
Lectures on Expanders Course Instructor: V. Arvind

Lecture 1

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

1 Introduction

1.1 Motivation

We would like to build a family of graphs that are “sparse” but “highly”
connected. Some conditions that we would want our graphs have are

1. The graph should be computable in time polynomial in the number of
vertices

2. The graph should be edge-checkable in time poly logarithmic in the
number of vertices.

3. In the context of d−regular graphs, A(x, i) = y if y is the ith neighbour
of x, and this A should be polynomial time in its input length.

1.2 Graph Parameters

Sparseness:
As for the graphs being sparse, the graphs we are looking for shall be d

regular, for “small” d, and thus property 3 would be applicable.

Connectivity:
A possible connectivity measure is the measure how much the graph

“expands”.

Definition 1. A graph Gn is said be a (k, α) vertex expander if for all
subsets S of vertices such that |S| ≤ k, the neighbourhood of S, denotes by
Γ(S) ≥ α|S|.

This is a natural notion of connectivity or expansion that we would want
(α “large” implies “expands well”), but unfortunately, checking if a graph
is a (k, α) is coNP complete! Hence we need a different notion of expansion.
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2 Spectral Expansion

2.1 Associated Eigenvalues

Let G(V,E) be a d-regular multigraph, where there could be more than
1 edge between vertices. This could be thought of as a graph with non-
negative integral weights, where the weight of edge ij denotes the number
of edges between i, j.

Let A be the normalised adjacency matrix of G

Aij =
number of edges between i, j

d

A is a real, symmetric, doubly stochastic matrix1. And by the spectral
theorem, the eigenvalues of this matrix are real, and there exists an eigenba-
sis. Let the eigenvalues be λ1, λ2, · · · , λn such that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|

Suppose λ is any eigenvalue of A and v an associated eigenvector.
Let |vi| = max1≤j≤n |vj |

|
n∑

j=1

Aijvj | = |λ||vi|

≤
n∑

j=1

|Aij ||vj |

≤ |vi|
n∑

j=1

|Aij |

= |vi|

Hence |λ| ≤ 1
And since A is a stochastic matrix, clearly (1, 1, · · · , 1) is an eigenvector

whose eigenvalue is 1. Speaking in terms of probability distributions, it
makes more sense to say that the uniform distribution u =

(
1
n , 1

n , · · · , 1
n

)
is

an eigenvector with eigenvalue 1.
Thus λ1 = 1.

2.2 Other Eigenvalues

λ1 = 1 for all graphs, we have to inspect the other eigenvalues to see if they
tell us anything about the graph’s expansion properties. Firstly, we need to
see if any other |λi| = 1.

1rows and columns entries are non-negative and add up to 1
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First let’s examine if any λi = 1.

Lemma 2. The dimension of the eigenspace of 1 = number of connected
components of G

Proof. Let x ⊥ u and Ax = x. Let xi = maxxj , X = {k|xk = xi}.
n∑

j=1

Aijxj = xi =
∑

j,Aij 6=0

Aijxj

which is a convex combination of xj ’s. Thus Aij 6= 0 =⇒ xi = xj , which
implies no edges go out of the set X. Thus X is a component of G.

And if there are k connected components, dimension of eigenspace of 1
is atleast k (uniform distribution over that component is an eigenvector).
And since every connected component has only u as its eigenvector, the
dimension of the eigenspace of 1 is exactly k.

Now for the case when λi = −1

Lemma 3. For a connected d−regular graph G,

G is bipartite ⇐⇒ −1 is an eigenvalue

Proof. Look at the graph G2, whose edge relation correspond to paths of
length 2 in G. Note that the adjacency matrix of this graph has to be A2

and hence the eigenvalues of G2 has to be {λ2
i }n

i=1

If G is connected and bipartite, G2 has 2 component, and thus G2 has an
eigenvalue 1 with multiplicity 2. And since G is connected, the eigenvalue
1 of G has multiplicity 1, which implies −1 is an eigenvalue of G.

Conversely. let −1 be an eigenvalue of G and x the eigenvector chosen
such that maxxj = max |xj | = xi(say).

And repeating the argument in the earlier lemma,

n∑
j=1

Aijxj = −xi =
∑

j,Aij 6=0

Aijxj

which is a convex combination of xj . And hence, Aij 6= 0 =⇒ xj = −xi.
Now let X = {k|xk = xi}. Since xj = xi =⇒ Aij = 0, the induced

subgraph on X is empty.
Since the graph is connected, let xl be a vertex in V

X that is connected to some xm in X. And since it is connected to some
vertex in X, Aml 6= 0 =⇒ xm = −xi
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∑
j

Aljxj = −xl = xi

And this is possible only when xj = xi wherever Alj 6= 0, which means
all the neighbours of xm are in X - the graph is bipartite.

Hence, if G is connected, and not bipartite, |λ2| < 1. This |λ2| is called
the spectral expansion of G.

Definition 4. For G, a connected d−regular non-bipartite graph, the spec-
tral expansion of G is |λ2| = λ2(G)

We shall soon see that 1− λ2(G) is large =⇒ good vertex expansion.

Theorem 5.

λ2(G) = max
x⊥u

‖Ax‖2

‖x‖2

= max
x⊥u

|〈Ax, x〉|
|〈x, x〉|

Proof. Let u = v1, v2, · · · , vn be an eigenbasis. For any x ⊥ u,

x = α2v2 + α3v3 + · · ·αnvn

〈Ax,Ax〉 =
n∑

i=2

α2
i λ

2
i ≤ α2

2 ‖x‖2

and the equality is attained when x is the eigenvector of λ2

The proof of the other equality is exactly the same.

Fact 6. |v|∞ ≤ ‖v‖2 ≤ |v|1 ≤
√

n ‖v‖2

3 Random Walks on Expanders

3.1 Mixing Time and Spectral Expansion

Let π be a probability distribution over the vertices. Since A is a stochastic
matrix, Aπ is also a probabilistic distribution2.

Definition 7. G has mixing time t(n) if for all probability distributions π∣∣∣At(n)π − u
∣∣∣
∞
≤ 1

2n
2this is the probabilistic distribution over the vertices after 1 step is taken according

to π
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Theorem 8. “Good Expanders have small mixing time”

Proof. Let λ2(G) = λ and π be any probability distribution.

π = α1u + α2v2 + · · ·αnvn

Note that 〈π, u〉 = 1
n and hence α1 = 1. Hence

Alπ − u = α2λ
l
2v2 + · · ·+ αnλl

nvn

∴
∥∥∥Alπ − u

∥∥∥2

2
= α2

2λ
2l
2 + · · ·+ α2

nλ2l
n

≤ λ2l
2

(
α2

2 + · · ·+ α2
n

)
≤ λ2l

2 ‖π − u‖2
2

And since ‖pi‖2
2 = ‖u‖2

2 +
∥∥u⊥∥∥2

2
, we have ‖pi‖2

2 ≥ ‖π − u‖2
2.

