Lecture 4,5: Aug 11, 2006
Lecturer: V. Arvind
Scribe: Ramprasad Saptharishi

1 Overview

Hardness	PRG	Derandomization
$E \nsubseteq P /$ poly	$n^{\epsilon} \rightarrow n$	$B P P \subseteq S U B E X P$
$E \nsubseteq S I Z E\left(2^{\epsilon n}\right)$	$\log n \rightarrow n$	$B P P=P$

In the first few lectures, we say that hardness \rightarrow PRG, and then we saw that hardness \rightarrow derandomization.

In this lecture we shall look at other implications between hardness, PRGs and derandomization

2 Hardness \leftrightarrow PRG

Theorem 1. Suppose $G: \log n \rightarrow n$ be a quick PRG which is secure against circuits of size n, i.e

$$
\forall|C| \leq n,\left|\operatorname{Pr}_{y \in R^{n}}[C(y)=1]-\operatorname{Pr}_{x \in \in^{\Sigma^{\log } n}}[C(G(x))=1]\right|<\frac{1}{n}
$$

then, there $\exists f, f \in E, f \notin \operatorname{SIZE}\left(2^{\epsilon n}\right)$.
Proof. Let $\log n=l . G^{\prime}: l \rightarrow l+1$ be the truncated version of G. Hence clearly

$$
\forall|C| \leq n,\left|\operatorname{Pr}_{y \in \Sigma^{l+l}}[C(y)=1]-\operatorname{Pr}_{x \in R^{\Sigma^{l}}}\left[C\left(G^{\prime}(x)\right)=1\right]\right|<\frac{1}{n}
$$

$\operatorname{Range}\left(G^{\prime}\right)=\left\{y \mid y=G^{\prime}(x)\right\}$ and clearly Range $\left(G^{\prime}\right)$ is computable in E since given a y we can run through all $|x|=|y|-1$ and check if $G^{\prime}(x)=y$.

Claim: Range $\left(G^{\prime}\right) \notin \operatorname{SIZE}\left(2^{\epsilon n}\right)$
For if it were in $\operatorname{SIZE}\left(2^{\epsilon n}\right)$, it would mean that you can next bit predict G using a this circuit which will be of size $2^{\epsilon \log n}=n^{\epsilon}<n$, contradicting the hardness of G.

Thus we now have a language ($\operatorname{Range}\left(G^{\prime}\right)$) which is computable in E but is not in $\operatorname{SIZE}\left(2^{\epsilon n}\right)$.

And together with what we have done earlier, we have Hardness \leftrightarrow PRG.

3 Derandomizing Identity Testing

Impagliazzo and Kabanets then showed that derandomization has implications of lower bounds on arithmetic circuits. In this section we shall look at the main result of the paper "Derandomization identity testing means proving circuit lower bounds - Impagliazzo,Kabanets".

We would need to use the result from a paper by Impagliazzo, Kabanets and Wigderson in their paper "In search of an easy witness".
Theorem 2 (Impagliazzo,Kabanets,Wigderson). If $N E X P \subseteq P /$ poly then $N E X P=E X P$.

We know from the [BFNW] result discussed in the earlier lecure, $E X P \subseteq$ $P /$ poly implies $E X P=M A=A M$. And hence $N E X P \subseteq P /$ poly \Rightarrow $N E X P=M A=A M$.

We shall give the proof this in section 4

3.1 The Permanent

$\operatorname{Perm}_{\mathbb{Z}}(A)$: a degree n polynomial over n^{2} variables.

$$
\operatorname{Perm}_{\mathbb{Z}}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

Let P_{n} be the function evaluating the permanent for an $n \times n$ matrix. And the permanent satisfies the following conditions:

$$
\begin{aligned}
P_{1}(x) & =x \\
P_{i}(x) & =\sum_{j=1}^{i} X_{1 j} P_{i-1}\left(X_{j}\right)
\end{aligned}
$$

And more, any functions that satisfies the above properties has to be the permanent.

Summing up a few results we know already:
[Valiant79]: Perm is \#P complete
[Toda89]: $P H \subseteq P^{\text {Perm }}$
$[\mathrm{BFNW}+\mathrm{IKW}]: N E X P \subseteq P /$ poly $\Rightarrow N E X P=E X P=M A=$ $P H=P^{P e r m}$

