
CS681 Computational Number Theory

Lecture 5 and 6: Chinese Remaindering
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

In the next two lectures, we shall see a very important techinique used in
computer science. The technique is called Chinese Remaindering. This comes
in extremely handy in various arithmetic problems. We shall be looking at
the problem of evaluating the determinant as a motivation.

1 Motivation for CRT: The Determinant

We are given an integer square matrix A and we are to find the determi-
nant of the matrix. Before we talk about solving the problem, we need to
understand the input as such. How big is the input?

The size is not just n2 since the entries of the matrix also need to be rep-
resented. Hence the input size also depends on the size of the entries in the
matrix. Let us call λ = maxi,j |aij | . Then each entry in the matrix requires
atmost log λ bits and there are n2 entries. Thus, the input size is n2 log λ.
We are looking for an algorithm that runs in time polynomial in the input
size.

The naive approach is to do Gaussian Elimination, or the elementary
row-operation method done in high-school: pick the first non-zero element
in the first row, divide that row by the number (making it 1), and use this
row to clear all other entries in that row.

This however has two problems:

1. Involves division and hence manipulating rational numbers.

2. Numbers in the matrix can become huge during gaussian elimina-
tion.

Firstly we need to understand why the first point is really a problem.
We are given a matrix with just integer entries. We shall see now that that
such a matrix will have an integer determinant. Thus, it may not be efficient
to have rational number manipulation.
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1.1 Integer Matrices have Integer Determinants

The group of permutations over n indices is denoted by Sn. Given any
permutation in Sn, we can talk about the sign of the permutation. The
definition is based on the fact that every permutation can be written as a
product of cycles of length 2.

Lemma 1. Every permutation σ can be written as a product of disjoint cycles.

Proof. Start with the index 1. Look at the image of 1 which is σ(1) and its
image σ(σ(1)) etc. Eventually some σi(1) = 1 since the number of elements
is finite. Hence this corresponds to the cycle

(
1 σ(1) σ2(1) · · · σi(1)

)
. Now

look at the next smallest index that has not been covered in this cycle and
do the same. Our permutation σ is the product of these cycles and they are
clearly disjoint.

Lemma 2. Every permutation σ can be written as a product of cycles of length 2.

Proof. By the previous lemma, it is enough to show that every cycle can
be written as a product of 2-cycles. And this is very easy to see. Consider
any cycle of the form (a1 a2 · · · ak). Easy to check that this is equal to the
product (a1 a2)(a1 a3) · · · (a1 ak).

Now, if a permutation σ can be represented as a product of m 2-cycles,
then we define the sign of σ to be (−1)m. An immediate question is whether
this is well defined. That is, suppose a permutation can be represented as a
product of 7 such 2-cycles and also as a product of 24 2-cycles in a different
way, won’t it give two conflicting values for the sign of the permutation.
The answer is that such a thing won’t happen. It is not too hard to check
but we leave this to the interested reader.

(Hint: Every permutation of n indices can be thought of as a tuple
(x1, · · · , xn) where the i-th index corresponds to the image of i under the
permutation. Now look at the sign of the expression∏

i>j

(xi − xj)

The sign of this expression is an equivalent definition of the sign of the
permutation.

Now can you see why a permutation cannot be expressed as a product
of s transpositions and t transpositions where s and t are of different par-
ity?)
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This is another formula to evaluate the determinant.

detA =
∑
σ∈Sn

sign(σ)
n∏

i=1

aiσ(i)

As an example, any 2 × 2 matrix has its determinant as a11a22 − a12a21

where the first term corresponds to the permutation (1)(2) and the second
to the permutation (1 2).

It is clear from the above formula that a determinant of an integer ma-
trix has to be an integer.

1.2 First Attempt: An Euclidian Approach

Since we are assured that the answer is going to be an integer, it doesn’t
make much of sense to use rational numbers during our computation. And
besides, the denominators can grow really huge through successive row
operations.

But the problem of division can be sorted out using a Euclid’s Algo-
rithm sort of approach. Consider the first row of the matrix. Suppose each
element is a multiple of the least entry, then we are in good shape. There
would be no need to divide at all. How do we make sure that this happens?
Somehow get the gcd of the numbers as one of the entries!

Pick up the least element in the row, say a11. Now every other ai1 =
qa11 + r. Now subtract q times the first row from the i-th row. This es-
sentially reduces every entry to the remainder when divided by a11. Now
continue this procedure by picking up the least element until you get the
gcd of the numbers and then use it to kill every other entry in the row.

But, this still causes numbers to blow up. While we do operations to
work on the first column, the other entries can grow to become too large.

