
Complexity Theory II Course Instructor: V. Arvind

Lecture 4,5 : Aug 11, 2006

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

1 Overview

Hardness PRG Derandomization
E * P/poly nε → n BPP ⊆ SUBEXP
E * SIZE(2εn) log n → n BPP = P

In the first few lectures, we say that hardness → PRG, and then we saw
that hardness → derandomization.

In this lecture we shall look at other implications between hardness,
PRGs and derandomization

2 Hardness ↔ PRG

Theorem 1. Suppose G : log n → n be a quick PRG which is secure against
circuits of size n, i.e

∀|C| ≤ n,

∣∣∣∣ Pr
y∈RΣn

[C(y) = 1]− Pr
x∈RΣlog n

[C(G(x)) = 1]
∣∣∣∣ <

1
n

then, there ∃f, f ∈ E, f /∈ SIZE(2εn).

Proof. Let log n = l. G′ : l → l + 1 be the truncated version of G. Hence
clearly

∀|C| ≤ n,

∣∣∣∣ Pr
y∈RΣl+l

[C(y) = 1]− Pr
x∈RΣl

[C(G′(x)) = 1]
∣∣∣∣ <

1
n

Range(G′) = {y|y = G′(x)} and clearly Range(G′) is computable in E since
given a y we can run through all |x| = |y| − 1 and check if G′(x) = y.

Claim: Range(G′) /∈ SIZE(2εn)
For if it were in SIZE(2εn), it would mean that you can next bit predict

G using a this circuit which will be of size 2ε log n = nε < n, contradicting
the hardness of G.

Thus we now have a language (Range(G′)) which is computable in E
but is not in SIZE(2εn).

1

And together with what we have done earlier, we have Hardness↔ PRG.

3 Derandomizing Identity Testing

Impagliazzo and Kabanets then showed that derandomization has implica-
tions of lower bounds on arithmetic circuits. In this section we shall look
at the main result of the paper “Derandomization identity testing means
proving circuit lower bounds - Impagliazzo,Kabanets”.

We would need to use the result from a paper by Impagliazzo, Kabanets
and Wigderson in their paper “In search of an easy witness”.

Theorem 2 (Impagliazzo,Kabanets,Wigderson). If NEXP ⊆ P/poly then
NEXP = EXP .

We know from the [BFNW] result discussed in the earlier lecure, EXP ⊆
P/poly implies EXP = MA = AM . And hence NEXP ⊆ P/poly ⇒
NEXP = MA = AM .

We shall give the proof this in section 4

3.1 The Permanent

PermZ(A): a degree n polynomial over n2 variables.

PermZ(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

Let Pn be the function evaluating the permanent for an n × n matrix.
And the permanent satisfies the following conditions:

P1(x) = x

Pi(x) =
i∑

j=1

X1jPi−1(Xj)

And more, any functions that satisfies the above properties has to be
the permanent.

Summing up a few results we know already:
[Valiant79]: Perm is #P complete
[Toda89]: PH ⊆ PPerm

[BFNW + IKW]: NEXP ⊆ P/poly ⇒ NEXP = EXP = MA =
PH = PPerm

2

3.2 ACIT : Arithmetic Circuits for Identity Testing

ACIT = {C|C defines a polynomialp, p = 0}.
Obviously, deg p ≤ 2SIZE(C). And we also know the Schwarz-Zippel lemma

Lemma 3 (Schwarz-Zippel). If p : Fn → F, p 6= 0 of degree d, then for any
subset S ⊆ F

Pr
a∈Sn

[p(a) = 0] <
d

|S|

Claim 4. ACIT ∈ coRP

Proof. We shall appeal to Shwarz-Zippel by choosing our S = {1, 2, 3, . . . , 2s2}
for a size s circuit. Then the Schwarz-Zippel lemma would have bounded
the error probability to 2s

2s2
≤ 2−s, but the value of pC(a) could be huge, as

large as 22ss2
. Thus we need to do chinese remindering

Assume that pC 6= 0. We would now evaluate C modulo a random
m ∈ {2s2

, . . . , 2s3}. By the prime number theorem, atleast 1
s4 fraction of

them would be primes.
Our bad case happens when either m is composite or m divides pC(a).

Case 1 can happen with probability atmost
(
1− 1

s4

)
. Now if pC 6= 0, atmost

2s primes in the range can divide it, and thus the probability that a random
prime divides pC is ≤ 1

s42s < 2−s2
.

Hence, if pC 6= 0

Pr
a,m

[pC(a) ≡ 0 mod m] ≤ 2−s + 2−s2
+

(
1− s−4

)
≤

(
1− s−5

)
Repeating this over s6 independantly chosen m from the range, we can

get the error probability less than half, and thus ACIT ∈ coRP .

