
CS681 Computational Number Theory

Lecture 5 and 6: Chinese Remaindering
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In the next two lectures, we shall see a very important techinique used in
computer science. The technique is called Chinese Remaindering. This comes
in extremely handy in various arithmetic problems. We shall be looking at
the problem of evaluating the determinant as a motivation.

1 Motivation for CRT: The Determinant

We are given an integer square matrix A and we are to find the determi-
nant of the matrix. Before we talk about solving the problem, we need to
understand the input as such. How big is the input?

The size is not just n2 since the entries of the matrix also need to be rep-
resented. Hence the input size also depends on the size of the entries in the
matrix. Let us call λ = maxi,j |aij | . Then each entry in the matrix requires
atmost log λ bits and there are n2 entries. Thus, the input size is n2 log λ.
We are looking for an algorithm that runs in time polynomial in the input
size.

The naive approach is to do Gaussian Elimination, or the elementary
row-operation method done in high-school: pick the first non-zero element
in the first row, divide that row by the number (making it 1), and use this
row to clear all other entries in that row.

This however has two problems:

1. Involves division and hence manipulating rational numbers.

2. Numbers in the matrix can become huge during gaussian elimina-
tion.

Firstly we need to understand why the first point is really a problem.
We are given a matrix with just integer entries. We shall see now that that
such a matrix will have an integer determinant. Thus, it may not be efficient
to have rational number manipulation.

1

1.1 Integer Matrices have Integer Determinants

The group of permutations over n indices is denoted by Sn. Given any
permutation in Sn, we can talk about the sign of the permutation. The
definition is based on the fact that every permutation can be written as a
product of cycles of length 2.

Lemma 1. Every permutation σ can be written as a product of disjoint cycles.

Proof. Start with the index 1. Look at the image of 1 which is σ(1) and its
image σ(σ(1)) etc. Eventually some σi(1) = 1 since the number of elements
is finite. Hence this corresponds to the cycle

(
1 σ(1) σ2(1) · · · σi(1)

)
. Now

look at the next smallest index that has not been covered in this cycle and
do the same. Our permutation σ is the product of these cycles and they are
clearly disjoint.

Lemma 2. Every permutation σ can be written as a product of cycles of length 2.

Proof. By the previous lemma, it is enough to show that every cycle can
be written as a product of 2-cycles. And this is very easy to see. Consider
any cycle of the form (a1 a2 · · · ak). Easy to check that this is equal to the
product (a1 a2)(a1 a3) · · · (a1 ak).

Now, if a permutation σ can be represented as a product of m 2-cycles,
then we define the sign of σ to be (−1)m.An immediate question is whether
this is well defined. That is, suppose a permutation can be represented as a
product of 7 such 2-cycles and also as a product of 24 2-cycles in a different
way, won’t it give two conflicting values for the sign of the permutation.
The answer is that such a thing won’t happen. It is not too hard to check
but we leave this to the interested reader.

(Hint: Every permutation of n indices can be thought of as a tuple
(x1, · · · , xn) where the i-th index corresponds to the image of i under the
permutation. Now look at the sign of the expression∏

i>j

(xi − xj)

The sign of this expression is an equivalent definition of the sign of the
permutation.

Now can you see why a permutation cannot be expressed as a product
of s transpositions and t transpositions where s and t are of different par-
ity?)

2

This is another formula to evaluate the determinant.

detA =
∑
σ∈Sn

sign(σ)
n∏

i=1

aiσ(i)

As an example, any 2 × 2 matrix has its determinant as a11a22 − a12a21

where the first term corresponds to the permutation (1)(2) and the second
to the permutation (1 2).

It is clear from the above formula that a determinant of an integer ma-
trix has to be an integer.

1.2 First Attempt: An Euclidian Approach

Since we are assured that the answer is going to be an integer, it doesn’t
make much of sense to use rational numbers during our computation. And
besides, the denominators can grow really huge through successive row
operations.

But the problem of division can be sorted out using a Euclid’s Algo-
rithm sort of approach. Consider the first row of the matrix. Suppose each
element is a multiple of the least entry, then we are in good shape. There
would be no need to divide at all. How do we make sure that this happens?
Somehow get the gcd of the numbers as one of the entries!

Pick up the least element in the row, say a11. Now every other ai1 =
qa11 + r. Now subtract q times the first row from the i-th row. This es-
sentially reduces every entry to the remainder when divided by a11. Now
continue this procedure by picking up the least element until you get the
gcd of the numbers and then use it to kill every other entry in the row.

But, this still causes numbers to blow up. While we do operations to
work on the first column, the other entries can grow to become too large.

1.3 Second Attempt: The Big Primes Method

One clever trick is to do all computations modulo a prime large enough.
Since we know that the determinant is equal to

∑
sign(σ)

∏
aiσ(i), this

value is atmost n!λn since there are n! terms and each term can be atmost
M = λn. Now choose a prime P larger than this bound M.

Now division reduces to multiplying by the inverse modulo P and this
can be done efficiently (this is the reason we want our P to be a prime. We
can’t choose any arbitrary number since inverses may not exist). Now the

3

gaussian elimination works and numbers will be bounded by P. Gaussian
elimination modulo this prime P will give us a final answer D that is in the
range [0, P − 1]. But this could still mean that there are two choices for the
integer determinant. The determinant could either be D or D−P. So to get
around this small catch, we choose P to be a prime larger than 2M. In this
way, if the value we get is less than P/2, we know it is the determinant.
Else, it will be D − P.

Thus we can solve the determinant problem by doing all computations
modulo a large prime. But how do we get a large prime? How do we find
a prime larger than the bound M quickly?

By a theorem on the density of primes, a random number between m
and 2m is a prime with reasonably good probability. Thus we can just pick
a random number, test if it is prime, if not pick again. We will hit a prime
soon enough.

This however introduces randomness in our algorithm. We would like
to have a deterministic polynomial time algorithm. This is where Chinese
Remaindering comes in.

2 Chinese Remainder Theorem: Over Integers

Theorem 3. Let N = a1a2 · · · ak such that each pair ai, aj are coprime. Then we
have the following isomorphism between the two rings.

Z/(NZ) ∼= Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)

And more so, the isomorphism and the inverse map are computable easily.

Proof. First we look at the following homomorphism

φ : Z −→ Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)
x 7→ (x mod a1, x mod a2, · · · , x mod ak)

It is easy to check that this is indeed a homomorphism of rings. What is the
kernel of the map? We are looking at the inverse image of (0, 0, · · · , 0). This
just means that any x in the kernel must be 0 mod ai for each i. And since
the ai’s are coprime, this inturn means that x must be divisible by N . Thus
the kernel of this map is (NZ).

4

Hence, by the first isomorphism theorem, we have that the induced
quotient map is an injective homomorphism:

φ̂ : Z/(NZ) ↪→ Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)

It’s just left to show that the map is not only injective but also surjective;
that would establish that it is indeed a homomorphism. Since the rings in
the picture are finite rings, we can use a cardinality argument here. The
cardinality of the ring on the left isN and so is the cardinality of the ring on
the rightN (since it is equal to a1a2 · · · an). Hence, since the map is injective
between two sets of the same finite cardinality, it has to be an isomorphism.

This however will now help when the rings are infinite. For example
R happily sits injectively inside C but they are clearly not isomorphic. We
shall soon be getting to a general setting when such a cardinality argument
won’t work. Thus we need a more algebraic proof.

Here we shall use a small lemma.

Lemma 4. We can easily compute elements xi such that xi = 1 mod ai and
xi = 0 mod aj for all i 6= j. In other words, the image of xi is the tuple that has 1
on the i-th coordinate and 0 everywhere else.

Pf: Since all the ai’s are pairwise coprime, ai is coprime to āi =
∏

j 6=i aj .
Thus, by euclid’s lemma, there exists elements x and y such that

xai + yāi = 1

Going modulo ai, we get yāi = 1 mod ai. And since yāi is divisible by
each other aj , it is 0 mod aj . Thus this number yāi is our required xi and
hence can be computed easily by the extended euclid’s algorithm.

Now that we have these xi’s, computing the inverse map is very simple.
Given a tuple (z1, z2, · · · , zk), the inverse image is just

∑k
i=1 zixi.

Thus the map φ̂ is indeed an isomorphism and its image and inverse
images can be computed easily.

2.1 Solving Determinant through CRT

We are going to pick up small primes p1, p2, · · · , pm such that
∏
pi = N >

2M and then use chinese remaindering. How many primes do we need to
pick? Since each prime is greater than or equal to two, the product of m
distinct primes is clearly greater than 2m. Thus in order to go larger than

5

2M , we just need to pick log 2M primes, which is O(n log n + n log λ) and
is clearly polynomial in the input size.

How do we go about picking them? Just keep testing numbers from
2 onwards, check if it is prime, and do this until we have enough primes.
How long do we have to go before we get enough primes?

The prime number theorem tells us that the number of primes less than
n isO

(
n

log n

)
.With a little bit of calculations, it is easy to see that we would

have found our m primes if we go just up till m2 log2m. And since m is
polynomial in the input size, so is m2 log2m.

So we just need to look at all numbers up till m2 log2m where m =
log(2n!λn), and pick up all the primes. Note all these primes are extremely
small, even their magnitude smaller than m which is about logM. In the
big prime method, we were picking a prime that required logM bits to
even represent it in binary; its magnitude was about 2log M = M. These
primes are logarithmically smaller. Hence, to check if the numbers are re-
ally primes, you can use even the extremely inefficient exponential time
sieve method or something. It also makes sense to store these small primes
in the library, precompute them and keep it.

Now that we have these primes, we compute the xi’s as indicated in
the lemma using the extended euclid’s algorithm. Now we compute the
determinant of the matrix A modulo each of these primes pi using gaus-
sian elimination. Let us say we get our value of the determinant mod pi

as di. Once you have done this calculation for each pi, we get the tuple
(d1, d2, · · · , dm). Now using the xi’s, find the inverse map to get the value
of the determinant D mod N. If this value is less than N/2, return it. Else,
return D −N.

3 Chinese Remainder Theorem for Arbitrary Rings

In order to state the theorem for arbitrary rings, we need analogues of di-
visibility and coprimeness in terms of rings. This can be done using ideals.
We say m | n, or m divides n, if every multiple of n is also a multiple of m.
This interms of ideals translates to mZ containing the ideal nZ.

As for coprimes, we know that two numbers a, b are coprime if there
exist x, y such that xa+ yb = 1. For this, we need a notion of an ideal sum.

Given ideals a, b of a ring R, we define the sum-ideal as

a + b = {a+ b : a ∈ a, b ∈ b}

This is also the ideal generated by the union of the two ideals.

6

Algorithm 1 DETERMINANT: USING CRT
1: Let M = n!λn and m > 2 logM.
2: Enumerate the first m2 log2m numbers and check for primes. Pick the

first m primes.
3: Let N = p1p2 · · · pm.
4: for i = 1 to m do
5: Evaluate, using gaussian elimination, det(A) mod pi.
6: Let di = det(A) mod pi.
7: Evaluate, using extended euclid’s algorithm, the xi as in the lemma.
8: end for
9: Let D =

∑m
i=1 xidi.

10: if D < N/2 then
11: return D.
12: else
13: return D −N.
14: end if

And now we can say that two ideals a and b are coprime if the ideal
a + b = R.

Using these definitions, we have the Chinese Remainder Theorem for
arbitrary rings. We state and prove the theorem for two ideals, but the
general case is similar.

Theorem 5. Let R be any commutative ring with identity. Let a and b be two
ideals of R that are coprime to each other. Then we have the following ring isomor-
phism:

R/(a ∩ b) ∼= R/a×R/b

Proof. The proof is almost exactly the same as the proof of CRT over inte-
gers. Consider the following homomorphism.

φ : R −→ R/a×R/b

x 7→ (x mod a, x mod b)

Here, mod corresponds to the coset that contains x. This again is clearly
a homomorphism. And the kernel is the set of all elements that ar 0 mod a

and 0 mod b which means that the element is present in both a and b. Thus
the kernel of the homomorphism is a ∩ b.

Thus all that’s left to do is to show that the quotient map

φ̂ : R/(a ∩ b) ↪→ R/a×R/b

7

is also surjective. To show that, we construct the inverse map.
We need to find the inverse image of any given tuple (x, y). Since we

know that the two ideals are coprime, a + b = R and in particular contains
the identity element 1.

Hence there exists two elements a ∈ a, b ∈ b such that a + b = 1. Just
as in the integer case, if we go modulo b we see that a is an element that is
0 mod a but 1 mod b and similarly the element b. Now consider the element
xb+ ya. This is easily seen to be x mod a and y mod b. Hence xb+ ya is the
inverse image of (x, y).

Thus the map is also surjective and hence is indeed an isomorphism.

Thus any ring that lets us compute the elements a, b such that a+ b = 1
will allow CRT to go through. One such example is the ring of polynomi-
als over integers. In this ring, the irreducible polynomial will act as the
primes and we will be able to compute the determinant of a matrix with
polynomial entries as well.

Another important property is that the units go to the units. That is, if
you take any element x in the ring R/(a + b) whose inverse exists, corre-
sponding tuple (a, b) also have the property that a and b are invertible. The
proof of this is pretty easy.

Suppose an invertible element x was mapped to (a, b). Then, since the
inverse exists, look at the image of the inverse of x. Lets call it (a′, b′). By
definition, 1 = xx−1 7→ (aa′, bb′) = (1, 1). And hence a′ must be the inverse
of a and b′ the inverse of b. And thus if x is invertible, so is a, b and vicev-
ersa.

Chinese Remainder Theorem is a really powerful tool used in numerous
occasions in computer science. We shall see more in the days to come.

8

CS681 Computational Number Theory

Lecture 7: Towards Factorization over Finite Fields
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall slowly move into factorization of univariate polynomials (polyno-
mials with just one variable) over finite fields. We are given a finite field K
and a polynomial over one variable X whose coefficients are from K. We
are to find the factorization of this polynomial into irreducible factors.

Before we get into this question, we need to first understand if it even
makes sense. How can we be sure that such a factorization exists? And
even if it did, how do we know if it is unique?

We shall first answer a lot of questions in the algebra related to it before
going to factorization as such.

4 Rings, Ideals, Factorization etc.

We know that integers can be uniquely factorized into product of prime
powers. However, not all rings are as well-behaved as the integers are.
We first need to ask if the algebraic structure has this property of unique
factorization. Let us look at an example where this fails.

Look at the set of integers modulo 8. This is called Z8 and we know
that this forms a ring. Suppose we look at polynomials over this ring, poly-
nomials of a single variable X whose coefficients come from Z8, does this
ring have the property of unique factorization? Here is a counter example
in Z8[X].

X2 − 1 = (X − 1)(X + 1) = (X − 3)(X + 3)

But Z8 is a bad ring, in the sense that non-zero elements can multiply to
give 0 (2×4 = 0 here). As for another example, look at the set of all number
of the form a + b

√
−5 where a, b ∈ Z. This forms a ring and over this ring

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Hence it’s not always true that factorization is unique. However, for-
tunately for us, we have unique factorization over K[X] whenever K is a
field.

9

Definition 1. A ring is said to be an integral domain if and only if there are no
non-trivial zero divisors. That is, if a, b ∈ R such that ab = R, then either a = 0
or b = 0.

The ring Z is an integral domain but the ring of integers modulo 6 is not
(since 2× 3 = 0 over the ring).

Inorder to define factorization, we need a notion of primes over arbi-
trary rings. Let us first look at the definition of primes over integers. Let us
first look at the wrong definition.

A number p is said to be prime if for all a that divides p, either a = 1 or
a = p.

This translates to the ring definition of a maximal ideal and not a prime
ideal.

This is the common definition in school but generalization based on this
is erraneous. Though it happens to correct over the set of integers, it is not
true in general. Here is the right definition.

Definition 2. A number p is said to be a prime if and only if for all a, b such that
p divides ab, either p divides a or p divides b.

Thus this gives the definition of prime ideals in the setting of rings.

Definition 3. An ideal a ⊆ R is said to be prime if and only if for all a, b ∈ R
such that ab ∈ a, either a ∈ a or b ∈ a.

Any element p ∈ R that generates a prime ideal is called a prime element of R.

Definition 4. An ideal a ⊆ R is said to be maximal if and only if for every ideal
a′ ⊇ a, either a′ = 1R = R or a′ = a.

This basically means that no proper ideal ofR properly contains a.Note
that not all prime ideals are maximal. We were just lucky that this was true
on Z and hence both definitions of prime numbers were equivalent. This is
not true over arbitrary rings.

Definition 5. An ideal a ⊆ R is said to be a principle ideal if the ideal is generated
by a single element. That is, a = aR for some a ∈ R.

Definition 6. An integral domain R is said to be a

• principle ideal domain (PID) if every ideal in it is principle (every ideal is
generated by a single element).

10

• unique factorization domain (UFD) if every element can be uniquely factor-
ized in to product of prime elements of the ring.

We already saw an example of a ring (and a domain) that was not a
UFD. Here is an example of a ring that is not a PID. Consider a field K and
look at the ring of polynomials on two variables X,Y over this field. This
is denoted by K[X,Y].

In this field, look at the ideal generated by X and Y. That is, the set of
polynomials of the form Xf(X,Y) + Y g(X,Y), those polynomials that do
not have a constant term. This is clearly an ideal but this isn’t principle.

