Fair Matchings

Shruti Patil

Chennai Mathematical Institute

April 2024

Overview

- What are fair matchings?
- An efficient combinatorial algorithm based on LP duality to compute a fair matching in G.
- In designing our combinatorial algorithm, we show how to solve a generalized version of the minimum weighted vertex cover problem in bipartite graphs, using a single-source shortest paths computation
- Optimality

Definition

- Let $G=(A \cup B, E)$ be a bipartite graph, where every vertex ranks its neighbors in an order of preference (with ties allowed) and let r be the largest rank used.
- A matching M is fair in G if it has maximum cardinality, subject to this, M matches the minimum number of vertices to rank r neighbors, subject to that, M matches the minimum number of vertices to rank $(r-1)$ neighbors, and so on.
- The problem can be solved in polynomial time by defining a weight function as follows:

$$
\begin{aligned}
& \text { for any edge } e \text { with incident ranks } i \text { and } j, \\
& \qquad w(e)=n^{(i-1)}+n^{(j-1)} .
\end{aligned}
$$

- A maximum cardinality matching of minimum weight is a fair matching in G. Such a matching can be found using the maximum weight matching algorithm by setting $w(e)=4^{n r}-n^{i-1}-n^{j-1}$ (r is the largest rank used in any preference list).
- This is expensive even if we use the fastest maximum-weight bipartite matching algorithms. The running time will be $\mathrm{O}(\mathrm{rmn})$
- One technique is an iterative combinatorial algorithm for the fair matching problem with running time $\tilde{O}\left(r^{*} m \sqrt{n}\right)$.
- This algorithm is based on LP Duality and in ith iteration, we solve dual to a variant of max-weight matching problem.
- Generalized minimum weighted vertex cover problem: Let $G_{i}=\left(A \cup B, E_{i}\right)$ be a bipartite graph with edge weights given by $w_{i}: E_{i} \rightarrow\{0,1, \ldots, c\} . K_{i-1} \subseteq A \cup B$ satisfy the property that there is a matching in G that matches all $v \in K_{i-1}$. Find a cover $\left\{y_{u}^{i}\right\}_{u \in A \cup B}$ so that $\sum_{u \in A \cup B} y_{u}^{i}$ is minimized subject to (1) for each $e=(a, b)$ in E_{i}, we have $y_{a}^{i}+y_{b}^{i} \geq w_{i}(e)$ (2) $y_{u}^{i} \geq 0$ if $u \notin K_{i-1}$.

A Combinatorial technique

Input: $G=(A \cup B, E)$ and r is the worst (largest) rank used in any preference list.
For $i \in\{1, \ldots,(r-1)\}$,

$$
w_{i}(e)=
$$

(2 if both a and b rank each other as rank $\leq r-i$ neighbors if exactly one of $\{\mathrm{a}, \mathrm{b}\}$ ranks the other as a rank $\leq r-i$ neighbor otherwise

$$
e=(a, b)
$$

Signature

For a matching M in G,

$$
\text { signature }(M)=\left(|M|, w_{1}(M), \ldots w_{r-1}(M)\right)
$$

where $w_{i}(M)=\sum_{e \in M} w_{i}(e)$, for $1 \leq i \leq r-1$.

- Let $w_{0}: E \rightarrow\{1\}$ so that $|M|=w_{0}(M)=\sum_{e \in M} w_{0}(e)$.

For any matching M and $0 \leq j \leq r-1$, $\operatorname{signature}_{j}(M)=\left(w_{0}(M), \ldots, w_{j}(M)\right)$ be the $(j+1)$-tuple

- Let OPT be a fair matching. Then signature(OPT) \succeq signature (M) for any matching M in G, where \succeq is the lexicographic order on signatures.

A matching M is $j+1$-optimal if signature $_{j}(M)=$ signature $_{j}(\mathrm{OPT})$.

Algorithm

- Our algorithm runs for r^{*} iterations, where $r^{*} \leq r$ is the largest index i such that $w_{i-1}(O P T)>0$.
- For any $j \geq 0$, the $j+1$-th iteration of this algorithm will our algorithm solves the minimum weighted vertex cover problem in a subgraph G_{j}, By computing a maximum w_{j}-weight matching M_{j} with the constraint, all vertices of a critical subset $K_{j-1} \subseteq A \cup B$ have to be matched.
- The problem of computing the matching M_{j} will be our primal of the $j+1$-th iteration and the minimum weighted vertex cover problem is the dual.
- $j=0$ corresponds to $G_{0}=G$ and $K_{-1}=\emptyset$.
- Since the constraint matrix is totally unimodular so the corresponding polytope is integral, the problem is solved as a linear program.