Hence we now have,∣∣∣Alπ − u
∣∣∣
∞
≤
∥∥∥Alπ − u

∥∥∥
2
≤ λl

2 ‖π‖2 ≤ λl
2 ≤

1
2n

Hence l = log 1
λ2

2n

Thus for small λ2, mixing time is small.

4 Undirected Graph Connectivity is in RL

UGAP = {(G, s, t)|∃s− t path in G}

Definition 9. RL is the class of languages L that are accepted by a polytime
randomized logspace turing machine with onesided error.

Note that the polynomial running time requirement is critical, since we
have a stream of random bits, the machine could run for much longer. Ran-
domized logspace machines running for more than polynomial time arguably
have more computational power than RL machines.

Theorem 10. UGAP ∈ RL

We need some bounds before we get into the proof.
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4.1 Bounds on λ2(G)

Let G be any arbitrary connected, non-bipartite regular graph. Assuming
that there are self loops on all the nodes of G, G2 will now be a regular,
non-bipartite connected graph with all its eigenvalues non-negative. Let the
normalized adjacency matrix of G2 be A and let E be the multiset of edges.

λ2(G2) = max
x⊥u,‖x‖=1

|〈Ax, x〉|

= max
x⊥u,‖x‖=1

∣∣∣∣∣∣
∑
i,j

Aijxixj

∣∣∣∣∣∣
= max

x⊥u,‖x‖=1

∣∣∣∣∣∣
∑

(i,j)∈E

2
d
xixj

∣∣∣∣∣∣
= max

x⊥u,‖x‖=1

∣∣∣∣1d∑(x2
i + x2

j )−
1
d

∑
(xi − xj)2

∣∣∣∣
= max

x⊥u,‖x‖=1

∣∣∣∣1dd ‖x‖2 − 1
d

∑
(xi − xj)2

∣∣∣∣
∴ 1− λ2 = min

x⊥u,‖x‖=1

∣∣∣∣∣∣1d
∑

(i,j)∈E

(xi − xj)2

∣∣∣∣∣∣
Let x be the optimal vector for the above equation. Since x ⊥ u, let

0 < xa = maxxi, xb = minxi < 0. Since ‖x‖ = 1, either xa ≥ 1√
n

or

xb ≤ −1√
n
. Let P be the shortest path from a to b in G2.

∴ (xa − xb) =
∑

(i,j)∈P

(xi − xj) ≥
1√
n

1− λ2(G2) ≥
∑

(i,j)∈P

(xi − xj)2

≥ 1
d|P |

 ∑
(i,j)∈P

|xi − xj |

2

≥ 1
dn
|xa − xb|2 ≥

1
dn2
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∴ λ2(G2) ≤ 1− 1
dn2

=⇒ λ2(G) ≤ 1− 1
2dn2

where d is the degree of G2, the square of the degree of G.
Thus, λ2(G) ≤ 1− 1

poly(n) .

4.2 Proof of Theorem 10

Replace every node of degree k by a k cycle, and add self loops to make it
a regular graph, and add self loops on all the nodes.

We know that λ2(G) ≤ 1 − 1
n4 . Suppose A is the normalized adjacency

matrix. Then,

∣∣∣An5
π − u

∣∣∣
∞
≤ λn5

2 ≤
(

1− 1
n4

)n5

≤ 1
2n

Looking at the t-th index, ∣∣∣∣(An5
π)t −

1
n

∣∣∣∣ ≤ 1
2n

=⇒ (An5
π)t ≥

1
2n

Which means,

Pr[on a random walk, you don’t hit t in n5 steps] ≤ 1− 1
2n

This error can be pushed down to the desired limit in logspace.
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Lectures on Expanders Course Instructor: V. Arvind

Lecture 2

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

5 Amplification of success in RP

Let L ∈ RP , accepted by a randomized algorithm A with one-sided error
bounded by 1

2 . We shall use an expander graph to boost the error probability
by using fewer random bits compared to the majority vote which uses mk
random bits to push the error down to 2−k.

Assume that for inputs of length n, the machine takes m = nO(1) random
bits. Consider G(V,E), a (2m, d, λ) expander, explicitly given3.

For x ∈ L, define B = {r ∈ Σm|A(x, r) = 0}. And by the error bound
of A, we know that |B| ≤ 2m−1

Our algorithm is going to be the following:

1. Pick a vertex r0 at random

2. Take a random walk for t steps starting at r0. Let the visited nodes
be r0, r1, · · · rt.

3. Use these ri’s as random strings to A and output “YES” if and only
if atleast one of them say “YES”.

Now the question boils down to asking “What is the probability that
after t steps, we are confined to B?”

Theorem 11. If G is a (2m, d, λ) expander, and B ⊆ V such that |B| ≤
µ|V |, then

Pr[r0, r1, · · · , rt ∈ B] ≤
(
µ + (1− µ)λ2

) t
2

And with the theorem, if µ = 1
2 , we have the probability to be bounded

by
(

1+λ2

2

) t
2 , which is 2−ct for a constant c.

Hence, in order to push the down to 2−k, you want t to be O(k). And
for a random walk for k steps, you only need m + O(k) log d random bits!

Now, the proof of the theorem is all that’s left to justify the amplification.
3given x and i outputs y which is the i-th neighbour of x and runs in time poly(m)
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5.1 Proof of Theorem 11

Let N = 2m and P be the projector on B, that is[
IBxB 0

0 0

]
N×N

Note that |Pu|1 = Pr[r0 ∈ B]. Infact one can extend this to higher
powers by the following claim.

Claim 12.
∣∣P (AP )iu

∣∣
1

= Pr[r0, r1, · · · , ri ∈ B]

Proof. The proof is just simple induction. We just saw the base case when
i = 0. Assume that for some i∣∣P (AP )iu

∣∣
1

= Pr[r0, r1, · · · , ri ∈ B]

Now A(P (AP )iu)j = Pr[the first i steps are confined in B and the last step takes it to j].
And by just summing over all j in B, we have∣∣P (AP )i+1u

∣∣
1

= Pr[r0, r1, · · · , ri+1 ∈ B]

which proves the inductive step.

Now we would like to bound
∣∣P (AP )tu

∣∣
1

for the proof.

Claim 13. Let x be any vector in,

‖APx‖2 ≤
√

µ + (1− µ)λ2 · ‖x‖2

And once we have this, we can just take x = u and we would have∣∣P (AP )tu
∣∣
1
≤
∣∣(AP )tu

∣∣
1
≤
√

N
(
µ + (1− µ)λ2

) t
2
√

N =
(
µ + (1− µ)λ2

) t
2

which proves theorem 11.