3.3 Circuits for Permanent and Identity Testing

Define ACP = {(C, n) : C evaluates Permn×n
Z }.

Claim 5. ACP ≤P
m ACIT

Proof. Let C be a circuit evaluating a polynomial p over n2 variables. In-
terpretting pn to be a function of a matrix {xij}n

i,j . Let pi be the restriction
of pn to {i × i} matrices of variables. Thus if pn evaluates the permanent,
so will pi on the restricted matrix.

3

Now define

h1(x) = pi(x)− x

hi(X) = pi(X)−
i∑

j=1

X1jpi−1(Xj)

Now clearly if pn evaluates the permanent, then each of the hi has to be
identically zero. And hence look at

h(x) =
n∑

i=1

hi(X)2

and C evaluates permanent if and only if h = 0.

3.4 The Impagliazzo-Kabanets Theorem

Theorem 6 (Impagliazzo-Kabanets). If ACIT ∈ SUBEXP , either NEXP *
P/poly or PermZ does not have polysized arithmetic circuits.

Also not that if BPP = P , then NP = MA. And we then can’t have
NEXP ⊆ P/poly since it would then absurdly give NP = NEXP .

Proof. If NEXP ⊆ P/poly, NEXP = PPerm = NPPerm.
Claim: NEXP ⊆ P/poly, Perm has poly sized circuits ⇒ NEXP ⊆

NPACIT

Pf: Let L ∈ NEXP , and x an instance of L. Now by our assumption,
L ∈ NPPerm and hence L = L(MPerm) for some nk time machine M .

This forces the largest permanent queries to be those of nk×nk matrices.
Guess the permanent cirucit, can be done since the size of the circuit is
polynomially bounded! In order to verify, we know that ACP ≤P

m ACIT ,
so use that as a query for the oracle. And thus NEXP ⊆ NPACIT .

Now with this claim, if you further have that ACIT ∈ SUBEXP , we
can then would be able to simulate NEXP in NE thus giving an absurd
implication that NE = NEXP . Hence the main theorem is proved.

4 Proof of Theorem 2

Just like we have P/poly, and we shall use a similar notation C/f .

4

Definition 7. For any complexity C and function f : N → N, L ∈ C/f if
there exists a sequence of strings {yi}i≥0 with |yn| = f(n) and L′ ∈ C such
that for all x ∈ Σ∗, x ∈ L ⇔ (x, y|x|) ∈ L′

The proof of this theorem shall be broken down into the following steps:

1. EXP * i.o− SIZE(nc) for each c

2. EXP * i.o−
[
DTIME(2nc

)
]
/nc for each c.

3. NEXP = EXP ⇒ EXP * i.o− [NTIME(2n)] /n

4. NEXP ⊆ P/poly ⇒ EXP * i.o− [NTIME(2n)] /n

5. Theorem: If NEXP 6= EXP , then AM ⊆ i.o−
[
NTIME(2nε

)
]
/nε

for every ε > 0

4.1 Proof of Step 1

The number of boolean functions on length n inputs is 22n
and we saw earlier

that the number of boolean functions that have size ≤ nc is atmost 2nc′
for

some c′(depending on c)
Now the inputs are x1, x2, · · · , xnc+2, · · · , x2n . Define a function f as

follows:

∀i ≤ nc + 2 , f(xi) = bi

∀i > nc + 2 , f(xi) = 0

where bi = maj(C(xi)) over all circuits C ∈ SIZE(nc).
Clearly this is in DTIME(2nc+1

) ⊆ EXP but not in SIZE(nc) at any
length.

4.2 Proof of Step 2

The number of boolean functions over n inputs is 22n
. Consider turing

machine descriptions M of size leqn with advice of size nc, running for
atmost 2nc

steps. Let F = All boolean functions from Σn → Σ computed by
such turing machines. As earlier |F| ≤ 2nc′

.
And hence we can find a assignment of truth values to the first nc′

+ 2
strings that diagonalises against F. The lexigraphically least of such assign-
ments is our language in EXP , but not in i.o−

[
DTIME(2nc

)
]
/nc.

