
Algebra and Computation Course Instructor: V. Arvind

Lecture 4: Membership Testing in Permutation Groups

Lecturer: V. Arvind Scribe: Shreevatsa R and Ramprasad

1 Overview

In the previous lecture, we began studying the problem of testing member-
ship in permutation groups. In this lecture, we describe its solution and
explore related problems.

2 The problem

Given a subgroup G (given by a small generating set, say G = 〈A〉) of
the permutation group Sn, and a permutation g ∈ Sn, the membership
testing problem is to decide whether g ∈ G. If the answer is yes, we might
also want a representation of g in terms of the generators.

If the output has to be a product g = ai1ai2 . . . aiN , how large might N
have to be, in the worst case? It is easy to see that we can ensure N is at
most by |G|−1: consider the prefix products s1 = ai1 , s2 = ai1ai2 , . . . , sN =
ai1ai2 . . . aiN . If N > |G|−1, either some sj is the identity, in which case we
can write g = aij+1 . . . aiN , or sj = sk for some j and k, in which case we can
write g = ai1 . . . aijaik+1

. . . aiN , so in either case N can be made smaller.
However, N might have to be very large. As an example, write n as

n = p1 + p2 + · · · + pm where the pis are distinct primes, and look at the
cyclic group generated by

a = (1 2 . . . p1)(p1 + 1 . . . p1 + p2)(. . . ) . . . (. . . ) = C1C2 . . . Cm.

The Cis are disjoint cycles with lengths pi, so the order of a is M =
p1p2 . . . pm. The group is G = 〈{a}〉 = 1, a, a2, . . . , aM−1, in which the
element aM−1 can be written only as the product of M−1 as. So here, N =
p1p2 . . . pm − 1 ≥ 2m − 1, and we know by the prime number theorem that
m = Ω( pm

ln pm
). Further, as n = p1+p2+ · · ·+pm ≤ 1+2+3+ · · ·+pm ≤ pm

2,

we have that pm ≥
√
n, so N ≥ 2

c
√

n
log n − 1 for some c. This is not polynomial

in n.

1



Thus, we cannot hope to solve the problem in polynomial time if the re-
quired output is an explicit product; the “representation” has to be a circuit
on A. In the example above, aM−1 can easily be expressed (or computed) in
terms of the a through repeated squaring. Our algorithm will give a similar
good representation.

3 Idea

Membership testing reduces to the problem of order computation, as
g ∈ G ⇐⇒ |G| = |G ∪ g|. The idea for solving the latter, as we saw in the
previous lecture, is to find a tower of subgroups

G = G(0) ≥ G(1) ≥ · · · ≥ G(n−1) = {1}

such that the index
[
G(i−1) : G(i)

]
is easy to calculate, for each i. Then, as

|G| =
∏n−1
i=1

[
G(i−1) : G(i)

]
, we can easily compute it.

Consider the pointwise stabilisers, and look at the tower of subgroups

G(i) = {g ∈ G : jg = j for all j, 1 ≤ j ≤ i}

Here,
[
G(i−1) : G(i)

]
≤ n− i for every i(why? since fixing i− 1 leaves n− i

choices for the ith index), and our algorithm will compute it by computing
a system of coset representatives for this. The algorithm will also give us a
new generating set for G; thus it can be used to decide many membership
queries without recomputing it.

4 Algorithm

4.1 Finding the cosets at each level of the tower

How do we find the coset representatives of G(1) in G? Let X1 be the orbit
of 1 under the action of G, and for any k ∈ X1, let g1k be the element that
maps 1 to it (i.e., 1g1k = k). Then

G =
⋃
k∈X1

G(1)g1k

We shall see shortly (in subsection 4.3) how to find a small generating set
for G(1). Assuming that we can do it, we can similarly find X2, the orbit of
2 under the action of G(1), find the g2ks such that k = 2g2k , and similarly
find representatives for the cosets of G(2) in G(1).