A similar example is over Z[X] and the ideal being (p,X) where p is any
prime number.

Fact 1. For any field K, K[X] is a PID.

Fact 2. Any PID is also a UFD

The two facts together tell us that we can indeed talk of factorization of
polynomials in K[X]. Another useful fact is the following, and this helps
us see that factorization makes sense even on multivariate polynomials.

Fact 3. If R is a UFD, so is R[X].

The following theorems are very useful.

Theorem 6. A ring R is a field if and only if the only ideals of R are the 0 ideal
and the whole ring R.

Proof. First we shall show that a field has no non-trivial ideals. Suppose
The field had some ideal I that contained some element x 6= 0. Since it is
a field, the inverse of x exists. Since I is an ideal and x ∈ I would mean
that xa ∈ I for all a ∈ R and in particular xx−1 = 1 ∈ I. But if 1 ∈ I , then
for every element a in the field, 1a ∈ I which would then force I to be the
entire field.

As for the other direction, suppose the ring R was not a field. We want
to show that there exists some non-trivial ideal in this ring. Since we as-
sumed that it isn’t a field, there must be some non-zero element a whose
inverse does not exist. Look at the ideal generated by it, aR. This ideal
certainly contains a and it cannot 1 since if it did, it would mean that a
is invertible. And hence this is an ideal that is non-zero and also not the
whole of R; a non-trivial ideal.

11

Theorem 7. For any ring R

1. if an ideal a is prime, then R/a is an integral domain.

2. if an ideal a is maximal, then R/a is a field.

Proof. We have to show that if a is prime, then R/a is an integral domain.
Suppose not, then there exists two non-zero elements a, b such that ab = 0
in R/a. This means that a mod a 6= 0 and a mod a 6= 0 but ab mod a = 0 or
in other words ab ∈ a but neither a nor b belongs to a. This contradicts the
assumption that a and hence R has to be an integral domain.

As for the case when a is maximal, assume that R/a is not a field. Then
there exists some non-zero element that is not invertible. Look at the ideal
generated by this element. As in the earlier theorem, this is a non-trivial
ideal (neither 0 nor the entire ring). But in the map from R to R/a, ideals
of R/a corresponds to ideals in R that contain a. Since we just found a
non-trivial ideal in R/a, this would translate to a non-trivial ideal in R that
properly contains a thus contradicting the maximality of a. Thus R has to
be a field.

4.1 Some Insights

This is not completely a part of the course but it would be useful to know
this to understand factorization. In any ring, we can talk of a tower of prime
ideals. What this means is a series of the form 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ R
such that each ideal Ij is a prime ideal. The number n is called the Krull
Dimension of the ring R.

The Krull Dimension is actually a local property but for it is well defined
for rings like K[X1, X2, · · · , Xn] (where K is a field) and Z[X].

If we were to look at K[X,Y], we have the tower 0 ⊆ (X) ⊆ (X,Y) ⊆
K[X,Y]. The krull dimension of this ring is 2. Similarly the ring of polyno-
mials on n variables over a field K will have a krull dimension of n.

And the ring Z[X] has the tower 0 ≤ (p) ≤ (p,X) ≤ Z[X] and hence
has krull dimension 2. We shall see soon that factorization of polynomials
in Z[X] is so similar to factorization of polynomials in K[X,Y].

We need to understand the concept of finite fields, extensions, etc before
we get into factorization. We shall first spend some time on this.

12

5 Finite Fields

We shall be studying properties of fields that have finite number of ele-
ments in them. A few things to keep in mind, we shall prove them soon, is
that any finite field has its cardinality to be a power of prime. There can-
not exist a finite field whose cardinality is divisible by two distinct primes.
And infact, for any prime p and α, there is exactly one field of size pα. (and
note that this isn’t true on the infinite setting. R and C both have infinite
number of elements but are clearly different)

Definition 7. A field E is called an extension of a field K if E is a field that
contains K. This (also) is denoted by E/K.

There is a notion of a degree of a field extension but one needs to be
familiar with vector spaces to completely understand this. We shall dwell
a little on it.

5.1 Vector Spaces

Definition 8. A vector space V over a field K, with an additive structure and
multiplication by elements of K (scalars), satisfies the following conditions:

• (V,+) is an additive abelian (commutative) group (additive closure, inverse,
identity)

• For any vector v ∈ V and scalar α ∈ K, the element αv is also a vector.

• For any vectors u, v ∈ V and scalar α ∈ K, we have α(u+ v) = αu+ αv.

• For any vector u and scalars α, β ∈ K, we have (α + β)u = αu + βu and
α(βu) = (αβ)u.

Let us look at a few examples to get ourself familiar with this notion. C
forms a vector space over R. Clearly the above properties are satisfied.

Another example is the plane R2, set of point (x, y) where both coor-
dinates are from the reals. Scalar multiplication is defined as α(x, y) =
(αx, αy).

Another example is the ring of polynomials K[X] over K where K is
a field. Scalar multiplication is just multiplying every coefficient by the
scalar.

Next we need a notion of linear independance.

13

Definition 9. A set {v1, v2, · · · , vk} is said to be linearly independant if the only
way

c1v1 + c2v2 + · · ·+ ckvk = 0

can happen for scalars ci is when all the ci’s are zero themselves. That is, no non-
trival linearl combination of these vectors is zero.

For example, let us look at each of our examples stated and find a lin-
early independant set. In C over R, look at the set {3, 2 + i} . Suppose
c1(3) + c2(2 + i) = 0, then (3c1 + 2c2) + c2i = 0 and this is possible only
when both c1 and c2 are zero. Hence the set is linearly independant.

And again, look at the set {(1, 0), (0, 1)} in R2. This again is linearly
independant since the only way c1(1, 0)+c2(0, 1) = (c1, c2) = (0, 0) is when
both c1 and c2 are zero.

In the third example, look at the set
{
1, X,X2

}
. c1 + c2X + c3X

2 can be
the zero polynomial if and only if all the ci’s are zero.

This is the notion of linear independance. With a little bit of thought,
any vector that can be represented as a linear sum from such a set is infact
uniquely represented so.

For example, let us assume that {v1, v2, · · · , vk} was a linearly indepen-
dant set. Let v = c1v1 + c2v2 + · · ·+ ckvk. Suppose this could be represented
as a linear sum in a different way, we shall obtain a contradiction.

v = c1v1 + c2v2 + · · ·+ ckvk

= c′1v1 + c′2v2 + · · ·+ c′kvk

=⇒ 0 = (c1 − c′1)v1 + · · ·+ (ck − c′k)vk

And if the two representations were indeed different, there is atleast one i
such that ci 6= c′i =⇒ (ci − c′i) 6= 0 but this would give a non-trivial linaer
combination of the vi’s to become zero. This contradicts our assumption
that they were linearly independant. Hence such linear representations are
unique.

An example is that every point (x, y) can be represented uniquely as a
linear sum of (1, 0) and (0, 1) (it is just x(1, 0) + y(0, 1)). The students are
encouraged to also check it for C with our linearly independant set being
{3, 2 + i} .

Let us look at our example of K[X]. We saw that
{
1, X,X2

}
was a

linearly independant subset but the termX5 can never be written as a linear
sum of 1, X,X2. Thus, the set

{
1, X,X2

}
doesn’t cover or spanX5. SinceX5

14

is not spanned by the set
{
1, X,X2

}
, we can add it to the set and it would

still be linearly independant.
We can keep adding elements to our linearly independant set in this

way by picking up some vector that is not spanned by it and adding it.
This process can go on indefinitely as well. For the moment let us look at
the case where this process stops after finite number of steps. Now we have
a set that is linearly independant and it also spans the entire space.

An example would be to look at C over R. Start with 3. The linear span
of this is just elements of the form 3cwhere c is a real number. Hence it does
not span elements like 2+ i.Hence we can add 2+ i to this set and still have
a linearly independant set. Now this set {3, 2 + i} is linearly independant
and also spans the entire space. Any complex number a + ib is equal to
b(2 + i) + a−2b

3 3.
Such a set that spans the space and also is linearly independant is called

a basis of the vector space V over K. And every vector in the vector space
can be expressed as a linear combination of the basis elements, and uniquely
so.

The number of basis elements is called the dimension of the vector
space. But wait, how do we know that every basis will have the same num-
ber of elements? Is it possible that I can find three complex numbers that
are linearly independant over R and span C? The answer is no. It is not so
hard to see that all basis must have the same number of elements. Thus the
dimension of the vector space is independant of the choice of basis is hence
well-defined.

The vector spaceK[X] overK has infinite dimension and its basis could
be chosen as

{
1, X,X2, · · ·

}
. And a polynomial, say 80 + 2X + 0X3 + 3X4

can be represented by the tuple (80, 2, 0, 3, 0, 0, 0, · · ·) and every polynomial
has a corresponding tuple.

Suppose we choose {1, i} as a basis for C over R, then every element
a + bi can be expressed as a(1) + b(i). Now we can represent the number
a+ bi as the tuple (a, b).

So essentially, a vector space V over K is one where each element in it
can be represented as a tuple, whose entries come from K. The arity of the
tuple is the dimension of the vector space.

Thus, in the finite setting, if V is a finite dimensional (say d-dimensional)
vector space over a finite field K, then the number of elements of V is |K|d.
This is clear since it is just the number of d-tuples whose entries come from
K.

15

5.2 Field Extensions

Let E/K be a field extension. This just means that both E and K are fields
and that E contains K.

Now observe that for all α, β ∈ K and u, v ∈ E, α(u+ v) = αu+αv and
(α + β)u = αu + βu etc. Thus all the conditions to call this a vector space
hold. Thus, we can think of E as a vector space over K.

An example of this we have seen already. C is a field that contains R.
And C actually is a vector space over R.Another example would be to look
at

Q[
√

2] =
{
a+ b

√
2 : a, b ∈ Q

}
It is easy to check that this is a field and this clearly contains Q. And this
also naturally forms a vector space over Q.

Definition 10. The dimension of E as a vector space over K is called the degree
of the extension E/K. This is denoted by [E : K].

C over R is a 2-dimensional extension. R over Q is an infinite dimen-
sional extension. Q[

√
2] over Q is a 2 dimensional extension.

Adjoining Elements: An informal discussion

The field C is just taking R and adding the element i to it. Once we add i to
R, we just take all possible linear combinations, products, inverses to make
it a field. We let the set R ∪ i grow into the smallest field containing R and
i. This is formally referred to as R(i), the field got by adjoining i to R.

It is easy to check that Q(
√

2) is infact Q[
√

2] =
{
a+ b

√
2 : a, b ∈ Q

}
.

And similarly one can also check that Q(3
√

2) =
{
a+ b 3

√
2 + c

3
√

22 : a, b, c ∈ Q
}
.

From this is it easily seen that Q(3
√

2) is a degree 3 extension over Q.
Given such an adjointed field extension, is it easy to find out the degree?

The answer is yes. All we need to do is choose an easy basis for the vector
space. For example, let us look again at Q(3

√
2). Let α = 3

√
2. We want the

degree of the extension Q(α)/Q. Now consider the set
{
1, α, α2, α3, · · · ...

}
.

When does this fail to be a linearly independant subset? We know that
α3−2 = 0 and hence it loses its linear independance after α3. This is because
α was a root of X3 − 2, a degree 3 polynomial over the Q.

Instead if we were to look any α, any equation of linear dependance
would look like a0 + a1α + a2α

2 + · · · akα
k = 0 and this would just mean

that α is a root of the polynomial a0 + a1X + a2X
2 + · · · akX

k = 0. Thus,

16

the degree of such an extension Q(α)/Q is just the degree of the smallest
degree polynomial of which α is a root.

C = R(i) and i has X2 + 1 as its minimum polynomial and thus [C :
R] = 2. If we were to look at Q(π), π is not a root of any polynomial with
coefficients in Q (this is also referred as ’π is transcendental’). Thus the set{
1, π, π2, · · ·

}
would be an infinite linearly independant subset. And hence

the extension Q(π) over Q is of infinite degree.

We shall look at more properties of finite fields and extensions next
time.

17

CS681 Computational Number Theory

Lecture 8: More on Finite Fields
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

We will be spending some time on understanding the structure of fields
of finitely many elements. In this class we shall some necessary properties
that finite fields (or any field in general) should hold.

6 Characteristic of Finite Fields

Looking at the examples of fields that we know of, we clearly see that Q
and Z/pZ are different. Apart from just the cardinality properties, Z/pZ
has this property of k and p − k cancelling off. Using this as a motivation,
let us define what a characteristic of a field is. First we shall state it formally
and then look at a better interpretation of it.

Definition 11. For any ring R, there exists the identity element 1. Consider the
homomorphism

φ : Z −→ K

n 7→ n · 1

where n · 1 simple means adding 1, in R, n times. And Z being a PID, the kernel
of this map will be of the form mZ. This number m is called the characteristic of
the field.

In other words, the characteristic is the smallest number m such that m
times the identity element is zero.

However, it is possible that m · 1 will never be zero. For example, take
the rings like Q,R,C,Q[x] etc. The corresponding map will hence have
a trivial kernel and that is the ideal 0Z. Hence the characteristics of these
rings is 0 and not infinity. This is just the language. Infact, we shall refer
characteristic 0 rings as rings of infinite characteristic.

Here is a trivial lemma.

Lemma 8. Let R be a ring (with identity) of characteristic m and S be a ring that
contains R. Then characteristic of S is also m.

18

Proof. R has characteristic m implies that φ : Z −→ R has the kernel as mZ.
The homomorphism works just on the identity element of R and hence
would be exactly the same on S (since S has to share its identity element
with R). Thus, since the homomorphism is the same, the kernel has to be
the same.

6.1 Characteristic of Fields

Now, suppose m is the characteristic of any ring R. Then by definition the
kernel of the map φ is mZ. And by the isomorphism theorem, we know
that the following map is injective:

φ̂ : Z/mZ −→ R

And therefore, in a way, a copy of Z/mZ is sitting inside R. Thus, Z/mZ is
a subring of R.

Now let us look at the characteristic of fields instead of rings. Let us
take the identity element and just keep adding it. Either, for some m we
have m · 1 = 0 or it just keeps going on. If it becomes 0, we know that the
field has characteristic m. The other case is the characteristic 0 case.

Now, can it be possible that m is composite? Suppose m = pq where
both p, q < m. Since we know that m · 1 = 0, this means that (p · 1)(q · 1) =
pq · 1 = 0. And by our assumption, we know that neither p · 1 nor q · 1 is
zero; we just showed the existence of zero divisors in a field! That is not
possible. Hence summarizing as a theorem:

Theorem 9. Any field F must either have 0 characteristic or a characteristic that
is a prime.

Let us pick any field F whose characteristic is a prime p. We know that
if we let 1 ’generate’ a subfield of its own by just adding itself, it would get
to Z/pZ. Thus for any field of prime characteristic, it should contain Z/pZ.
We shall refer to Z/pZ by Fp.

For a field of infinite characteristic (characteristic 0, just language), 1
would keep being added on without ever giving a 0. Thus it would gener-
ate the entire set of positive integers. And since additive inverses should
exist, the negative integers should also belong to the field. And further,
because of the multiplicative inverses, all rational numbers should exist.
Hence, every field either contains Fp or Q.

19

Please keep in mind that finite characteristic does not mean finite cardi-
nality. As a counter example, look at the following set:

Fp(X) =
{
f(X)
g(X)

: f, g ∈ Fp[X], g 6= 0
}

that the set of rational functions over one variable. This field has infinite
cardinality and since it contains Fp has characteristic p.

7 Order of Finite Fields

Now let us take any finite field K. Then this field must have characteristic
that is not zero. Why? Since if it did have characteristic zero, it would
contain Q and hence be infinite.

Since the characteristic of this field is finite, say p, it contains Fp. Recall
that if K is a field that contains another field F (in our case Fp), then K is
an extension of F.

Thus, this tells us that any field of characteristic p is a vector space over
Fp. Since we now have a vector space, we can talk of the dimension of this
vector space. The dimension cannot be infinite. Why? For it it was, then the
basis, which belongs to K, would be an infinite set. And this is an obvious
contradiction since we assumed that K was finite.

Thus, the dimension of K over Fp is finite, say s. And since every ele-
ment of K can be written as a s-tuple of elements of Fp, this means that the
number of elements of K is ps.

And, from our earlier theorem, we know that the characteristic of a fi-
nite field has to be a prime. Hence the order of any finite field has to be a
power of a prime.

Theorem 10. Any finite field has ps elements where p is a prime and s a positive
integer.

The moment we make such a statement, we have two questions in
mind.

• Existence: For every prime p and positive integer s, do we have a field
of ps elements?

• Uniqueness: Can we have two different fields with ps elements?

We shall soon see that the answer to the first question is yes and the
second is no. There is exactly one field of size ps.

20

7.1 Creating Extensions of Fp

The general question is how to obtain extension fields of a given field. As
a motivation, let us look at R. How do we get an extension field of R? In a
sense, we need to increase our domain. Therefore, we need to find elements
that don’t belong to R. The way to do that is to look at roots of polynomials.
There is no root of the polynomial X2 + 1 in R. Hence, just add the root.
This is formally done by quotienting.

But there is a small catch before we do that. We now know that we
have the complex number i is a root of X2 + 1 but it is of course the root of
(X2 +1)(X213− 3X127 +897) as well. This is where the concept of minimal
polynomial comes in.