5

4.3 Proof of Step 3

We shall show that if NEXP = EXP , then [NTIME(2n)] /n ⊆ i.o −[
DTIME(2nc

)
]
/n for some fixed c. And then, using step 2 we would be

done.
Let U be a universal non-deterministic turing machine that takes a pair

(i, x) as input and simulates the ith non-deterministic machine Mi on x for
2|x| steps and accepts iff Mi accepts x within that many steps. Hence

L(U) ∈ NTIME(2|x|+|i|)

Now for every language L ∈ NTIME(2n) can be decided in NTIME(2|x|+|i|)
where |i| is the constant sized description of the machine accepting L. And
by our assumption this can be simulated in DTIME(2nc

) for some fixed
c. Consequently, every language in [NTIME(2n)] /n can be simulated in[
DTIME(2nc

)
]
/n, and the proof is done.

4.4 Proof of Step 4

Just similar to the earlier proof, every language in [NTIME(2n)] /n can
be simulated in SIZE(nd) for some fixed d and we would hence obtain a
similar contradiction to 1 if 4 is false.

4.5 Proof of Step 5

By the [BFNW] theorem we have that EXP * P/poly would imply that
BPP ⊆ i.o − SUBEXP . The point to note here is that the proof of the
theorem relativises!

For every oracle A,

EXPA * PA/poly ⇒ BPPA ⊂ i.o− SUBEXP “A′′

where SUBEXP “A′′
is the class of SUBEXP turing machines with oracle

A but is allowed only small (polynomial sized) queries to the oracle.
In particular, when A = SAT ,

EXP * PSAT /poly ⇒ BP.NP = AM ⊆ BP.PNP ⊆ i.o−NSUBEXP

Like in the BFNW case, if we can get hold of a “suitably hard” function,
then we can derandomize AM into SUBEXP non-uniformly.

Assume NEXP 6= EXP , let L(M) = L ∈ NE, L /∈ EXP . Since L is
a language in NTIME(2n), accepting paths of M are of size 2n, one can
interpret them as functions from Σn to Σ.

6

The number of oracle circuits of size nc is atmost 2nc′
for some c′, and

hence they can all be enumerated in EXP . Since L /∈ EXP , there must
exist infinitely many n such that there is an xn of length n such that the
accepting paths of M on xn do not have polynomial sized circuits.

Pick an x1 that fails for c = 1, and a larger string x2 that fails for c = 2
and so on. Hence, this gives you an infinite sequence {xn} such that for every
polynomial nc, all but finitely many xn’s are such that M(xn)’s accepting
paths are not in SIZESAT (|xn|c).

This basically shows that the computations paths are not in P/poly
almost everywhere.

Consider advice strings of this form zn = 1 · xn if such an xn exists at
that length, and 0n+1 otherwise. Now with this advice, in NTIME(2|zn|)
one can guess the computational path of M(xn), and we would get the hard
function.

And now, with our Nisan-Wigderson design as in [BFNW] we can sim-
ulate BP.NP = AM in NSUBEXP with the advice zn.

Hence NEXP 6= EXP ⇒ AM ⊆ i.o − [NTIME(2nε
)]/nε for every

ε > 0

4.6 Proof of Theorem 2

We have remarked earlier that if NEXP ⊆ P/poly, then EXP = MA =
AM . And further, with step 5, NEXP ⊆ P/poly and NEXP 6= EXP
would imply that EXP = AM ⊆ i.o− [NTIME(2n)] /n.

Now, if NEXP 6= EXP with the assumption that NEXP ⊆ P/poly,
by 4 we have EXP * i.o − [NTIME(2n)] /n, contradicting the above im-
plication.

Hence NEXP ⊆ P/poly ⇒ NEXP = EXP

5 One more theorem

Definition 8. L ∈ MA · EXP if there exists a polynomial time predicate
R(x, y, z) and a polynomial nc such that if x ∈ L, there exists a y ∈ Σ2nc

such that
Pr
z

[R(x, y, z) = 1] ≥ 2
3

And if x /∈ L,

Pr
z

[R(x, y, z) = 1] ≤ 1
3

7

Theorem 9. MA · EXP * P/poly, ZEXPNP * P/poly

Proof. If EXP * P/poly, then we are done. Otherwise, we know that
EXP = MA. And just as P = NP ⇒ EXP = NEXP , we can extend
EXP = MA to EEXP = MA · EXP .

But EEXP * P/poly, infact DTIME(2nf(n)
) * P/poly for any f that

grows!
And MA ⊆ ZPPNP and hence again we have ZEXPNP ⊆ P/poly

8

	Overview
	Hardness PRG
	Derandomizing Identity Testing
	The Permanent
	ACIT: Arithmetic Circuits for Identity Testing
	Circuits for Permanent and Identity Testing
	The Impagliazzo-Kabanets Theorem

	Proof of Theorem 2
	Proof of Step 1
	Proof of Step 2
	Proof of Step 3
	Proof of Step 4
	Proof of Step 5
	Proof of Theorem 2

	One more theorem