2



In general, for each i from 1 to n, we find the orbit Xi of i under the
action of G(i−1), and also, for each element k ∈ Xi, the element gik such
that igik = k. Then G(i−1) =

⋃
k∈X G

(i)gik
Taking the union of the sets of coset representatives we get for each[

G(i−1) : G(i)
]

gives us a generating set for G. What we have just found has
a name:

Definition 1. Let Ω be an ordered set {ω1, ω2, . . . , ωn} and let G ≤ Sym(Ω).
A strong generating set with respect to this ordering is the union of
the sets of right-coset representatives (or the right-transversals) for G(i) in
G(i−1), for 0 ≤ i ≤ n− 1.

4.2 Testing membership of a given g

Given a g ∈ G, let k1 = 1g. If k /∈ X1, we can immediately conclude
that g /∈ G. Else, let g(1) = gg−1

1k . By construction, g(1) ∈ G(1). Next,
letting k2 = 2g

(1)
, if k2 /∈ X2, we can abort and report that g /∈ G; else

we let g(2) = gg−1
1k1
g−1
2k2

and continue similarly. In other words, for each i

from 1 to n, we let ki = ig
(i−1)

, abort if ki /∈ Xi, and set g(i) = g(i−1)g−1
iki

otherwise, in which case it is guaranteed to be in G(i). If at any time
g(r) = gg−1

1k1
g−1
2k2

. . . g−1
rkr

= 1 then we have g as a product of elements of G.
If g ∈ G, it is guaranteed that this will eventually happen, for if we have
not aborted by the time i takes the value of n, then it is guaranteed that
g(n−1) ∈ G(n−1) = 1.

4.3 Finding generating sets for the subgroups

Our algorithm above for finding the strong generating set depends on being
able to find a generating set for G(i) when we know one for G(i−1). This is
made possible by Schreier’s lemma, as we saw in the previous lecture.

Theorem 1 (Schreier’s lemma). If G = 〈A〉 and R is a set of distinct right
coset representatives for the subgroup H in G, then

B =
{
r1ar

−1
2 : a ∈ A, r1, r2 ∈ R

}
∩H

generates H.

For every r1 and a, there is a unique r2 such that r1ar−1
2 = h, for any

h in H, so we know that |B| ≤ |R| |A|. However, this alone is not sufficient
for us to complete our algorithm, as it does not ensure polynomial time —
the size of the generating set might increase by Θ(n) each time. To avoid

3



this, we need to make sure we can keep the generating set small. We now
show that it can be done.

4.4 The reduce Algorithm

Theorem 2. Given a group G ≤ Sn, we can find a generating set for it of
size at most n2.

The idea is to remove collisions as you see them. Suppose π and ψ
are two elements of your generating set such that they map 1 to the same
element, (i.e) 1π = 1ψ. What we do then is replace {π, ψ} by

{
π, ψπ−1

}
.

This then ensures that one of the elements fix 1, and is taken care in the
following levels. A better way to look at it would be to think of a table
where row i represents G(i).

Start with the bottom row, representing G(0) = G. For each element
π ∈ B, if 1π = 1, move it to the row G(1), else place it in column 1π.
Whenever you have collisions, do the pruning process and send the element
that fixes 1 and send it to the next row. Once row 1 is done (no more
collisions), move to the next and repeat this process.

The complete algorithms for reduce and membership can be found at
the end of this file.

5 Other Problems

Using the technique of using group towers, there is a whole pool of problems
we could inspect. We shall see a few of them now, which will be very useful
for the lectures to follow.

subgroup: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn. Check if
H ≤ G.

The solution is extremely simple, for every element b ∈ B, check if b ∈ G
using the membership algorithm.

normal: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn. Check if H is
a normal subgroup of G, denoted by H �G.

This is also easy, for each a ∈ A and each b ∈ B, check if aba−1 ∈ H
using membership.

4



Definition 2. For any subgroup H of G, normal closure of H is defined as
the smallest normal subgroup of G that contains H. It is denoted by

〈
HG

〉
H ≤

〈
HG

〉
�G

The normalizer of H, denoted by NG(H), is the largest subgroup of G in
which H is normal.

