
Complexity Theory II Course Instructor: V. Arvind

Lecture 1 : Aug 2, 2006

Lecturer: V. Arvind Scribe: Kazim Bhojani

1 Outline of the course

In this course we will discuss following topics

• Hardness vs. Randomness

– Pseudorandom generators

– Error correcting codes

• Extractors

• Expander graphs

– Reingold’s Logspace algorithm for undirected connectivity

– New proof of PCP theorem

Topics discussed in the first part are taken from a survey by Nisan and
Wigderson, Hardness vs. Randomness.

2 Notion of Pseudorandomness and constructing
PRG’s

In this lecture we shall discuss two notions of randomness as formulated by
Blum-Micali and Yao during 80’s ,show that the two definitions are equiva-
lent and then go on to construct a PRG using one way functions.

2.1 Two notions of Pseudorandomness

If a resource bounded observer cannot distinguish between Ideal random
source and another deterministic source A , then A can be used in place of
ideal source and it is as good as an ideal source from the observer’s point of
view.

Such an A will be called a Pseudorandom Generator.

1

Blum and Micali for the first time in 1980 formalized the notion of ran-
domness and gave the following definition of Pseudorandomness.

Definition 1. Blum-Micali definition(Next bit prediction test)
Let G = {Gn : {0, 1}l(n) → {0, 1}n} be such that l(n) << n , that is , G

takes a seed of length l(n) and generates a string of length n .
G is called a Pseudorandom Generator for a class C(of algorithms) , if

for every polynomial p(n) and each i and for all the algorithms A ∈ C the
following holds∣∣∣∣Probx∈{0,1,}l(n) [A(y1y2 . . . yi−1) = yi]−

1
2

∣∣∣∣ <
1

p(n)

where x ∈ {0, 1}l(n) and Gn(x) = y1y2 . . . yn.

Yao in 1982 formulated a different definition of Pseudorandomness and
showed that the two definitions are equivalent

Definition 2. Yao’s Definition(Distinguisher test)
A function G : l(n) → n is a PRG 1 for a class C of algorithms if

for every polynomial p(n) and each i and for all the algorithms A ∈ C the
following holds

∣∣∣Proby∈{0,1,}n [A(y) = 1]− Probx∈{0,1,}l(n) [A(G(x)) = 1]
∣∣∣ <

1
p(n)

Theorem 3 (Yao). The two definitions of Pseudorandomness given above
are equivalent

2.2 Constructing PRG’s

First we begin with the definition of One way functions.

Definition 4. One way functions
A function f = {fn : {0, 1}n → {0, 1}m} is a 1-way function if for every

polynomial p(n) and every circuit C of size p(n) the following holds

Probx∈{0,1}n [C(f(x)) /∈ f−1(x)] ≥ 1
p(n)

and f should be computable in polynomial time.
1Henceforth we will use the abbreviation PRG for Pseudorandom generator(s)

2

The following are two examples of functions are that are believed to be
1-way and no fast algorithms are known for inverting these functions

• Function f that computes product of two n bit primes

•
f : (Zp−1,+) → (Z∗

p, ∗)

x 7→ ax

Now we state a theorem due to Yao which relate 1-way functions with
PRGs.

Theorem 5. (Yao’s theorem).
If there is a 1-way function f then for every ε > 0 there is a PRG

G : nε → n

such that G runs in polynomial time and is secure against all polynomial
size circuits.

But how do we get hold of G , given a 1-way function ?
Here is a rough procedure how we can use 1-way function to get hold of

a PRG

• f is a 1-way function.

• Get hold of g which is 1-way with amplified hardness

• Then compute x, g(x), g(g(x)), . . . , g(n)(x).

• Extract one bit from each of the above strings and this x0x1 . . . xn is
the output of the PRG

One immediate corollary of the Yao’s theorem is the following result

Corollary 6. If 1-way functions exist then BPP ⊆ DTIME(2nε
) for some

ε > 0.

Also the converse of Yao’s of theorem is also true.

Theorem 7. (Converse of Yao’s Theorem).
If there is a PRG

G : nε → n

then 1-way functions exist.

3

2.3 Nisan-Wigderson design

First we begin with definition of quick PRG.

Definition 8. (quick PRG).
G : l(n) → n is called a quick PRG if it is computable in time 2O(l(n))(deterministic)

and for every circuit C of size n2 the following holds

∣∣∣Proby∈{0,1,}n [C(y) = 1]− Probx∈{0,1,}l(n) [C(G(x)) = 1]
∣∣∣ <

1
n

Lemma 9. If a quick PRG G : l(n) → n exists then for every time con-
structible function t(n)

BPTIME(t(n)) ⊆ DTIME(2O(l(t(n)))

Proof. Let L ∈ BPTIME(t(n)) and M be a machine which accepts lan-
guage L and x be an input instance.