Proof. Let y = Px, and y = y‖ + y⊥ = αu + y⊥; note that α =
∑

yi

‖Ay‖2
2 =

∥∥∥Ay‖
∥∥∥2

2
+
∥∥∥Ay⊥

∥∥∥2

2

=
∥∥∥y‖∥∥∥2

2
+
∥∥∥Ay⊥

∥∥∥2

2

≤
∥∥∥y‖∥∥∥2

2
+ λ2

∥∥∥y⊥∥∥∥2

2

=
∥∥∥y‖∥∥∥2

2
+ λ2

(
‖y‖2

2 −
∥∥∥y‖∥∥∥2

2

)
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Now

α2

n
=
∥∥∥y‖∥∥∥2

2
=

(∑
i∈B yi

)2
n

≤
(∑

i∈B y2
i

)
|B|

n
= ‖y‖2 µ

Hence,

‖Ay‖2
2 ≤

(
µ + λ2(1− µ)

)
‖y‖2

2 ≤
(
µ + λ2(1− µ)

)
‖x‖2

2

and that completes the proof of the claim

... and also the proof of theorem 11

6 Spectral Expander =⇒ Vertex Expander

Recall definition 1 of a (k, α) expander:
For all subsets of vertices S such that |S| ≤ k, Γ(S) ≥ α|S|.

Now we shall show that a “good” spectral expander is also a “good”
vertex expander.

Theorem 14. If G(V,E) is a (n, d, λ) spectral expander, then for every
α > 0, G is an

(
αn, 1

(1−α)λ2+α

)
vertex expander.

Proof. Let S ⊆ V such that |S| ≤ αn. Suppose π is any distribution over
the vertices, it can be written as u + u⊥.

〈π, π〉 =
1
n

+ ‖π − u‖2
2

Also,

〈π, π〉 =
∑

i∈supp(π)

π2
i

≥ (
∑

π)2

|supp(π)|
(Cauchy Schwarz)

=
1

|supp(π)|
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Suppose π was the uniform distribution on S, then note that 〈π, π〉 = 1
|S| .

Hence,

‖π − u‖2
2 =

1
|S|

− 1
n

Since supp(Aπ) = Γ(S),

1
|Γ(S)|

≤ 〈Aπ,Aπ〉 =
1
n

+ ‖Aπ − u‖2
2

≤ 1
n

+ λ2 ‖π − u‖2
2

=
1
n

+ λ2

(
1
|S|

− 1
n

)
=⇒ |S|

|Γ(S)|
≤ |S|

n
+ λ2

(
1− |S|

n

)
=

|S|
n

(
1− λ2

)
+ λ2

≤ α
(
1− λ2

)
+ λ2

Therefore,

|Γ(S)|
|S|

≥ 1
α (1− λ2) + λ2

=
1

λ2 (1− α) + α

6.1 Lower Bounds on λ

Theorem 14 tells much more than an implication.
For any d regular graph, the vertex expansion of this graph is atmost d.

=⇒ 1
α + (1− α) λ2

≤ d

=⇒ λ2 (1− α) ≥ 1
d
− α

Taking α close to 0, we see that λ = Ω( 1√
d
).

Infact there are better bounds known, Alon and Bopanna show that

λ ≥ 2
√

d− 1
d

− o(1)

Ramanujam graphs get very close to this optimal4.
4they have λ = 2√

d−1
− o(1)
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7 Random Graphs as Expanders

Instead of looking at general random graphs, we shall restrict ourselves to
bipartite graphs and show that a random bipartite graph is a “good” left
expander.

Definition 15. A bipartite multigraph G(L∪R,E) is a (d, k, α) left expander
if every vertex on L has degree d, and for all subsets S of vertices in L such
that |S| ≤ k, |Γ(S)| ≥ α|S|

Random bipartite graphs are chosen in the following sense, for every
vertex v ∈ L randomly pick d vertices from R with repitition. For simplicity
of notation, let us call the set of possible multigraphs Gn,d.

Theorem 16. For every n and d ≤ n, there exists an α > 0 such that
random G ∈ Gn,d is a (d, αn, d − 2) left expander with probability greater
than 1

2

Proof. Let S ⊆ L, such that |S| = k < αn, we shall estimate the PrG[|Γ(S)| <
(d− 2)|S|].

For every vertex v ∈ L, we chose d neighbours, which is kd elements
picked from L. Thus, we want to estimate the probability that there are
atleast 2k repititions. There are

(
kd
2k

)
places where the collisions can occur

and each collision with probability kd
n .

∴ PrG[|Γ(S)| < (d− 2)|S|] ≤
(

kd

2k

)(
kd

n

)2k

Summing over all S,

αn∑
k=1

(
n

k

)(
kd

2k

)(
kd

n

)2

k ≤
αn∑
k=1

(ne

k

)k
(

kde

2k

)2k (kd

n

)2k

=
αn∑
k=1

(
kd2e3

4n

)k

≤
αn∑
k=1

(
αd2e3

4

)k

And clearly for α < 1
d2e3 this probability can be bounded by half.
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8 Explicit Constructions

The earliest explicit constructions of expander graphs were given by [Margulis,Gabber-
Galil], [Lubotzky,Sarnak] but the contructions are fairly complex, looks at
certain subsets of matrix groups.

[Reingold,Vadhan,Wigderson] used “zig-zag products” to construct ex-
panders, we shall be looking at them in the next lecture. Gramov had used
this zig-zag products earlier, though the novelty is attibuted to [RVW]. Zig-
zag products seem to mimic the semi-definite over groups.

Alon et al gave another “not-so-difficult” construction for expanders,
infact he said something more.

Theorem 17 (Alon/Roichman). There exists a constant c such that for ev-
ery finite group G, a random set of c log n elements define a “good” expander
in the Cayley graph on the vertices.
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Lectures on Expanders Course Instructor: V. Arvind

Lecture 3

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

In this lecture we shall be discussing the paper “’Entropy Waves’, the zig-
zag produt and new constant degree expanders” by Reingold, Vadhan and
Wigderson, which appeared in the Annals of Mathematics ′02.

9 The Rotation Map

Let G be an N vertex D regular graph. The rotation map is a map RotG :
[N ]× [D] → [N ]× [D], defined as follows.

If ith edge of vertex v is w, as a jth neighbour, then

RotG(v, i) = (w, j)

Note that this map is also an involution. This map defines the graph,
and we would want this to be efficient (poly(log N, log D) computable, in
this lecture).

10 Graph Products

We shall now inspect various graphs products possible and the parameters
of the graph.

10.1 Powering

Let G be a (N,D, λ) expander, given by the rotation map RotG. Then its
ith power, Gt is given by the following rotation map:

RotGt(v0, (k1, k2, · · · , kt)) = (vt, (lt, · · · , l1))

if and only if there exists v1, . . . , vt−1 such that

RotG(v0, k1) = (v1, l1)
RotG(v1, k2) = (v2, l2)

...
RotG(vt−1, kt) = (vt, lt)
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And easy to see that RotGt is efficiently computable, and infact the
adjacency matrix of Gt is At. Hence, Gt is a (N,Dt, λt) expander.

10.2 Tensoring

G1 is a (N1, D1, λ1) expander, and G2 is a (N2, D2, λ2) expander and let
RotG1 and RotG2 be the corresponding rotation maps.

The rotation map of G1 ⊗ G2 is defined by moving parallel on G1 and
G2.

RotG1⊗G2 ((v, w), (i, j)) =
(
(v′, w′), (i′, j′)

)
if and only if RotG1(v, i) = (v′, i′) and RotG2(w, j) = (w′, j′).

