
Complexity Theory II Course Instructor: V. Arvind

Lecture 03: Aug 09, 2006

Lecturer: V. Arvind Scribe: Shreevatsa R

1 Overview

In the last lecture, we proved that a hard function can be used to deran-
domise BPP in SUBEXP:

Theorem 1. If there is a function computable in E that has nc hardness for
every c > 0, then BPP ⊆ SUBEXP =

⋃
ε>0 DTIME(2nε

).

We also stated the Babai–Fortnow–Nisan–Wigderson theorem, and saw
a sketch of the proof. In this lecture we actually prove it.

2 Initial remarks

Theorem 2 (BFNW). If EXP 6⊂ io-P/poly, then BPP ⊆ SUBEXP.

As EXP 6⊂ io-P/poly is equivalent to E 6⊂ io-P/poly, the hypothesis says
that there exists some f ∈ E, f 6∈ io-P/poly, i.e., f is such that for every
polysize circuit family C = {Cn}, Prx∈{0,1}n [f(x) = C(x)] < 1 for all but
finitely many n. This is “worst-case hardness”.

¿From this, we want to derive “average-case hardness”, improving the
“< 1” above to a negligible quantity. The proof will successively construct
harder functions, starting with f , until we have one that satisfies the hy-
pothesis of Theorem 1.

3 Constructing a harder function g

3.1 Arithmetise f and interpolate

fn : {0, 1}n → {0, 1}. Pick a finite field F of size nO(1), say F = F2k where
k = O(log n). We can assume {0, 1} ⊂ F .

Find gn : Fn → F such that gn extends fn, i.e., gn coincides with fn

on all inputs from {0, 1}n. We can find this by interpolation: for each

1

a ∈ {0, 1}n, define Pa(x1, . . . , xn) =
∏n

i=1(1 − ai − xi). Pa has degree n,
takes the value 1 at a, and takes the value 0 for all other b ∈ {0, 1}n.

Define
gn(x1, . . . , xn) =

∑
{a|fn(a)=1}

Pa(x1, . . . , xn) .

gn has degree at most n, and g = {gn} agrees with f on {0, 1}n for all n.
gn is a function {0, 1}nk → {0, 1}k where k = O(log n) (2 log n, say). So
g = {gn} is computable in 2O(n) time.

3.2 Hardness claim

For every polysize circuit family C ′ = {C ′
n},

Pr
x∈F n

[gn(x) = C ′
n(x)] < 1− 1

3n

for all but finitely many n.

Proof. Suppose not, i.e., suppose there exists C ′ which does better. Then
we shall give a randomised polytime algorithm that uses C ′ as subroutine
and computes gn on all of Fn, and thus computes f .

Let x be any element of Fn. Pick r uniformly at random from Fn. Then
x + tr, for t ∈ F , t 6= 0, is also a random variable with uniform distribution.
Define the polynomial P as P (t) = gn(x + tr). As deg P ≤ n, it is sufficient
to know its value at n + 1 points to determine it completely.

Let t1, t2, . . . , tn+1 be n + 1 distinct points in F ∗. Compute C ′
n(x + tir)

for each i, 1 ≤ i ≤ n + 1. This computation is wrong with probability at
most 1/(3n), by our assumption about C ′. As this is true for each i,

Pr[∃i : C ′
n(x + tir) 6= gn(x + tir)] ≤

n + 1
3n

≤ 2
5

.

So we can find P (and hence P (0) = gn(x)) with probability at least 3/5. As
this is a BPP algorithm, and BPP ⊆ P/poly, this contradicts the hardness
of f .

Next, we amplify the hardness of g: we define a ĝ, also computable in
E, such that

Pr[C(x) = ĝ(x)] ≤ 1
p(n)

(1)

for every polynomial p.

