4 thatX ` {a}yze.
Since x = yz,X ` {a}xe.

To prove the converse of Lemma 5, we have to prove some properties of the normal proof

ofX ` {a}xe. First, we make some observations about the normal proof π ofX ` {a}xe.
There are no pair, split, decrypt rules in π. This is easy to see from the set X and the con-

clusion. Most importantly, there are no blindpair rules in π. Since the conclusion is not a

blindpair term, the transformation rules in Figure 1 eliminate the blindpair rules.

Lemma 6. Let π be a normal proof of X ` {a}xe, for a ∈ P and x ∈ Γ ∗. Then any term
u occurring in π is of the form {p}w, for p ∈ st(X) and w ∈ Γ ∗ ∪ Γ ∗e.

Proof. The subterm property for normal proofs guarantees that every term occurring in π is

of the form {p}w , where p ∈ st(X ∪ {a}) and w ∈ (Γ ∪ {e})∗. Let us first observe that
a ∈ st(X), and hence p ∈ st(X). Suppose a term of the form {q}yey′ occurs in π, such
that y′ 6= ε. Since the conclusion of π is {a}xe with x ∈ Γ ∗, there has to be an occurrence
of a rule R with a premise {r}zez′ and a conclusion {t}w such that r, t ∈ st(X), z′ 6= ε,
e 6∈ st(t), andw ∈ Γ ∗ ∪ Γ ∗e. ClearlyR cannot be anAx rule.

– SupposeR is an encrypt rule. The conclusion {r}zez′k is not equal to {t}w for any t ∈
st(X), andw ∈ Γ ∗ ∪ Γ ∗e such that e 6∈ st(t), which is a contradiction.

– Suppose R is a blindsplit rule with {r}zez′ as the left side premise. Then it is clear that

{t}w is also of the form {q}zez′ which is a contradiction.
– SupposeR is a blindsplit rule with {r}zez′ as the right side premise and t′ as the left side

premise ofR. It is easy to see that t′ = {t}w + {r}zez′ . Sincew ∈ Γ ∗ ∪Γ ∗e, it cannot
have common suffix with zez′. Hence, t′ ∈ st(X). Since e is a proper subterm of t′, it
should be equal to {f}xfe which contradicts that t

′
is a blind pair term. ut

The following lemma constrains the structure of rules that occur in any normal proof of

X ` {a}xe. This lemma is weaker than its counterpart in [5] as the right side premise of

blindsplit may be a blindpair term.

Lemma 7. Let π be a normal proof of X ` {a}xe, for a ∈ P and x ∈ Γ ∗. Let δ be a
subproof of π with root labeled r.

1. If the last rule of δ is an encrypt rule, then r = {p}w for some p ∈ X and keyword
w ∈ Γ ∗ ∪ Γ ∗e.

2. If the last rule of δ is a blindsplit rule, then r = {p}we, where p ∈ st(X) and w ∈ Γ ∗.

Proof. Let π be a normal proof ofX ` {a}xe, and let δ be a subproof of π with root labeled
r. We assume both parts of the lemma for all proper subproofs δ′ of δ, and prove it for δ.

1. Suppose the last rule of δ is an encrypt rule, and has the following structure:

··· δ
′

X ` r′
··· δ
′′

X ` k
encrypt

X ` r

If the last rule of δ′ is an Ax rule, then r′ ∈ X . Hence, r is of the form {r′}k with

r′ ∈ X . If the last rule of δ′ is an encrypt rule, then r′ = {p}w for some p ∈ X . In

that case we are done, since r = {p}wk. The other option is that the last rule of δ′ is a
blindsplit rule, in which case r′ is of the form {p}we (by part 2 of this lemma applied to

δ′). But then r = {p}wek, and that violates Lemma 6, so this case cannot arise.

2. Suppose the last rule of δ is a blindsplit rule and has the following form:

··· δ
′

X ` r′
··· δ
′′

X ` r′′
blindsplit

r

– Suppose the last rule of δ′ is anAx rule. Then r′ ∈ X2. Now let us look at the last

rule of δ′′. If it is eitherAx rule or encrypt rule, r′′ is of the form, {p′′}z′′ , for some

p′′ ∈ X . Suppose p′′ ∈ X2 then there is a c ∈ C which is a subterm of r′ and p′′

which contradicts that no c ∈ C is a subterm of two terms inX2. Hence p′′ 6∈ X2.

Moreover, p′′ cannot be inX3 as r
′
is neither starting or ending with {c}w for any

c ∈ C and w. If the last rule of δ′′ is a blindsplit rule, then by hypothesis, r′′ is of
the form {p′′}z′′e. But this contradicts that r′′ is a subterm of r′ ∈ X2 (No term

inX2 contains e). Hence the last rule of δ′ cannot be anAx rule.
– If the last rule of δ′ is blindsplit rule, then by induction hypothesis, r′ = {p}w′e for
p ∈ st(X) andw′ ∈ Γ ∗. Hence, r = {p′}z′′e for some p′ ∈ st(X) and z′′ ∈ Γ ∗.

