Lecture 03: Aug 09, 2006
Lecturer: V. Arvind

1 Overview

In the last lecture, we proved that a hard function can be used to derandomise BPP in SUBEXP:

Theorem 1. If there is a function computable in E that has n^{c} hardness for every $c>0$, then $\operatorname{BPP} \subseteq \operatorname{SUBEXP}=\bigcup_{\epsilon>0} \operatorname{DTIME}\left(2^{n^{\epsilon}}\right)$.

We also stated the Babai-Fortnow-Nisan-Wigderson theorem, and saw a sketch of the proof. In this lecture we actually prove it.

2 Initial remarks

Theorem 2 (BFNW). If EXP $\not \subset$ io-P/poly, then BPP \subseteq SUBEXP.
As EXP $\not \subset$ io- $\mathrm{P} /$ poly is equivalent to $\mathrm{E} \not \subset$ io- $\mathrm{P} /$ poly, the hypothesis says that there exists some $f \in \mathrm{E}, f \notin$ io- $\mathrm{P} /$ poly, i.e., f is such that for every polysize circuit family $C=\left\{C_{n}\right\}, \operatorname{Pr}_{x \in\{0,1\}^{n}}[f(x)=C(x)]<1$ for all but finitely many n. This is "worst-case hardness".
¿From this, we want to derive "average-case hardness", improving the " <1 " above to a negligible quantity. The proof will successively construct harder functions, starting with f, until we have one that satisfies the hypothesis of Theorem 1 .

3 Constructing a harder function g

3.1 Arithmetise f and interpolate

$f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$. Pick a finite field F of size $n^{O(1)}$, say $F=\mathbb{F}_{2^{k}}$ where $k=O(\log n)$. We can assume $\{0,1\} \subset F$.

Find $g_{n}: F^{n} \rightarrow F$ such that g_{n} extends f_{n}, i.e., g_{n} coincides with f_{n} on all inputs from $\{0,1\}^{n}$. We can find this by interpolation: for each
$a \in\{0,1\}^{n}$, define $P_{a}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n}\left(1-a_{i}-x_{i}\right) . \quad P_{a}$ has degree n, takes the value 1 at a, and takes the value 0 for all other $b \in\{0,1\}^{n}$.

Define

$$
g_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left\{a \mid f_{n}(a)=1\right\}} P_{a}\left(x_{1}, \ldots, x_{n}\right)
$$

g_{n} has degree at most n, and $g=\left\{g_{n}\right\}$ agrees with f on $\{0,1\}^{n}$ for all n. g_{n} is a function $\{0,1\}^{n k} \rightarrow\{0,1\}^{k}$ where $k=O(\log n)(2 \log n$, say $)$. So $g=\left\{g_{n}\right\}$ is computable in $2^{O(n)}$ time.

3.2 Hardness claim

For every polysize circuit family $C^{\prime}=\left\{C_{n}^{\prime}\right\}$,

$$
\operatorname{Pr}_{x \in F^{n}}\left[g_{n}(x)=C_{n}^{\prime}(x)\right]<1-\frac{1}{3 n}
$$

for all but finitely many n.
Proof. Suppose not, i.e., suppose there exists C^{\prime} which does better. Then we shall give a randomised polytime algorithm that uses C^{\prime} as subroutine and computes g_{n} on all of F^{n}, and thus computes f.

Let x be any element of F^{n}. Pick r uniformly at random from F^{n}. Then $x+t r$, for $t \in F, t \neq 0$, is also a random variable with uniform distribution. Define the polynomial P as $P(t)=g_{n}(x+t r)$. As $\operatorname{deg} P \leq n$, it is sufficient to know its value at $n+1$ points to determine it completely.

Let $t_{1}, t_{2}, \ldots, t_{n+1}$ be $n+1$ distinct points in F^{*}. Compute $C_{n}^{\prime}\left(x+t_{i} r\right)$ for each $i, 1 \leq i \leq n+1$. This computation is wrong with probability at most $1 /(3 n)$, by our assumption about C^{\prime}. As this is true for each i,

$$
\operatorname{Pr}\left[\exists i: C_{n}^{\prime}\left(x+t_{i} r\right) \neq g_{n}\left(x+t_{i} r\right)\right] \leq \frac{n+1}{3 n} \leq \frac{2}{5}
$$

So we can find P (and hence $\left.P(0)=g_{n}(x)\right)$ with probability at least $3 / 5$. As this is a BPP algorithm, and BPP $\subseteq \mathrm{P} /$ poly, this contradicts the hardness of f.