Definition 12. Let L be an extension of K. For any α ∈ L, the mimimum
polynomial of α over K is the monic polynomial of smallest degree over K that has
α as a root.

Again, the questions of existence and uniqueness comes in. Does every
α have a minimum polynomial? The answer is no, and the example is π
over Q. It doesn’t make sense to talk of a minimum polynomial when the
number is transcendental.

But suppose the number is not transcendental, that it is a root of some
polynomial. Then do we have a unique minimum polynomial? Yes. Since if
f and g are two polynomials of smallest degree that has α as a root, then so
does gcd(f, g) and the gcd clearly has smaller degree. This then contradicts
that f and g had least degree. Thus the minimum polynomial is unique.

And by the same reason, the minimum polynomial must be irreducible.
For if f was the minimum polynomial of α and if f(X) = g(X)h(X) then α
must be a root of either g or h and their degree is strictly less than f. Thus
the minimum polynomial if indeed irreducible.

Another way is the following. We have some α ∈ L and we want the
minimum polynomial of α. Consider the following homomorphism.

evalα : K[X] −→ L

f(X) 7→ f(α)

The map is called the evaluation map since it just evaluates every poly-
nomial at α. The kernel of this map will be an ideal of K[X], a principle
ideal. The generator of this ideal is the minimum polynomial.

21

Here is a way to create extensions. Look at Fp[X] and take some irre-
ducible polynomial f of it. Then we know that Fp[X]/(f) is a field since
the ideal (f) is maximal as f is irreducible. If the degree of f is d, then this
would give is a field of size pd.

We shall see this in more detail next time.

22

CS681 Computational Number Theory

Lecture 9: Uniqueness of Fpm

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Last lecture we closed with two questions of existence and uniqueness
of fields of order pm. This lecture, we shall the question of uniqueness and
also understand some other properties of extensions.

8 Some More Properties of Field Extensions

Firsly, we need to understand what quotienting means. Suppose we have
a field K and we look at the polynomial ring over this field - K[X]. Let us
take some irreducible polynomial f and look at K[X]/(f(X)). What does
this mean?

Quotienting means that you consider all occurences of the ideal (f(X))
as zero. So in particular, if you look at f(X) in this ring, it would be zero.
Hence the variable X can now be thought of as a root of f.

Infact, this is exactly what we do to adjoin roots. Suppose we have
a field K and we need to adjoin some element α. We take the minimum
polynomial f of α and we look at K[X]/(f(X)). Here, essentially, X is α.

This is how we built C. We looked at R[X] and quotiented it with the
ideal generated by X2 + 1. And now note that there is no real distinction
between −i or i. Algebraically, R(i) ∼= R(−i) = C. So the general point to
note is that if α and β are both roots of the same irreducible polynomial f ,
then K(α) ∼= K(β) ∼= K[X]/(f(X)).

8.1 Splitting Fields

Until we knew that an object called C existed, we had no idea if there was
an element i such that i2 = −1. So as such, it doesn’t make sense to ad-
join some element until you know where it is from. When you look at
K[X]/(f(X)), we said that X can be identified with a root of f , but what
root? Where is this root? I know it’s not inK (for if it were, X−α is a factor
of f and hence can’t be irreducible), but where else is it?

This is where splitting fields come in.

Definition 13. A splitting field of a polynomial f over K is the smallest field
extension E/K that contains all the roots of f.

23

Or equivalently, it’s the smallest field E where the polynomial f factorizes into
linear factors.

The first thing to note is that this is not equivalent to adjoining a root. To
illustrate the difference, take the field Q and let us look at the polynomial
X3 − 2. This polynomial is irreducible and hence we can talk of the field
Q[X]/(X3 − 2) and identify the element X with a root of the polynomial
say 3

√
2.

But note that this is not the splitting field. The polynomial has other
roots, namely 3

√
2ω, 3

√
2ω2 where ω is a primitive cube root of unity. And it

is clear that Q(3
√

2) is a subfield of the reals and obviously cannot contain
the complex number 3

√
2ω and hence cannot be the splitting field of the

polynomial.
The splitting field of this polynomial is Q(3

√
2, ω) and is a degree 6 ex-

tension over Q whereas the extension by adjoining roots are degree 3 ex-
tensions over Q.

An important theorem is the following:

Theorem 11. If E and E′ are two splitting fields of a polynomial f(X) over K,
then E ∼= E′.

We omit the proof, but nevertheless the theorem is important and will
be used. Interested readers can refer any abstract algebra books for the
proof of this fact.

8.2 The Frobenius Map

The binomial theorem takes a very simple form over Fp. We know that

(X + Y)p =
p∑

i=0

(
p

i

)
xiyp−i

Lemma 12. For i 6= 0, p, the coefficient
(
p
i

)
is divisible by p.

Proof. The proof is quite obvious. The coeffient is(
p

i

)
=
p · (p− 1) · · · (p− i+ 1)

1 · 2 · · · i

and the numerator has a factor of p and the denominator does not. And
since this si an integer, the factor of p will remain uncancelled and hence
will be divisible by p.

24

This then tells us that in the field Fp,

(X + Y)p = Xp + Y p

If you look at it as a automorphism (an isomorphism of Fp into itself),
this shows the map x 7→ xp is an automorphism of Fp.

This map φ(x) = xp is called the Frobenius map. It is a very important
automorphism of finite fields and appears almost everywhere.

8.3 The Multiplicative Group of a Finite Field is Cyclic

Let K be a finite field of pm elements. We shall show now that the multi-
plicative group K \ {0} is a cyclic group.

Infact, we shall show a much stronger theorem.

Theorem 13. Let K be any field (not necessarily finite) and let A be any finite
subgroup of K? = K \ {0} . Then the subgroup A is cyclic. (That is, there exists
an element a ∈ A such that every other element in A is a power of a)

Proof. Let |A| = M. We need to show that there exists an element in A of
order M. Suppose not, let a be the element of highest order in A. Let the
order of a be m < M.

Now pick any x ∈ A. We claim that the order of x must divide M. To
prove this, let the order of x be n. Let the gcd of m and n be d.

By Euclid’s lemma, there exists integers p, q such that pn+qm = d. Thus,
let us look at the element g = xpaq. Then gm = xpmaqm = aqm = d since
qm = d mod n. And similarly gn = xd. Thus, the order of g is infact equal
to mn

d = lcm(m,n). And since we assumed that a was an element of maxi-
mum order, the lcm ofm and n has to bem and therefore n has to dividem.

Having established this, we see that the order of every element must
divide m and therefore xm = 1 for every x ∈ A. And therefore, the polyno-
mialXm−1 has every element ofA as a root. But if we were to assume that
m < M , then a polynomial of degree m would have M > m roots! And
this clearly cannot happen in a field. And therefore, m = M and hence the
group A is cyclic.

9 Uniqueness of Fpm

Now we come to the proof that every field of pm elements are isomorphic.
So essentially, there is only 1 field of size pm and hence would make sense

25

to refer to the field of size pm as Fpm .To avoid cluttering of subscripts and
superscripts, let q = pm. We need to show that any two fields of size q are
isomorphic.

Now let F be any field of order q. Then every element a ∈ F satisfies
the property that aq = a. Hence in particular, every element of the field F
is a root of Xq − X. And therefore, considering this polynomial over Fp,
F is a splitting field of Xq − X over Fp. And by a theorem stated earlier,
all splitting fields of a polynomial are isomorphic. And therefore, any two
fields of order q are isomorphic.

10 More about Xq −X

Here is a very important property of this polynomial Xq −X.

Theorem 14. Let Irr(K, d) be the set of all irreducible polynomials of degree d
over K. Then, the following equation holds in Fp[X] :

Xpm −X =
∏

f∈Irr(Fp,d)
d|m

f(X)

Proof. We shall show that the LHS is equal to the RHS by comparing the
roots on both sides. For the roots to first exist, we shall go to some large
field.

Firstly, note the polynomial Xq −X is satisfied by every element of Fq.
And by the same degree argument, the roots of the polynomial is precisely
all the elements of Fq. We shall first show that every element α ∈ Fq is also
a root of the RHS.

Since α ∈ Fq, pick up the minimum polynomial f(X) of α over Fp. We
have seen earlier that this polynomial must be irreducible. Hence Fp[X]/(f(X))
corresponds to the field Fp(α). Let the degree of f be d.

We know that

[Fq : Fp] = [Fq : Fp(α)] [Fp(α) : Fp]
=⇒ m = [Fq : Fp(α)] · d

=⇒ d | m

And hence, since the degree of this irreducible polynomial divides m, it
appears in the product of the RHS as well.

26

The other way is easy too. Pick up any factor f(X) on the RHS. Let its
degree be d. Let α be one of the roots. Then we know that Fp(α) must be
the field Fpd . But since d divides m, this is a subfield of Fq. And therefore
every element of Fpd , in particular α, must be in Fq as well.

10.1 Extracting Factors

The formula outlined in the previous section is extremely useful in factor-
ing. It helps us pull out factors of the same degree. We shall see a quick
sketch here and discuss this in detail next class.

Let us say we have some polynomial f over Fp. How do we extract all
linear factors over Fp? The idea is pretty simple. We know that Xp − X
splits as linear factors over Fp. And more over, the formal derivative of it is
pXp−1 − 1 = −1 6= 0 and therefore it has no repeated roots as well.

Then, we have
g(X) = gcd(f,Xp −X)

Then if α ∈ Fp was any root of f , then clearly since α also satisfies
Xp −X , α will be a root of g as well. And more importantly, since Xp −X
is has no repeated roots, g will retain the same property as well. Hence
every root of f over Fp appears exactly once in g.

Having removed all degree 1 factors, we can all extract degree 2 factors
by taking the gcd with Xp2 −X.

We shall discuss this idea of factoring in detail soon.

27

CS681 Computational Number Theory

Lecture 10: Distinct Degree Factoring
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we left of with a glimpse into distant degree factorization. This
class, we shall look at the details of it and also how it can be used as an
irreducibility test.

11 DDF: The Problem

We are given a polynomial f over a finite field Fp of degree say n. We want
to factor them in to degree 1 factors, degree 2 factors etc. To make this more
explicit, let us assume that f factorizes as

f = g11g12 · · · g1m1g21 · · · gdmd

where each gij is an irreducible factor of f of degree i. Hence given f , we
want to return

∏
j gij for each i. That is, return the factor of f that is the

product of all degree i irreducible factors of f. And we want to do this
for all i. This is called distinct degree factorization. We want an efficient
algorithm for this.

But before we start thinking of algorithms, what do we mean by effi-
cient? It is the usual ’polynomial time in input length’ but what is the input
length? We are looking at f(X) = Fp[X] and each coeffiecient of the poly-
nomial is from Fp. And since Fp contains just p elements, we can encode
them in binary using log p bits. Hence the input size is about n log p. Thus
we are interested in algorithms that have running time of (n log p)c for some
constant c.

12 Extracting Square-free Parts

When we said that f factorizes as g11 · · · gdmd
, it is very much possible that

there are some gij = gik or in other words the square of gij divides f. The
first step of any factoring algorithm is to remove such multiple factors and

28

make f square free (make sure that f is not divisible by any square).

Suppose we were looking at polynomials over Z[X] or something. Then
we have a very nice way of checking for such multiple factors. We know
that if f has a repeated root α , then the derivative f ′ has α as a root as well.
Infact, if (x−α)m divided f then (x−α)m−1 will divide f ′. And hence, the
gcd of f and f ′ will have (x − α)m−1 as a factor. Thus, we can divide f by
this gcd and get rid of higher multiplicity terms.

But in the case of Z[X], we had an interpretation of real numbers, limits
and hence we could define what a derivative is. But when it comes to finite
fields, what does differentiation mean? How can we use this technique to
get extract the square-free part?

Note that we don’t need the notion of a derivative as a tangent or some-
thing. That is where the limits come in. What we need is a condition where
if some gm divides f then gm−1 should divide f ′ for the f ′ that we are going
to define. Thus, since we are just in the realms of polynomials, we shall use
the rules of differentiation as just a formula.

Thus letD be a map that sendsXm tomXm−1.Now extend this linearly
to all polynomials to get

D
(
a0 + a1X + a2X

2 + · · · amX
m
)

= a1 + 2a2X + · · ·mamX
m−1

Now, we leave the following things to be proven as an exercise.

Exercise

1. D(f + g) = D(f) +D(g)

2. D(fg) = fD(g) + gD(f)

3. D(fm) = mfm−1D(f)

4. Theorem: If h is a factor of f such that hm | f then hm−1 | g. And
further, if hm is the highest power of h that divides f then hm−1 is the
highest power of h that divides f ′.

Once we have these properties, we can extract the square-free part of f
easily. Given an f construct the formal derivative f ′. Let g = gcd(f, f ′). The
polynomial f/g consists is the square free extraction of f.

29

There is, however, a small catch here. But we shall get back to it in the
end of the class and discuss it in the next class in detail. For the moment,
let us proceed with distinct degree factorization.

13 Distinct Degree Factorization

Given f ∈ Fp[X] of degree n, we want to get the distant degree factoriza-
tion of f. That is, we want to get g1, g2, · · · , gn such that f = g1g2 · · · gn

where each g is the product of all irreducible factors of f of degree i. And
we want to do this efficiently.

The key idea is the formula we proved last class:

Xpm −X =
∏

f∈Irr(Fp,d)
d|m

f(X)

Firstly, let us look at the case when m = 1. Then Xp − 1 is the product
of all irreducible polynomials over Fp of degree 1. And thus, in particular,
it contains the degree 1 irreducible factors of f within it.

Thus, g1 = gcd(f,Xp−X) will be the product of all degree 1 irreducible
factors of f asXp−X has just degree 1 irreducible factors and all those that
divide f will be a part of the gcd. Thus, we have obtained the required g1.

Now, call f2 = f/g1 and now let g2 = gcd(f2, X
p2 −X) and this will have

precisely all degree 2 irreducible factors of f (degree 1 factors won’t appear
since we have removed all degree 1 factors by dividing by g1). Thus, we
can repeat this procedure.

This is a naive algorithm and has a pretty serious problem. The trou-
ble is that the algorithm would have to compute gcd(fi, X

pi −X) which is
a HUGE degree polynomial. We want our running time as (n log p)c but
this naive algorithm takes about O(p) time! And this is definitely not ac-
ceptable since even finding all linear irreducible factors might take O(p)
time! We definitely need to change this. But the polynomial Xpi − X is a
nice polynomial and hence allows a nice simple trick to make the algorithm
polynomial time.

Let us look at the gcd algorithm. The first step is to compute Xpi −
X mod fi and the problem with this is that the degree of the polynomial is
too large to apply the naive algorithm. But we can do far better in the case
of this special polynomial.

30

Note that Xpi −X mod fi = Xpi
mod fi −X mod fi and the difficulty

was in computing Xpi
mod fi. This can be done quite efficiently using the

technique of repeated squaring.

13.1 Repeated Squaring

In general, we have a polynomial f of degree n and we want to calculate
XM mod f in time (n logM)c for some constant c. The idea is pretty simple.

Firstly assume M to be a power of 2. Then we can do the following.
Start with X , and square it. And square it again and so on. The moment
the degree goes beyond n, take it modulo f to reduce it’s degree back to
less than n. And continue this squaring process, for logM steps. Thus, we
would have computed XM mod f in time (n logM)c.

Now what do we do for M that is not a power of two? The answer
is simple again. Just look at the binary representation of M . Say m =
b0 + b12 + b222 + · · · bl2l. Then

XM = Xb0(Xb1)2
1
(Xb2)2

2 · · · (Xbl)2
l

And since each bi is either 1 or 0, Xbi is either 1 or X. Thus, we can just
compute X2i

mod f for 0 ≤ i ≤ logM and multiply all those residues that
have bi as 1.

Algorithm 2 EVALUATE XM mod f USING REPEATED SQUARING

1: Let M = b0 + b12 + · · · bl2l, the binary representation of M, where l =
blogMc.

2: g0 = 1 and g = b0X.
3: for i = 1 to l do
4: gi = (gi−1)2 mod f
5: if bi = 1 then
6: g = g · gi mod f
7: end if
8: end for
9: return g

Now, with this repeated squaring algorithm, we can do distinct degree
factorization. The algorithm is given at the end of the lecture.

31

14 A Catch and a Hint

First let us get to the catch that we had mentioned earlier. Our method for
extracting the square free part of f involved taking the formal derivative
and then the gcd of f with f ′. But strange things can happen in a finite
field. For example, let us take the polynomial f(X) = X2p − 3Xp + 5. The
formal derivative is 2pX2p−1 − 3pXp−1 which is 0 in Fp! What do we do
now?

It is easy to see that the derivative can become 0 if the only surviving
terms of the polynomial have degree that’s a multiple of a prime. Then this
polynomial f(X) can be thought of as g(Xp) and we can go on to do our
algorithm for g instead of f. In our example, g(X) = X2 − 3X + 5 which
is well behaved. All we need to do is get the factors of g and replace every
occurance ofX byXp.And more over, since we are in Fp, it is easy to check
that f(X) = g(Xp) = (g(X))p.

So much for the small catch. Now here is a hint. The algorithm for
distinct degree factorization immediately gives us an algorithm to test if a
given polynomial over Fp[X] is irreducible. The reduction is very straight-
forward and the students are encouraged to think about it. We shall discuss
this in the next class.