– Suppose the last rule of δ′ is encrypt, then r′ = {p′}z for p′ ∈ X . If z ∈ k∗e, then
r is of the required form. Suppose z is not ending with e.
Clearly, p′ is a blind pair term, so p′ ∈ X2. Now let us look at the last rule of δ′′.

• If it is blindsplit rule, then r′′ is of the form {p′′}z′′e, using induction hypoth-
esis. Then r′ is also of the form {p′}z′e, as no blindpair term inX contains e.
Hence r is also of this form.

• Suppose the last rule of δ′′ is Ax rule. Clearly, r′′ cannot be a blind pair term

as it should contain a different {cm}d. It is easy to see that r′′ 6∈ X3 as p
′
is

neither starting nor ending with a term inX3. If r
′′ = {a}xe, then r′ is of the

form {p′}z′e as no blind pair term inX contains e. Hence r is of the required
form.

• Suppose the last rule of δ′′ is encrypt. Then r′′ is of the form {p′′}z′′ for some

p′′ ∈ X . If p′′ ∈ X1, then r
′
is of the required form, and hence r. Moreover,

p′′ cannot be in X3 as p
′
is neither starting nor ending with a term in X3. If

p′′ ∈ X2, then we cannot use it to blind split r
′
. Hence r is of the form {p}we

for some p ∈ st(X). ut

We now state an important property of normal proofs from rewrite systems – namely

that whenever the “conclusion” of a rewrite term is provable, all the “premises” are provable

too. The proof of the lemma is given in appendix.

Lemma 8. Let π be a normal proof of X ` {a}xe, for a ∈ P and x ∈ Γ ∗. Then either
{a}xe ∈ X1 or there is a rewrite term {cm}d ∧ {b1}y1 ∧ · · · ∧ {bn}yn

Ass
=⇒ {a}y in X2,

and z ∈ Γ ∗ such that x = yz, for all i ≤ n, {bi}yize occurs in π.

Proof. Let π be a normal proof ofX ` {a}xe and suppose that {a}xe 6∈ X1.

For any term t = {cm}d ∧ {b1}y1 ∧ · · · ∧ {bn}yn =⇒ {a}y fromX2 and r ∈ st(t),
define residues(t, r) as follows:

– If r /∈ X3, t = t1 + t2 + · · ·+ ti+ r+ ti+1 + . . . tn, and none of the ti↓’s are headed
with+ , then residues(t, r) =

⋃n
i=1{ti} \ {{cm}d}.

– residues(t, r) = ∅, otherwise.

Suppose {r}ze occurs as the root of a subproof δ of π, for any r ∈ st(X2). We prove

that either {r}ze ∈ X1, or there is t ∈ X2 such that {b}yze occurs in a proper subproof

of δ for every {b}y ∈ residues(t, r). The statement of the lemma follows immediately. We

distinguish the following three cases:

– Suppose the last rule of δ is Ax rule. Then {r}ze ∈ X . Since the only terms fromX1

contain e as a proper subterm, {r}ze ∈ X1.

– Suppose the last rule of δ is encrypt. Then {r}ze = {p}we for some p ∈ X . But then

it has to be the case that r ∈ X2 ∪X3. It is easy to see that residues(t, t′) = ∅ for every
t ∈ X2 and for every t

′ ∈ X2 ∪X3. Hence, our statement is vacuously true.

– Suppose the last rule of δ is ablindsplit rule. Let{u}ze be the left sidepremise and{u′}z′e
be the right side premise such that u, u′ ∈ st(X2). By induction hypothesis, there is

t ∈ X2 such that {b}yze occurs in δ for every {b}y ∈ residues(t, u). We distinguish two

cases now.

• Suppose, {u′}z′e = {cm}dz′e. Then residues(t, r) = residues(t, r + {cm}d) =
residues(t, {cm}d + r). Hence the claim.

• Suppose, {u′}z′e = {bj}yjze. Then residues(t, r) = residues(t, u) ∪ {{bj}yj)}.
It is easy to see that {bj}yjwe occurs in a proper subproof of δ. Moreover, for every

{b}y ∈ residues(t, u), {b}yze occurs in a proper subproof δ (by induction hypoth-
esis). Hence the claim.

• Suppose{u′}z′e is headedwith+, then it is easy to see that residues(r, t) = residues(u, t)∪
residues(u′, t). We use the fact that u and u′ are subterms of a same term fromX2.

Now using induction hypothesis, we can claim that for every {b}y ∈ residues(t, r),
and hence {b}yze occurs in a proper subproof of δ. Hence the claim. ut

Lemma 9. For any configuration (a, x), if there is a normal proof of X ` {a}xe, then
(a, x)⇒P (f, xf).