Next, we amplify the hardness of g : we define a \hat{g}, also computable in E, such that

$$
\begin{equation*}
\operatorname{Pr}[C(x)=\hat{g}(x)] \leq \frac{1}{p(n)} \tag{1}
\end{equation*}
$$

for every polynomial p.

4 Constructing \hat{g} : The direct product lemma

The direct product lemma gives us a way of constructing harder functions from a given function. It states the following:

1. Suppose the function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{t}$ is such that for all circuits C of size $s, \operatorname{Pr}[f(x)=C(x)]<\delta$. Then, for any $\epsilon>0$, if $k \geq O\left(\frac{\log (1 / \epsilon)}{1-\delta}\right)$, the function $g:\{0,1\}^{n k} \rightarrow\{0,1\}^{t k}$ defined as $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=$ $\left(f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{k}\right)\right)$ satisfies the property that for all circuits C^{\prime} of size $O\left(\frac{\epsilon}{\log (1 / \epsilon)}\right), \operatorname{Pr}\left[g(x)=C^{\prime}(x)\right] \leq \epsilon$.
2. Suppose the function $g \in E$ satisfies the property that for a fixed polynomial $q(n)$, for every polysize circuit C,

$$
\operatorname{Pr}[g(x)=C(x)]<1-\frac{1}{q(n)},
$$

then letting $k=n q(n)$ in the above, we have a function $\hat{g}:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{t(n)}$ such that for every polysize circuit family C^{\prime},

$$
\operatorname{Pr}\left[\hat{g}(x)=C^{\prime}(x)\right]<\frac{1}{p(n)}
$$

for every polynomial p almost everywhere.
We now have a function \hat{g} that has the hardness claimed in equation 1 .

5 The Goldreich-Levin theorem

Let $v \in\{0,1\}^{n}$ be a "hidden vector". Suppose G is a randomised polytime algorithm such that

$$
\operatorname{Pr}[G(r)=\langle v, r\rangle] \geq \frac{1}{2}+\epsilon,
$$

the probability being taken over all choices of r from $\{0,1\}^{n}$ and over G 's coin tosses. Then,

Theorem 3. There is a poly $(n, 1 / \epsilon)$ time algorithm that outputs v with probability at least $\frac{\epsilon^{2}}{2 n}$.
(Note: $v \mapsto\left[\left\langle v, 0^{n}\right\rangle,\left\langle v, 0^{n-1} 1\right\rangle,\left\langle v, 0^{n-2} 10\right\rangle,\left\langle v, 0^{n-2} 11\right\rangle, \ldots,\left\langle v, 1^{n}\right\rangle\right]$ is called the Hadamard code. We shall see later that the Goldreich-Levin theorem can be thought of as list decoding the Hadamard code.)

Proof. Let $e_{1}, e_{2}, \ldots, e_{n}$ be the standard basis of $\{0,1\}^{n}$. The naive idea would be to pick a random r from $\{0,1\}^{n}$, and find $G(r) \oplus G\left(r \oplus e_{i}\right)$. As $r \oplus e_{i}$ is also randomly distributed in $\{0,1\}^{n}$, with a probability better than half, this will be equal to $\langle v, r\rangle \oplus\left\langle v,\left(r \oplus e_{i}\right)\right\rangle=\left\langle v, e_{i}\right\rangle=v_{i}$.

The actual idea is to avoid make two calls to G . We guess the value of $\langle v, r\rangle$, and use G to compute only $\langle v, r\rangle \oplus G\left(r \oplus e_{i}\right)$.