H �NG(H) ≤ G

normal closure: Given H = 〈B〉 and G = 〈A〉, subgroups of Symn, find〈
HG

〉
This is easy too, look at

{
aba−1 : a ∈ A, b ∈ B

}
. If something of this

set is not in H, throw it into B and repeat. Everytime, the size of the group
doubles and hence you will definitely hit the normal closure quickly.

5.1 The Group-Intersection Problem

group-inter: Given G = 〈A〉 and H = 〈B〉, subgroups of Symn. Find
G ∩H.

There is no known polynomial time algorithm for this problem in general,
and we don’t expect one to exists even because of the following theorem.

Theorem 3. set-stab is polynomial time equivalent to group-inter

Proof. set-stab ≤P group-inter:
Suppose ∆ is the set we want to stabilize, all we need to do is to com-

pute G ∩
{

Sym∆×SymΩ\∆

}
. One could just choose transpositions as a

generating set for the product.
The intersection of the two sets precisely yields stab∆(G).

group-inter ≤P set-stab:
Look at the product G × H ≤ SymΩ×SymΩ ≤ SymΩ×Ω and let the

action be just the coordinate wise action, (g, h)(i, j) = (ig, jh). All we need
to do now is stabilize the diagonal, Ω×Ω = {(i, i) : i ∈ Ω} and this would
yield G ∩H.

And since we say that graph isomorphism reduced to set-stab, it is
unlikely that we have a polynomial time algorithm for the intersection prob-
lem.

However, for a special case when G normalizes H (i.e G ≤ NSymΩ
(H)),

we can solve the intersection problem in polynomials time.

5



Claim 4. If G normalizes H, then we can compute G ∩ H in polynomial
time.

Proof. Again, we are looking for a tower of subgroups with “nice” properties.
And sinceG normalizesH, the central idea is thatGH = {gh : g ∈ G, h ∈ H}
is a subgroup of Symn. And hence, for all i, G(i)H is also a subgroup. Fur-
ther, G normalizes H =⇒ H �GH.

The tower we are looking for is

G ∩H = G ∩G(n−1)H ≤ G ∩G(n−2)H ≤ · · · ≤ G ∩GH = G

And since the generating set for G(i)H is just the union of the generating
set for G(i) and H, we can check for membership in G∩G(i)H. Thus, using
Schreier’s lemma and the reduce algorithm, we can descend the tower
computing generating sets.

An additional property we need is that the index between consecutive
elements of the tower is small. We leave it as an exercise to show that[
G ∩G(i−1)H : G ∩G(i)H

]
≤ n− i.

6



Algorithm 1 reduce

1: B0 = B
2: A[ ][ ], an empty n× n array
3: for i = 0 to n− 1 do
4: for all ψ ∈ Bi do
5: j = iψ

6: if A[i][j] is empty then
7: if j = i then
8: Bi+1 = Bi+1 ∪ {ψ}
9: else

10: A[i][j] = ψ
11: end if
12: else
13: π = A[i][j]
14: Bi+1 = Bi+1 ∪

{
π · ψ−1

}
15: end if
16: end for
17: end for
18: discard all trivial elements from

⋃
Bi

19: return
⋃
Bi

7



Algorithm 2 membership

Input: g ∈ Symn and a generating set A for G(i) ≤ Symn and the index i
1: if g = id then
2: return true
3: end if
4: Xi = (i+ 1)G

(i) {use the orbit algorithm}
5: compute the set R of distinct coset representatives of G(i+1) in G(i)

6: k = (i+ 1)g {image of i+ 1 under the action of g}
7: if k /∈ Xi then
8: return false
9: else

10: compute generating set B for G(i+1) using Schreier’s lemma
11: reduce B
12: pick gik from R, the coset representative of G(i)

13: g′ = g · g−1
ik

14: return membership(g′,B, i+ 1)
15: end if

8


	Overview
	The problem
	Idea
	Algorithm
	Finding the cosets at each level of the tower
	Testing membership of a given g
	Finding generating sets for the subgroups
	The reduce Algorithm

	Other Problems
	The Group-Intersection Problem