1.3 Second Attempt: The Big Primes Method

One clever trick is to do all computations modulo a prime large enough.
Since we know that the determinant is equal to

∑
sign(σ)

∏
aiσ(i), this

value is atmost n!λn since there are n! terms and each term can be atmost
M = λn. Now choose a prime P larger than this bound M.

Now division reduces to multiplying by the inverse modulo P and this
can be done efficiently (this is the reason we want our P to be a prime. We
can’t choose any arbitrary number since inverses may not exist). Now the
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gaussian elimination works and numbers will be bounded by P. Gaussian
elimination modulo this prime P will give us a final answer D that is in the
range [0, P − 1]. But this could still mean that there are two choices for the
integer determinant. The determinant could either be D or D−P. So to get
around this small catch, we choose P to be a prime larger than 2M. In this
way, if the value we get is less than P/2, we know it is the determinant.
Else, it will be D − P.

Thus we can solve the determinant problem by doing all computations
modulo a large prime. But how do we get a large prime? How do we find
a prime larger than the bound M quickly?

By a theorem on the density of primes, a random number between m
and 2m is a prime with reasonably good probability. Thus we can just pick
a random number, test if it is prime, if not pick again. We will hit a prime
soon enough.

This however introduces randomness in our algorithm. We would like
to have a deterministic polynomial time algorithm. This is where Chinese
Remaindering comes in.

2 Chinese Remainder Theorem: Over Integers

Theorem 3. Let N = a1a2 · · · ak such that each pair ai, aj are coprime. Then we
have the following isomorphism between the two rings.

Z/(NZ) ∼= Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)

And more so, the isomorphism and the inverse map are computable easily.

Proof. First we look at the following homomorphism

φ : Z −→ Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)
x 7→ (x mod a1, x mod a2, · · · , x mod ak)

It is easy to check that this is indeed a homomorphism of rings. What is the
kernel of the map? We are looking at the inverse image of (0, 0, · · · , 0). This
just means that any x in the kernel must be 0 mod ai for each i. And since
the ai’s are coprime, this inturn means that x must be divisible by N . Thus
the kernel of this map is (NZ).
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Hence, by the first isomorphism theorem, we have that the induced
quotient map is an injective homomorphism:

φ̂ : Z/(NZ) ↪→ Z/(a1Z)× Z/(a2Z)× · · ·Z/(akZ)

It’s just left to show that the map is not only injective but also surjective;
that would establish that it is indeed a homomorphism. Since the rings in
the picture are finite rings, we can use a cardinality argument here. The
cardinality of the ring on the left is N and so is the cardinality of the ring on
the right N (since it is equal to a1a2 · · · an). Hence, since the map is injective
between two sets of the same finite cardinality, it has to be an isomorphism.

This however will now help when the rings are infinite. For example
R happily sits injectively inside C but they are clearly not isomorphic. We
shall soon be getting to a general setting when such a cardinality argument
won’t work. Thus we need a more algebraic proof.

Here we shall use a small lemma.

Lemma 4. We can easily compute elements xi such that xi = 1 mod ai and
xi = 0 mod aj for all i 6= j. In other words, the image of xi is the tuple that has 1
on the i-th coordinate and 0 everywhere else.

Pf: Since all the ai’s are pairwise coprime, ai is coprime to āi =
∏

j 6=i aj .
Thus, by euclid’s lemma, there exists elements x and y such that

xai + yāi = 1

Going modulo ai, we get yāi = 1 mod ai. And since yāi is divisible by
each other aj , it is 0 mod aj . Thus this number yāi is our required xi and
hence can be computed easily by the extended euclid’s algorithm.

Now that we have these xi’s, computing the inverse map is very simple.
Given a tuple (z1, z2, · · · , zk), the inverse image is just

∑k
i=1 zixi.

Thus the map φ̂ is indeed an isomorphism and its image and inverse
images can be computed easily.

2.1 Solving Determinant through CRT

We are going to pick up small primes p1, p2, · · · , pm such that
∏

pi = N >
2M and then use chinese remaindering. How many primes do we need to
pick? Since each prime is greater than or equal to two, the product of m
distinct primes is clearly greater than 2m. Thus in order to go larger than
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2M , we just need to pick log 2M primes, which is O(n log n + n log λ) and
is clearly polynomial in the input size.

How do we go about picking them? Just keep testing numbers from
2 onwards, check if it is prime, and do this until we have enough primes.
How long do we have to go before we get enough primes?

The prime number theorem tells us that the number of primes less than
n is O

(
n

log n

)
. With a little bit of calculations, it is easy to see that we would

have found our m primes if we go just up till m2 log2 m. And since m is
polynomial in the input size, so is m2 log2 m.

