
CS681 Computational Number Theory

Lecture 23 and 24 : The Cyclotomic Polynomial
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We started looking at the AKS primality test in the last class. The idea was
to check if (X +a)n−Xn−a = 0 (mod n, Xr−1) for many values for a. We
first need to understand the polynomial Xr − 1 and extensions associated
with it.

1 The polynomial Xr − 1 = 0

The roots of this polynomial are the r-th roots of unity. Over Q these are
the complex numbers e

2πi
r where 0 ≤ i ≤ r − 1.

Note that the roots of unity form a group under multiplication. If ζ1 and
ζ2 are roots, then so is ζ1ζ2. Infact, it forms a cyclic group. And therefore,
we can talk about a generator of this group.

Definition 1. An r-th root of unity ζ is called a primitive r-th root of unity if ζ
is a generator of the group of roots.

Or in other words, ζ is a number such that ζr = 1 and ζt 6= 1 for any
t < r.

Now, let ζ be a primitive r-th root of unity. What are the other primitive
roots? Any other root ζ ′ can be written as ζt. Suppose the gcd(r, t) = d then
look at ζ ′r/d. Since d divides r, the exponent is an integer.

ζ ′r/d = ζtr/d = (ζr)t/d = 1

Therefore, the primitive r-th roots of unity are ζt where t is coprime with
r. And therefore, there are ϕ(r) of them. Let us consider the following
polynomial:

Φr(X) =
∏

ζ primitive

(X − ζ)

This is called the r-th cyclotomic polynomial. Clearly, the degree of Φr(X)
is ϕ(r).
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1.1 Cyclotomic Polynomials over Q

Let us restrict our attention to the field of rational numbers. We want to
study

∏
(X − ζ). The first important property is the following:

Proposition 1. The coefficients of Φr(X) are rational numbers.

Proof. The idea is quite simple. The equation Xr−1 has all the r-th roots of
unity as roots and certainly includes the primitive roots as well. Therefore,
Φr(X) divides Xr−1. So the idea is to eliminate all the non-primitive roots
of unity.

Note that since the roots of unity form a group under multiplication, for
any root of unity ζ the order of ζ divides r. So the order could either be r
or some proper factor of r. We are interested in only the ζs whose order is
equal to r.

For every ζ, if the order of ζ is t, then t | r and ζ is a root of Φt(X) by
definition. And running over all the roots of unity, we have

Xr − 1 =
∏
d|r

Φd(X)

And therefore,

Φr(X) =
Xr − 1∏

d|r,d6=r Φd(X)

By induction, if we assume that Φd(X) has rational coefficients, for all d <
r, it follows that Φr(X) has rational coefficients too.

To see a few examples,

1. Φ1(X) = X − 1

2. Φ2(X) = X2−1
X−1 = X + 1

3. Φ3(X) = X3−1
X−1 = X2 + X + 1

4. Φ4(X) = X4−1
(X+1)(X−1) = X2 + 1

And if you notice, the coefficients are not only rationals but infact inte-
gers. This can be got from the earlier proof using the following very useful
lemma.

Lemma 2 (Gauss Lemma). Let f be a monic polynomial with integer coefficients.
If f is irreducible in Z, that is there are no polynomials g, h with integer coefficients
such that f(X) = g(X)h(X), then f is irreducible over Q as well.
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Therefore if f and g are integer monic polynomials such that there g di-
vides f over Q, that is there exists a polynomial h with rational coefficients
such that f(X) = g(X)h(X), the g infact divides f over Z or h infact has
only integer coefficients. Thus all the above divisions will only yeild inte-
ger polynomials and hence Φr(X) is an integer polynomial.

Another important property of cyclotomic polynomials is that they are
irreducible over Q. We shall prove this soon. But what’s important is that
it needn’t be so in the case of finite fields. For example, if r = p− 1 and we
looked at Φr(X) in Fp. Note that Φr(X) is a factor of Xr − 1 = Xp−1 − 1
which inturn is a factor of Xp −X and this completely splits.

However, if we can show that Φr(X) was irreducible over some prime
p, then it has to be irreducible over Q. Because if it were reducible as f(X) ·
g(X) over Q, then we can reduce the equation Φr(X) = f(X)g(X) mod p
and get a factorization in Fp.

1.2 Cyclotomic polynomials over Fp

Let ζ be a primitive r-th root of unity over Fp. Note that ζ could very well
be in Fp itself; when r = p − 1 for example. In any case, consider the field
extensio Fp(ζ) over Fp by just adjoining ζ to Fp. Let us say the degree of this
extension [Fp(ζ) : Fp] = d.

Recall that the degree of a field extension [K(α) : K] is the degree of
the K(α) as vector space over K and therefore is equal to the degree of the
minimum polynomial of α over K.