Primal and Dual

Primal :

Dual :

$$
\begin{array}{rlr}
\max \sum_{e \in E} w_{j}(e) x_{e}^{j} & \min \sum_{v \in V} y_{v}^{j} \\
\sum_{e \in \delta(v)} x_{e}^{j} \leq 1 & \forall v \in A \cup B & y_{a}^{j}+y_{b}^{j} \geq w_{j}(e) \\
\sum_{e \in \delta(v)} x_{e}^{j}=1 & \forall v \in K_{j} & y_{v}^{j} \geq 0 \\
x_{e}^{j} \geq 0 & \forall e \text { in } G_{j} &
\end{array}
$$

Proposition

- M_{j} and y^{j} are the optimal solutions to the primal and dual programs of the j-th iteration, iff the following holds:
(1) if u is unmatched in M_{j} (thus u has to be outside K_{j}), then $y_{u}^{j}=0$;
(2) if $e=(u, v) \in M_{j}$, then $y_{u}^{j}+y_{v}^{j}=w_{j}(e)$.

Follows from the complementary slackness conditions in the LP duality theorem. This gives us:

- prune edges : if $e=(u, v)$ and $y_{u}^{j}+y_{v}^{j}>w_{j}(e)$, then no optimal solution to the primal program of the $j+1$-th iteration can contain e. So we prune such edges from G_{j} and let G_{j+1} denote the resulting graph. The graph G_{j+1} will be used in the next iteration.

Solving the Dual Problem

- expand the set K_{j-1} : if $y_{u}^{j}>0$ and $u \notin K_{j-1}$, then u has to be matched in every optimal solution of the primal program of the $j+1$-th iteration. So u should be added to the critical set. Adding vertices like u to K_{j-1} gives the critical set K_{j} for the next iteration.

Solving the dual

- For $1 \leq j \leq r-1$, let $G_{j}=\left(A \cup B, E_{j}\right)$ be the subgraph in the j-th iteration and let $K_{j-1} \subseteq A \cup B$ be the critical set of vertices.
- For every $e \in E_{j}, w_{j}(e) \in\{0,1,2\}$.

We show how to solve the dual problem efficiently for $w_{j}(e) \in\{0,1, \ldots, c\}$ for each $e \in E_{j}$.

Transformation

Let M_{j} be the optimal solution of the primal program. We know that M_{j} matches all vertices in K_{j-1}.

- Add a new vertex z to A and let $A^{\prime}=A \cup\{z\}$. Add an edge of weight 0 from z to each vertex in $B \backslash K_{j-1}$.
- Direct all edges $e \in E_{j} \backslash M_{j}$ from A^{\prime} to B, set the edge weight $d(e)=-w_{j}(e)$;
- Also direct all edges in M_{j} from B to A^{\prime}, let the edge weight $d(e)=w_{j}(e)$.
- Create a source vertex s and add a directed edge of weight 0 from s to each unmatched vertex in A^{\prime}. (Fig. 1)
Let \mathcal{R} denote the set of all vertices in $A^{\prime} \cup B$ that are reachable from s.

Fig. 1 The bold edges are edges of M_{j} and are directed from B to A^{\prime} while the edges of $E_{j} \backslash M_{j}$ are directed from A^{\prime} to B

Lemma

Lemma 1: By the above transformation,
(1) $B \backslash K_{j-1} \subseteq \mathcal{R}$.
(2) There is no edge between $A^{\prime} \cap \mathcal{R}$ and $B \backslash \mathcal{R}$.
(3) M_{j} projects on to a perfect matching between $A^{\prime} \backslash \mathcal{R}$ and $B \backslash \mathcal{R}$.

- There may be some edges in $E_{j} \backslash M_{j}$ directed from $A^{\prime} \backslash R$ to $B \cap \mathcal{R}$.
- Some vertices of $A \backslash K_{j}$ can be in $A \backslash \mathcal{R}$.
- Delete all edges from $A^{\prime} \backslash \mathcal{R}$ to $B \cap \mathcal{R}$ from G_{j} to get H_{j}
- Add a directed edge from the source vertex s to each vertex in $B \backslash \mathcal{R}$.
- Each of these edges e has weight $d(e)=0$.
- Now all vertices can be reached from s.
- There cannot be negative-weight cycle, otherwise, we can augment M_{j} along this cycle and get matching of larger weight, this gives contradiction to the optimality of M_{j}.

Fig. 2 The set $A^{\prime} \cup B$ in the graph H_{j} is split into two parts:

$$
\left(A^{\prime} \cup B\right) \cap \mathcal{R} \text { and }\left(A^{\prime} \cup B\right) \backslash \mathcal{R}
$$

- Applying the single-source shortest paths algorithm from the source vertex s in H_{j} where edge weights are given by $d(\cdot)$ take $O(m \sqrt{n})$ time.
- Let d_{v} be the distance label of vertex $v \in A^{\prime} \cup B$.
- We define an initial vertex cover as : If $a \in A^{\prime}$, let $\tilde{y}_{a}:=d_{a}$; if $b \in B$, let $\tilde{y}_{b}:=-d_{b}$. (will adjust this later.)
- Lemma 2 : The constructed initial vertex cover $\left\{\tilde{y}_{v}\right\}_{v \in A^{\prime} \cup B}$ for the graph H_{j} satisfies the following properties:
(1) For each vertex $v \in((A \cup B) \cap \mathcal{R}) \backslash K_{j-1}, \tilde{y}_{v} \geq 0$.
(2) If $v \in(A \cup B) \backslash K_{j-1}$ is unmatched in M_{j}, then $\tilde{y}_{v}=0$.
(3) For each edge $e=(a, b) \in M_{j}$, we have $\tilde{y}_{a}+\tilde{y}_{b}=w_{e}^{j}$.
(9) For each edge $e=(a, b) \in H_{j}$, we have $\tilde{y}_{a}+\tilde{y}_{b} \geq w_{e}^{j}$.