Algorithm 3 DISTINCT DEGREE FACTORIZATION

Input: f(X) ∈ Fp[X] of degree n.
1: f0 = f.
2: for i = 1 to n do
3: Using repeated squaring, compute si = Xpi

mod fi−1

4: Compute gi = gcd(fi−1, si −X).
5: fi = fi−1/gi

6: end for
7: return {g1, g2, · · · , gn} .

32

CS681 Computational Number Theory

Lecture 11: Cantor-Zassenhaus Algorithm
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In this class, we shall look at the Cantor-Zassenhaus randomized algorithm
for factoring polynomials over Fp. We shall do it for the case when p 6= 2.
The case when p = 2, which isn’t too different from the other case, would
be given as an exercise for the students to solve.

15 Irreducibility Testing

We left off last class with a hint that the distinct degree factorization infact
gives a straightforward irreducibility test. Here is the explicit answer.

We are given an f and we need to check if this polynomial is irreducible
or not. First check if it is square free. If it isn’t, immediately reject it. Else,
proceed to compute the distinct degree factors of f. If the degree of f is n,
the DDF algorithm returns g1, g2, · · · , gn such that each gi is the product of
irreducible factors of f of degree d.

Now, suppose f was irreducible, then clearly every gi = 1 for 1 ≤ i ≤
n− 1 and gn = f. Thus just check if the returned gi’s satisfy this condition.

15.1 Generating Irreducible Elements

Suppose are given a positive integer d, we want to efficiently find an irre-
ducible polynomial of degree d over Fp. Now before we get into this, why
is this important?

The answer is that this is the only way we can construct the field Fpd .
There are lots of applications where we need to do arithmetic over a field
of large size and Fp would be a candidate only if the prime p is large. And
finding such a large prime is hard and inefficient.

Instead, we pick a small prime p and try and find an irreducible poly-
nomial of degree d. Once we do that, we have Fp[X]/(f(X)) which is iso-
morphic to Fpd . This is precisely finding irreducible polynomials of a given

33

degree is very useful.

To generate an irreducible polynomial of degree d, we shall just ran-
domly pick a polynomial of degree d. It can be argued that the probability
that this polynomial is irreducible is pretty high. And since we even have
a deterministic test to check if a polynomial f is irreducible, we just repeat
this procedure: Pick an f ∈ Fp[X] of degree d at random and repeat this if
the irreducibility test says that this polynomial is not irreducible.

All we need to do is to argue that the density of irreducible polynomials
is large.

Theorem 15. Let I(d) be the number of irreducible polynomials of degree d over
Fp. Then

I(d) =
pd

d
+O (

√
p)

And therefore,

Pr
f∈Fp[X],deg(f)=d

[f ∈ Irr(Fp, d)] ≥
pd

d +O(
√
p)

pd
≥ 1
d

As for the proof of the theorem, here is a sketch of it.

Proof. (sketch) We know that

Xpm −X =
∏

f∈Irr(Fp,d)
d|m

f(X)

Comparing the degrees on both sides,

pm =
∑
d|m

I(d) · d

Equations of this kind can be inverted using the Möbius Inversion.

Lemma 16 (Möbius Inversion). If we have any equation of the form

f(m) =
∑
d|m

g(d)

then
g(m) =

∑
d|m

µ(d)f(m/d)

34

Exercise: Read up on the Möbius Inversion.

With the inversion formula, once can complete the proof of the theorem
by taking f(m) = pm and g(m) = I(m) ·m.

16 The Cantor-Zassenhaus Algorithm

Now we get to factoring a polynomial over Fp. Given a polynomial of de-
gree f over Fp, it is enough to get one non-trivial1 factor of f.

As we said in the last few lectures, the first thing to do is to check if f is
square free. If it isn’t we can just return the square-free part of f as a factor
and be done. If it is square-free, we compute the distinct degree factoriza-
tion of f. If f turns out to be irreducible, we just return “irreducible.” Else,
we have to proceed to find a non-trivial factor of f.

We shall factor each gi returned by the DDF algorithm separately. Hence,
we now assume that we have an f ∈ Fp[X] = g1 · · · gm such that each gi is
irreducible, distinct and of the same degree d.

Here enters our old friend Chinese Remaindering. Since f = g1 · · · gm,
we know that

Fp[X]/(f(X)) ∼= Fp[X]/(g1(X))× · · · × Fp[X]/(gm(X))

Now note that each gi is an irreducible polynomial of degree d. And
therefore, Fp[X]/(gi(X)) is isomorphic to Fpd . Hence the product just looks
like

Fp[X]/(f(X)) ∼= Fpd × · · · × Fpd

And further, we know that

(Fp[X]/(f(X)))? ∼= F?
pd × · · ·F?

pd

Now what do zero divisors, say g, in Fp[X]/(f) look like? When you
take the image under the chinese remaindering, it should go to some tuple
(a1, a2, · · · , am) where some ai = 0. Further, if this zero divisor is non-
trivial (0 is a trivial zero-divisor, useless), some other aj 6= 0. What does
this mean? g has a 0 in coordinate i which means that g is divisible by gi,
and hence g 6= 1. And also, g is non-zero at coordinate j and therefore gj

does not divide g and hence g 6= f. Thus, gcd(g, f) is certainly not f nor 1
and hence is a non-trivial factor of f .

1trivial factors of f are 1 and f . Factors though they may be, are useless for us.

35

Therefore, the problem of finding factors reduces to the problem of find-
ing zero divisors in Fp[X]/(f(X)).

16.1 Finding Zero-Divisors

The idea is the following. We cross our fingers and pick a polynomial a(X)
of degree less than n at random. This is some element from Fp[X]/(f(X)).
If we are extremely lucky we might just get gcd(a, f) 6= 1, and this already
gives us a non-trivial factor of f and we are done. Hence, lets assume that
a is not a zero-divisor of the ring. And therefor, a must be an element of
(Fp[X]/(f))?, an invertible element.

Note that since we do not know the factors gi, we do not know the
chinese remainder map. We just know that a map exists, we don’t know
how to compute it. But suppose someone secretly told us that one of the
coordinates of a under the chinese remainder map is −1, then what can we
do?

Look at the images of a(X) + 1. The images of this is just 1 added to
every coordinate of the image of a(X). And since someone told us that one
of the coordinates was−1, that coordinate in the image of a(X)+1 must be
zero! Which means that, a(X) + 1 is a zero divisor. However it is possible
that all the coordinates is −1 and that would just make a(X) + 1 = 0 which
is useless.

Now, how do we make sure that there is some −1 in one of the coordi-
nates and not everywhere? Use the fact that each element of the product is
Fpd . We know that F?

pd is an abelian group of order pd − 1. And therefore,

for every element b in this group, bp
d−1 = 1.

We need a −1, and therefore we look at the square-root of it. Since we
know that bp

d−1 = 1, b(p
d−1)/2 =

√
1 which can either be 1 or −1.2 Let us

just call (pd − 1)/2 = M.

Thus, we have a simple procedure. Pick up some random polynomial
a(X) of degree less than n. Check if you are lucky by computing gcd(a, f)
and checking if it is 1. Else, compute a(X)(p

d−1)/2 mod f(X) using repeated
squaring. Now if a was mapping to (a1, a2, · · · , am), then aM would be
mapped to (aM

1 , · · · , aM
m). And we just saw that each of aM

i is either 1 or
−1.

Claim 17. Each aM
i = 1 with probability 1/2, and they are independent.

2there can’t be any other square-roots of 1. This is because square roots of −1 satisfy the
equation X2 − 1 = 0 and this equation can have only 2 roots in a field

36

Proof. Since the chinese remainder map is an isomorphism and each gi’s
are distinct, they are clearly independent. To check that the probability that
bM = 1 is 1/2, we look at the following map.

ψ : F?
pd −→ {1,−1}

b −→ bM

Note that the set {1,−1} form a group under multiplication. Infact it can
be identified with the group Z/2Z.

Exercise: Prove that the map ψ is indeed a group homomorphism.

And therefore, the kernel of this map ψ is a subgroup of F?
pd of all el-

ements b such that bm = 1. The other coset of this kernel is the set of el-
ements b such that bM = −1. Since these two are cosets, they are of equal
size. Hence a randomly chosen bwill have bM = 1 with probability 1/2.

And therefore, each ai is 1 or −1 with probability 1/2. Thus the proba-
bility that all the coordinates are 1 or all the coordinates are −1 is just 1/2m.
Thus with probability atleast 1 − 2m−1, we have some vector that has 1s
at certain places and −1s at the rest. Thus, now we are in the case when
someone had secretly told us that some coordinate is −1.

And therefore, we can pick a random polynomial a(X), raise it to the
power M modulo f , and add 1 to it. With probability atleast 1− 2m−1, this
will be a zero-divisor and hence gcd(aM + 1, f) will be a non-trivial factor
of f.

So here is the algorithm:

Algorithm 4 CANTOR-ZASSENHAUS ALGORITHM FOR FACTORING

Input: A polynomial f ∈ Fp[X] of degree n.
1: if f is not square-free then
2: return the square-free part
3: end if
4: Compute the distinct degree factors of f . Call them {g1, g2, · · · , gn} .
5: if gn 6= 1 then
6: return IRREDUCIBLE

7: end if
8: for all gi 6= 1 do
9: EqualDegreeFactorize(gi, d)

10: end for

37

Algorithm 5 EQUALDEGREEFACTORIZE

Input: A polynomial f ∈ Fp[X] of degree n all of whose m irreducible
factors are of degree d.

1: Pick a random polynomial a(X) of degree less than n.
2: if gcd(a, f) 6= 1 then
3: return gcd(a, f)
4: end if
5: Let M = (pd − 1)/2.
6: Using repeated squaring, compute a′(X) = a(X)M + 1.
7: if a′ 6= 0 and gcd(a′, f) 6= 1 then
8: return gcd(a′, f) {Happens with probability atleast 1− 2m−1}
9: end if

10: Repeat algorithm with a different choice for a.

38

CS681 Computational Number Theory

Lecture 12: Berlekamp’s Algorithm
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we say a randomized algorithm for factoring univariate polyno-
mials over a finite field. This class we shall look at another algorithm for
factoring. This was given by Berlekamp.

17 Berlekamp’s Algorithm

We are given a polynomial f(X) ∈ Fp[X]. As in all factoring algorithms,
the first thing to do is make f square free. Once we have done this, the
polynomial is of the form

f = f1f2 · · · fm

where each fi is a distinct irreducible factor of f. Then, chinese remainder-
ing tells us that

R = Fp[X]/(f) = (Fp[X]/(f1))× (Fp[X]/(f2))× · · · × (Fp[X]/(fm))

Let the degree of fi be di and the degree of f be n.

17.1 The Frobenius Map

Here enters the frobenius map again. Consider the following function from
R to itself.

T : R −→ R

a 7→ ap

The first thing to note here is that all elements of Fp are fixed in this map
because we know that elements Fp satisfyXp−X = 0.And further, we also
saw the special case of binomial theorem that said (X + Y)p = Xp + Y p.

39

To understand this map T better, let us understand R. We have de-
fined R = Fp[X]/(f) which is basically polynomials over Fp modulo f.
And clearly, every element of R has degree atmost n − 1 and therefore a
polynomial of the form a0 + a1X + · · · an−1X

n−1 can be thought of as the
vector (a0, a1, · · · , an−1) . Thus, the ring R is a vector space of dimension n
over Fp.

Now, notice that the map T described above is Fp-linear. By this, we
mean that for all α, β ∈ Fp and u, v ∈ R, we have T (αu + βv) = αT (u) +
βT (v). If we think of these elements of Fp as scalars, they can be ’pulled out
of’ T.

Therefore, it’s enough to know the image of each Xi by the map.

p(X) = a0 + a1X + · · ·+ an−1X
n−1

T (p(X)) = a0 + a1T (X) + · · ·+ an−1T (Xn−1)

17.2 The Berlekamp Sub-algebra

Now let B be the map T − I where I is the identity map (maps everything
to itself). Then B sends any element a ∈ R to ap − a. Now define B =
ker(B) = ker(T − I). It is easy to check that the kernel of any linear map
from one vector space into another (in this case R to R) forms a subspace
of the vector space. Hence B is a subspace of the vector space R.

This space B is called the Berlekamp sub-algebra.

What does this space look like? Let a be any element in B and therefore
is an element of R. Let the chinese remainder theorem map this to the tu-
ple (a1, a2, · · · , am). And therefore ap − a = (ap

1 − a1, · · · , ap
m − am). And

since a ∈ B, each of the ap
i − ai must be 0. Now, ap

i − ai is an element of
Fp[X]/(gi) ∼= Fpdi and therefore ap

i − ai = 0 can happen only if ai ∈ Fp.
3

And therefore, each element of the tuple will infact be an element of Fp

and therefore
B ∼= Fp × · · · × Fp

And since B is a product of m copies of Fp, B is an m dimensional sub-
space of R over Fp.

3the elements of Fpd that satisfy Xp − X = 0 are precisely those elements of Fp

40

17.3 Finding a Basis

A basis for R is obvious,
{
1, X,X2, · · · , Xn−1

}
but how do we find a basis

for B? Let us say T acts on R as

T (Xi) =
n−1∑
j=0

αjiX
j

then we can think of T as a the matrix (αji)i,j . Thus, thinking of polyno-
mials in R as a tuple of coefficients described above, then the action of T is
just left multiplication by this matrix.

Thus, the matrix for B would be B̂ = (αji)i,j − I. Hence the kernel of
this map is just asking for all vectors v such that B̂v = 0. And therefore, a
basis for B can be obtained by gaussian elimination of B̂.

Once we have a basis {b1, b2, · · · , bm}, we can pick a random element of
B by just picking m random elements am from Fp and

∑
aibi would be our

random element from B.

Any element a in B gets mapped to Fp×· · ·×Fp by the Chinese remain-
der theorem. And therefore, we can use the Cantor-Zassenhaus idea there:
a

p−1
2 corresponds to a vector of just 1s and −1s.
So here is the final algorithm.

Algorithm 6 BERLEKAMP FACTORIZATION

Input: A polynomial f ∈ Fp[X] of degree n
1: Make f square-free.
2: LetR be the ring Fp[X]/(f), considered as a n dimensional vector space

over Fp.
3: Construct the matrix of transformation B̂ corresponding to the map
a 7→ ap − a.

4: Use gaussian elimination and find a basis {b1, b2, · · · , bm} for the
berlekamp subalgebra B.

5: Pick {a1, · · · , am−1} ∈R Fp and let b =
∑
aibi.

6: if gcd(b
p−1
2 + 1, f) is non-trivial then

7: return gcd(b
p−1
2 + 1, f) {Happens with probability atleast 1− 2m−1}

8: end if
9: Repeat from step 5.

41

CS681 Computational Number Theory

Lecture 13: Codes: An Introduction
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Over the next few lectures we shall be looking at codes, linear codes in
particular. In this class we shall look at the motivation and a glimpse at
error detection. The details shall be done in the lectures to come.

18 Codes

Suppose you have two parties Alice and Bob who wish to communicate
over a channel which could potentially be unreliable. What we mean by
unreliable is that some parts of the message could be corrupt or changed.
We want to make sure that the recepient can detect such corruption if any,
or sometimes even recover the message from the corrupted.

We can assume that the channel sends allows sending some strings over
a fixed finite alphabet (a finite field, or bits, or the english alphabet etc). The
two questions we need to address here is detection and correction.

18.1 Block Codes

What if Alice needs to send a message, in say english, and the channel
has a different alphabet, say binary strings. Then we need some way of
converting strings of one alphabet into another. This is achieved by looking
at blocks of code.

In the example of english to binary, we could look at ascii codes. Each
letter would correspond to a block of letters in the channel.

Of course, not all blocks of bits could correspond to meaningful sen-
tences or messages. A block code is in general just a subset of strings. To
formally define it:

Definition 14. Let Σ be the fixed finite alphabet for the channel of communication.
A block code C of length n over this communication is a subset of Σn.

Elements of C are called code words.

42

Definition 15. For any two strings x and y of the same length, the hamming
distance is defined as the number of indices that x and y differ in.

d(x, y) = |{i : xi 6= yi}|

Definition 16. The distance of a code C is the minimum distance between its
codewords. That is,

d(C) = min
x 6=y

d(x, y)

In a sense, the distance of a code is a measure of how much one needs to
change to alter one code to another. For example, if the distance of a code
was say 5, then it means that there are two strings (messages) x and y that
differ at just 5 places. Now suppose x was sent through the channel and
those 5 bits were changed due to the noise in the channel, then Bob would
receive the message y from Alice while she had sent x. And since y was
also a message, Bob could completely misinterpret Alice’s message.

We would like codes to have large distance so that it takes a lot of cor-
ruption to actually alter one codeword into another. From this, we have a
simple observation.

Observation 18. Let d be the distance of a code C. Then the code is d−1-detectable,
or if the channel corrupts atmost d− 1 letters of the message, then the other party
can detect that the code word has been corrupted.

Proof. As we remarked earlier, since the distance is d, it takes atleast d cor-
ruptions to change one code word into another. Therefore, on any code
word x, something less than d corruptions cannot change it to another code-
word. Therefore, if the string Bob received was a codeword, then he knows
for sure that Alice had sent that string for sure.