Now, it is easy to see that the normalized adjacency matrix of this graph,
AG1⊗G2 = AG1 ⊗AG2 , the tensor product of the corresponding matrices5

The eigenbasis will also be the tensor products of the eigenbases of the
two matrices, and hence the eigenvalues will be the products of the eigen
values. And since 1 is an eigen value for both A1 and A2, the second largest
eigenvalues is max(λ1, λ2).

Thus, G1 ⊗G2 is a (N1N2, D1D2,max(λ1, λ2)) expander.

Both the products blows up the degree of the final graph, which is not
desired. We want a family of graphs with constant degree and good spectral
gap6.

11 The Zig-Zag Product

Let G1 be a (N,D, λ1) expander and G2 be a (D, d, λ2) expander, with
rotation maps RotG1 and RotG2

Define the the graph G1 z©G2 as follows:

• V (G1 z©G2) = [N ] × [D], replace every vertex in G1 by a cloud of
vertices in G2, since the degree of G1 matches with vertex size of G2,
this can be done.

• An edge in G1 z©G2 is defined by a three step walk, 1 move in the G2

cloud, take and edge of G1 and move to another cloud, 1 move in the
new cloud. More formally,

5each i, j-th entry of A1 is replaced by the block (A1)i,j · A2
61 − λ(G)
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((v, k), (w, l)) ∈ E[(G1 z©G2)]

if, there exists numbers k′, l′ such that

(k, k′) ∈ E(G2)
(l, l′) ∈ E(G2)

RotG1(v, k′) = (w, l′)

So G1 z©G2 is a
(
ND, d2, λ3

)
expander.

Theorem 18 (Zig-Zag Theorem). For G1 and G2 considered above, G1 z©G2

is a
(
ND, d2, λ3

)
expander where,

1. λ3 ≤ λ1 + λ2 + λ2
2

2. If λ1 < 1 and λ < 1, then λ3 < 1

We shall prove this later.

11.1 Intuition Behind this

To be filled up soon

12 A Constant Degree Expander Family

Our base graph H would be a
(
D8, D, λ

)
expander for a constant D, which

we shall explicitly construct later.
The family {Gt} is defined as follows:

G1 = H2

G2 = H ⊗H

∀t > 2, Gt =
(
Gd t−1

2
e ⊗Gb t−1

2
c

)2
z©H

Claim 19. Gt is a
(
D8t, D, λt

)
expander, where λt = λ + O(λ2), and

whose rotation map is computable in time polynomial in (t, log N, log D)
with poly(t) queries to the rotation maps in the recursion.

Proof. The ambiguity is only in λ of G2, it’s clear that the vertex size of Gt

is D8t and that the parameters match for zig-zag.
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λ1 = λ2 ≤ λ + cλ2, and λ2 = λ ≤ λ + cλ2, we shall now proceed by
induction.

Let µt = maxi λi = max(λt, µt−1). We know that µ1 and µ2 are upper
bounded by λ + cλ2. Assume by induction that µt−1 ≤ λ + cλ2.

Now, Gt = K z©H, where K is the chunk in the definition. Note that
λk ≤ µ2

t−1. Hence by the Zig-Zag theorem, we know that

λt ≤ µ2
t−1 + λ + λ2

≤ (λ + cλ2)2 + λ + λ2

We want this to be less than λ + cλ2 for some c. It’s easy to see that if
λ ≤ 1

5 , then c = 5 is good enough.
Thus we have a uniform family of constant degree expanders, with good

spectral gap.

Also note that in the earlier lecture we showd that λ ≤ 2√
D

, and hence

λt ≤ λ + cλ2 ≤ 2√
D

+
4c

D
≤ c√

D

And thus λt = O
(

1
(deg(G))1/4

)
.

12.1 An explicit construction for H

Let q = pt, some prime power, and Fq be the associated field. Our graph
APq is going to have the vertex set V = Fq × Fq.

As for the edge set of the graph, for every vertex (a, b) ∈ Fq × Fq, define
the set of vertices adjacent to (a, b) as La,b where

La,b = {(x, y)|y = ax− b}

And since |La,b| = q, we have a q regular graph.

Claim 20. APq is a
(
q2, q, 1√

q

)
expander.

Proof. Let M eb the normalized adjacency matrix of APq. M2 is a q2 × q2

matrix. And note that

M2
(a,b),(c,d) =

1
q2

∣∣∣La,b

⋂
Lc,d

∣∣∣ (1)

17



If (x, y) is a common point, then(
a −1
c −1

)
=
(

x
y

)
When a 6= c, the matrix is of rank 1 and hence by equation 1

M2
(a,b),(c,d) =

1
q2

.
Suppose a = c, if b 6= d, there are no solutions and hence M2

(a,b),(c,d) = 0.
If a = c and b = d, there are q points in common and hence M2

(a,b),(c,d) = 1
q

Thus the M ′ = q2M2 has the following form

M ′ =


qIq Jq · · · Jq

Jq qIq · · · Jq
...

. . .
Jq · · · Jq qIq


or in other words,

M ′ = (Iq ⊗ qIq + (Jq − Iq)⊗ Jq)

where Jq is the q × q matrix with every entry being a 1.
The only eigenvalue of Iq ⊗ qIq is q.
As for the other sum, Jq − Iq has eigenvalue q − 1 with multiplicity 1

and −1 with multiplicity q − 1.
And Jq has eigenvalue q with multiplicity 1 and −1 with multiplicity

q − 1. Hence (Jq − Iq) ⊗ Jq has eigen value q(q − 1) with multiplicity 1, 0
with multiplicity q(q − 1) and −q with multiplicity q − 1.

Hence M ′ has eigenvalue q2 with multiplicity 1, q with multiplicity q(q−
1) and 0 with multiplicity q − 1.

Hence, clearly, the second largest eigenvalue of M ′ is atmost q, and hence
the second largest eigenvalue of M is atmost 1√

q

Now let AP 1
q = APq ⊗APq, which gives a

(
q4, q2, 1√

q

)
expander.

Define
AP i

q = AP i−1
q z©APq

And then we have the following claim, which is easy to prove.

Claim 21. AP i
q is a

(
q2(i+1), q2, 2i√

q

)
expander.

And with this, if we were to choose i = 7, and q > 702, we have a
H = AP 7

5000 as our (D8, D, 1
5) expander.

18
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13 Overview

We saw that the zig-zag product gave us a uniform family of expanders. In
the next two lectures we shall prove Reingold’s Theorem.

First let us look at the rotation map of the zig-zag product as an algo-
rithm.

RotG1 z©G2 :
Input: ((v, k), (i, j))

(k′, i′) := RotG2(k, i)
(w, l′) := RotG1(v, k′)
(l, j′) := RotG2(l

′, j)

Output: ((w, l), (j′, i′))

Notice that this is a logspace algorithm and requires just O(1) extra space
apart from storing the 4 vertices in consideration; this would crucial in
Reingold’s proof.