So we just need to look at all numbers up till m2 log2 m where m =
log(2n!λn), and pick up all the primes. Note all these primes are extremely
small, even their magnitude smaller than m which is about log M. In the
big prime method, we were picking a prime that required log M bits to
even represent it in binary; its magnitude was about 2log M = M. These
primes are logarithmically smaller. Hence, to check if the numbers are re-
ally primes, you can use even the extremely inefficient exponential time
sieve method or something. It also makes sense to store these small primes
in the library, precompute them and keep it.

Now that we have these primes, we compute the xi’s as indicated in
the lemma using the extended euclid’s algorithm. Now we compute the
determinant of the matrix A modulo each of these primes pi using gaus-
sian elimination. Let us say we get our value of the determinant mod pi

as di. Once you have done this calculation for each pi, we get the tuple
(d1, d2, · · · , dm). Now using the xi’s, find the inverse map to get the value
of the determinant D mod N. If this value is less than N/2, return it. Else,
return D −N.

3 Chinese Remainder Theorem for Arbitrary Rings

In order to state the theorem for arbitrary rings, we need analogues of di-
visibility and coprimeness in terms of rings. This can be done using ideals.
We say m | n, or m divides n, if every multiple of n is also a multiple of m.
This interms of ideals translates to mZ containing the ideal nZ.

As for coprimes, we know that two numbers a, b are coprime if there
exist x, y such that xa + yb = 1. For this, we need a notion of an ideal sum.

Given ideals a, b of a ring R, we define the sum-ideal as

a + b = {a + b : a ∈ a, b ∈ b}

This is also the ideal generated by the union of the two ideals.
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Algorithm 1 DETERMINANT: USING CRT
1: Let M = n!λn and m > 2 log M.
2: Enumerate the first m2 log2 m numbers and check for primes. Pick the

first m primes.
3: Let N = p1p2 · · · pm.
4: for i = 1 to m do
5: Evaluate, using gaussian elimination, det(A) mod pi.
6: Let di = det(A) mod pi.
7: Evaluate, using extended euclid’s algorithm, the xi as in the lemma.
8: end for
9: Let D =

∑m
i=1 xidi.

10: if D < N/2 then
11: return D.
12: else
13: return D −N.
14: end if

And now we can say that two ideals a and b are coprime if the ideal
a + b = R.

Using these definitions, we have the Chinese Remainder Theorem for
arbitrary rings. We state and prove the theorem for two ideals, but the
general case is similar.

Theorem 5. Let R be any commutative ring with identity. Let a and b be two
ideals of R that are coprime to each other. Then we have the following ring isomor-
phism:

R/(a ∩ b) ∼= R/a×R/b

Proof. The proof is almost exactly the same as the proof of CRT over inte-
gers. Consider the following homomorphism.

φ : R −→ R/a×R/b

x 7→ (x mod a, x mod b)

Here, mod corresponds to the coset that contains x. This again is clearly
a homomorphism. And the kernel is the set of all elements that ar 0 mod a

and 0 mod b which means that the element is present in both a and b. Thus
the kernel of the homomorphism is a ∩ b.

Thus all that’s left to do is to show that the quotient map

φ̂ : R/(a ∩ b) ↪→ R/a×R/b
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is also surjective. To show that, we construct the inverse map.
We need to find the inverse image of any given tuple (x, y). Since we

know that the two ideals are coprime, a + b = R and in particular contains
the identity element 1.

Hence there exists two elements a ∈ a, b ∈ b such that a + b = 1. Just
as in the integer case, if we go modulo b we see that a is an element that is
0 mod a but 1 mod b and similarly the element b. Now consider the element
xb + ya. This is easily seen to be x mod a and y mod b. Hence xb + ya is the
inverse image of (x, y).

Thus the map is also surjective and hence is indeed an isomorphism.

Thus any ring that lets us compute the elements a, b such that a + b = 1
will allow CRT to go through. One such example is the ring of polynomi-
als over integers. In this ring, the irreducible polynomial will act as the
primes and we will be able to compute the determinant of a matrix with
polynomial entries as well.

Another important property is that the units go to the units. That is, if
you take any element x in the ring R/(a + b) whose inverse exists, corre-
sponding tuple (a, b) also have the property that a and b are invertible. The
proof of this is pretty easy.

Suppose an invertible element x was mapped to (a, b). Then, since the
inverse exists, look at the image of the inverse of x. Lets call it (a′, b′). By
definition, 1 = xx−1 7→ (aa′, bb′) = (1, 1). And hence a′ must be the inverse
of a and b′ the inverse of b. And thus if x is invertible, so is a, b and vicev-
ersa.

Chinese Remainder Theorem is a really powerful tool used in numerous
occasions in computer science. We shall see more in the days to come.
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