Therefore, if the channel changed atmost t bits, any code with distance
atleast t + 1 would allow error detection. But of course, if Bob received “I
hobe you”, he knows that the message was corrupted but he has no way
of determining whether the message was “I love you” or “I hate you”. In
order to correct t errors, you need a more than just a distance of t+ 1.

Observation 19. If C is a code of distance atleast 2t + 1, then any message that
is corrupt by atmost t bits can be recovered. Or in other words, the code is t-
correctable.

Suppose Alice had sent some codeword x and let us say this was altered
through the channel and Bob received it as y. Given that atmost t bits were
altered, we want to show that Bob can infact recover the message.

43

Since Bob knew that atmost t bits are corrupted, he looks at all code-
words at a hamming distance of atmost t from y.4 Now clearly x is a code-
word that is present at a hamming distance at most t from y. If x was the
only such code word, then Bob knows for sure that the message Alice sent
has to be x.

But it must be the case that x is the only such codeword. Suppose not,
say there was some other codeword x′ 6= x at a distance atmost t from y.
Now since x and y differ at most t places and y and x′ at atmost t, by the
triangle inequality x and x′ differ at atmost 2t places. But this contradicts
the assumption that the distance of the code is atleast 2t+ 1.

Or in other words, if you want to move from one codeword to another
through corruption, you need to corrupt 2t+1 bits atleast. And therefore if
you corrupt just t place, you are definitely closer to where you started from
than any other codeword.

But of course, it does not make sense to look at all code words of dis-
tances less than t from y to decode. Even besides that, how do we even
figure out if a given word is a code word or not. So two important proper-
ties that we would want the code to have is efficient detection of codewords
and effecient decoding.

19 Linear Codes

Recall that a block code C is an arbitrary subset of Σn. These codes could
have no structure underlying them and that inherently makes detecting if
a string is a codeword hard. Hence comes the idea for linear codes.

Since our alphabet is finite, we shall assume that the alphabet is infact
a finite field Fq. Now our space is Fn

q which is infact a vector space over Fq

of dimension n. Instead of looking at arbitrary subsets of this space, linear
codes restrict themselves to subspaces of Fn

q .

Definition 17. A [n, k, d]q linear code C such that C is a k-dimensional subspace
of Fn

q and has distance d.
That is, if x, y ∈ C then so is αx+ βy for all α, β ∈ Fq.

To intuitively understand the parameters, we would be encoding mes-
sages of length k with codes of length n so that it can error-correct up to
d/2 errors. Thus we want k to be as close to n as possible and also try to

4can be thought of as putting a ball of radius t around y

44

make d large. It is not possible to arbitrarily increase both but we want
some reasonable values.

To see an example of a linear code, consider our field to be F2. Then if
C = {(0, 0, 0), (1, 1, 1)} then this is a [3, 1, 3]2 linear code.

Definition 18. The weight of any string x is the number of indices of x that have
a 1 in it.

wt(x) = |{i : xi = 1}|

Then we have the following easy observation.

Observation 20. If C is a linear code, then

d(C) = min
x 6=0

wt(x)

Proof. By definition, d(C) = d(x, y) but d(x, y) = wt(x− y). Note that since
we are looking at a linear code, x, y ∈ C also tells us that x−y ∈ C. Therefore,
for every x 6= y we have a corresponding 0 6= z = x− y that is a codeword
whose weight is exactly the distance between x and y.

19.1 Detection

Suppose we have a linear code C and given a string x we want to check if
this is in the code or not. Since we know that our code is a subspace of Fn

q ,
we can represent C using a basis. Let us say we are looking at [n, k,]q codes
and our basis be {b1, b2, · · · , bk} where each bi ∈ Fn

q .
The idea is that we want to construct a matrix H such that Hx = 0̄ if

and only if x ∈ C. Thus, in terms of tranformations, we want a linear map
H such that the kernel of this map is precisely (nothing more, nothing less)
C. The question is, how do we find such a matrix?

We first find a transformation that achieves what we want and then try
and figure out what the matrix of the transformation should look like. We
have a basis {b1, b2, · · · , bk} for our code. Let us extend this first to a basis
{b1, b2, · · · , bn} of Fn

q .
Thus, every vector v ∈ Fn

q can be written as a unique linear combination
of bis. We do the obvious transformation: map all bi where i ≤ k to 0 and
the rest of the basis elements to identity.

v = α1b1 + α2b2 + · · ·+ αkbk + αk+1bk+1 + · · ·+ αnbn

Hv = αk+1bk+1 + · · ·+ αnbn

45

Now a vector v will be in the kernel ofH if and only if all αi where i > k
is zero. Then v has to be a linear combination of just the basis elements of
C and therefore must itself be a codeword.

Now comes the question of how to compute the matrix of transforma-
tion of H. Suppose it turns out that that the basis we chose was actually the
standard basis {e1, e2, · · · , en} . Then what can we say about the matrix H?
Then clearly, it should map all vector (α1, α2, · · · , αn) to (0, 0, · · · , 0, αk+1, · · · , αn).
And this matrix is just

Ĥ =
[

0 0
0 I

]
n×n

where the I is the identity matrix of order n − k. But it’s unlikely that we
start with such a nice basis. The good news is that we can easily move
from one basis to another. We just want a way to send each bi to ei so that
we can then use the transformation Ĥ to send it to 0 if i ≤ k and keep it
non-zero otherwise. Instead of sending bi to ei, the other direction is easy
to compute.

What if we ask for a matrix B such that Bei = bi? This is easy because
Bei is just the i-th column of the matrixB. Thus the matrix is just [b1b2 · · · bn]
where each bi is now expanded as a column vector; just place each basis
element side by side as a column vector and that is the transformation.
Now that we have a matrix B that sends ei to bi, how do we get a matrix
that sends bi to ei? Take B−1!

Now look at ĤB−1 as a transformation. ĤB−1bi = Ĥei which is 0 if
i ≤ k and ei otherwise. Thus this matrix ĤB−1 is the matrix we were after:
a matrix whose kernel is precisely the code C.

46

CS681 Computational Number Theory

Lecture 14: BCH Codes
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall look a a special form of linear codes called cyclic codes. These
have very nice structures underlying them and we shall study BCH codes.

20 General Codes

Recall that a linear code C is just a subspace of Fn
q . We saw last time that

by picking a basis of C we can construct what is known as a parity check
matrix H that is zero precisely at C.

Let us understand how the procedure works. Alice has a message, of
length k and she wishes to transmit across the channel. The channel is
unreliable and therefore both Alice and Bob first agree on some code C.
Now how does Alice convert her message into a code word in C? If Alice’s
message could be written as (x1, x2, · · · , xk) where each xi ∈ Fq, then Alice
simply sends

∑k
i=1 xibi which is a codeword.

Bob receives some y and he checks if Hy = 0. Assuming that they
choose a good distance code (the channel cannot alter one code into an-
other), if Bob finds thatHy = 0, then he knows that the message he received
was untampered with.

But what sort of errors can the channel give? Let us say that the channel
can change atmost t positions of the codeword. If x was sent and x′ was
received with atmost t changes between them, then the vector e = x′−x can
be thought of as the error vector. And since we assumed that the channel
changed atmost t positions, the error vector can have weight atmost t.

This then means that Alice sent an x and Bob received x + e. Bob runs
the parity check matrix on x + e to get H(x + e) = Hx + He = He. The
quantity He is called the syndrome, which is just the evaluation of Bob’s re-
ceived message by the parity check matrix. If the syndrome is zero, Bob
knows that the received word is a valid codeword.

47

Of course, in order to determine what the actual message was, Bob
needs to figure out what e is (for then he knows the message was x′ − e)
but recovering e from He is still a hard thing. It is not clear how this can be
done efficiently on a general setting.

21 Cyclic Codes

Definition 19. A cyclic code C is a linear code such that if (c0, c1, · · · , cn−1) is a
codeword, then so is (cn−1, c0, c1, · · · , cn−2). To put it algebraically, the space of
codewords is invariant under cyclic shifts.

If course any codeword that is shifted by i places, to the left or the right,
will also be a codeword. In order to be able to see the strong structure
behind them, we need a different perspective on Fn

q .

21.1 Codewords as Polynomials

Given a vector (c0, c1, · · · , cn−1), we can associate a polynomial naturally
which is c(X) = c0 + c1X + · · · + cn−1X

n. This is just interpretting the
vector space Fn

q as the additive group of the ring Fq[X]/(f(X)) where f is
a polynomial of degree n, since they are both isomorphic.

The ring picture has the extra multiplicative structure which is very
useful here. Suppose we have a codeword c = (c0, · · · , cn−1), what can
we say about the codeword c′ = (cn−1, c0, · · · , cn−2)? As a polynomial,
c = c0 + c1X + · · · + cn−1X

n−1 and c′ = cn−1 + c0X + · · · + cn−2X
n−1.

So essentially we just took the polynomial c and multiplied by X. The last
term cn−1X

n, however, was changed to cn−1. How do we achieve this? Do
the multiplication modulo Xn − 1 which is just identifying Xn by 1.

Thus, cyclic shifts is just multiplication of polynomials in Fq[X]/(Xn −
1) by powers of X. With this observation, the following theorem summa-
rizes the strong underlying structure in cyclic codes.

Theorem 21. Any cyclic code C is an ideal of R = Fq[X]/(Xn − 1). And con-
versely, every ideal is a cyclic code

Proof. Let us prove the easier converse first. Let f(X) ∈ R be an element
of the ideal C. Then it follows that for any polynomial a(X), a(X)f(X) ∈ C
and in particularXif(X) ∈ C. But we already say that multiplying by pow-
ers of X was just shifting and therefore our code is also invariant under
shifts.

48

The other direction is straightforward too. We want to show that given a
cyclic code C, for any code word f(X) and any polynomial a(X), a(X)f(X) ∈
C.

a(X)f(X) = (a0 + a1X + · · ·+ an−1X
n−1)f(X)

= a0f(X) + a1(Xf(X)) + · · ·+ an−1(Xn−1f(X))
= a0f0(X) + a1f1(X) + · · ·+ an−1fn−1X Xif(X) is shifting
= f ′(X) ∈ C

Suppose Xn − 1 factorizes into irreducible polynomials over Fq, say

Xn − 1 = g1g2 · · · gk

Then it easy to check that infact all ideals of R are principle, of the form
g(X)R where g(X) is a factor of Xn − 1. And hence, we have a simple
corollary to above theorem.

Corollary 22. Every cyclic code C is just the set of multiples of a single polynomial
g(X) ∈ R.

This polynomial is called the generator polynomial. Let us say we pick
a factor g(X) of Xn − 1 and let its degree be d. What can we say about
the dimension of the code (g(X))? For this, we will need the rank-nullity
theorem.

Theorem 23 (Rank-Nullity). If T is a linear map from a between two vector
spaces V and W , then rank(T) + nullity(T) = dimV where rank(T) is defined
to be the dimension of the image of V and nullity the dimension of the kernel.

Now look at the map φ : R −→ R/(g(X)). This, being a homomor-
phism of rings will also be a linear map on the additive groups which are
vector spaces. The dimension of R is n and the dimension of the image,
which is R/(g(X)), is d. And therefore, the dimension of the kernel which
is C = (g(X)) is n− d.

What about the parity check matrix? That is extremely simple here.
Since the ideal is generated by a single polynomial g(X), we just need to
check if any given polynomial is in the code or not by just checking if g
divides it. Thus, just the modulo operation is the parity check. This can be
written as a matrix as well but the idea is clear.

49

22 BCH Codes

BCH5 codes is an example of a cyclic code that is widely studied in coding
theory. In order to get a cyclic code, we just need to get the generating
polynomial of that code.

Instead of asking for the polynomial in terms of the coefficient, what if
we identify the polynomial by the roots instead? This is the general idea of
a BCH code.

We are working in a vector space of dimension n over Fq and identifying
cyclic codes as ideals of R = Fq[X]/(Xn − 1). Let us further impose the
constraint that the roots of Xn− 1 are distinct by making sure gcd(n, q) = 1
so that the derivative is non-zero.

Let ζ be a primitive n-th root of unity inR and look at the set
{
ζ, ζ2, · · · , ζd

}
where d < φ(n) (to prevent some ζi = ζj)6. Now we ask for the smallest
degree polynomial g that has ζi as a root for 1 ≤ i ≤ d. This polynomial is
going to be our generating polynomial for the cyclic code.

The parity check matrix of a BCH code is pretty simple. Note that if
c(X) ∈ C, then c(X) is a multiple of g(X) and in particular c(X) will also
have the ζi as roots. And therefore, all we need to check is if c(ζi) = 0
for all 1 ≤ i ≤ d. Now interpretting c(X) as a vector (c0, c1, · · · , cn−1) of
coefficients, the parity check reduces to the following matrix multiplication.

1 ζ ζ2 · · · ζn−1

1 ζ2 (ζ2)2 · · · ζ2n−1

...
...

...
. . .

...
1 ζd (ζd)2 · · · (ζd)n−1

c0
c1
...

cn−1

 =

0
0
...
0

Note that the parity check matrix H is a (n− d)× d matrix.

22.1 Distance of a BCH Code

Suppose g(X) is the generating polynomial for the set being the first d pow-
ers of ζ, what can we say about the distance of the cyclic code (g(X))?

Theorem 24. A BCH code obtained by considering the first d powers of ζ has
distance d+ 1.

5Bose, Ray-Chaudhuri, Hocquenghem
6why won’t d < n suffice?

50

Proof. We would like to show that the minimum weight of the code C =
(g(X)) has to be atleast d+ 1. Suppose not, then there is a codeword c such
that the weight of c is less than or equal to d. Then this polynomial has
atmost d positions with non-zero entries. Let us denote those coefficients
by {ci1 , ci2 , · · · , cid} and say in increasing order of indices.

We just need to check that for each 1 ≤ k ≤ d

d∑
j=1

cij (ζ
k)ij = 0

But the above equation corresponds to the following matrix product
ζi1 ζi2 · · · ζid

(ζi1)2 (ζi2)2 · · · (ζid)2
...

...
. . .

...
(ζi1)d (ζi2)d · · · (ζid)d

ci1
ci2
...
cid

 =

0
0
...
0

Note that the d × d matrix is essentially in the form of a vandermonde
matrix:

1 1 · · · 1
x1 x2 · · · xn

x2
1 x2

2 · · · x2
n

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n

and it is well known that the determinant of this matrix is

∏
i<j(xi − xj)

and therefore non-zero if each xi is distinct as in our case of ζij . Therefore,
Hc = 0 and H being invertible forces that c has to be the zero vector as
well!

Therefore, the only codeword that can have weight less than or equal to
d is the zero vector. And therefore the minweight of the BCH code is atleast
d+ 1.

Now that we have this, we can use ζ, ζ2, · · · , ζd−1 to get a guarantee
that our code has distance atleast d. This is called the designed distance of
the BCH code. Note that the actual distance you could be larger than d. We
just have a guarantee that it is atleast d but the could potentially give you
codes of larger distance. There are examples of BCH codes with the actual
distance larger than the designed distance.

51

CS681 Computational Number Theory

Lecture 15 and 16: BCH Codes: Error Correction
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In these two lectures, we shall see how error correction is done in a BCH
code.

(most of the class was spent on discussing the solutions for the mid-
semester examination)

23 Error Correction in a BCH Code

Recall that a cyclic code is one where the space of codewords is also in-
variant under cyclic shifts. Last class we identified this with ideals of the
ring Fq[X]/(Xn − 1). We also said that this is an principle ideal domain
when gcd(n, q) = 1 and therefore every cyclic code can be identified by the
polynomial that generates the ideal.

For the BCH code, we pick a principle root of unity ζ and the generator
of code is chosen to be the least degree polynomial that has ζ, ζ2, · · · , ζd−1

and we argued that the distance of that cyclic code is guaranteed to be at
lease d.

How about decoding? Suppose Alice sent a message and that was cor-
rupted at atmost bd

2c places, can Bob recover the message efficiently? The
answer is yes, and we shall see how. Most of the details shall be done in
the next class.

23.1 The Locator and Correction Polynomials

Alice is going to send some polynomial whose degree is bounded by n− 1,
say c(X) = c0 + c1X + · · · + cn−1X

n−1 and Bob would receive c(X) +
e(X) where e is the error. Suppose the channel can corrupt at most bd−1

2 c
coefficients, we know that the number of non-zero coefficients of e(X) is
less than d/2. Let M = {i : ei 6= 0} . And hence, |M | = t ≤ d−1

2 .

52

Now look at the two polynomials:

u(Y) =
∏
i∈M

(1− ζiY)

v(Y) =
∑
i∈M

eiζ
iY

∏
i6=j∈M

(1− ζjY)

The polynomial u(X) is called the locator polynomial and v(Y) is called the
correction polynomial. Suppose we have u(Y), how do we find out which
places of the message are corrupted? This is clear because u(ζ−i) = 0 if
and only if i ∈ M and therefore by just checking u(ζ−i) for all i, we would
know precisely at what places the corruption happened.

