Complexity Theory II

Course Instructor: V. Arvind

Lecture 1 : Aug 2, 2006

Lecturer: V. Arvind

Scribe: Kazim Bhojani

1 Outline of the course

In this course we will discuss following topics

- Hardness vs. Randomness
 - Pseudorandom generators
 - Error correcting codes
- Extractors
- Expander graphs
 - Reingold's Logspace algorithm for undirected connectivity
 - New proof of PCP theorem

Topics discussed in the first part are taken from a survey by Nisan and Wigderson, *Hardness vs. Randomness.*

2 Notion of Pseudorandomness and constructing PRG's

In this lecture we shall discuss two notions of randomness as formulated by Blum-Micali and Yao during 80's ,show that the two definitions are equivalent and then go on to construct a PRG using one way functions.

2.1 Two notions of Pseudorandomness

If a *resource bounded* observer cannot distinguish between Ideal random source and another deterministic source A , then A can be used in place of ideal source and it is as good as an ideal source from the observer's point of view.

Such an A will be called a *Pseudorandom Generator*.

Blum and Micali for the first time in 1980 formalized the notion of randomness and gave the following definition of Pseudorandomness.

Definition 1. Blum-Micali definition(Next bit prediction test)

Let $G = \{G_n : \{0,1\}^{l(n)} \to \{0,1\}^n\}$ be such that $l(n) \ll n$, that is, G takes a seed of length l(n) and generates a string of length n.

G is called a Pseudorandom Generator for a class C(of algorithms), if for every polynomial p(n) and each i and for all the algorithms $A \in C$ the following holds

$$\left| Prob_{x \in \{0,1,\}^{l(n)}} [A(y_1 y_2 \dots y_{i-1}) = y_i] - \frac{1}{2} \right| < \frac{1}{p(n)}$$

where $x \in \{0, 1\}^{l(n)}$ and $G_n(x) = y_1 y_2 \dots y_n$.

Yao in 1982 formulated a different definition of Pseudorandomness and showed that the two definitions are equivalent

Definition 2. Yao's Definition(Distinguisher test)

A function $G : l(n) \to n$ is a PRG¹ for a class C of algorithms if for every polynomial p(n) and each i and for all the algorithms $A \in C$ the following holds

$$\left| Prob_{y \in \{0,1,\}^n} [A(y) = 1] - Prob_{x \in \{0,1,\}^{l(n)}} [A(G(x)) = 1] \right| < \frac{1}{p(n)}$$

Theorem 3 (Yao). The two definitions of Pseudorandomness given above are equivalent

2.2 Constructing PRG's

First we begin with the definition of One way functions.

Definition 4. One way functions

A function $f = \{f_n : \{0,1\}^n \to \{0,1\}^m\}$ is a 1-way function if for every polynomial p(n) and every circuit C of size p(n) the following holds

$$Prob_{x \in \{0,1\}^n}[C(f(x)) \notin f^{-1}(x)] \ge \frac{1}{p(n)}$$

and f should be computable in polynomial time.

¹Henceforth we will use the abbreviation PRG for Pseudorandom generator(s)

The following are two examples of functions are that are believed to be 1-way and no *fast* algorithms are known for inverting these functions

- Function f that computes product of two n bit primes
 - $f: (\mathbb{Z}_{p-1}, +) \to (\mathbb{Z}_p^*, *)$ $x \mapsto a^x$

Now we state a theorem due to Yao which relate 1-way functions with PRGs.

Theorem 5. (Yao's theorem).

If there is a 1-way function f then for every $\epsilon > 0$ there is a PRG

 $G:n^\epsilon \to n$

such that G runs in polynomial time and is secure against all polynomial size circuits.

But how do we get hold of G , given a 1-way function ? Here is a rough procedure how we can use 1-way function to get hold of a PRG

- f is a 1-way function.
- Get hold of g which is 1-way with amplified hardness
- Then compute $x, g(x), g(g(x)), \dots, g^{(n)}(x)$.
- Extract one bit from each of the above strings and this $x_0x_1...x_n$ is the output of the PRG

One immediate corollary of the Yao's theorem is the following result

Corollary 6. If 1-way functions exist then $BPP \subseteq DTIME(2^{n^{\epsilon}})$ for some $\epsilon > 0$.

Also the converse of Yao's of theorem is also true.

Theorem 7. (Converse of Yao's Theorem). If there is a PRG

 $G: n^{\epsilon} \to n$

then 1-way functions exist.

2.3 Nisan-Wigderson design

First we begin with definition of quick PRG.

Definition 8. (quick PRG).

 $G: l(n) \to n$ is called a quick PRG if it is computable in time $2^{O(l(n))}$ (deterministic) and for every circuit C of size n^2 the following holds

$$\Big|Prob_{y\in\{0,1,\}^n}[C(y)=1]-Prob_{x\in\{0,1,\}^{l(n)}}[C(G(x))=1]\Big|<\frac{1}{n}$$

Lemma 9. If a quick PRG $G : l(n) \to n$ exists then for every time constructible function t(n)

$$BPTIME(t(n)) \subseteq DTIME(2^{O(l(t(n)))})$$

Proof. Let $L \in BPTIME(t(n))$ and M be a machine which accepts language L and x be an input instance.

Let |x| = t(n), we can assume that the r random bits used in the computation are given with input.

Look at the tableau of computation it has t(n) configurations.

Now $G_{t(n)}: O(l(t(n))) \to O(t(n))$, so we can cycle over all string s of length l(t(n)) and use G(s) as a random string in computation so the whole simulation can be done in $DTIME(2^{O(l(t(n)))})$

Hence proved.