3.2 ACIT: Arithmetic Circuits for Identity Testing

$A C I T=\{C \mid C$ defines a polynomial $p, p=0\}$.
Obviously, $\operatorname{deg} p \leq 2^{S I Z E(C)}$. And we also know the Schwarz-Zippel lemma
Lemma 3 (Schwarz-Zippel). If $p: F^{n} \rightarrow F, p \neq 0$ of degree d, then for any subset $S \subseteq F$

$$
\operatorname{Pr}_{a \in S^{n}}[p(a)=0]<\frac{d}{|S|}
$$

Claim 4. $A C I T \in \operatorname{coRP}$
Proof. We shall appeal to Shwarz-Zippel by choosing our $S=\left\{1,2,3, \ldots, 2^{s^{2}}\right\}$ for a size s circuit. Then the Schwarz-Zippel lemma would have bounded the error probability to $\frac{2^{s}}{2^{s^{2}}} \leq 2^{-s}$, but the value of $p_{C}(a)$ could be huge, as large as $2^{2^{s} s^{2}}$. Thus we need to do chinese remindering

Assume that $p_{C} \neq 0$. We would now evaluate C modulo a random $m \in\left\{2^{s^{2}}, \ldots, 2^{s^{3}}\right\}$. By the prime number theorem, atleast $\frac{1}{s^{4}}$ fraction of them would be primes.

Our bad case happens when either m is composite or m divides $p_{C}(a)$. Case 1 can happen with probability atmost $\left(1-\frac{1}{s^{4}}\right)$. Now if $p_{C} \neq 0$, atmost 2^{s} primes in the range can divide it, and thus the probability that a random prime divides p_{C} is $\leq \frac{1}{s^{4} 2^{s}}<2^{-s^{2}}$.

Hence, if $p_{C} \neq 0$

$$
\underset{a, m}{\operatorname{Pr}}\left[p_{C}(a) \equiv 0 \quad \bmod m\right] \leq 2^{-s}+2^{-s^{2}}+\left(1-s^{-4}\right) \leq\left(1-s^{-5}\right)
$$

Repeating this over s^{6} independantly chosen m from the range, we can get the error probability less than half, and thus $A C I T \in c o R P$.

3.3 Circuits for Permanent and Identity Testing

Define $A C P=\left\{(C, n): C\right.$ evaluates $\left.\operatorname{Perm}_{\mathbb{Z}}^{n \times n}\right\}$.
Claim 5. $A C P \leq_{m}^{P} A C I T$
Proof. Let C be a circuit evaluating a polynomial p over n^{2} variables. Interpretting p_{n} to be a function of a matrix $\left\{x_{i j}\right\}_{i, j}^{n}$. Let p_{i} be the restriction of p_{n} to $\{i \times i\}$ matrices of variables. Thus if p_{n} evaluates the permanent, so will p_{i} on the restricted matrix.

Now define

$$
\begin{aligned}
h_{1}(x) & =p_{i}(x)-x \\
h_{i}(X) & =p_{i}(X)-\sum_{j=1}^{i} X_{1 j} p_{i-1}\left(X_{j}\right)
\end{aligned}
$$

Now clearly if p_{n} evaluates the permanent, then each of the h_{i} has to be identically zero. And hence look at

$$
h(x)=\sum_{i=1}^{n} h_{i}(X)^{2}
$$

and C evaluates permanent if and only if $h=0$.

3.4 The Impagliazzo-Kabanets Theorem

Theorem 6 (Impagliazzo-Kabanets). If $A C I T \in S U B E X P$, either $N E X P \nsubseteq$ $P /$ poly or Perm $_{\mathbb{Z}}$ does not have polysized arithmetic circuits.

Also not that if $B P P=P$, then $N P=M A$. And we then can't have $N E X P \subseteq P /$ poly since it would then absurdly give $N P=N E X P$.

Proof. If $N E X P \subseteq P /$ poly, $N E X P=P^{\text {Perm }}=N P^{\text {Perm }}$.
Claim: $N E X P \subseteq P /$ poly, Perm has poly sized circuits $\Rightarrow N E X P \subseteq$ $N P^{A C I T}$

Pf: Let $L \in N E X P$, and x an instance of L. Now by our assumption, $L \in N P^{\text {Perm }}$ and hence $L=\mathfrak{L}\left(M^{\text {Perm }}\right)$ for some n^{k} time machine M.

This forces the largest permanent queries to be those of $n^{k} \times n^{k}$ matrices. Guess the permanent cirucit, can be done since the size of the circuit is polynomially bounded! In order to verify, we know that $A C P \underset{m}{P} A C I T$, so use that as a query for the oracle. And thus $N E X P \subseteq N P^{A C I T}$.

Now with this claim, if you further have that $A C I T \in S U B E X P$, we can then would be able to simulate $N E X P$ in $N E$ thus giving an absurd implication that $N E=N E X P$. Hence the main theorem is proved.

4 Proof of Theorem 2

Just like we have $P /$ poly, and we shall use a similar notation \mathcal{C} / f.