OK, now we know where the corruption has happened. How do we
find out what that coefficient of e(Y) was so that we can recover the mes-
sage? This is where v(Y) comes in. Notice that v isn’t too different from the
formal derivative of u. By the chain rule, we can show that

u′(Y) = −
∑
i∈M

ζi
∏

i6=j∈M

(1− ζjY)

So first find out, using the detection polynomial, the places at which the
error has occured. Suppose i was one of the places, what can we say about
v(ζ−i)? Note that every term in the sum other than i will be killed as there
would be the term (1− ζiY) in the product that is zero when Y = ζ−i. And
therefore,

v(ζ−i) = eiζ
iζ−i

∏
i6=j∈M

(1− ζjζ−i)

= ei
∏

i6=j∈M

(1− ζj−i)

What about u′(ζ−i)? For the same reason, the only surviving term in the
summation would be the one with i. Therefore,

v(ζ−i) = ei
∏

i6=j∈M

(1− ζj−i)

u′(ζ−i) = −ζi
∏

i6=j∈M

(1− ζj−i)

=⇒ v(ζ−i)
u′(ζ−i)

= −ei
ζi

53

And we are done! Running over all detected places, we can completely
recover the polynomial e(X) and therefore the actual message.

All that’s left to do is find out how to compute the polynomials u(Y)
and v(Y). Once we do that, we can locate the errors and also correct them.
Finding these two polynomials is the key.

23.2 Computing the Polynomials

There are two important things to note here.

• We don’t need to find u and v exactly. Any αu and αv, where α is
some constant, would do. We just want u and v up to a scale.

• The degree of u and v is |M | = t ≤ d−1
2

And remember, all that Bob has is the knowledge that the code is con-
structed from ζ, ζ2, · · · , ζd−1 and the received word r(X). From this, he
needs to compute u(Y) and v(Y) to error-correct.

First, let us look at the following rational function

w(Y) =
v(Y)
u(Y)

=
∑
i∈M

eiζ
iY

1− ζiY

At this point, let us make an outrageous mathematically incorrect Tay-
lor expansion but justify it later in the lecture. Note that we have a term of
the form 1

1−ζiY
and we are going to expand this as a geometric series.7

7mathematically minded people are requested to clench their fists and tolerate this for a
while. it will be justified soon.

54

Then, we have

w(Y) =
∑
i∈M

eiζ
iY

1− ζiY

=
∑
i∈M

eiζ
iY

(∞∑
k=0

(ζiY)k

)

=
∞∑

k=0

Y k+1

(∑
i∈M

ei(ζi)kζi

)

=
∞∑

k=0

Y k+1

(∑
i∈M

ei(ζk+1)i

)

=
∞∑

k=0

Y k+1e(ζk+1)

=
∞∑

k=1

Y ke(ζk)

The first d − 1 coefficient of w(Y) can be found out easily as we can
find e(ζk) easily. Bob has the received code word r(X) = c(X) + e(X). He
doesn’t know what e(X) or c(X) is but all he needs to do is compute r(ζk).
Note that since c is the message, c is a multiple of g(X) and ζk is a root of g
and hence c. Therefore, r(ζk) = c(ζk) + e(ζk) = e(ζk).

Justifying the Mathematical Sin

Of course, you just cannot write every 1
1−x as 1+x+x2 + · · · . For example,

1
1−2 is certainly not 1 + 2 + 22 + · · · . So how do we justify it here?

Now the first thing is that we cannot hope to do anything better than
d − 1 coefficients of w(Y) since we just know that c(X) has ζ, ζ2, · · · , ζd−1

as roots. Therefore, we shall focus on finding w(Y) up till the (d − 1)-th
coefficient. By this, we just mean that we are finding w(Y) mod Y d, which
is just making Y d = 0 in the expression.

Now note that 1− (ζiY)d = 1− ζidY d = 1 and also that (1− x) divides
(1 − xd) and hence (1 − ζiY) divides (1 − (ζiY)d) = 1. Which means that
there exists some polynomial p(Y) such that (1 − ζiY)p(Y) = 1 and hence
(1− ζiY) is invertible modulo Y d.

55

Hence, we can rework as follows:

w(Y) =
∑
i∈M

eiζ
iY

1− ζiY
mod Y d

=
∑
i∈M

eiζ
iY ·

(
1− ζiY

)−1 mod Y d

and it is easy to check that the inverse of (1−ζiY) modulo Y d is
∑d−1

k=0(ζ
iY)k

and hence we have the rest of the equations going through.

w(Y) =
d−1∑
k=1

Y ke(ζk) mod Y d

OK, we now have w(Y), how do we use that to get u and v? The idea is
to solve a system of equations to get u and v. Remember that both u and v
are degree t polynomials and moreover the constant term in u is 1 and the
constant term in v is 0.

Here we shall give an intuitive reasoning and not go into the details of
the method. Suppose u(Y) = 1+u1Y +· · ·+utY

t and v(Y) = v1Y +· · · vtY
t,

then we can just think of coefficients as some parameters to evaluate. Using
the values of w(Y) mod Y k for all 1 ≤ k ≤ d, we can solve for ui, vi by writ-
ing a system of equations. And since the number of parameters we need to
solve for is 2t and this is less than or equal to the number of equations we
have, it can be done efficiently.

There is infact another approach to solve for u and v using something
called the Berlekamp-Welch Decoder. We won’t be covering this in the
course but just to tell you that the locator and corrector polynomials can
be computed efficiently from the received word r(X).

Hence using such efficient algorithms we can compute u and v. Then
we just use u to locate the errors and then v to correct them at those places.
And from the analysis, it is clear that we can’t hope to correct more than t
errors as we would then have more parameters than equations and there
may not exist a solution to that set of equations.

Thus, a BCH code of designed d can be error corrected if the number of
errors is bounded above by bd−1

2 c.

56

CS681 Computational Number Theory

Lecture 17: Primality is in NP ∩ coNP

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall get into primality testing for integers in the next few classes. We
shall build up the details starting with showing that it is in NP∩ coNP, dis-
cuss randomized algorithm, and then finally get into deterministic polyno-
mial time testing.

We shall prove Pratt’s result that it is in NP ∩ coNP.

24 Pratt’s Theorem

The problem is the following: we are given a number N as input and we
want to check if this is prime.

Remember that the input is given in binary. It would be trivial if N was
specified in unary in which case the input size is N and hence primality
testing in O(N c) is trivially accomplished by checking every number less
than N if it’s a factor or not.

The input is provided in binary and therefore we are looking for an
algorithm that runs in time polynomial in the input size, which is logN.

Recall the definition of the classes NP and coNP.

Definition 20. NP is the class of languages L such there exists a polynomial time
verification scheme A(x, y) such that x ∈ L if and only there exists a witness y
such that |y| < |x|c for some constant c and A(x, y) = 1.

coNP is the class of languages L such that L̄ ∈ NP.

To get a more intuitive picture, NP is the class of problems that have
very short proofs or witnesses. Though it might not be clear if x ∈ L, given
a witness y, it is easy to check that (x, y) is a proper solution. For example,
sudoku. It might be hard to find a solution but once someone gives us a
solution, it is easy to check if the solution is correct.

One could also think of this as guessing a witness y and verifying it
using A.

Here is an obvious observation:

57

Observation 25. Primality testing is in coNP.

This equivalent to saying that checking if a number N is composite is
in NP which is immediate since the witness is the factor d of the number.
Hence, our verification scheme A(N, d) is just checking if d divides N.

Pratt showed that primality testing is infact in NP.

Theorem 26. Primality testing is in NP.

Proof. Note that the group (Z/NZ)? is of order N − 1 if and only if N is
prime. And more over, it is a cyclic group of order N − 1 if and only if N
is a prime. Thus, we shall find a witness or a certificate that the group is
cyclic.

How do we show that a group is cyclic? We guess a generator a. If we
are able to show that an 6= 1 for any n < N − 1, we are done. Note that
aN−1 = 1 anyway. Therefore, we just need to check that a(N−1)/pi 6= 1 for
every prime divisor pi of N − 1.

Therefore, we not only guess the generator a, we guess the factors p1, p2, · · · , pk

of N − 1. But how do we know that the guessed pis are indeed primes? We
guess its witnesses too; induction! Aren’t we going in circles? Actually no
since the numbers pis are quite small and it still won’t blow up the size of
the final certificate.

Let us try and see how large the witness/certificate can get. How large
can the prime factors of N − 1 be? Since N is prime , N − 1 is certainly
composite (unless N was 2, a worthless case which can be handled right
at the beginning). The largest factor of N − 1 can be of size atmost

√
N.

How many factors can there exist? Atmost log(N − 1) of them. Thus if
N − 1 = p1p2 · · · pk then our witness would be (a, p1, p2, · · · , pn) and the
certificates of each of the pis. The input is of size logN and let S(l) be the
size of the witness for input of length l. Then:

S(logN) = log2N + S(log p1) + S(log p2) + · · ·+ S(log pk)
= log2N + (log p1)c + (log p2)c + · · ·+ (log pk)c

≤ log2N + (log p1 + log p2 + · · ·+ log pk)c

= log2N + (log(N − 1))c

= O((logN)c)

And since the witness is just polynomially bounded in the size of the input,
we can guess the entire certificate and verify. Thus primality testing is in
NP.

And since primality is in NP and coNP, it is in NP ∩ coNP.

58

CS681 Computational Number Theory

Lecture 17: Primality is in NP ∩ coNP

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall get into primality testing for integers in the next few classes. We
shall build up the details starting with showing that it is in NP∩ coNP, dis-
cuss randomized algorithm, and then finally get into deterministic polyno-
mial time testing.

We shall prove Pratt’s result that it is in NP ∩ coNP.

25 Pratt’s Theorem

The problem is the following: we are given a number N as input and we
want to check if this is prime.

Remember that the input is given in binary. It would be trivial if N was
specified in unary in which case the input size is N and hence primality
testing in O(N c) is trivially accomplished by checking every number less
than N if it’s a factor or not.

The input is provided in binary and therefore we are looking for an
algorithm that runs in time polynomial in the input size, which is logN.

Recall the definition of the classes NP and coNP.

Definition 21. NP is the class of languages L such there exists a polynomial time
verification scheme A(x, y) such that x ∈ L if and only there exists a witness y
such that |y| < |x|c for some constant c and A(x, y) = 1.

coNP is the class of languages L such that L̄ ∈ NP.

To get a more intuitive picture, NP is the class of problems that have
very short proofs or witnesses. Though it might not be clear if x ∈ L, given
a witness y, it is easy to check that (x, y) is a proper solution. For example,
sudoku. It might be hard to find a solution but once someone gives us a
solution, it is easy to check if the solution is correct.

One could also think of this as guessing a witness y and verifying it
using A.

Here is an obvious observation:

59

Observation 27. Primality testing is in coNP.

This equivalent to saying that checking if a number N is composite is
in NP which is immediate since the witness is the factor d of the number.
Hence, our verification scheme A(N, d) is just checking if d divides N.

Pratt showed that primality testing is infact in NP.

Theorem 28. Primality testing is in NP.

Proof. Note that the group (Z/NZ)? is of order N − 1 if and only if N is
prime. And more over, it is a cyclic group of order N − 1 if and only if N
is a prime. Thus, we shall find a witness or a certificate that the group is
cyclic.

How do we show that a group is cyclic? We guess a generator a. If we
are able to show that an 6= 1 for any n < N − 1, we are done. Note that
aN−1 = 1 anyway. Therefore, we just need to check that a(N−1)/pi 6= 1 for
every prime divisor pi of N − 1.

Therefore, we not only guess the generator a, we guess the factors p1, p2, · · · , pk

of N − 1. But how do we know that the guessed pis are indeed primes? We
guess its witnesses too; induction! Aren’t we going in circles? Actually no
since the numbers pis are quite small and it still won’t blow up the size of
the final certificate.

Let us try and see how large the witness/certificate can get. How large
can the prime factors of N − 1 be? Since N is prime , N − 1 is certainly
composite (unless N was 2, a worthless case which can be handled right
at the beginning). The largest factor of N − 1 can be of size atmost

√
N.

How many factors can there exist? Atmost log(N − 1) of them. Thus if
N − 1 = p1p2 · · · pk then our witness would be (a, p1, p2, · · · , pn) and the
certificates of each of the pis. The input is of size logN and let S(l) be the
size of the witness for input of length l. Then:

S(logN) = log2N + S(log p1) + S(log p2) + · · ·+ S(log pk)
= log2N + (log p1)c + (log p2)c + · · ·+ (log pk)c

≤ log2N + (log p1 + log p2 + · · ·+ log pk)c

= log2N + (log(N − 1))c

= O((logN)c)

And since the witness is just polynomially bounded in the size of the input,
we can guess the entire certificate and verify. Thus primality testing is in
NP.

And since primality is in NP and coNP, it is in NP ∩ coNP.

60

CS681 Computational Number Theory

Lecture 18: Quadratic Reciprocity
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Polynomial factorization and randomized primality testing were one of the
first examples of the power of randomization. Two standard algorithms for
primality testing (randomized) are the Miller-Rabin test and the Solovay-
Strassen test.

We shall build some theory on quadratic reciprocity laws before we get
into the Solovay Strassen test.

26 Quadratic Reciprocity

The reciprocity laws are closely related to how primes split over number
fields. Let us first understand what these number fields are.

Definition 22. An algebraic integer over Q is an element ζ such that it is a root
of a monic polynomial in Z[X]. For example, the number 1

2 + i
√

3
2 is an algebraic

integer as it is a root of x2 − x+ 1.
A number field is a finite extension of Q. One could think of this as just ad-

joining an algebraic number to Q.

Note that number fields are strange objects. They may not even be
UFDs. We saw the example when we consider Q(

√
−5), the number 6 fac-

tors as both 3×2 and (1+
√
−5)(1−

√
−5).However, if one were to consider

factorization over ideals, they form unique factorizations.

26.1 The Legendre Symbol

Fix an odd prime p. We want to study equations of the form X2 − a over
Fp. What does it mean to say that this has a solution in Fp? It means that a
has a square-root in Fp or a is a square in Fp. The legendre symbol captures
that.

61

Definition 23. For a ∈ Fp, the legendre symbol
(

a
p

)
is defined as follows:

(
a

p

)
=

0 if p | a
−1 if a is not a square modulo p
1 if a is a square modulo p

Proposition 29. (
ab

p

)
=
(
a

p

)(
b

p

)
The proof is fairly straight forward; just consider them case by case

when they are −1, 0, 1.
Thus, the above proposition tells us that the

(
·
p

)
is a homomorphism

from Z/pZ to {−1, 0, 1} .

Another observation is that since F?
p is cyclic, there is a generator b. Then

we can write a = bt. We then have,

a =

0 if p | a
−1 if a is not a square modulo p
1 if a is a square modulo p

and therefore
(

a
p

)
= a

p−1
2 .

Note that x2 = y2 =⇒ x = y or x = −y and therefore, the number of
squares in F?

p is exactly p−1
2 .And if the generator of the group is a quadratic

non-residue (not a square), then any odd power of the generator is also a
non-residue.

27 Quadratic Reciprocity Theorem

Theorem 30. Let p and q be odd primes (not equal to each other). Then(
2
p

)
= (−1)

p2−1
8(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

62

Proof. We shall prove the part of
(

2
p

)
in this class and do the other in the

next. The idea is to go to a field extension (if necessary) and evaluate certain
elements in two ways to get what we want. In the case of

(
2
p

)
we shall go

to the extension Fp(i) where i is a square root of −1.
Firstly note that this needn’t be a proper extension at all. For example,

in F5, we already have a root of−1 which is 2. Infact, for every prime of the
form 1 mod 4, we have a square root of −1. So we will go to an extension if
necessary.

Now set τ = 1 + i. We know that τ2 = 1 − 1 + 2i = 2i and τp = 1 + ip

in Fp. We could also evaluate τp as τ · (τ2)
p−1
2 . Also (1 + i)−1 = 1−i

2 .

1 + ip = τp

= τ(2i)
p−1
2

= (1 + i)2
p−1
2 i

p−1
2

=⇒ (1 + ip)(1− i)
2

= 2
p−1
2 i

p−1
2

=⇒ 1 + ip − i− ip+1

2
=

(
2
p

)
i

p−1
2

Case 1: When p = 1 mod 4
Then i ∈ Fp and the above equation reduces to

1 + i− i+ 1
2

=
(

2
p

)
(−1)

p−1
4

=⇒
(

2
p

)
= (−1)

p−1
4

Case 2: When p = 3 mod 4

1− i− i− 1
2

=
(

2
p

)
i

p−1
2

=⇒ i3 =
(

2
p

)
i

p−1
2

=⇒
(

2
p

)
= i

1−p
2

+3 = i
8−(1+p)

4

= (−1)
p+1
4

Therefore, (
2
p

)
=

{
(−1)

p−1
4 p = 1 mod 4

(−1)
p+1
4 p = 3 mod 4

63

and combining the two, we get(
2
p

)
= (−1)

p2−1
8

The proof of the other part is very similar. We consider a similar τ and
evaluate τp in two different ways to get to our answer. We shall do this in
the next class.

64

CS681 Computational Number Theory

Lecture 19: Quadratic Reciprocity (contd.)
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we proved one part of the Quadratic Reciprocity Theorem. We
shall first finish the proof of the other part and then get to a generalization
of the Legendre symbol - the Jacobi symbol.

28 Proof of Reciprocity Theorem (contd.)

Recall the statement of the theorem. If p 6= q are odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

The idea of the proof is just the same. We choses τ = 1 + i last time and
we got a 2

p−1
2 term while computing τp. It would be the same here as well.

Let ζ be a principle q-th root of unity. We shall work with the field Fp(ζ).
Let

τ =
∑
a∈F?

q

(
a

q

)
ζa

Just as before, we compute τ2.