2

4 Constructing ĝ: The direct product lemma

The direct product lemma gives us a way of constructing harder functions
from a given function. It states the following:

1. Suppose the function f : {0, 1}n → {0, 1}t is such that for all circuits C

of size s, Pr[f(x) = C(x)] < δ. Then, for any ε > 0, if k ≥ O(log(1/ε)
1−δ),

the function g : {0, 1}nk → {0, 1}tk defined as g(x1, x2, . . . , xk) =
(f(x1)f(x2) . . . f(xk)) satisfies the property that for all circuits C ′ of
size O(ε

log(1/ε)), Pr[g(x) = C ′(x)] ≤ ε.

2. Suppose the function g ∈ E satisfies the property that for a fixed
polynomial q(n), for every polysize circuit C,

Pr[g(x) = C(x)] < 1− 1
q(n)

,

then letting k = nq(n) in the above, we have a function ĝ : {0, 1}n →
{0, 1}t(n) such that for every polysize circuit family C ′,

Pr[ĝ(x) = C ′(x)] <
1

p(n)

for every polynomial p almost everywhere.

We now have a function ĝ that has the hardness claimed in equation 1.

5 The Goldreich–Levin theorem

Let v ∈ {0, 1}n be a “hidden vector”. Suppose G is a randomised polytime
algorithm such that

Pr[G(r) = 〈v, r〉] ≥ 1
2

+ ε,

the probability being taken over all choices of r from {0, 1}n and over G’s
coin tosses. Then,

Theorem 3. There is a poly(n, 1/ε) time algorithm that outputs v with
probability at least ε2

2n .

(Note: v 7→ [〈v, 0n〉 ,
〈
v, 0n−11

〉
,
〈
v, 0n−210

〉
,
〈
v, 0n−211

〉
, . . . , 〈v, 1n〉] is

called the Hadamard code. We shall see later that the Goldreich–Levin
theorem can be thought of as list decoding the Hadamard code.)

3

Proof. Let e1, e2, . . . , en be the standard basis of {0, 1}n. The naive idea
would be to pick a random r from {0, 1}n, and find G(r) ⊕ G(r ⊕ ei). As
r⊕ ei is also randomly distributed in {0, 1}n, with a probability better than
half, this will be equal to 〈v, r〉 ⊕ 〈v, (r ⊕ ei)〉 = 〈v, ei〉 = vi.

The actual idea is to avoid make two calls to G. We guess the value of
〈v, r〉, and use G to compute only 〈v, r〉 ⊕G(r ⊕ ei).

Choose m=poly(n, 1/ε), and l = log(m + 1). Pick r1, r2, . . . , rl indepen-
dently and uniformly at random from {0, 1}n. Define rJ =

∑
i∈J ri, for each

of the m = 2l − 1 nonempty subsets J of {1, . . . , l}. Similarly, guess σi,
for each i, and define σJ =

∑
i∈J σi. Clearly, as rJ is 0 or 1 with equal

probability,

Pr[〈v, rJ〉 is correct for each J] =
1
2l

=
1

m + 1

Our algorithm does the following: for each i, let

zi = maj
J

σJ ⊕G(rJ ⊕ ei) .

Output z = z1z2 . . . zn.

Claim 4. If all the guesses σi are correct, then z = v with probability more
than half.

Proof. We first prove the following subclaim: Assuming that all the guesses
are correct,

Pr
[
|{J : σJ ⊕G(rJ ⊕ ei) = vi}| ≥

2l − 1
2

]
≥ 1− 1

2n

Define, for each J , XJ = 1 if σJ ⊕G(rJ ⊕ei) = vi and 0 otherwise. From
the hypothesis (of the Goldreich–Levin theorem) we know that

E[XJ] ≥ 1
2

+ ε

E
[∑

XJ

]
≥

(
1
2

+ ε

)
m

4

The probability of the “bad event” is

Pr
[∑

XJ t <
m

2

]
≤ Pr

[∣∣∣∑ XJ − E
[∑

XJ

]∣∣∣ > mε
]

≤ Var(
∑

XJ)
ε2m2

(Chebyshev’s inequality)

=
∑

(VarXJ)
ε2m2

=
m(VarX{1})

ε2m2

=
1

ε2m

(
E[X2

{1}]− E[X{1}]
2
)

=
E[X{1}](1− E[X{1}])

ε2m

≤ 1
4ε2m

which is less than 1
2n when m ≥ n

2ε2
.