14 Proof of the Zig-Zag Theorem (18)

We shall prove only one of the results stated in the previous lecture.
We have to study the second largest eigenvalue of G1 z©G2 = G, for

which we need to look at the normalized adjacency matrix of G. Let the
normalised adjacency matrix of G2 be A, and let P be a permutation matrix
defining the rotation map of G1.

Every edge of G consists of a three step walk, the first one being a walk
in one of the v clouds that are expanded to a G2. Thus that step can be
represented by the matrix B = IN ⊗A.

Thus the transition matrix of G is simply Z = BPB.
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In order to analyse the spectral gap of Z, let f ∈ RND, ‖f‖2 = 1, f ⊥
1ND. We want to show that

|〈f, Zf〉| ≤ λ1 + λ2 + λ2
2

Let f = f‖ + f⊥, where f‖ is a vector such that

f
‖
(v,i) =

1
D

D∑
j=1

f(v, j) = αv

which makes it locally uniform in each cloud G2, hence Bf‖ = f‖. And, it
also ensures that ∑

v,i

f
‖
(v,i) =

∑
v,j

f(v,i) = 0

and hence f‖ and f⊥ are orthogonal to 1ND.
Note that since BPB is symmetric, 〈f⊥, BPBf‖〉 = 〈f‖, BPBf⊥〉. We

then have,

|〈f,BPBf〉| =
∣∣∣〈f‖, BPBf‖〉+ 2〈f‖, BPBf⊥〉+ 〈f⊥, BPBf⊥〉

∣∣∣
≤

∣∣∣〈f‖, BPBf‖〉
∣∣∣+ 2

∣∣∣〈f‖, BPBf⊥〉
∣∣∣+ ∣∣∣〈f⊥, BPBf⊥〉

∣∣∣
= (1) + (2) + (3)

where (1) =
∣∣〈f‖, BPBf⊥〉

∣∣ , (2) = 2
∣∣〈f‖, BPBf⊥〉

∣∣ , (3) =
∣∣〈f⊥, BPBf⊥〉

∣∣
Bounding (1)

(1) =
∣∣∣〈f‖, BPBf‖〉

∣∣∣
=

∣∣∣〈Bf‖, PBf‖〉
∣∣∣

=
∣∣∣〈f‖, Pf‖〉

∣∣∣
Now

〈f‖, Pf‖〉 =
∑
(v,i)

∑
(w,j)

P(v,i),(w,j)f
‖
(v,i)f

⊥
(w,j)

=
∑
(v,i)

∑
(w,j)

P(v,i),(w,j)αvαw

=
∑

(v,w)∈E

Dαvαw
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And if we were to choose g =
(√

Dαv1 ,
√

Dα2, · · · ,
√

DαvN

)
, the above

sum is just 〈g,Ag〉. Now g ⊥ 1N and ‖g‖2 =
∥∥f‖∥∥

2
. Hence

(1) = |〈g,Ag〉| ≤ λ1 ‖g‖2 = λ1

∥∥∥f‖∥∥∥
2
≤ λ1

Bounding (2)

Since
∑

i f
‖
(v,i) =

∑
i f(v,i) for all v, it forces that

∑
i f

⊥
(v,i) = 0, or f⊥v ⊥ 1D,

the projection of f⊥ on v.
And hence ∥∥∥Af⊥v

∥∥∥
2

≤ λ2

∥∥∥f⊥v ∥∥∥
2

=⇒
∥∥∥Bf⊥

∥∥∥
2

≤ λ2

∥∥∥f⊥∥∥∥
2

Thus,

(2) = 2
∣∣∣〈f‖, BPBf⊥〉

∣∣∣
= 2

∣∣∣〈Bf‖, PBf⊥〉
∣∣∣

= 2
∣∣∣〈f‖, PBf⊥〉

∣∣∣
≤ 2

∥∥∥f‖∥∥∥
2

∥∥∥PBf⊥
∥∥∥

2

= 2
∥∥∥f‖∥∥∥

2

∥∥∥Bf⊥
∥∥∥

2

≤ 2λ2

∥∥∥f‖∥∥∥
2

∥∥∥f⊥∥∥∥
2

7By the AM-GM inequality, 2
∥∥f‖∥∥

2

∥∥f⊥∥∥
2
≤
∥∥f‖∥∥2

2
+
∥∥f⊥∥∥2

2
= ‖f‖2

2

And hence,
(2) ≤ λ2 ‖f‖2 ≤ λ2

7we used some other method in class first, but this seemed to be an easier proof
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Bounding (3)

(3) =
∣∣∣〈f⊥, BPBf⊥〉

∣∣∣
=

∣∣∣〈Bf⊥, PBf⊥〉
∣∣∣

≤
∥∥∥Bf⊥

∥∥∥
2
·
∥∥∥PBf⊥

∥∥∥
2

=
∥∥∥Bf⊥

∥∥∥2

2

≤ λ2
2 ‖f‖

2
2

≤ λ2
2

Thus, λ(G1 z©G2) ≤ λ1 + λ2 + λ2
2

15 Towards Reingold’s Theorem

Theorem 22 (Reingold). UGAP ∈ L

Instead of looking at s− t connectivity over general graphs, we shall see
that if the connected component containing s was a λ-spectral expander for
some constant λ < 1, then we can check connectivity in L

First, we shall expand every vertex to a cycle, so that we get a D regular
graph.

Let A be the adjacency matrix of G. We know that the mixing time of
l = O(log 1

λ
N) = O(log N). Thus for any distribution over the connected

component of s, ∣∣∣Ales − us

∣∣∣
∞
≤ 1

2N

and in particular, (Ales)t ≥ 12N if it is inside the connected component.
Hence, if there exists a path from s to t, the path is of length atmost
O(log N).

But how does one enumerate all paths of length O(log N)? The naive
method of remembering all vertices in the path would cost you O(log2 N)
space. But since the graph is D regular for some constant D, it suffices to
remember the out-edge number! Thus, the space you need to try out all
paths of length O(log N) would be O(log D, log N) = O(log N), and this
gives us the logspace algorithm.

Reingold’s theorem basically forces every graph G to be transformed of
one of the above category.
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For any G = (N,D, ) graph,

1. Pick H, a small
(
D16, D, 1

2

)
expander.

2. G0 = G, Gi = (Gi−1 z©H)8

3. Thus, Gi is a
(
ND16i, D16,

)
graph.

Looking at the connected component containing s, turns out that

λ(Gi) ≤ max[λ(Gi−1)2,
1
2
]

And now, choosing i = l = 5 log N or so, we have

λ ≤
(

1− 1
N4

)2l

≤ 1
2

and this reduces to the earlier case which is solvable in logspace.
The heart of the proof is to show that the rotation maps of Gi’s can be

computed in logspace.8

8though it seems like we need to make O(log N) recursive calls, the amortized cost of
computing the rotation map is still O(log N)
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16 Overview

We are on our way to showing that UGAP or undirected graph connectivity
can be computed in logspace. Last class we saw that if the connected com-
ponent containing s was an expander with some constant positive spectral
gap, then we can check connectivity it in logspace.