τ2 =

∑
a∈F?

q

(
a

q

)
ζa

∑
b∈F?

q

(
b

q

)
ζb

=

∑
a,b∈F?

q

(
a

q

)(
b

q

)
ζa+b

=
∑

a,b∈F?
q

(
a

q

)(
b−1

q

)
ζa+b

=
∑

a,b∈F?
q

(
ab−1

q

)
ζa+b

65

Let us do a change of variable, by putting c = ab−1

τ2 =
∑

c,b∈F?
q

(
c

q

)
ζbc+b

=
∑

−1 6=c∈F?
q

(
c

q

)∑
b∈F?

q

(ζc+1)b +
∑
b∈F?

q

(
−1
q

)
Since both p and q are primes and −1 6= c ∈ F?

q , ζc+1 is also a principle q-th
root of unity. And therefore,

∑
b(ζ

c+1)b = −1. Therefore,

τ2 =
∑

−1 6=c∈F?
q

(
c

q

)
+ (q − 1)

(
−1
q

)
Look at the first term. If one were to sum over all elements of F?

q , then half

of the
(

c
q

)
would be 1 and the other would be −1 thus fully cancelling off.

Since we are just excluding c = −1, the first term is just
(
−1
q

)
.

τ2 =
(
−1
q

)
+ (q − 1)

(
−1
q

)
= q

(
−1
q

)
Now to evaluate τp.

τp =
∑
a∈F?

q

(
a

q

)
ζap

=
∑
c∈F?

q

(
cp−1

q

)
ζc (c = ap)

=
(
p−1

q

)∑
c∈F?

q

(
c

q

)
ζc

=
(
p

q

)
τ

τp = τ(τ2)
p−1
2

=⇒
(
p

q

)
τ = τq

p−1
2

(
−1
q

) p−1
2

= τ

(
q

p

)
(−1)

p−1
2

q−1
2

=⇒
(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

66

29 Jacobi Symbol

The legendre symbol
(

m
n

)
can be naturally generalized to the case when m

and n are odd and coprime numbers.

Definition 24. Suppose n = pα1
1 pα2

2 · · · pαk
k . Then the Jacobi symbol, also repre-

sented as
(

m
n

)
, is defined as follows

(m
n

)
=

{
0 if (m,n) 6= 1∏k

i=1

(
m
pi

)αi

otherwise

The Jacobi symbol also satisfies some nice multiplicative properties

•
(

m1m2
n

)
=
(

m1
n

) (
m2
n

)
•
(

m
n1n2

)
=
(

m
n1

)(
m
n2

)
Using the above properties, we can get a generalize the theorem on the

legendre symbol as well.

Theorem 31. If m,n are odd numbers such that (m,n) = 1, then(
2
n

)
= (−1)

n2−1
8(m

n

)(n
m

)
= (−1)

m−1
2

n−1
2

We shall prove this theorem in the next class. The proof will just be us-
ing induction on the factors of m and n.

WARNING: Please note that the Jacobi symbol
(

m
n

)
doesn’t say any-

thing about whether or not m is a square modulo n. For example, if n =
p1p2 and m was chosen such that m is not a square modulo p1 or p2. Then
the Jacobi symbol

(
m

p1p2

)
= (−1)(−1) = 1 but m is not a square in p1p2.

67

CS681 Computational Number Theory

Lecture 20 and 21: Solovay Strassen Primality Testing
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we stated a similar reciprocity theorem for the Jacobi symbol. In
this class we shall do the proof of it, discuss the algorithm, and also do the
Solovay-Strassen primality testing.

30 Proof of the Reciprocity of
(
m
n

)
The proof will just be induction on m. Recall the statement of the theorem(

2
n

)
= (−1)

n2−1
8(m

n

)(n
m

)
= (−1)

m−1
2

n−1
2

We shall just prove the second part here. The first part uses the same tech-
nique. Let us assume that the theorem is true for allm′ < m. Ifm is a prime,
we do induction on n.

Suppose m = m1m2, then(m1m2

n

)(n

m1m2

)
=

(m1

n

)(n

m1

)(m2

n

)(n

m2

)
= (−1)

n−1
2

“
m1−1

2
+

m2−1
2

”

From now on, the work shall be happening on the exponent and let
us just denote n−1

2 E for the exponent of −1. We want to evaluate E mod
2 since we are looking at (−1) power the exponent and only the parity
matters.

68

Let m1 = 4k1 + b1 and m2 = 4k2 + b2 where b1, b2 = ±1 since m is odd.

E =
4k1 + 4k2 + b1 + b2 − 2

2

=
b1 + b2 − 2

2
mod 2

m− 1
2

=
(4k1 + b1)(4k2 + b2)− 1

2

= 8k1k2 + 2k1b2 + 2k2b1 +
b1b2 − 1

2

=
b1b2 − 1

2
mod 2

And now it is easy to check that for b1, b2 = ±1,

b1b2 − 1
2

=
b1 + b2 − 2

2
mod 2

and therefore, E = m−1
2 mod 2 and hence,(m

n

)(n
m

)
= (−1)

n−1
2

E = (−1)
n−1

2
m−1

2

31 Algorithm to compute
(
m
n

)
The reciprocity laws give a polynomial time algorithm to compute the Ja-
cobi symbol m

n . Note that
(

m
n

)
depends only on m mod n and therefore we

can reduce m modulo n and compute. When m < n, we use the reciprocity
to get

(
n
m

)
and we reduce again.

The bases cases (cases when either of them is 1 or gcd(m,n) > 1 or
m = 2km′ or n = 2km′ etc) are omitted8.

The running time of this algorithm is (logm log n)O(1).

32 Solovay Strassen Primality Testing

The general philosophy of primality testing is the following:

• Find a property that is satisfied by exactly the prime numbers.

8the TEXsource file of this lecture note has them commented out. Uncomment them and
recompile if needed

69

Algorithm 7 JACOBI SYMBOL
(

m
n

)
1: //base cases omitted
2: if m > n then
3: return

(
m mod n

n

)
4: else
5: return (−1)

m−1
2

n−1
2

(
n
m

)
6: end if

• Find an efficient way to check if the property is satisfied by arbitrary
numbers.

• Show that for any composite number, one can “easily” find a witness
that the property fails.

In the Solovay-Strassen algorithm, the property used is the following.

Proposition 32. n is prime if and only if for all a ∈ (Z/nZ)?,(a
n

)
= a

n−1
2

And with the following claim, we have the algorithm immediately.

Claim 33. If n was composite, then for a randomly chosen from (Z/nZ)?,

Pr
a∈(Z/nZ)?

[(a
n

)
6= a

n−1
2

]
≥ 1

2

Thus, the algorithm is the following.
All that’s left to do is prove the claim. For that, let us look at a more

general theorem which would be very useful.

Theorem 34. Let ψ1 and ψ2 be two homomorphisms from a finite group G to a
group H. If ψ1 6= ψ2, that is there is atleast one g ∈ G such that ψ1(g) 6= ψ2(g),
then ψ1 and ψ2 differ at atleast |G|/2 points.

This intuitively means that two different homomorphisms can either be
the same or have to be very different.

Proof. Consider the set

H = {g ∈ G : ψ1(g) = ψ2(g)}

70

Algorithm 8 SOLOVAY-STRASSEN: check if n is prime
1: Pick a random element a < n.
2: if gcd(a, n) > 1 then
3: return COMPOSITE

4: end if
5: Compute a

n−1
2 using repeated squaring and

(
a
n

)
using the earlier algo-

rithm.
6: if

(
a
n

)
6= a

n−1
2 then

7: return COMPOSITE

8: else
9: return PRIME

10: end if

Note that clearly 1 belongs to H and if a, b ∈ H , then so is ab as ψ1(ab) =
ψ1(a)ψ1(b) = ψ2(a)ψ2(b) = ψ2(ab). Inverses are inside as well and there-
fore, H is a subgroup of G. Also since ψ1 6= ψ2, they differ at atleast one
point say g0. Then g0 /∈ H and hence H is a proper subgroup of G.

By Lagrange’s theorem, |H| divides |G| and since |H| < |G|, |H| can
atmost be |G|/2. Since every element in G \ H is a point where ψ1 and ψ2

differ, it follows that ψ1 and ψ2 differ at atleast |G|/2 points.

The claim directly follows from the theorem since both the Jacobi sym-
bol and the map a 7→ a

n−1
2 are homomorphisms and hence will differ in

atleast half of the elements of (Z/nZ)?.

Thus, the Solovay-Strassen algorithm has the following error bounds:

• If n is a prime, the program outputs PRIME with probability 1.

• If n is not a prime, the program outputs COMPOSITE with probability
atleast 1

2 .

Of course, the confidence can be boosted by making checks on more such
a’s.

All that’s left to do is to prove the proposition.

71

33 Proof of the Proposition 32

We want to show that if n is not a prime, there the two homomorphisms
a 7→ a

n−1
2 and a 7→

(
a
n

)
are not the same. Thus, it suffices to find a single

a ∈ (Z/nZ)? such that
(

a
n

)
6= a

n−1
2 .

Case 1: n is not square free

Suppose n had a prime factor p such that p2 divides n. Recall that for all
n = pα1

1 pα2
2 · · · pαk

k , the Euler φ function evaluates to:

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

And hence, if p2 | n =⇒ p | φ(n). Now look at the multiplicative
group (Z/nZ)?, this has φ(n) elements. A theorem of Cayley tells us that if
p | |G| then G has an element of order p.9 Let g be an element of order p in
(Z/nZ)?.

What is the value of g
n−1

2 ? Can this be ±1? If it were ±1, then gn−1 = 1.
This means that the order of g divides n−1, or p | n−1 which is impossible
since p | n.And therefore, g

n−1
2 6= ±1 and therefore, certainly cannot be

(g
n

)
which takes values only ±1 for all g coprime to n.

Thus g is a witness that
(g

n

)
6= g

n−1
2 .

Case 2: n is a product of distinct primes

Now n will be square-free if and only if it is a product of distinct primes.
Suppose n = p1p2 · · · pk

Suppose there is some some a such that a
n−1

2 6=
(

a
p1

)
, are we done? Yes

we are. We can use such a a to find a g such that g
n−1

2 6=
(g

n

)
.

By the Chinese Remainder Theorem, we know that (Z/nZ)? ∼= (Z/p1Z)?×
· · ·×(Z/pkZ)?. Let g be the element in (Z/nZ)? such that g 7→ (a, 1, 1, · · · , 1)
by the CRT map. By the definition of the Jacobi Symbol,(g

n

)
=

k∏
i∈1

(
g

pi

)
=

k∏
i=1

(
g mod pi

pi

)
=
(
a

p1

)(
1
p2

)
· · ·
(

1
pk

)
=
(
a

p1

)
9actually it is more. It says that for every prime power pα | |G|, there is a subgroup of

order pα in G.

72

And g
n−1

2 = (a
n−1

2 , 1, · · · , 1). What we know is that a
n−1

2 6=
(

a
p1

)
. Suppose(

a
p1

)
= 1, then

(
a
p1

)
=
(g

n

)
= 1. But g

n−1
2 on the other hand looks like

(a
n−1

2 , 1, · · · , 1) and we know that
(

a
p1

)
= 1 6= a

n−1
2 . Therefore, g

n−1
2 looks

like (∗, 1, · · · , 1) where the first coordinate is not 1. And therefore, this is
not 1. Therefore

(g
n

)
6= g

n−1
2 .

Suppose
(

a
p1

)
= −1, then things are even simpler.

(g
n

)
= −1 but g

n−1
2

looks like (∗, 1, · · · , 1) 6= −1. Therefore
(g

n

)
6= g

n−1
2 .

And of course, it works for any prime factor p of n. Thus, the bad case is
when for all a and for all prime factors pi,

(
a
pi

)
= a

n−1
2 . Since n is compos-

ite, there are at least 2 distinct prime factors p1 and p2. Pick a ∈ (Z/p1Z)?

which is a quadratic residue (
(

a
p1

)
= 1) and a b ∈ (Z/p2Z)? that is a non-

residue (
(

b
p2

)
= −1). Now look at the element g ∈ (Z/nZ)? that maps to

(a, b, 1, 1, · · · , 1) by the chinese remainder theorem.
Now g

n−1
2 = (a

n−1
2 , b

n−1
2 , 1, · · · , 1) = (1,−1, 1, · · · 1) which is not ±1.

And hence clearly,
(g

n

)
6= g

n−1
2 .

That completes the proof of correctness of the Solovay-Strassen primal-
ity test.

73

CS681 Computational Number Theory

Lecture 22 : Towards the AKS Primality Test
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Our next goal is to do the deterministic polynomial time primality test that
was found by Manindra Agrawal, Neeraj Kayal and Nitin Saxena in 2002. It
was a remarkable achievement and it also gave an example of how certain
problems that are open for a long time can have such beautiful, elegant
solutions.

34 Derandomization Approaches and the Riemann Hy-
pothesis

We had very good randomized algorithms like the Solovay-Strassen test
which we discussed last time, or the Rabin-Miller test.10 But people wanted
a deterministic algorithm for primality testing that runs in polynomial time.

However, it was known that under some strong assumptions, the above
algorithms can be derandomized and made into a deterministic algorithm.
If the Extended Riemann Hypothesis (ERH) is true, then we can completely re-
move randomness from the Solovay-Strassen test (or the Miller-Rabin test)
and make it a deterministic polynomial time algorithm.

This conjecture is widely believe to be true and has been a very impor-
tant long-standing open problem for a long time. Infact, Clay Mathematical
Institute has a prize of a million dollars for anyone who solves it. Of course,
if someone proves the riemann hypothesis, we already have a deterministic
primality test. But trying to prove the ERH for a primality test is like trying
to uproot a whole tree to get a fruit on top of it; completely avoiding the
tree and instead using some stick would be better.

Let us have a small discussion on what the ERH, or the Riemann Hy-
pothesis is.

10another randomized algorithm for primality testing. We will see this as an assignment.

74

34.1 The Zeta Function

Riemann introduced a function called the Riemann Zeta Function. The Rie-
mann Hypothesis is to do with the roots of this function. Some of you
might have seen the equalities like

1 +
1
22

+
1
32

+
1
42
· · · =

π2

6

1 +
1
24

+
1
34

+
1
44
· · · =

π4

90

One question is what happens when we vary the exponent of the sum-
mation. What can we say about

ζ(s) =
∞∑

n=1

1
ns

Note that there are diverging series like ζ(s) since

1 +
1
2

+
1
3

+ · · ·+ 1
n
≈ log n

and therefore if n goes to infinity, the sum goes to infinity as well; the infi-
nite some diverges. Infact, the series ζ(s) converges for all real s if and only
if |s| > 1.

Now why not s when it is complex? Why do we restrict ourselves to
just real exponents? Then we can define ζ(s) to be the function when s is
any complex number. There again, the infinite sum issues props up. It can
be shown that

∑ 1
ns converges for all s such that the real part of s, denoted

by <(s) is greater than 1.
And hence ζ(s) is well defined for all numbers s such that <(s) > 1. A

pictorial way to look at it is if you consider the complex plane, it is well-
defined for all point to the right of the line x = 1.

Suppose we consider functions over real values, we have this notion of
continuity. A function being continuous at a point x0 essentially means that
irrespective of whether we approach x0 from the left (also denoted by left
hand limit) or the right (right hand limit), the value should coincide with
the functional value at x0. This is sometimes also written as

lim
x→x−0

f(x) = lim
x→x+

0

f(x) = f(x0)

75

In the case of complex functions, we have a function over a plane. So
it is not just a line and hence just left or right approaches. In the complex
case, it is said to be continuous if no matter what part you take to approach
x0, the limits should match f(x0).

Similarly for derivatives in the real case, we want the derivative on the
left hand side to match the derivative on the right hand side. In the complex
case, the derivative must be the same on all directions.

A complex function that satisfies these conditions is called an analytic
function. We say function is analytic over a region D if the above properties
hold for every point in D.

Analytic functions have very strong properties like not just the first
derivative but all higher order derivatives exist, a whole bunch of prop-
erties. It imposes a lot of restriction on the function.

Riemann showed that the zeta function is analytic in the region <(s) >
1.

Suppose we have a function f that we define over a small domain D
over the compex plane. And over this domain, suppose the function f is
analytic. We haven’t defined the function outside this domain at all. A
process known as analytic continuation can be used to extend the domain of
this function.

Formally speaking, g (whose domain is Dg) is an analytic continuation
of f (whose domain is Df) if the following properties hold:

• g is analytic over Dg.

• Df ⊆ Dg.

• For all z ∈ Df , f(z) = g(z).

In simple words, g extends f to a larger domain keeping in mind that
if f was already defined at a point z, then g shouldn’t change that value; g
should coincide with f wherever it is defined already.

There is a remarkable results that if g1 and g2 both analytically extend
f independently, then essentially g1 = g2. Therefore, the analytic contin-
uation of a function f is uniquely determined; we can hence talk of the
analytic continuation of f.

The zeta function is actually the analytic continuation of the function

76

∑ 1
ns . It is however written as just

ζ(s) =
∞∑

n=1

1
ns

The analytic continuation now extends the domain to the entire complex
plane except the point z = 1. Thus our ζ(s) is a function defined over the
entire complex plane except 1; there is a simple pole at the point z = 1.