This proves the subclaim, and hence the claim.

When all the guesses are correct, the algorithm outputs v with probabil-
ity at least half. Thus, the probability that the complete algorithm outputs
the correct v is at least 1

2(m+1) ≥
ε2

4n .

6 Constructing a hard g̃

As we saw at the end of section 4, we have a function ĝ for which

Pr[C(x) = ĝ(x)] ≤ 1
p(n)

for every polynomial p. We define a new function g̃ as {g̃n} , where

g̃n : {0, 1}n × {0, 1}t(n) → {0, 1}

is defined as
g̃n(x, r) = 〈ĝn(x), r〉 (mod 2).

Once we prove that g̃n has hardness p(n) for every polynomial p, we
will have proved the BFNW theorem, for this g̃ satisifes the hypothesis of
theorem 1. Thus it only remains to prove the hardness of g̃.

5

We prove this by contradiction. Suppose there exists a polysize circuit
family C̃ and a polynomial nc such that

Pr
x,r

[g̃n(x, r) = C̃(x, r)] ≥ 1
2

+
1
nc

(2)

for infinitely many n.
Define the random variable X(x) to be Prr[g̃n(x, r) = C̃(x, r)]. We have

assumed that
E

x∈{0,1}n
[X(x)] ≥ 1

2
+

1
nc

for infinitely many n.
That is,

1
2

+
1
nc

≤
∑

a∈{0,1}n

X(a)pa , where pa =
1
2n

We can split the right hand side above as the sum of∑
{a|X(a)> 1

2
+ 1

2nc }
X(a)pa ≤ Pr

a∈{0,1}n

[
X(a) >

1
2

+
1

2nc

]

(using the fact that X(a) ≤ 1) and∑
{a|X(a)≤ 1

2
+ 1

2nc }
X(a)pa ≤

1
2

+
1

2nc

(using the fact that
∑

pa ≤ 1). Thus, we have

Pr
a∈{0,1}n

[
X(a) >

1
2

+
1

2nc

]
≥ 1

2nc

which gives a lower bound on the size of the set S =
{
a | X(a) ≥ 1

2 + 1
2nc

}
:

|S| ≥ 2n

2nc
(3)

Now notice that the Goldreich–Levin theorem applies in this setting: for
any fixed a ∈ S, we have a polytime algorithm C̃ such that

Pr
r

[
C̃(a, r) = 〈ĝn(x), r〉

]
>

1
2nc

6

By the theorem, there exists a randomised polysize circuit family
{

˜̃C
}

such that (for every a ∈ S)

Pr
[

˜̃C(a, r) = ĝn(a)
]
≥ 1

q(n)

where the probability is taken over choices of r from {0, 1}n and over ˜̃C’s
internal coin tosses, and 1

q(n) is ε2

2n = 1
8n2c+1 .

In other words, for each a, at least 1
q(n) of the random choices work.

Thus there must exist a fixed choice which works for at least 1
q(n) of the as

in S. That is, we can fix the random choices of r and the internal choices in
the computation of ˜̃C to get a polysize circuit C, so that there exists a set S′

of size at least 1
q(n) the size of S satisifying: for every a ∈ S′, C(a) = ĝ(a).

Using equation 3, we see that

Pr [C(x) = ĝ(x)] ≥ |S′|
2n

≥ 1
2nc

1
8n2c+1

,

which contradicts equation 1. This proves that our assumption in equation
2 must be wrong, and hence concludes the proof of the BFNW theorem.

7

