
CS681 Computational Number Theory

Lecture 11: Cantor-Zassenhaus Algorithm
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In this class, we shall look at the Cantor-Zassenhaus randomized algorithm
for factoring polynomials over Fp. We shall do it for the case when p 6= 2.
The case when p = 2, which isn’t too different from the other case, would
be given as an exercise for the students to solve.

1 Irreducibility Testing

We left off last class with a hint that the distinct degree factorization infact
gives a straightforward irreducibility test. Here is the explicit answer.

We are given an f and we need to check if this polynomial is irreducible
or not. First check if it is square free. If it isn’t, immediately reject it. Else,
proceed to compute the distinct degree factors of f. If the degree of f is n,
the DDF algorithm returns g1, g2, · · · , gn such that each gi is the product of
irreducible factors of f of degree d.

Now, suppose f was irreducible, then clearly every gi = 1 for 1 ≤ i ≤
n− 1 and gn = f. Thus just check if the returned gi’s satisfy this condition.

1.1 Generating Irreducible Elements

Suppose are given a positive integer d, we want to efficiently find an irre-
ducible polynomial of degree d over Fp. Now before we get into this, why
is this important?

The answer is that this is the only way we can construct the field Fpd .
There are lots of applications where we need to do arithmetic over a field
of large size and Fp would be a candidate only if the prime p is large. And
finding such a large prime is hard and inefficient.

Instead, we pick a small prime p and try and find an irreducible poly-
nomial of degree d. Once we do that, we have Fp[X]/(f(X)) which is iso-
morphic to Fpd . This is precisely finding irreducible polynomials of a given
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degree is very useful.

To generate an irreducible polynomial of degree d, we shall just ran-
domly pick a polynomial of degree d. It can be argued that the probability
that this polynomial is irreducible is pretty high. And since we even have
a deterministic test to check if a polynomial f is irreducible, we just repeat
this procedure: Pick an f ∈ Fp[X] of degree d at random and repeat this if
the irreducibility test says that this polynomial is not irreducible.

All we need to do is to argue that the density of irreducible polynomials
is large.

Theorem 1. Let I(d) be the number of irreducible polynomials of degree d over
Fp. Then

I(d) =
pd

d
+O (

√
p)

And therefore,

Pr
f∈Fp[X],deg(f)=d

[f ∈ Irr(Fp, d)] ≥
pd

d +O(
√
p)

pd
≥ 1
d

As for the proof of the theorem, here is a sketch of it.

Proof. (sketch) We know that

Xpm −X =
∏

f∈Irr(Fp,d)
d|m

f(X)

Comparing the degrees on both sides,

pm =
∑
d|m

I(d) · d

Equations of this kind can be inverted using the Möbius Inversion.

Lemma 2 (Möbius Inversion). If we have any equation of the form

f(m) =
∑
d|m

g(d)

then
g(m) =

∑
d|m

µ(d)f(m/d)
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Exercise: Read up on the Möbius Inversion.

With the inversion formula, once can complete the proof of the theorem
by taking f(m) = pm and g(m) = I(m) ·m.

2 The Cantor-Zassenhaus Algorithm

Now we get to factoring a polynomial over Fp. Given a polynomial of de-
gree f over Fp, it is enough to get one non-trivial1 factor of f.

As we said in the last few lectures, the first thing to do is to check if f is
square free. If it isn’t we can just return the square-free part of f as a factor
and be done. If it is square-free, we compute the distinct degree factoriza-
tion of f. If f turns out to be irreducible, we just return “irreducible.” Else,
we have to proceed to find a non-trivial factor of f.

We shall factor each gi returned by the DDF algorithm separately. Hence,
we now assume that we have an f ∈ Fp[X] = g1 · · · gm such that each gi is
irreducible, distinct and of the same degree d.

Here enters our old friend Chinese Remaindering. Since f = g1 · · · gm,
we know that

Fp[X]/(f(X)) ∼= Fp[X]/(g1(X))× · · · × Fp[X]/(gm(X))

Now note that each gi is an irreducible polynomial of degree d. And
therefore, Fp[X]/(gi(X)) is isomorphic to Fpd . Hence the product just looks
like

Fp[X]/(f(X)) ∼= Fpd × · · · × Fpd

And further, we know that

(Fp[X]/(f(X)))? ∼= F?
pd × · · ·F?

pd

Now what do zero divisors, say g, in Fp[X]/(f) look like? When you
take the image under the chinese remaindering, it should go to some tuple
(a1, a2, · · · , am) where some ai = 0. Further, if this zero divisor is non-
trivial (0 is a trivial zero-divisor, useless), some other aj 6= 0. What does
this mean? g has a 0 in coordinate i which means that g is divisible by gi,
and hence g 6= 1. And also, g is non-zero at coordinate j and therefore gj

does not divide g and hence g 6= f. Thus, gcd(g, f) is certainly not f nor 1
and hence is a non-trivial factor of f .