34.2 Why is this important?

Now what is the importance of this function? What does it give us? The
answer is that it essentially captures the factorization of integers in it.

Every n can be factorized as a product of primes pα1
1 pα2

2 · · · pαk
k and

hence
1
ns

=
1

(pα1
1)s(pα2

2)s · · · (pαk
k)s

And therefore, every term in the zeta function can be written as such a term
on the RHS. And therefore,

∞∑
n=1

1
ns

=
∏

p∈Primes

(
1 +

1
ps

+
1
p2s

+ · · ·
)

=
∏

p∈Primes

(
1

1− 1
ps

)

This is not a rigerous proof; mathematicians will stand on their head and
complain that such infinite sum/product manipulation is an unforgivable
sin. However, the final equality is true; can be made rigerous.

This relation between the zeta function and the prime product is one of
the many things that make it important.

34.3 The Riemann Hypothesis

The analytically continued function has a lot of roots in C. Infact, it has a
root at every negative integer. These are considered as trivial roots since
they provide us with no consequence. It has been shown that all the non-
trivial zeroes lie in the critical strip of {s : 0 < <(s) < 1}, the strip between
the y-axis and the line x = 1.

The Riemann Hypothesis is the conjecture that all the non-trivial zeroes
of the zeta function lie on the line x = 1

2 . That is, any non-trivial root smust

77

satisfy <(s) = 1
2 .

As of now, all the roots that have been discovered lie on this line. But
we do not have a way of proving, or disproving, that all the non-trivial
roots lie on this line.

34.4 The Extended Riemann Hypothesis

This is a slight generalization of the zeta function. A character χ is a peri-
odic11 function is multiplicative. That is, χ(mn) = χ(m)χ(n).

For example, χ =
(

a
n

)
for a fixed a is a character.

The generalized zeta function is the analytic continuation of

L(χ, s) =
∞∑

n=1

χ(n)
ns

Clearly, when χ(n) = 1 for all n, this is just the zeta function.

The Extended Riemann Hypothesis is the conjecture that for any char-
acter χ, all the non-trivial zeroes of the L function lie on the line <(s) = 1

2 .

34.5 Derandomizing using ERH

One of the major consequences of ERH, that is used in a lot of places is that,
for any prime p, the first quadratic non-residue is less than O(log2 p).

So, in essence, the witness for the Solovay-Strassen test can be found
without going too far. One just need to go till up to polylog(n) to get a
witness. This thus derandomizes the Solovay-Strassen test.

As remarked earlier, the RH or the ERH is a really strong conjecture.
One doesn’t need to go as far as the ERH to get a primality test. Agrawal-
Kayal-Saxena show that primality can be solved in deterministic polyno-
mial time without using any high-end mathematical machinery. The give a
very elegant and simple algorithm.

35 The AKS Primality Test: The Idea

All primality tests have the same form:

11there exists a number k such that χ(n + k) = χ(n) for all n

78

1. Find a property such that it is satisfied only by primes.

2. Try to verify that property

In the Solovay-Strassen test, it was the properties of the Legendre sym-
bol that we checked. The following proposition is the property used in the
AKS test.

Proposition 35. The equation “(X + a)n = Xn + a (mod n)” is true for all a
if and only if n is prime.

Proof. When n is a prime, then the above equation is just the binomial the-
orem for prime numbers. Therefore the equation is indeed true for all a
when n is a prime.

Suppose n is not a prime, then we must show that the two polynomials
(X + a)n and Xn + a are not the same. Suppose n = pq where p is a prime
and q 6= 1, then look at the following binomial term:(

n

p

)
=
n · (n− 1) · (n− 2) · · · (n− (p− 1))

p · (p− 1) · (p− 2) · · · 1

Let pm be the largest power of m that divided n. The only term in the
numerator that is divisible by p is the first term since it is a product of p
consecutive integers and therefore only one of the can be divisible by p.
Therefore the largest power or p that divides the numerator is pm since it
divides n and none of the other terms are divisible by p. The denomina-
tor has a factor of p and therefore will cancel off one factor of p from the
numerator. Therefore the largest power of p that divides

(
n
p

)
is pm−1. And

since pm -
(
n
p

)
, clearly n -

(
n
p

)
and therefore this terms survives.

Since p 6= n, this isn’t the last term in the binomial series. Therefore, the
two polynomials are different.

There is one major problem here - how do we check if the two polyno-
mials are the same? We can compute them by repeated squaring. But note
that the polynomial (X + a)n has n terms. Checking if every term other
than the first and the last is zero would take atleastO(n) time adn therefore
will be exponential in the input size which is log n. We are looking for an
algorithm that runs in (log n)O(1) time.

The natural fix to this is computing the equation modulo a polynomial
of small degree. Instead of computing (X + a)n mod n, we compute (X +
a)n mod (Xr − 1), n where r ≤ logc n.

79

If nwas a prime, then (X+a)n = Xn+a mod n and therefore (X+a)n =
Xn + a mod (Xr − 1, n). The tricky part is the converse. It is very well
possible that some composite number could satisfy this equation since we
are going modulo a very small degree polynomial. What AKS does here is
try this for different a’s; they check if (X + a)n = Xn + a mod (Xr − 1, n)
for a fixed r and a ∈ (1, 2, · · · , l) where l ≤ logc′ n. They then argue that if
all these tests go through, n has to be a prime or a power of a prime.

Checking if n is a power of a prime is easy and that would conclude the
algorithm.

35.1 Checking if n = pk for k ≥ 2

Now p ≥ 2 and therefore k can be at most log n. Suppose we fix a k and
want to find if n = pk for some p, how do we do that? Just a binary search.

Try (n/2)k. If this is equal to n, you already got it. If it is less than n,
then you know that if an a exists, it must be greater than n/2. Recurse on
that half.

Thus, the number of steps is log2 n, which is polynomial in the input
size.

We need to understand some properties of cyclotomic extensions over
finite fields. We shall do those next time and that should fix the choice of l,
r and other constants that come in the process.

80

CS681 Computational Number Theory

Lecture 23 and 24 : The Cyclotomic Polynomial
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We started looking at the AKS primality test in the last class. The idea was
to check if (X+a)n−Xn−a = 0 (mod n,Xr−1) for many values for a.We
first need to understand the polynomial Xr − 1 and extensions associated
with it.

36 The polynomial Xr − 1 = 0

The roots of this polynomial are the r-th roots of unity. Over Q these are
the complex numbers e

2πi
r where 0 ≤ i ≤ r − 1.

Note that the roots of unity form a group under multiplication. If ζ1 and
ζ2 are roots, then so is ζ1ζ2. Infact, it forms a cyclic group. And therefore,
we can talk about a generator of this group.

Definition 25. An r-th root of unity ζ is called a primitive r-th root of unity if ζ
is a generator of the group of roots.

Or in other words, ζ is a number such that ζr = 1 and ζt 6= 1 for any
t < r.

Now, let ζ be a primitive r-th root of unity. What are the other primitive
roots? Any other root ζ ′ can be written as ζt. Suppose the gcd(r, t) = d then
look at ζ ′r/d. Since d divides r, the exponent is an integer.

ζ ′r/d = ζtr/d = (ζr)t/d = 1

Therefore, the primitive r-th roots of unity are ζt where t is coprime with
r. And therefore, there are ϕ(r) of them. Let us consider the following
polynomial:

Φr(X) =
∏

ζ primitive

(X − ζ)

This is called the r-th cyclotomic polynomial. Clearly, the degree of Φr(X)
is ϕ(r).

81

36.1 Cyclotomic Polynomials over Q

Let us restrict our attention to the field of rational numbers. We want to
study

∏
(X − ζ). The first important property is the following:

Proposition 36. The coefficients of Φr(X) are rational numbers.

Proof. The idea is quite simple. The equation Xr−1 has all the r-th roots of
unity as roots and certainly includes the primitive roots as well. Therefore,
Φr(X) divides Xr−1. So the idea is to eliminate all the non-primitive roots
of unity.

Note that since the roots of unity form a group under multiplication, for
any root of unity ζ the order of ζ divides r. So the order could either be r
or some proper factor of r. We are interested in only the ζs whose order is
equal to r.

For every ζ, if the order of ζ is t, then t | r and ζ is a root of Φt(X) by
definition. And running over all the roots of unity, we have

Xr − 1 =
∏
d|r

Φd(X)

And therefore,

Φr(X) =
Xr − 1∏

d|r,d6=r Φd(X)

By induction, if we assume that Φd(X) has rational coefficients, for all d <
r, it follows that Φr(X) has rational coefficients too.

To see a few examples,

1. Φ1(X) = X − 1

2. Φ2(X) = X2−1
X−1 = X + 1

3. Φ3(X) = X3−1
X−1 = X2 +X + 1

4. Φ4(X) = X4−1
(X+1)(X−1) = X2 + 1

And if you notice, the coefficients are not only rationals but infact inte-
gers. This can be got from the earlier proof using the following very useful
lemma.

Lemma 37 (Gauss Lemma). Let f be a monic polynomial with integer coeffi-
cients. If f is irreducible in Z, that is there are no polynomials g, h with integer
coefficients such that f(X) = g(X)h(X), then f is irreducible over Q as well.

82

Therefore if f and g are integer monic polynomials such that there g di-
vides f over Q, that is there exists a polynomial h with rational coefficients
such that f(X) = g(X)h(X), the g infact divides f over Z or h infact has
only integer coefficients. Thus all the above divisions will only yeild inte-
ger polynomials and hence Φr(X) is an integer polynomial.

Another important property of cyclotomic polynomials is that they are
irreducible over Q. We shall prove this soon. But what’s important is that
it needn’t be so in the case of finite fields. For example, if r = p− 1 and we
looked at Φr(X) in Fp. Note that Φr(X) is a factor of Xr − 1 = Xp−1 − 1
which inturn is a factor of Xp −X and this completely splits.

However, if we can show that Φr(X) was irreducible over some prime
p, then it has to be irreducible over Q. Because if it were reducible as f(X) ·
g(X) over Q, then we can reduce the equation Φr(X) = f(X)g(X) mod p
and get a factorization in Fp.

36.2 Cyclotomic polynomials over Fp

Let ζ be a primitive r-th root of unity over Fp. Note that ζ could very well
be in Fp itself; when r = p − 1 for example. In any case, consider the field
extensio Fp(ζ) over Fp by just adjoining ζ to Fp. Let us say the degree of this
extension [Fp(ζ) : Fp] = d.

Recall that the degree of a field extension [K(α) : K] is the degree of
the K(α) as vector space over K and therefore is equal to the degree of the
minimum polynomial of α over K.

Therefore, if µ(X) is the minimum polynomial of ζ over Fp, µ(ζ) =
a0 + a1ζ + · · · adζ

d = 0 and therefore the set 1, ζ, ζ2, · · · , ζd−1 is the largest
linearly independent subset. Therefore, [Fp(ζ) : Fp] = degµ(X) = d.

Now, ζ is a root. What about the other roots of this polynomial? Recall
our old friend Fröbenius. The automorphism a 7→ ap fixes every element
in Fp.

µ(ζ) = a0 + a1ζ + · · ·+ adζ
d = 0

=⇒ (µ(X))p = 0

=
(
a0 + a1ζ + · · ·+ adζ

d
)

= ap
0 + ap

1ζ
p + · · ·+ ap

dζ
dp

= a0 + a1ζ
p + · · ·+ ad(ζp)d

= µ(ζp)

83

and hence, ζp is also a root. Applying the map again, we can show ζ, ζp, ζp2
, · · · , ζpd−1

are all roots of µ(X).
One can’t go up to more than d such applications because the degree of

µ is bounded by d and therefore can have only d roots. And if we were to
apply the Fröbenius map again, then we would end up in ζ again. Or in
other words,

ζpd
= ζ =⇒ ζpd−1 = 1 =⇒ r | pd − 1 =⇒ pd = 1 mod r

Since dwas the first place where this sort of wraparound happened, d is the
least such number such that pd = 1 mod r which implies that d is the order
of p modulo r. This is denoted by d = ordr(p).

Thus, the degree of the the minimum polynomial of ζ over Fp for any
primitive r-th root is ordr(p). And since we just specified ζ as any primi-
tive root, it follows that every primitive root has the degree of its minimum
polynomial as ordr(p).

But with a little thought, this will tell us that the approach that Φr(X) is
irreducible in Fp for some p may not work. Suppose this was true, then the
minimum polynomial of ζ must infact be Φr(X). And from what we have
proved above, the degree of this polynomial must be ordr(p) and therefore
ϕ(r) = ordr(p).Now notice that if we consider (Z/rZ)?, then the size of this
group is ϕ(r) and if ordr(p) = ϕ(r), then p generates the group (Z/rZ)? .
But not all (Z/nZ)?s are cyclic and therefore such a p may not exist at all.

But let us just take it on faith that the cyclotomic polynomial is irre-
ducible. The proof is not hard but would be a significant digression. The
interested reader can look it up online or on any abstract algebra text. But
what is important that any primitive r-th root has a minimum polynomial
of degree ordr(p) in Fp.

37 AKS Primality Test: A sketch

Now we have enough machinary to go ahead with the primality test. The
algorithm would be the following:

1. Find two numbers r and l based on some requirements

2. Do some small preprocessing

3. For all 1 ≤ a ≤ r, check if the following identity holds

(X + a)n = Xn + a (mod n,Xr − 1)

84

Use repeated squaring to evaluate the LHS and RHS and check.

If any of the test failed, output COMPOSITE.

4. If all the above tests succeeded, output PRIME

Our preprocessing steps would be the following:

• Check if n is a perfect power of some number. If it is some non-trivial
power, output COMPOSITE. This will rule out the case that n = pk for
k ≥ 2.

• For each 2 ≤ d ≤ r, check if gcd(n, d) = 1. If you find a factor, output
COMPOSITE.

And the parameters will be fixed soon and we shall see that both r and
l are less than (log n)c for some constant c. Therefore, the preprocessing
steps take only polylog time, checking if the identity holds for each a in
that range also takes polylog time and therefore the entire algorithm runs
in time polynomial in log n.

Further, if n was indeed a prime, the algorithm would definitely output
PRIME. The tricky part is to show that if n had atleast 2 distinct prime fac-
tors, the algorithm will catch it.

To prove the correctness of this algorithm, we would be studying 2
rings:

• R = Z[X]
(n,Xr−1) = (Z/nZ[X]) /(Xr − 1)

• R = Z[X]
(p,h(X)) = (Z/pZ[X]) /(h(X)) where p is a prime factor of n and

h(X) is an irreducible factor of Φr(X) over Fp. Note that we have
shown that t = deg(h(X)) = ordr(p).

Suppose the algorithm said nwas a prime even when it had p as a prime
factor of n. What we would do is construct a group G and get bounds on
the size of G in two different ways. We will show that |G| ≥

(
t+l
t−1

)
.And also,

if n had at least 2 distinct prime factors, then |G| ≤ n
√

t. Thus, unifying the
two, we have (

t+ l

t− 1

)
≤ G ≤ n

√
t

And then, with suitable choice of r and l, we shall show that the lower
bound is larger than the upper bound which would give the required con-
tradiction. That is the general idea.

85

We shall see this in detail in the next class.

86

	Motivation for CRT: The Determinant
	Integer Matrices have Integer Determinants
	First Attempt: An Euclidian Approach
	Second Attempt: The Big Primes Method

	Chinese Remainder Theorem: Over Integers
	Solving Determinant through CRT

	Chinese Remainder Theorem for Arbitrary Rings
	Rings, Ideals, Factorization etc.
	Some Insights

	Finite Fields
	Vector Spaces
	Field Extensions

	Characteristic of Finite Fields
	Characteristic of Fields

	Order of Finite Fields
	Creating Extensions of Fp

	Some More Properties of Field Extensions
	Splitting Fields
	The Frobenius Map
	The Multiplicative Group of a Finite Field is Cyclic

	Uniqueness of Fpm
	More about Xq - X
	Extracting Factors

	DDF: The Problem
	Extracting Square-free Parts
	Distinct Degree Factorization
	Repeated Squaring

	A Catch and a Hint
	Irreducibility Testing
	Generating Irreducible Elements

	The Cantor-Zassenhaus Algorithm
	Finding Zero-Divisors

	Berlekamp's Algorithm
	The Frobenius Map
	The Berlekamp Sub-algebra
	Finding a Basis

	Codes
	Block Codes

	Linear Codes
	Detection

	General Codes
	Cyclic Codes
	Codewords as Polynomials

	BCH Codes
	Distance of a BCH Code

	Error Correction in a BCH Code
	The Locator and Correction Polynomials
	Computing the Polynomials

	Pratt's Theorem
	Pratt's Theorem
	Quadratic Reciprocity
	The Legendre Symbol

	Quadratic Reciprocity Theorem
	Proof of Reciprocity Theorem (contd.)
	Jacobi Symbol
	Proof of the Reciprocity of (mn)
	Algorithm to compute (mn)
	Solovay Strassen Primality Testing
	Proof of the Proposition ??
	Derandomization Approaches and the Riemann Hypothesis
	The Zeta Function
	Why is this important?
	The Riemann Hypothesis
	The Extended Riemann Hypothesis
	Derandomizing using ERH

	The AKS Primality Test: The Idea
	Checking if n = pk for k2

	The polynomial Xr - 1=0
	Cyclotomic Polynomials over Q
	Cyclotomic polynomials over Fp

	AKS Primality Test: A sketch