We shall now see how we can “expanderize” graphs in logspace, and thus
solve UGAP in logspace.

17 Reingold’s Algorithm

1. Choose a graph H that’s a
(
D16, D, 1

2

)
expander for some constant D.

2. Convert G into a D16 regular graph G′ with N ′ = N2 many vertices.
We shall elaborate on how to do this shortly.

3. Let G0 = G′, and for all i ≥ 1,

Gi = (Gi−1 z©H)8 = Ti(G′,H)

Thus, Gi would be a
(
N2D16i, D16,

)
expander.

Now we have the following claims

Claim 23. If S is a connected component of G,

Ti(G′|S ,H) = Ti(G′,H)|S×[D16]i

This basically tells us that the products respect connected components,
and hence connectivity.

Claim 24. For all i ≥ 1, if λi is the second largest eigenvalue of the con-
nected component of Gi containing s, then

λi ≤ max
(

λ2
i−1,

1
2

)
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With this claim, if we choose i = O(log N) = l, we have

λi =
(

1− 1
poly(N)

)2i

<
1
2

And then our problem would reduce to the case we discussed last lecture.

But we need one more crucial claim, that allow us to take the products.

Claim 25. RotGl
can be computed in logspace from RotG′ and RotH

So with the three claims, the algorithm is complete and we are done by just
applying the algorithm discussed last class for constant spectral gap!

17.1 Converting G to a D16-regular graph G′

Let the vertex set of G′ be [N ]× [N ].

RotG′ : ([N ]× [N ])× [D16] → ([N ]× [N ])× [D16]

is defined as follows

• For all (v, w) ∈ [N ]× [N ],

((v, w), 1) 7→ ((v, w′), 2)

where w′ = w + 1 if w < N and w′ = 1 when w = N ,

• For all (v, w) ∈ [N ]× [N ],

((v, w), 2) 7→ ((v, w′), 1)

where w′ = w − 1 if w > 1 and w′ = N when w = 1,

• If (v, w) ∈ E, then
((v, w), 3) 7→ ((w, v), 3)

else
((v, w), 3) 7→ ((v, w), 3)

• For all 3 < i ≤ D16

((v, w), i) 7→ ((v, w), i)

This clearly gives us a D16 regular graph which doesn’t alter connected
components of the G.
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17.2 Proof of Claim 23

Since this is a property that we would expect graph products to preserve,
let us examine all graph products.

Suppose G1 and G2 are two disjoint components of a graph, and for any
G3 chosen appropriately for the products to be well defined,

• (G1 tG2)
t = Gt

1 tGt
2

This is clear since powering cannot add cross edges between compo-
nents

• (G1 tG2)⊗G3 = (G1 ⊗G3) t (G2 ⊗G3)

This again is clear since parallel edges can’t create crosses between
components.

• (G1 tG2) z©G3 = (G1 z©G3)t(G2 z©G3) The step on the clouds doesn’t
allow you to move across vertices of the bigger graph. And one can
move across vertices of the bigger graphs only using the edges of the
bigger graph. Hence this is also clear.

In the zig-zag product case, through the eigenvalues of the product graph,
we know that the resulting graph is connected if the components of the
product are connected.

And with this, the proof of the claim is just a simple inductive argument
on i where the products preserve the components and the powering gives
the extra [D16] to the LHS.

17.3 Proof of Claim 24

For this we need a stronger bound on the eigenvalue of the zig-zag product,
the proof of this shall not be done here but can be found in [ReingoldVad-
hanWigderson] where they discuss the zig-zag product.

Theorem 26. If λ1, λ2, λ3 are the spectral expansions of G1, G2 and G1 z©G2

respectively, then

λ3 ≤ 1− 1
2
(1− λ2

2)(1− λ1)

Now for our case, λ2 ≤ 1
2 and hence

λ3 ≤ 1− 1
2

(
1− 1

4

)
(1− λ1) ≤ 1− 3

8
(1− λi)
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Now Gi = (Gi−1 z©H)8 and hence

λi ≤
(

1− 3
8
(1− λi−1)

)8

≤
(

1− 1
3
(1− λi−1)

)8

If λi−1 ≥ 1
2 , λi ≤

(
5
6

)8
< 1

2 .
Otherwise if λi−1 < 1

2 , with some little bit of calculus one can show that(
1− 1

3
(1− λi−1)

)4

≤ λi−1

and we are done.

17.4 Proof of Claim 25

Now we shall give a logspace algorithm to compute Rotl given RotG′ and
RotH . This algorithm shall use one global variable and all compuation shall
be done overwriting values on it. Recursive calls shall have only constant
memory overhead and hence this algorithm will run in logspace.

For each step in Gi, we need to do 16 steps in H and 8 in Gi−1.

The input for RotGi is (v̄, ā). Let us intepret v̄ as an element of [N2]×
[D16]i,

v̄ = (v, a0, a1, . . . , ai−1)

Similarly, let us interpret ā = ai as an element of [D16],

ā = (ki,1, ki,2, · · · , ki,16)

for ki,j ∈ [D].
These are written on the input tape as

v a0 a1 · · · ai−1 ai

which consists of O(log N) bits.
The algorithm for computing RotGi is the following:

1. for j = 1 to 16 do

• overwrite (ai−1, ki,j) := RotH(ai−1, ki,j);

• If j is odd

– then overwrite (v, a0, · · · , ai−1) := RotGi (v, a0, · · · , ai−1) ;
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• If j = 16

– then overwrite (ki,1, · · · , ki,16) := reverse(ki,1, · · · , ki,16)

2. done

The overhead in the recursion is just j since everything else is maintained
in the global worktape. Thus in logspace we can compute the rotation map
of Gl.

This concludes Reingold’s algorithm and we have proved theorem 22
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18 Overview

In the next two lectures we shall discuss a result of Babai and Szemeridi on
random sampling from finite groups.

There needs to be more introduction, shall be expanded

19 The Black-Box Group Model

You are given a group G ⊆ Σm, considered as strings over Σ and generated
by a finite set of generator S. You are also provided an oracle that gives
you the necessary group operations, i.e you can multiply, invert etc but you
are not given access to the actual structure of the operations.

One could consider the group G to be embedded in a larger group, and
the oracle does the operations on the larger group. Of course with Cayley’s
theorem G ≤ Sn, the permutation group over n elements, but this is too
large a group. So usually it’s assumed to be a subset of some matrix group
GLn(Fq) or something.

There are quite a few of problems unlikely to be in P , here is an example.
Problem: Given G = 〈A〉,H = 〈B〉, compute G

⋂
H.

This is known to be harder than graph isomorphism, and there’s strong
evidence that this is not NP−complete and it is also not known to be in P .

Babai and Szemeridi looked at the complexity of Membership Testing,
we shall be studying this problem over the next two lectures.

20 Membership Testing

20.1 The Problem Statement

G = 〈S〉 and is a subgroup of a matrix group H = GLn(Fq) and you are
provided with a black-box for H. Given x, check if x ∈ G.
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We shall that this problem is in NP
⋂

coAM .