Let |x| = t(n) , we can assume that the r random bits used in the
computation are given with input.

Look at the tableau of computation it has t(n) configurations.
Now Gt(n) : O(l(t(n))) → O(t(n)) , so we can cycle over all string s of

length l(t(n)) and use G(s) as a random string in computation so the whole
simulation can be done in DTIME(2O(l(t(n)))

Hence proved.

Now we define the notion of hardness of a boolean function.

Definition 10. A boolean function f : {0, 1}n → {0, 1} is called (ε, S)-hard
, if for all circuits of size S the following holds,∣∣∣∣Probx∈{0,1,}l(n) [C(x) = f(x)]− 1

2

∣∣∣∣ < ε

Also a function f is said to have hardness H(f) = m , where is m is the
largest number such that f is (m, 1

m)-hard.
We can now use hard functions to build PRGs using the Nisan-Wigderson

design

4

2.3.1 The (n,l,m,k) design

• Let S1, S2, . . . , Sn ⊆ {1, 2, . . . , l} such that |Si| = m

• i 6= j =⇒ |Si ∪ Sj | ≤ k.

• Let f : {0, 1}m → {0, 1} be the given hard function.

• Let x = x1x2 . . . xl be the seed where l is the seed length.

• Now project x onto each coordinate of Si to get a string of length m
and apply f to that string to obtain bit yi , that is yi = f(x|Si) for
i = 1, 2, . . . , n.

• y = y1y2 . . . yn is the output of the Pseudorandom generator.

So we have a function Gf : l → n.

Theorem 11. If f : {0, 1}m → {0, 1} is a boolean function with hardness
n2 and Gf is built from a (n, l,m, log n) design , then Gf is a quick PRG.

Proof. Suppose C is a circuit of size n2 that distinguishes Gf ’s output from
random source , that is ,

Proby∈{0,1,}n [C(y) = 1]− Probx∈{0,1,}l(n) [C(Gf (x)) = 1] >
1
n

Let E1 be the uniform distribution and En be the distribution of G(x) ,
now we advance a hybrid argument to obtain a contradiction.

Define the intermediate distributions E2, . . . , E(n−1) as follows ,

• E0 has distribution r1, r2, . . . , rn where ri’s are true random bits.
...

• Ei has distribution u1, . . . , ui, ri+1, . . . , rn , where u1, . . . , ui are first i
bits of output of pseudorandom generator G.
...

• En has distribution u1, u2, . . . , un where ui’s are output of G.

5

So we have ,

Proby∈E0 [C(y) = 1]− Proby∈En [C(y) = 1] >
1
n

=⇒
n−1∑
i=0

[
Proby∈Ei [C(y) = 1]− Proby∈Ei+1 [C(y) = 1]

]
>

1
n

=⇒ ∃ i : Proby∈Ei [C(y) = 1]− Proby∈Ei+1 [C(y) = 1] >
1
n2

So now we have a randomized algorithm D(y1, y2, . . . , yn) where input is
first i bits of G’s output and outputs yi+1 with probability ≥ 1

2 + 1
n2 .

• Pick ri+1, . . . , rn ideal random bits.

• Let C(y1, . . . , yi, ri+1, . . . , rn) = b

• if b = 1 then predict yi+1 = ri+1 else yi+1 = ri+1

Claim

Probx,ri+1,...,rn [D(y1, . . . , yi) = yi+1] ≥
1
2

+
1
n2

This shows that functions obtained using Nisan-Wigderson design are
Pseudorandom generators if the function used is a hard function , assuming
the claim.

Now we prove the claim stated above.

6

Proof of Claim.

Required probability = Prob[D(y1, . . . , yi) = yi+1|ri+1 = yi+1].
1
2

+ Prob[D(y1, . . . , yi) = yi+1|ri+1 = yi+1].
1
2

= Prob[D(y1, . . . , yi) = yi+1|ri+1 = yi+1].
1
2

+
1
2
α

Prob[D(y1, . . . , yi) = 0] = 1− pi

= Prob[D(y1, . . . , yi, yi+1, . . . , rn) = yi+1|ri+1 = yi+1].
1
2

+ Prob[D(y1, . . . , yi, yi+1, . . . , rn) = yi+1|ri+1 = yi+1].
1
2

1− pi =
1
2
pi+1 +

α

2
α

2
= 1− pi −

1
2
(1− pi+1)

Required probability = 1− pi +
1
2
pi+1 −

1
2
(1− pi+1)

=
1
2

+ (pi+1 − pi)

≥ 1
2

+
1
n2

This also proves that a distinguisher circuit can also be used to construct
a next bit predictor which proves one direction of theorem 1 due to Yao
stated in the beginning.

7