Choose $\mathrm{m}=\operatorname{poly}(n, 1 / \epsilon)$, and $l=\log (m+1)$. Pick $r_{1}, r_{2}, \ldots, r_{l}$ independently and uniformly at random from $\{0,1\}^{n}$. Define $r_{J}=\sum_{i \in J} r_{i}$, for each of the $m=2^{l}-1$ nonempty subsets J of $\{1, \ldots, l\}$. Similarly, guess σ_{i}, for each i, and define $\sigma_{J}=\sum_{i \in J} \sigma_{i}$. Clearly, as r_{J} is 0 or 1 with equal probability,

$$
\operatorname{Pr}\left[\left\langle v, r_{J}\right\rangle \text { is correct for each } J\right]=\frac{1}{2^{l}}=\frac{1}{m+1}
$$

Our algorithm does the following: for each i, let

$$
z_{i}=\operatorname{maj}_{J} \sigma_{J} \oplus G\left(r_{J} \oplus e_{i}\right) .
$$

Output $z=z_{1} z_{2} \ldots z_{n}$.
Claim 4. If all the guesses σ_{i} are correct, then $z=v$ with probability more than half.

Proof. We first prove the following subclaim: Assuming that all the guesses are correct,

$$
\operatorname{Pr}\left[\left|\left\{J: \sigma_{J} \oplus G\left(r_{J} \oplus e_{i}\right)=v_{i}\right\}\right| \geq \frac{2^{l}-1}{2}\right] \geq 1-\frac{1}{2 n}
$$

Define, for each $J, X_{J}=1$ if $\sigma_{J} \oplus G\left(r_{J} \oplus e_{i}\right)=v_{i}$ and 0 otherwise. From the hypothesis (of the Goldreich-Levin theorem) we know that

$$
\begin{aligned}
\mathbb{E}\left[X_{J}\right] & \geq \frac{1}{2}+\epsilon \\
\mathbb{E}\left[\sum X_{J}\right] & \geq\left(\frac{1}{2}+\epsilon\right) m
\end{aligned}
$$

The probability of the "bad event" is

$$
\begin{aligned}
\operatorname{Pr}\left[\sum X_{J} t<\frac{m}{2}\right] & \leq \operatorname{Pr}\left[\left|\sum X_{J}-\mathbb{E}\left[\sum X_{J}\right]\right|>m \epsilon\right] \\
& \leq \frac{\operatorname{Var}\left(\sum X_{J}\right)}{\epsilon^{2} m^{2}} \quad(\text { Chebyshev's inequality }) \\
& =\frac{\sum\left(\operatorname{Var} X_{J}\right)}{\epsilon^{2} m^{2}} \\
& =\frac{m\left(\operatorname{Var} X_{\{1\}}\right)}{\epsilon^{2} m^{2}} \\
& =\frac{1}{\epsilon^{2} m}\left(\mathbb{E}\left[X_{\{1\}}^{2}\right]-\mathbb{E}\left[X_{\{1\}}\right]^{2}\right) \\
& =\frac{\mathbb{E}\left[X_{\{1\}}\right]\left(1-\mathbb{E}\left[X_{\{1\}}\right]\right)}{\epsilon^{2} m} \\
& \leq \frac{1}{4 \epsilon^{2} m}
\end{aligned}
$$

which is less than $\frac{1}{2 n}$ when $m \geq \frac{n}{2 \epsilon^{2}}$.
This proves the subclaim, and hence the claim.
When all the guesses are correct, the algorithm outputs v with probability at least half. Thus, the probability that the complete algorithm outputs the correct v is at least $\frac{1}{2(m+1)} \geq \frac{\epsilon^{2}}{4 n}$.

6 Constructing a hard \tilde{g}

As we saw at the end of section 4 , we have a function \hat{g} for which

$$
\operatorname{Pr}[C(x)=\hat{g}(x)] \leq \frac{1}{p(n)}
$$

for every polynomial p. We define a new function \tilde{g} as $\left\{\tilde{g}_{n}\right\}$, where

$$
\tilde{g}_{n}:\{0,1\}^{n} \times\{0,1\}^{t(n)} \rightarrow\{0,1\}
$$

is defined as

$$
\tilde{g}_{n}(x, r)=\left\langle\hat{g}_{n}(x), r\right\rangle \quad(\bmod 2)
$$

Once we prove that \tilde{g}_{n} has hardness $p(n)$ for every polynomial p, we will have proved the BFNW theorem, for this \tilde{g} satisifes the hypothesis of theorem 1. Thus it only remains to prove the hardness of \tilde{g}.