Definition 7. For any complexity \mathcal{C} and function $f: \mathbb{N} \rightarrow \mathbb{N}, L \in \mathcal{C} / f$ if there exists a sequence of strings $\left\{y_{i}\right\}_{i \geq 0}$ with $\left|y_{n}\right|=f(n)$ and $L^{\prime} \in \mathcal{C}$ such that for all $x \in \Sigma^{*}, x \in L \Leftrightarrow\left(x, y_{|x|}\right) \in \bar{L}^{\prime}$

The proof of this theorem shall be broken down into the following steps:

1. $E X P \nsubseteq$ i.o $-S I Z E\left(n^{c}\right)$ for each c
2. $E X P \nsubseteq$ i.o $-\left[D T I M E\left(2^{n^{c}}\right)\right] / n^{c}$ for each c.
3. $N E X P=E X P \Rightarrow E X P \nsubseteq$ i.o $-\left[N T I M E\left(2^{n}\right)\right] / n$
4. $N E X P \subseteq P /$ poly $\Rightarrow E X P \nsubseteq$ i.o $-\left[N T I M E\left(2^{n}\right)\right] / n$
5. Theorem: If $N E X P \neq E X P$, then $A M \subseteq$ i.o $-\left[N T I M E\left(2^{n^{\epsilon}}\right)\right] / n^{\epsilon}$ for every $\epsilon>0$

4.1 Proof of Step 1

The number of boolean functions on length n inputs is $2^{2^{n}}$ and we saw earlier that the number of boolean functions that have size $\leq n^{c}$ is atmost $2^{n^{c^{\prime}}}$ for some c^{\prime} (depending on c)

Now the inputs are $x_{1}, x_{2}, \cdots, x_{n^{c}+2}, \cdots, x_{2^{n}}$. Define a function f as follows:

$$
\begin{array}{ll}
\forall i \leq n^{c}+2 & ,
\end{array} \quad f\left(x_{i}\right)=b_{i}, ~=~ f\left(x_{i}\right)=0
$$

where $b_{i}=\operatorname{maj}\left(C\left(x_{i}\right)\right)$ over all circuits $C \in S I Z E\left(n^{c}\right)$.
Clearly this is in $\operatorname{DTIME}\left(2^{n^{c+1}}\right) \subseteq E X P$ but not in $\operatorname{SIZE}\left(n^{c}\right)$ at any length.

4.2 Proof of Step 2

The number of boolean functions over n inputs is $2^{2^{n}}$. Consider turing machine descriptions M of size leqn with advice of size n^{c}, running for atmost $2^{n^{c}}$ steps. Let $\mathfrak{F}=$ All boolean functions from $\Sigma^{n} \rightarrow \Sigma$ computed by such turing machines. As earlier $|\mathfrak{F}| \leq 2^{n^{c^{\prime}}}$.

And hence we can find a assignment of truth values to the first $n^{c^{\prime}}+2$ strings that diagonalises against \mathfrak{F}. The lexigraphically least of such assignments is our language in $E X P$, but not in i.o- $\left[\operatorname{DTIME}\left(2^{n^{c}}\right)\right] / n^{c}$.

4.3 Proof of Step 3

We shall show that if $N E X P=E X P$, then $\left[\operatorname{NTIME}\left(2^{n}\right)\right] / n \subseteq$ i.o $\left[\operatorname{DTIME}\left(2^{n^{c}}\right)\right] / n$ for some fixed c. And then, using step 2 we would be done.

Let U be a universal non-deterministic turing machine that takes a pair (i, x) as input and simulates the i th non-deterministic machine M_{i} on x for $2^{|x|}$ steps and accepts iff M_{i} accepts x within that many steps. Hence

$$
\mathfrak{L}(U) \in \operatorname{NTIME}\left(2^{|x|+|i|}\right)
$$

Now for every language $L \in \operatorname{NTIME}\left(2^{n}\right)$ can be decided in $\operatorname{NTIME}\left(2^{|x|+|i|}\right)$ where $|i|$ is the constant sized description of the machine accepting L. And by our assumption this can be simulated in $\operatorname{DTIME}\left(2^{n^{c}}\right)$ for some fixed c. Consequently, every language in $\left[\operatorname{NTIME}\left(2^{n}\right)\right] / n$ can be simulated in $\left[\operatorname{DTIME}\left(2^{n^{c}}\right)\right] / n$, and the proof is done.

4.4 Proof of Step 4

Just similar to the earlier proof, every language in $\left[\operatorname{NTIME}\left(2^{n}\right)\right] / n$ can be simulated in $\operatorname{SIZE}\left(n^{d}\right)$ for some fixed d and we would hence obtain a similar contradiction to 1 if 4 is false.