20.2 MembershipTest ∈ NP

The naive approach is to look at x as a string over S and guess this string.
But one should note that strings could be very large since the group could
be non-commutative.

However, there should be lots of blocks of repetition insead the string
representing x, and hence rather than asking for the string one could ask
for the circuit computing x over S. Our circuit would have all nodes to be
multiplication gates, with the elements of S in the leaves and x being the
output of the circuit. Now the question is, if x ∈ G, does there exists a
small circuit for x over S?

20.3 Small Circuits for elements of G

Lemma 27 (Reachability Lemma). For every g ∈ G = 〈S〉, there exists a
circuit of size (1 + log |G|)2 that computes g from S.

Proof. Let x1, x2, · · · , xi be a sequence of group elements. The cube defined
by {x1, · · · , xi} is defined as follows.

C (x1, · · · , xi) = {xe1
1 xe2

2 · · ·xei
i |ej ∈ {0, 1}}

Let C0 = C(S) = C(S0). We shall see how we can “expand” the cube to
swallow G. Let Ci = C(Si). If G ⊆ C−1

i Ci, then stop; we already have G.
Otherwise, G * C−1

i Ci. This means that there exists a gj such that
C−1

i Cigj * C−1
i Ci. Hence let hi+1 ∈ C−1

i Cigj\C−1
i Ci. Define Si+1 =

Si ∪ hi+1 and Ci+1 = C(Si+1).

Now Ci+1 = Ci tCi ·hi+1 and hence |Ci+1| = 2|Ci|, and hence in log |G|
steps, we can get G ∈ Ci. Thus G is a product of 2 log |G| elements. What
is left to argue is that the hi+1 we’ve been introducing all the while also
has small circuits. And since we are building on the previous cubes, each hi

needs a circuit of size 2i− 1.
Hence, for all the hi’s we need a circuit of size

1+log |G|∑
i=1

2i− 1 = (1 + log |G|)2

as required
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And now if x ∈ G, the NP machine can guess this circuit for x and check
if it infact computes x in polynomial time. Thus MembershipTest ∈ NP .

Showing that this is infact in coAM requires a lot more work, we first
need to be able to sample from the group.

20.4 The Erdös and Rényi Result

Here is an informal sketch of the result:
Theorem:[informal]For any group G, “most” O(log |G|) size sets define
cubes that equal G. And for k = c log |G|, the distribution

x = xe1
1 xe2

2 · · ·xek
k , ei ∈R {0, 1}

is “almost” uniform, i.e,

1− ε

|G|
≤ Pr

e1,··· ,ek

[x = g] ≤ 1 + ε

|G|

The formal version is the following:

Theorem 28 (Erdös and Rényi). Let G be a finite group and x = (x1, · · · , xk), xi ∈
G. And for all g ∈ G, define

Qx(g) = Pr̄
e

[xe1
1 · · ·xek

k = g]

Then for all ε, δ > 0, if k ≥ 2 log |G|+ 2 log
(

1
ε

)
+ log

(
1
δ

)
,

Pr
x

[
|Qx − U |∞ >

ε

|G|

]
≤ δ

Proof. As usual, we shall work with the L2 norm instead of the L∞ norm.

|Qx − U |2∞ ≤ ‖Qx − U‖2
2

=
∑

g

(
Qx(g)− 1

|G|

)2

∴ Ex |Qx − U |2∞ ≤ Ex ‖Qx − U‖2
2

=
∑

g

Ex

(
Qx(g)2 +

1
|G|2

− 2Qx(g)
1
|G|

)

= Ex

(∑
g

Qx(g)2
)
− 1
|G|
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Note that the first term in the last line is the collision probability. Hence,
define χx(ē, ē′) as the indicator random variable to check for collision, i.e,

χx(ē, ē′) =

{
1 if xe1

1 · · ·xek
k = x

e′1
1 · · ·xe′k

k

0 otherwise

Hence,

Ex

(∑
g

Qx(g)2
)

= Ex
1

22k

∑
e,e′

χ(e, e′)

=
1

22k

∑
e,e′

Ex[χx(e, e′)]

=
1

22k

∑
e,e′

Pr
x

[χx(e, e′) = 1]

Now, when e = e′, then Prx[χx(e, e′) = 1] = 1. As for the other case
when e 6= e′, taking all the ei to one side we have Prx[χx(e, e′) = 1] = 1

|G| .
And hence,

Ex

(∑
g

Qx(g)2
)

=
1

22k

(∑
e=e′

1

)
+

1
22k

∑
e6=e′

1
|G|


=

1
2k

+
22k − 2k

22k

1
|G|

=
1
|G|

+
1
2k

(
1− 1

|G|

)
∴ Ex

(
|Qx − U |2∞

)
≤ 1

2k

(
1− 1

|G|

)
And now to estimate Prx[|Qx − U |∞ > ε

|G| ], we can use Markov’s in-
equality and the result follows.

20.5 Towards Babai’s Sampling Algorithm: The Cayley Graph

Let G = 〈S〉. The cayley graph X(G, T ) where T = S ∪ S−1 ∪ {1} has the
vertex set as G. And (x, y) is an edge in the X(G, T ) if there exists a g ∈ T
such that xg = y.
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Earlier we say the following eigenvalue bound

λ2 ≤ 1− 1
O(diam2|G|2)

In arbitrary graphs, one could have a very small diameter but the size of the
graph could be large (two complete graphs connected by a cut edge, diameter
is 3 but size is large). But for Cayley graphs, the additional structure ensure
the following eigenvalue bound.

λ2 ≤ 1− 1
O(diam2)

Babai achieves the random sampling by looking at the Cayley Graph as
an expander and taking a random walk on it. Cayley graphs aren’t really
expander but they have a property that Babai called the Local Expansion
Property.

Lemma 29 (Local Expansion Lemma). Define T t to be the t−neighbourhood
of T , the set of all vertices reachable from T by a path of length atmost t.
Let 0 < α < 1

2t+1 , and D ⊆ T t such that |D| ≤ (1 − 2tα)|G|. Then there
exists a g ∈ S such that |D\Dg| ≥ α|D|

Note that if t was the diameter of X(G, T ), then T t = G. Taking
α = 1

4t , we then have for all D ⊆ G, |D| ≤ |G|
2 , |Γ(D)| ≥

(
1 + 1

4t

)
|D|, and

this actually gives us that λ2 ≤ 1− 1
diam2 .

We shall see the proof of this lemma and the sampling algorithm in the
next lecture.
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21 Recap

Last class we wanted to show that the membership testing problem in the
blackbox group model is in NP ∩ coAM , and showing it was in NP was
done by construction of small circuits (by expanding “cubes”) acting as a
witness. To show that it is in coAM , we needed to sample from the group;
that was the focus of Babai’s paper.

The result of Erdös and Rényi tells us that given a random set of size
O(log |G|) can be used to sample almost uniformly at random from the group
G. But this would first require to pick the set of O(log |G|) elements, which
is too costly.