We prove this by contradiction. Suppose there exists a polysize circuit family \tilde{C} and a polynomial n^{c} such that

$$
\begin{equation*}
\underset{x, r}{\operatorname{Pr}}\left[\tilde{g}_{n}(x, r)=\tilde{C}(x, r)\right] \geq \frac{1}{2}+\frac{1}{n^{c}} \tag{2}
\end{equation*}
$$

for infinitely many n.
Define the random variable $X(x)$ to be $\operatorname{Pr}_{r}\left[\tilde{g}_{n}(x, r)=\tilde{C}(x, r)\right]$. We have assumed that

$$
\underset{x \in\{0,1\}^{n}}{\mathbb{E}}[X(x)] \geq \frac{1}{2}+\frac{1}{n^{c}}
$$

for infinitely many n.
That is,

$$
\frac{1}{2}+\frac{1}{n^{c}} \leq \sum_{a \in\{0,1\}^{n}} X(a) p_{a}, \text { where } p_{a}=\frac{1}{2^{n}}
$$

We can split the right hand side above as the sum of

$$
\sum_{\left\{a \left\lvert\, X(a)>\frac{1}{2}+\frac{1}{2 n^{c}}\right.\right\}} X(a) p_{a} \leq \operatorname{Pr}_{a \in\{0,1\}^{n}}\left[X(a)>\frac{1}{2}+\frac{1}{2 n^{c}}\right]
$$

(using the fact that $X(a) \leq 1$) and

$$
\sum_{\left\{a \left\lvert\, X(a) \leq \frac{1}{2}+\frac{1}{2 n^{c}}\right.\right\}} X(a) p_{a} \leq \frac{1}{2}+\frac{1}{2 n^{c}}
$$

(using the fact that $\sum p_{a} \leq 1$). Thus, we have

$$
\operatorname{Pr}_{a \in\{0,1\}^{n}}\left[X(a)>\frac{1}{2}+\frac{1}{2 n^{c}}\right] \geq \frac{1}{2 n^{c}}
$$

which gives a lower bound on the size of the set $S=\left\{a \left\lvert\, X(a) \geq \frac{1}{2}+\frac{1}{2 n^{c}}\right.\right\}$:

$$
\begin{equation*}
|S| \geq \frac{2^{n}}{2 n^{c}} \tag{3}
\end{equation*}
$$

Now notice that the Goldreich-Levin theorem applies in this setting: for any fixed $a \in S$, we have a polytime algorithm \tilde{C} such that

$$
\operatorname{Pr}_{r}\left[\tilde{C}(a, r)=\left\langle\hat{g}_{n}(x), r\right\rangle\right]>\frac{1}{2 n^{c}}
$$

By the theorem, there exists a randomised polysize circuit family $\{\tilde{\tilde{C}}\}$ such that (for every $a \in S$)

$$
\operatorname{Pr}\left[\tilde{\tilde{C}}(a, r)=\hat{g}_{n}(a)\right] \geq \frac{1}{q(n)}
$$

where the probability is taken over choices of r from $\{0,1\}^{n}$ and over $\tilde{\tilde{C}}$'s internal coin tosses, and $\frac{1}{q(n)}$ is $\frac{\epsilon^{2}}{2 n}=\frac{1}{8 n^{2 c+1}}$.

In other words, for each a, at least $\frac{1}{q(n)}$ of the random choices work. Thus there must exist a fixed choice which works for at least $\frac{1}{q(n)}$ of the as in S. That is, we can fix the random choices of r and the internal choices in the computation of $\tilde{\tilde{C}}$ to get a polysize circuit C, so that there exists a set S^{\prime} of size at least $\frac{1}{q(n)}$ the size of S satisifying: for every $a \in S^{\prime}, C(a)=\hat{g}(a)$.

Using equation 3 , we see that

$$
\operatorname{Pr}[C(x)=\hat{g}(x)] \geq \frac{\left|S^{\prime}\right|}{2^{n}} \geq \frac{1}{2 n^{c}} \frac{1}{8 n^{2 c+1}},
$$

which contradicts equation 1 . This proves that our assumption in equation 2 must be wrong, and hence concludes the proof of the BFNW theorem.

