Presentation notes for Distributed approximate algorithm for bipartite vertex cover

Soumyadeep Paul (BMC202178)

April 17, 2024

We present a logarithmic time approximation algorithm for minimum vertex cover in bipartite graph in the LOCAL-model.

Summary

1 LOCAL-model 1
2 Graph Decompositions 2
3 Distributed algorithm for minimum vertex cover 4
4 References 4

1 LOCAL-model

We work in the LOCAL-model for distributed computing. We are given an undirected graph $G=(V, E)$, which we can think of as a network. Each node has a processor and two processors can communicate with each other if they are connected by an edge. All nodes run the same distributed algorithm \mathcal{A}. We will additionally assume the graph is connected.

Each node has a unique ID $I D(v) \in\left\{1,2, \cdots n^{c}\right\}$. The computation proceeds in synchronous communication rounds. In each round, all nodes first perform some local computations and then exchange (unbounded) messages with their neighbours. After some r communication rounds the nodes stop and produce local outputs. Here r is the running time of \mathcal{A} and the output of v is denoted $\mathcal{A}(G, v)$. We ignore the local computation time when measuring complexity of algorithms.

Every computable function can be computed by an algorithm in $O(|V|)$ time by an algorithm where in the $i^{\text {th }}$ round each node sends its radius- i neighborhood to its neighbours. When this algorithm terminates all the nodes have complete information about the graph and can run any deterministic sequential algorithm locally.

Example 1. We demonstrate a simple algorithm in the local model for finding 3 coloring of a path graph.

This algorithm runs in $O(n)$ rounds but there exists algorithms for this problem which run in $O\left(\log ^{*}(n)\right)$ rounds.

```
Algorithm 1: Two coloring of path
    c}=I\mp@subsup{D}{x}{
    for }\infty\mathrm{ do
        Send c to all neighbours
        Receive messages from all neighbours, let M be the set all messages from neighbours
        if c\not\in1,2,3 and c> max (M) then
                c=min}({1,2,3}\M
        end
    end
```


2 Graph Decompositions

Definition 1. Let $G=(V, E)$ be a graph. Any subset $W \subset V$ is said to be a block. The strong diameter of a block $W, S D(W)$ is the maximum diameter of any connected component of the graph G_{W} induced on W. The weak diameter $W D(W)$ is the maximum distance in G between any two vertices in W. The difference between strong diameter and weak diameter is that while calculating weak diameter we allowed to shortcut through vertices not in W. Clearly $W D(W) \leq S D(W)$.

A partition Π of V into λ disjoint blocks is called a λ-decomposition of G. $S D(\Pi)(W D(\Pi))$ is the maximum strong (weak) diameter of any of its blocks.

We are interested in finding a graph decomposition into a small number of blocks each of a small diameter.

Theorem 1. Let $p \in(0,1), G$ be an n vertex undirected graph and $\lambda=\frac{\log (n)}{\log \left(\frac{1}{1-p}\right)}$. Then there is a λ-decomposition of G with strong diameter at most $\frac{2 \log (n)}{\log \left(\frac{1}{p}\right)}$.

Proof. For an integer r let $B_{r}(x)$ be the ball of radius r around x. We call an integer r a safe radius if $p\left|B_{r}(x)\right|<\left|B_{r-1}(x)\right|$.

If $1,2, \cdots, r$ are all unsafe for x, then $\left|B_{j}(x)\right|>\left(\frac{1}{p}\right)^{j} \forall j \in[r]$, in particular $n \geq\left(\frac{1}{p}\right)^{r}$. In other words, for every x there exists a safe radius not exceeding $\frac{\log (n)}{\log \left(\frac{1}{p}\right)}$.

We construct λ-decomposition V_{1}, V_{2}, \cdots one block at a time. Pick any vertex x_{1} of $G_{1}=G$ and let r_{1} be the smallest safe radius of x_{1}. Add all the vertices of $B_{r_{1}-1}(x)$ to V_{1} and define $G_{2}=G_{1} \backslash B_{r_{1}}(x)$. Similarly construct x_{i}, r_{i}, G_{i} till we run out of vertices.

Having constructed $V_{1}, V_{2}, \cdots, V_{i-1}$, define $G^{i}=G \backslash\left(V_{1}, V_{2}, \cdots, V_{i-1}\right)$ and apply the process to G_{i} to obtain V_{i}.

The construction of the blocks guarantees that its strong diameter is at most twice the largest radius of any of the selected balls. Therefore,

$$
S D(W) \leq \frac{2 \log (n)}{\log (1 / p)}
$$

Since, the ratio of $\left|B_{r_{j}-1}(x)\right|$ to $\left|B_{r_{j}}(x)\right|$ is at least p for each selected ball, the fraction of vertices
of G^{i} not assigned to V_{i} is at most $1-p$. Therefore, $\left|G^{i}\right| \leq(1-p)\left|G^{i-1}\right|$. This implies

$$
\lambda \leq \frac{\log (n)}{\log (1 /(1-p)}
$$

We now give a randomized distributed algorithm for construction of the blocks which we call Construct_Block.