Now we define the notion of hardness of a boolean function.

Definition 10. A boolean function $f : \{0,1\}^n \to \{0,1\}$ is called (ϵ, S) -hard, if for all circuits of size S the following holds,

$$\left| Prob_{x \in \{0,1,\}^{l(n)}} [C(x) = f(x)] - \frac{1}{2} \right| < \epsilon$$

Also a function f is said to have hardness H(f)=m , where is m is the largest number such that f is $(m,\frac{1}{m})\text{-hard.}$

We can now use hard functions to build PRGs using the Nisan-Wigderson design

2.3.1 The (n,l,m,k) design

- Let $S_1, S_2, \ldots, S_n \subseteq \{1, 2, \ldots, l\}$ such that $|S_i| = m$
- $i \neq j \implies |S_i \cup S_j| \leq k.$
- Let $f: \{0,1\}^m \to \{0,1\}$ be the given hard function.
- Let $x = x_1 x_2 \dots x_l$ be the seed where *l* is the seed length.
- Now project x onto each coordinate of S_i to get a string of length m and apply f to that string to obtain bit y_i , that is $y_i = f(x|S_i)$ for i = 1, 2, ..., n.
- $y = y_1 y_2 \dots y_n$ is the output of the Pseudorandom generator.

So we have a function $G_f: l \to n$.

Theorem 11. If $f : \{0,1\}^m \to \{0,1\}$ is a boolean function with hardness n^2 and G_f is built from a $(n,l,m,\log n)$ design, then G_f is a quick PRG.

Proof. Suppose C is a circuit of size n^2 that distinguishes G_f 's output from random source , that is ,

$$Prob_{y \in \{0,1,\}^n}[C(y) = 1] - Prob_{x \in \{0,1,\}^{l(n)}}[C(G_f(x)) = 1] > \frac{1}{n}$$

Let E_1 be the uniform distribution and E_n be the distribution of G(x), now we advance a hybrid argument to obtain a contradiction.

Define the intermediate distributions $E_2, \ldots, E_{(n-1)}$ as follows,

- E₀ has distribution r₁, r₂,..., r_n where r_i's are true random bits.
- E_i has distribution $u_1, \ldots, u_i, r_{i+1}, \ldots, r_n$, where u_1, \ldots, u_i are first *i* bits of output of pseudorandom generator *G*.
- E_n has distribution u_1, u_2, \ldots, u_n where u_i 's are output of G.

So we have ,

$$Prob_{y \in E_0}[C(y) = 1] - Prob_{y \in E_n}[C(y) = 1] > \frac{1}{n}$$

$$\implies \sum_{i=0}^{n-1} \left[Prob_{y \in E_i}[C(y) = 1] - Prob_{y \in E_{i+1}}[C(y) = 1] \right] > \frac{1}{n}$$

$$\implies \exists i: Prob_{y \in E_i}[C(y) = 1] - Prob_{y \in E_{i+1}}[C(y) = 1] > \frac{1}{n^2}$$

So now we have a randomized algorithm $D(y_1, y_2, \ldots, y_n)$ where input is first *i* bits of *G*'s output and outputs y_{i+1} with probability $\geq \frac{1}{2} + \frac{1}{n^2}$.

- Pick r_{i+1}, \ldots, r_n ideal random bits.
- Let $C(y_1, ..., y_i, r_{i+1}, ..., r_n) = b$
- if b = 1 then predict $y_{i+1} = r_{i+1}$ else $y_{i+1} = \overline{r_{i+1}}$

Claim

$$Prob_{x,r_{i+1},\dots,r_n}[D(y_1,\dots,y_i)=y_{i+1}] \ge \frac{1}{2} + \frac{1}{n^2}$$

This shows that functions obtained using Nisan-Wigderson design are Pseudorandom generators if the function used is a hard function , assuming the claim.

Now we prove the claim stated above.

Proof of Claim.

Required probability =
$$Prob[D(y_1, \dots, y_i) = y_{i+1} | r_{i+1} = y_{i+1}] \cdot \frac{1}{2}$$

+ $Prob[D(y_1, \dots, y_i) = y_{i+1} | r_{i+1} = \overline{y_{i+1}}] \cdot \frac{1}{2}$
= $Prob[D(y_1, \dots, y_i) = y_{i+1} | r_{i+1} = y_{i+1}] \cdot \frac{1}{2} + \frac{1}{2}\alpha$

$$\begin{aligned} Prob[D(y_1, \dots, y_i) &= 0] &= 1 - p_i \\ &= Prob[D(y_1, \dots, y_i, y_{i+1}, \dots, r_n) = y_{i+1} | r_{i+1} = y_{i+1}] \cdot \frac{1}{2} \\ &+ Prob[D(y_1, \dots, y_i, \overline{y_{i+1}}, \dots, r_n) = y_{i+1} | r_{i+1} = \overline{y_{i+1}}] \cdot \frac{1}{2} \\ &1 - p_i &= \frac{1}{2} p_{i+1} + \frac{\alpha}{2} \\ &\frac{\alpha}{2} &= 1 - p_i - \frac{1}{2} (1 - p_{i+1}) \\ &\frac{\alpha}{2} &= 1 - p_i + \frac{1}{2} p_{i+1} - \frac{1}{2} (1 - p_{i+1}) \\ &= \frac{1}{2} + (p_{i+1} - p_i) \\ &\geq \frac{1}{2} + \frac{1}{n^2} \end{aligned}$$

This also proves that a distinguisher circuit can also be used to construct a next bit predictor which proves one direction of theorem 1 due to Yao stated in the beginning.