1trivial factors of f are 1 and f . Factors though they may be, are useless for us.
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Therefore, the problem of finding factors reduces to the problem of find-
ing zero divisors in Fp[X]/(f(X)).

2.1 Finding Zero-Divisors

The idea is the following. We cross our fingers and pick a polynomial a(X)
of degree less than n at random. This is some element from Fp[X]/(f(X)).
If we are extremely lucky we might just get gcd(a, f) 6= 1, and this already
gives us a non-trivial factor of f and we are done. Hence, lets assume that
a is not a zero-divisor of the ring. And therefor, a must be an element of
(Fp[X]/(f))?, an invertible element.

Note that since we do not know the factors gi, we do not know the
chinese remainder map. We just know that a map exists, we don’t know
how to compute it. But suppose someone secretly told us that one of the
coordinates of a under the chinese remainder map is −1, then what can we
do?

Look at the images of a(X) + 1. The images of this is just 1 added to
every coordinate of the image of a(X). And since someone told us that one
of the coordinates was−1, that coordinate in the image of a(X)+1 must be
zero! Which means that, a(X) + 1 is a zero divisor. However it is possible
that all the coordinates is −1 and that would just make a(X) + 1 = 0 which
is useless.

Now, how do we make sure that there is some −1 in one of the coordi-
nates and not everywhere? Use the fact that each element of the product is
Fpd . We know that F?

pd is an abelian group of order pd − 1. And therefore,

for every element b in this group, bp
d−1 = 1.

We need a −1, and therefore we look at the square-root of it. Since we
know that bp

d−1 = 1, b(p
d−1)/2 =

√
1 which can either be 1 or −1.2 Let us

just call (pd − 1)/2 = M.

Thus, we have a simple procedure. Pick up some random polynomial
a(X) of degree less than n. Check if you are lucky by computing gcd(a, f)
and checking if it is 1. Else, compute a(X)(p

d−1)/2 mod f(X) using repeated
squaring. Now if a was mapping to (a1, a2, · · · , am), then aM would be
mapped to (aM

1 , · · · , aM
m ). And we just saw that each of aM

i is either 1 or
−1.

Claim 3. Each aM
i = 1 with probability 1/2, and they are independent.

2there can’t be any other square-roots of 1. This is because square roots of −1 satisfy the
equation X2 − 1 = 0 and this equation can have only 2 roots in a field
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Proof. Since the chinese remainder map is an isomorphism and each gi’s
are distinct, they are clearly independent. To check that the probability that
bM = 1 is 1/2, we look at the following map.

ψ : F?
pd −→ {1,−1}

b −→ bM

Note that the set {1,−1} form a group under multiplication. Infact it can
be identified with the group Z/2Z.

Exercise: Prove that the map ψ is indeed a group homomorphism.

And therefore, the kernel of this map ψ is a subgroup of F?
pd of all el-

ements b such that bm = 1. The other coset of this kernel is the set of el-
ements b such that bM = −1. Since these two are cosets, they are of equal
size. Hence a randomly chosen bwill have bM = 1 with probability 1/2.

And therefore, each ai is 1 or −1 with probability 1/2. Thus the proba-
bility that all the coordinates are 1 or all the coordinates are−1 is just 1/2m.
Thus with probability atleast 1 − 2m−1, we have some vector that has 1s
at certain places and −1s at the rest. Thus, now we are in the case when
someone had secretly told us that some coordinate is −1.

And therefore, we can pick a random polynomial a(X), raise it to the
power M modulo f , and add 1 to it. With probability atleast 1− 2m−1, this
will be a zero-divisor and hence gcd(aM + 1, f) will be a non-trivial factor
of f.

So here is the algorithm:

Algorithm 1 CANTOR-ZASSENHAUS ALGORITHM FOR FACTORING

Input: A polynomial f ∈ Fp[X] of degree n.
1: if f is not square-free then
2: return the square-free part
3: end if
4: Compute the distinct degree factors of f . Call them {g1, g2, · · · , gn} .
5: if gn 6= 1 then
6: return IRREDUCIBLE

7: end if
8: for all gi 6= 1 do
9: EqualDegreeFactorize(gi, d)

10: end for
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Algorithm 2 EQUALDEGREEFACTORIZE

Input: A polynomial f ∈ Fp[X] of degree n all of whose m irreducible
factors are of degree d.

1: Pick a random polynomial a(X) of degree less than n.
2: if gcd(a, f) 6= 1 then
3: return gcd(a, f)
4: end if
5: Let M = (pd − 1)/2.
6: Using repeated squaring, compute a′(X) = a(X)M + 1.
7: if a′ 6= 0 and gcd(a′, f) 6= 1 then
8: return gcd(a′, f) {Happens with probability atleast 1− 2m−1}
9: end if

10: Repeat algorithm with a different choice for a.
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