Therefore, if µ(X) is the minimum polynomial of ζ over Fp, µ(ζ) =
a0 + a1ζ + · · · adζ

d = 0 and therefore the set 1, ζ, ζ2, · · · , ζd−1 is the largest
linearly independent subset. Therefore, [Fp(ζ) : Fp] = deg µ(X) = d.

Now, ζ is a root. What about the other roots of this polynomial? Recall
our old friend Fröbenius. The automorphism a 7→ ap fixes every element
in Fp.

µ(ζ) = a0 + a1ζ + · · ·+ adζ
d = 0

=⇒ (µ(X))p = 0

=
(
a0 + a1ζ + · · ·+ adζ

d
)

= ap
0 + ap

1ζ
p + · · ·+ ap

dζ
dp

= a0 + a1ζ
p + · · ·+ ad(ζp)d

= µ(ζp)
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and hence, ζp is also a root. Applying the map again, we can show ζ, ζp, ζp2
, · · · , ζpd−1

are all roots of µ(X).
One can’t go up to more than d such applications because the degree of

µ is bounded by d and therefore can have only d roots. And if we were to
apply the Fröbenius map again, then we would end up in ζ again. Or in
other words,

ζpd
= ζ =⇒ ζpd−1 = 1 =⇒ r | pd − 1 =⇒ pd = 1 mod r

Since d was the first place where this sort of wraparound happened, d is the
least such number such that pd = 1 mod r which implies that d is the order
of p modulo r. This is denoted by d = ordr(p).

Thus, the degree of the the minimum polynomial of ζ over Fp for any
primitive r-th root is ordr(p). And since we just specified ζ as any primi-
tive root, it follows that every primitive root has the degree of its minimum
polynomial as ordr(p).

But with a little thought, this will tell us that the approach that Φr(X) is
irreducible in Fp for some p may not work. Suppose this was true, then the
minimum polynomial of ζ must infact be Φr(X). And from what we have
proved above, the degree of this polynomial must be ordr(p) and therefore
ϕ(r) = ordr(p). Now notice that if we consider (Z/rZ)?, then the size of this
group is ϕ(r) and if ordr(p) = ϕ(r), then p generates the group (Z/rZ)? .
But not all (Z/nZ)?s are cyclic and therefore such a p may not exist at all.

But let us just take it on faith that the cyclotomic polynomial is irre-
ducible. The proof is not hard but would be a significant digression. The
interested reader can look it up online or on any abstract algebra text. But
what is important that any primitive r-th root has a minimum polynomial
of degree ordr(p) in Fp.

2 AKS Primality Test: A sketch

Now we have enough machinary to go ahead with the primality test. The
algorithm would be the following:

1. Find two numbers r and l based on some requirements

2. Do some small preprocessing

3. For all 1 ≤ a ≤ r, check if the following identity holds

(X + a)n = Xn + a (mod n, Xr − 1)
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Use repeated squaring to evaluate the LHS and RHS and check.

If any of the test failed, output COMPOSITE.

4. If all the above tests succeeded, output PRIME

Our preprocessing steps would be the following:

• Check if n is a perfect power of some number. If it is some non-trivial
power, output COMPOSITE. This will rule out the case that n = pk for
k ≥ 2.

• For each 2 ≤ d ≤ r, check if gcd(n, d) = 1. If you find a factor, output
COMPOSITE.

And the parameters will be fixed soon and we shall see that both r and
l are less than (log n)c for some constant c. Therefore, the preprocessing
steps take only polylog time, checking if the identity holds for each a in
that range also takes polylog time and therefore the entire algorithm runs
in time polynomial in log n.

Further, if n was indeed a prime, the algorithm would definitely output
PRIME. The tricky part is to show that if n had atleast 2 distinct prime fac-
tors, the algorithm will catch it.

To prove the correctness of this algorithm, we would be studying 2
rings:

• R = Z[X]
(n,Xr−1) = (Z/nZ[X]) /(Xr − 1)

• R = Z[X]
(p,h(X)) = (Z/pZ[X]) /(h(X)) where p is a prime factor of n and

h(X) is an irreducible factor of Φr(X) over Fp. Note that we have
shown that t = deg(h(X)) = ordr(p).

Suppose the algorithm said n was a prime even when it had p as a prime
factor of n. What we would do is construct a group G and get bounds on
the size of G in two different ways. We will show that |G| ≥

(
t+l
t−1

)
. And also,

if n had at least 2 distinct prime factors, then |G| ≤ n
√

t. Thus, unifying the
two, we have (

t + l

t− 1

)
≤ G ≤ n

√
t

And then, with suitable choice of r and l, we shall show that the lower
bound is larger than the upper bound which would give the required con-
tradiction. That is the general idea.
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We shall see this in detail in the next class.
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