Proof. By Lemma 8, X ` {a}xe means that either {a}xe ∈ X1 or there is an associative

rewrite term {c}d∧{b1}y1 ∧ · · ·∧{bn}yn
Ass
=⇒ {a}y inX2, and z ∈ Γ ∗ such that x = yz

and for all i ≤ n, {bi}yize occurs in π.
In the first case ({a}xe ∈ X1), a = f and x = xf , and it follows that (a, x) ⇒P

(f, xf). In the second case, by induction hypothesis, (bi, yiz) ⇒P (f, xf), for all i ≤ n.
Combined with (a, y) ↪→ {(b1, y1), . . . , (bn, yn)}, it follows that (a, x) = (a, yz) ⇒P
(f, xf).

For a given APDSP = (P, Γ,∆) and configurations (s, xs) and (f, xf), we have con-
structed a set of termsX such thatX ` {s}xse iff (s, xs)⇒P (f, xf). This reduction and
the fact that reachability problem for alternating pushdown systems is dexptime-hard lead

to the following main result.

Theorem 5. Given a finiteX ⊆ T and a term t ∈ T , checking whetherX ` t is dexptime-
hard.

6 Discussion

The techniques of our paper do not seem to extend to the system with abelian group opera-

tors, nor for slightly weaker systems where+ is associative and commutative, or when+ is a

(not necessarily commutative) group operator and the term syntax allows terms of the form

−t. The decidability results in [12] are driven by a set of normalization rules whose effect is

drastically different from ours. Our rules ensure that the “width” of terms occurring in a nor-

mal proof ofX ` t is bounded byX ∪ {t}. But their normalization rules ensure that the

encryption depth of terms occurring in a normal proof ofX ` t is bounded byX ∪ {t}.
But the width of terms, represented by coefficients in the +-terms, can grow unboundedly.

The rest of their decidability proof is an involved argument using algebraic methods. But the

relationships between the two techniques need to be studied in more depth and might be

useful to solve weaker systems and the system with an abelian group operators. We leave this

for future work.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equivalence thoeries. The-

oretical Computer Science 367(1–2), 2–32 (2006)

2. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Satisfiability of general intruder con-

straints with and without a set constructor. Journal of Symbolic Computation 80, 27–61 (2017)

3. Baskar, A.: Decidability Results For Extended Dolev-Yao Theories. Ph.D. thesis, Chennai Mathe-

matical Institute (2011)

4. Baskar, A., Ramanujam,R., Suresh, S.: Knowledge-basedmodelling of voting protocols. In: Samet,

D. (ed.) Proceedings of the 11th Conference on Theoretical Aspects of Rationality and Knowledge.

pp. 62–71 (2007)

5. Baskar, A., Ramanujam, R., Suresh, S.: A DEXPTIME-complete Dolev-Yao theory with distribu-

tive e encryption. In: Proceedings of the 35th International Symbosium onMathematical Founda-

tions of Computer Science. Lecture Notes in Computer Science, vol. 6281, pp. 102–113 (2010)

6. Baskar, A., Ramanujam, R., Suresh, S.: Dolev-yao theory with as-

sociative blindpair operators (2019), technical report available at

http://www.cmi.ac.in/ spsuresh/pdfs/ciaa19-tr.pdf

7. Ciobâca, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols under convergent

equational theories. Journal of Automated Reasoning 48(2), 219–262 (2012)

8. Comon-Lundh, H., Shmatikov, V.: Intruder Deductions, Constraint Solving and Insecurity Deci-

sions inPresence ofExclusive or. In: Proceedings of the 18th IEEESynposiumonLogic inComputer

Science (LICS). pp. 271–280 (June 2003)

9. Cortier, V., Delaune, S.: Decidability and combination results for two notions of knowledge in

security protocols. Journal of Automated Reasoning 48(4), 441–487 (2012)

10. Cortier, V., Delaune, S., Lafourcade, P.: A survey of algebraic properties used in cryptographic pro-

tocols. Journal of Computer Security 14(1), 1–43 (2006)

11. Dolev, D., Yao, A.: On the Security of public-key protocols. IEEE Transactions on Information

Theory 29, 198–208 (1983)

12. Lafourcade, P., Lugiez, D., Treinen, R.: Intruder deduction for the equational theory of abelian

groups with distributive encryption. Information and Computation 205(4), 581–623 (April 2007)

13. Rusinowitch,M.,Turuani,M.: Protocol Insecuritywith FiniteNumber of Sessions andComposed

Keys is NP-complete. Theoretical Computer Science 299, 451–475 (2003)

14. Suwimonteerabuth,D., Schwoon, S., Esparza, J.: Efficient algorithms for alternating pushdown sys-

temswith an application to the computationof certificate chains. In: Proceedings of theAutomated

Technology for Verification (ATVA2006). LNCS, vol. 4218, pp. 141–153 (2006)