When we noted that Babai then describes the Cayley graph and Lemma
29 tells us that the Cayley Graph has decent expansion properties, and we
shall be exploiting this. As seen in some of our earlier lecture, we shall
analyse random walks on these Cayley Graphs to help us achieve almost
uniform sampling from G.

22 Proof of Lemma 29

Suppose the lemma is not true, then for all g ∈ S, |D\Dg| < α|D|.
Now for x, y ∈ G,

D \Dxy ⊆ (D \Dy) ∪ (Dy \Dxy)
= (D \Dy) ∪ (D \Dx) · y

∴ |D \Dxy| ≤ |D \Dx|+ |D \Dy|

Hence, for all k, u ∈ T k,
|D \Du| < kα|D|

Thus for k = 2t + 1,
|D \Du| < |D|
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but this is possible only when Du contains some elements of D, i.e D∩Du 6=
φ =⇒ u ∈ D−1D ⊆ T 2t for all u, and hence G = T 2t.

Now lets count the number of pairs (x, u) such that x ∈ D,u ∈ G, xu ∈
D. For every u ∈ G, there exists an x such that xu ∈ D since D ∩Du 6= φ.
Hence for k = 2t,

|D \Du| < 2αt|D|
=⇒ |D ∩Du| > (1− 2αt)|D|

And since |D ∩Du| many x’s are possible for each u, the total number
of pairs is atleast (1− 2αt)|D| · |G|.

And also clearly the number of pairs is less than |D|2, which then forces
the contradiction on the size of D.

23 Local Expanders

In order to study more on the “local expanders” we have the following
definition.

Definition 30. Let X = (V,E) any undirected graph and let Y be a vertex
induced subgraph of X. We say Y is ε expanding subgraph of X if for all
W ⊆ V (Y ), |ΓX(W )| ≥ (1 + ε)|W |

Theorem 31. If G = 〈S〉 and X = X(G, T ), T = S ∪ S−1 ∪ {1} then if
|T t| ≤ |G|

2 =⇒ T t is a 1
4t expanding subgraph of X, i.e

∀D ⊆ T t, |Γ(D)| ≥
(

1 +
1
4t

)
|D|

Proof. Put α = 1
4t in the earlier lemma and the theorem is done.

Earlier we had shown that spectral expansion implied vertex expansion.
Here is a result in the other direction, we won’t prove it though.

Theorem 32 (Alon’s Eigenvalue Bound). Let G be a d−regular connected
non-bipartite undirected graph such that for all U ⊆ V, |U | ≤ |V |

2 , |Γ(U)| ≥
(1 + ε)|U |. Then

λ2(G) ≤
(

d− ε2

4 + 2ε2

)
1
d

And in the context of locally expanding subgraphs:
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Theorem 33 (Babai’s Eigenvalue Bound). If Y is an ε−expanding subgraph
of X, then we have the following bound for the largest eigenvalue of the
adjacency matrix (the non-normalized adjacency matrix) of Y

λ1(Y ) ≤ d− ε2

4 + 2ε2

Now for random walks on these local expanders.

Theorem 34. Suppose we start at a random walk on X from any vertex
v0 ∈ Y , then

Pr[the random walk is confined to Y for l steps] ≤ |V (Y )|e−
ε2l

4+2ε2
1
d

Proof. Let A be the adjacency matrix of Y , and e0 ∈ R|V (Y )|, the standard
basis vector with 1 at v0 and 0 everywhere else. Assuming that the walk is
completely confined in Y , the transition matrix of the walk is 1

dA.
Now, the probability that you are confined in Y for l steps is precisely

(1, 1, · · · , 1)T

(
1
d
A

)l

e0

Since A is a real symmetric matrix, we know by the spectral theorem that
there exists a real eigenbasis. Hence A = CT DC where C is an orthogonal
matrix and D is the diagonal matrix of eigenvalues. Hence the probability
of staying inside Y for l steps (let me call that value as P (l))

P (l) =
1
dl

(CJ)T ·Dl · (Ce0)

≤ ‖CJ‖2 · λ
l
1 ‖J‖2

=
(

λ1

d

)l

|V (Y )|

And now using Babai’s eigenvalue bound, the theorem follows.

The only other property we need the Cayley graph to satisfy is the small
diameter criteria. Then our random walk would sample almost uniformly
from G.

Claim 35. If diam(G) > 2t, then |T t| ≤ |G|
2
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Proof. If diam(G) > 2t, then we know that

G *
(
T t
)−1

T t

=⇒ ∃g : T tg ∩ T t = φ

=⇒ |T t| ≤ |G|
2

Now, suppose diam(G) > 2t, we know that |T t| ≤ |G|
2 and then, by our

earlier theorem, T t is a 1
4t expanding subgraph of X(G, T ). And then, the

probability of the random walk being confined to T t is upper bounded as
follows

P (l) ≤ |G|e
l

(64t2+2)|T |

And when l = (64t2+2)|T | (log |G|)2, then P (l) 1
|G| and this l is polynomially

bounded in log |G|, so we are in good shape to emulate the reachability
lemma.

Define R1 = T and for inductive procedures, Ci = R1 · · ·Ri. Suppose
G ⊆ T 4i, we already have small diameter and hence we are done.

Suppose G * T 4i, then T 2i ≤ |G|
2 . Do a random walk for l steps (for the

suitable l for 2i) and add all the elements visited to Ri+1.
With good probability, we have an x /∈ C−1

i Ci and hence |Ci+1| ≥ 2|Ci|,
the size doubles with each time. Hence with little error, we would be reaching
small diameter in log |G| steps.

The accumulated error, by the union bound, is upper bounded by poly(log |G|)
|G|

and we are in good shape. We can now use Erdös and Rényi and we would
be able to sample almost uniformly from G.

24 MembershipTest ∈ coAM

Needs to be filled out, not sure of it myself.

37


	Introduction
	Motivation
	Graph Parameters

	Spectral Expansion
	Associated Eigenvalues
	Other Eigenvalues

	Random Walks on Expanders
	Mixing Time and Spectral Expansion

	Undirected Graph Connectivity is in RL
	Bounds on 2(G)
	Proof of Theorem 10

	Amplification of success in RP
	Proof of Theorem 11

	Spectral Expander -3mu Vertex Expander
	Lower Bounds on 

	Random Graphs as Expanders
	Explicit Constructions
	The Rotation Map
	Graph Products
	Powering
	Tensoring

	The Zig-Zag Product
	Intuition Behind this

	A Constant Degree Expander Family
	An explicit construction for H

	Overview
	Proof of the Zig-Zag Theorem (18)
	Towards Reingold's Theorem
	Overview
	Reingold's Algorithm
	Converting G to a D16-regular graph G'
	Proof of Claim 23
	Proof of Claim 24
	Proof of Claim 25

	Overview
	The Black-Box Group Model
	Membership Testing
	The Problem Statement
	MembershipTest NP
	Small Circuits for elements of G
	The Erdös and Rényi Result
	Towards Babai's Sampling Algorithm: The Cayley Graph

	Recap
	Proof of Lemma 29
	Local Expanders
	MembershipTest coAM