Given a p and B, we call the following a truncated geometric distribution:

$$
\begin{gathered}
P(X=j)=p^{j}(1-p) \forall j \in\{0,1,2, \cdots, B-1\} \\
P(X=B)=p^{B}
\end{gathered}
$$

First each vertex x selects an integer radius r_{x} according to the truncated geometric distribution (we will choose the p and B later). It then broadcasts ($I D_{x}, r_{x}$) to every node within distance r_{x} of it. Now each node z selects its center node, $C(z)$ to be the highest ID whose broadcast it received. If $C(z)>d(z, C(z)), z$ joins the block else it waits for the next iteration of Construct_Block.
Lemma 1. If Construct_Block is applied to G with n vertices and S be the set of vertices comprising the block selected:

1. $W D(S) \leq 2 B$
2. $\forall x \in V_{G}$, probability that it belongs to S is at least $p\left(1-p^{B}\right)^{n}$.

Proof. 1. To prove the first part we just need to prove that for any connected subset T of S, $C(y)$ is the same vertex for all $y \in T$.
We give a proof of this fact by contradiction, say there exists adjacent vertices, y and z with $C(y) \neq C(z)$. We assume, WLOG, $I D_{C_{y}}>I D_{C_{z}}$. By the definition of $S, r_{C_{y}}>d(C(y), y)$. Since y and z are neighbours, $r_{C_{y}} \geq d(C(y), z)$. Therefore z received the broadcast sent by $C(y)$. This contradicts the fact that $C(z)<C(y)$.
2. We have,

$$
P(y \in S) \geq \sum_{d(z, y)<B} P(y \in S \mid C(y)=z) P(C(y)=z)
$$

We define the following events
(a) $D_{z}: r_{z} \geq d(z, y)$
(b) $E_{z}: r_{z}>d(z, y)$
(c) F_{z} : For every vertex w with $I D$ higher $z, r_{C_{w}}<d(w, y)$.

We then have,

$$
P(y \in S \mid C(y)=z)=P\left(E_{z} \wedge F_{z} \mid D_{z} \wedge F_{z}\right)=P\left(E_{z} \wedge F_{z}\right) / P\left(D_{z} \wedge F_{z}\right)=P\left(E_{z}\right) / P\left(D_{z}\right)=p
$$

Since, $P\left(D_{z}\right)=p^{d(z, y)}, P\left(E_{z}\right)=p^{d(z, y)+1}$. Thus,

$$
P(y \in S) \geq p \sum_{d(z, y)<B} P(C(y)=z) \geq p P(d(C(y), y)<B) \geq p P\left(r_{z} \neq B, \forall z\right) \geq p\left(1-p^{B}\right)^{n}
$$

3 Distributed algorithm for minimum vertex cover

Theorem 2. Let $\epsilon>0$. An expected $(1+O(\epsilon))$ approximation of minimum vertex cover can be found in time $O\left(\frac{\log (n)}{\epsilon}\right)$ on graphs of maximum degree $\Delta=O(1)$.

Proof. We run Construct_Block algorithm with $p=2^{-\epsilon}, B=\frac{2 \log (n)}{\log (1 / p)}$.
By Lemma 1, each component of G_{S}, has a weak diameter at most $B=\frac{4 \log (n)}{\log (1 / p)}$.
We also have,

$$
\lim _{n \rightarrow \infty}\left(1-p^{B}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-n^{-2}\right)^{n^{2} \times n^{-1}}=\lim _{n \rightarrow \infty} e^{-n^{-1}}=1
$$

Therefore $E[|S|] \geq n p(1+o(1)) \geq(1+o(1)) n(1-\epsilon)$.
Now, let C be a component of G_{S}, every node can discover the structure of C in time $O\left(\frac{\log (n)}{\epsilon}\right)$ exploiting weak diameter. Therefore, every node of C can internally compute the same optimal solution for vertex cover.

We then output as a vertex cover for G the union of vertex cover of each component of G_{S} and $V \backslash S$. This results in a solution of size at most

$$
O P T_{G_{S}}+\epsilon n \leq O P T_{G}+\epsilon n
$$

But we have $O P T_{G} \geq \frac{|E|}{\Delta}=\Omega(n)$ for a connected graph. Therefore this is an expected $(1+\mathrm{O}(\epsilon))$ approximation of minimum vertex cover.

4 References

1 Linial, N., Saks, M. Low diameter graph decompositions. Combinatorica 13, 441-454 (1993). https://doi.org/10.1007/BF01303516

2 Göös, M., Suomela, J. No sublogarithmic-time approximation scheme for bipartite vertex cover. Distrib. Comput. 27, 435-443 (2014). https://doi.org/10.1007/s00446-013-0194-z