4.5 Proof of Step 5

By the [BFNW] theorem we have that $E X P \nsubseteq P /$ poly would imply that $B P P \subseteq$ i.o $-S U B E X P$. The point to note here is that the proof of the theorem relativises!

For every oracle A,

$$
E X P^{A} \nsubseteq P^{A} / \text { poly } \Rightarrow B P P^{A} \subset \text { i.o }-S U B E X P^{" A} A^{\prime \prime}
$$

where $S U B E X P P^{\prime \prime} A^{\prime \prime}$ is the class of $S U B E X P$ turing machines with oracle A but is allowed only small (polynomial sized) queries to the oracle.

In particular, when $A=S A T$,

$$
E X P \nsubseteq P^{S A T} / \text { poly } \Rightarrow B P . N P=A M \subseteq B P . P^{N P} \subseteq \text { i.o }-N S U B E X P
$$

Like in the BFNW case, if we can get hold of a "suitably hard" function, then we can derandomize $A M$ into $S U B E X P$ non-uniformly.

Assume $N E X P \neq E X P$, let $\mathfrak{L}(M)=L \in N E, L \notin E X P$. Since L is a language in $\operatorname{NTIME}\left(2^{n}\right)$, accepting paths of M are of size 2^{n}, one can interpret them as functions from Σ^{n} to Σ.

The number of oracle circuits of size n^{c} is atmost $2^{n^{c^{\prime}}}$ for some c^{\prime}, and hence they can all be enumerated in $E X P$. Since $L \notin E X P$, there must exist infinitely many n such that there is an x_{n} of length n such that the accepting paths of M on x_{n} do not have polynomial sized circuits.

Pick an x_{1} that fails for $c=1$, and a larger string x_{2} that fails for $c=2$ and so on. Hence, this gives you an infinite sequence $\left\{x_{n}\right\}$ such that for every polynomial n^{c}, all but finitely many x_{n} 's are such that $M\left(x_{n}\right)$'s accepting paths are not in SIZE ${ }^{S A T}\left(\left|x_{n}\right|^{c}\right)$.

This basically shows that the computations paths are not in $P /$ poly almost everywhere.

Consider advice strings of this form $z_{n}=1 \cdot x_{n}$ if such an x_{n} exists at that length, and 0^{n+1} otherwise. Now with this advice, in $\operatorname{NTIME}\left(2^{\left|z_{n}\right|}\right)$ one can guess the computational path of $M\left(x_{n}\right)$, and we would get the hard function.

And now, with our Nisan-Wigderson design as in [BFNW] we can simulate $B P . N P=A M$ in $N S U B E X P$ with the advice z_{n}.

Hence $N E X P \neq E X P \Rightarrow A M \subseteq$ i.o $-\left[\operatorname{NTIME}\left(2^{n^{\epsilon}}\right)\right] / n^{\epsilon}$ for every $\epsilon>0$

4.6 Proof of Theorem 2

We have remarked earlier that if $N E X P \subseteq P /$ poly, then $E X P=M A=$ $A M$. And further, with step 5, $N E X P \subseteq P /$ poly and $N E X P \neq E X P$ would imply that $E X P=A M \subseteq$ i.o $-\left[N T I M E\left(2^{n}\right)\right] / n$.

Now, if $N E X P \neq E X P$ with the assumption that $N E X P \subseteq P /$ poly, by 4 we have $E X P \nsubseteq$ i.o - $\left[\operatorname{NTIME}\left(2^{n}\right)\right] / n$, contradicting the above implication.

Hence $N E X P \subseteq P /$ poly $\Rightarrow N E X P=E X P$

5 One more theorem

Definition 8. $L \in M A \cdot E X P$ if there exists a polynomial time predicate $R(x, y, z)$ and a polynomial n^{c} such that if $x \in L$, there exists a $y \in \Sigma^{2^{n^{c}}}$ such that

$$
\operatorname{Pr}_{z}[R(x, y, z)=1] \geq \frac{2}{3}
$$

And if $x \notin L$,

$$
\operatorname{Pr}_{z}[R(x, y, z)=1] \leq \frac{1}{3}
$$

Theorem 9. $M A \cdot E X P \nsubseteq P /$ poly, $Z E X P^{N P} \nsubseteq P /$ poly
Proof. If $E X P \nsubseteq P /$ poly, then we are done. Otherwise, we know that $E X P=M A$. And just as $P=N P \Rightarrow E X P=N E X P$, we can extend $E X P=M A$ to $E E X P=M A \cdot E X P$.

But $E E X P \nsubseteq P /$ poly, infact $D T I M E\left(2^{n^{f(n)}}\right) \nsubseteq P /$ poly for any f that grows!

And $M A \subseteq Z P P^{N P}$ and hence again we have $Z E X P^{N P} \subseteq P /$ poly