Proof of Lemma 2

- (1) Suppose $a \in(A \cap \mathcal{R}) \backslash K_{j-1}$ and $\tilde{y}_{a}<0$.

There is an alternating path P starting from some unmatched vertex $a^{\prime} \in\left(A^{\prime} \cap \mathcal{R}\right) \backslash K_{j-1}$ and ending at a.
Since $d_{a}=\tilde{y}_{a}<0$, the distance from a^{\prime} to a along path P must be negative, Therefore,

$$
\sum_{e \in M_{j} \cap P} w_{e}<\sum_{e \in P \backslash M_{j}} w_{e}
$$

we can replace the matching M_{j} by $M_{j} \oplus P$, which gives a feasible matching with weight larger than M_{j}, a contradiction.
(2) $b \in(B \cap \mathcal{R}) \backslash K_{j-1} \cdot \tilde{y}_{b}=-d_{b}$.

Claim : $d_{b} \leq 0$. If not, then the shortest distance from s to $b>0$. But this cannot be, since there is a path with edges (s, z) and (z, b), and this path has weight $=0$.

Proof

- (1) By Lemma 1.3, an unmatched vertex must be in \mathcal{R}. If this unmatched vertex is $a \in(A \cap \mathcal{R}) \backslash K_{j-1}$, By construction, there is only one path from s to a, and its weight $=0$.
(2) If this unmatched vertex is $b \in(B \cap \mathcal{R}) \backslash K_{j-1}$.

By (1), $\tilde{y}_{b} \geq 0$. Let $\tilde{y}_{b}>0$. Then $d_{b}=-\tilde{y}_{b}<0$.
The shortest path from s to b cannot go through $(A \cup B) \backslash \mathcal{R}$.
The shortest path from s to b must have the edge from s to some unmatched $a \in\left(A^{\prime} \cap \mathcal{R}\right) \backslash K_{j-1}$, followed by an augmenting path P (of odd length) ending at b.
We can replace M_{j} by $M_{j} \oplus P$ to get a matching of larger weight, contradiction.

Proof

- Suppose $e=(a, b) \in M_{j}$. It is directed from b to a. e is the only incoming edge of a, So e is part of the shortest path tree rooted at s.
As a result, $-\tilde{y}_{b}+w_{e}^{j}=d_{b}+d(e)=d_{a}=\tilde{y}_{a}$.
- Suppose $e=(a, b)$ outside M_{j} in H_{j}.

It is directed from a to b.
So $\tilde{y}_{a}-w_{e}^{j}=d_{a}+d(e) \geq d_{b}=-\tilde{y}_{b}$.

We possibly still do not have a valid cover for the dual program due to the following two reasons.

- Some vertex $a \in A \backslash K_{j-1}$ has $\tilde{y}_{a}<0$.
- The edges deleted from G_{j} to form H_{j} are not properly covered by the initial vertex cover $\left\{\tilde{y}_{v}\right\}_{v \in A \cup B}$.
We can fix this by defining $\delta=\max \left\{\delta_{1}, \delta_{2}, 0\right\}$,

$$
\text { where } \delta_{1}=\max _{e=(a, b) \in E}\left\{w_{e}^{j}-\tilde{y}_{a}-\tilde{y}_{b}\right\} \quad \text { and } \quad \delta_{2}=\max _{a \in A \backslash K_{j}}\left\{-\tilde{y}_{a}\right\}
$$

- We can compute δ in $O(n+m)$ time.
- If $\delta=0$, the initial cover is already a valid solution to the dual program then it is also optimal, by next theorem.

Optimality

The final vertex cover is then built as follows (assume that $\delta>0$ exists)
(1) For each vertex $u \in(A \cup B) \cap \mathcal{R}$, let $y_{u}=\tilde{y}_{u}$;
(2) For each vertex $a \in A \backslash \mathcal{R}$, let $y_{a}=\tilde{y}_{a}+\delta$;
(3) For each vertex $b \in B \backslash \mathcal{R}$, let $y_{b}=\tilde{y}_{b}-\delta$.

Theorem

The final vertex cover $\left\{y_{v}\right\}_{v \in A \cup B}$ is an optimal solution for the dual program.

Proof

- Feasibility

By Lemma 2.1 and the choice of δ, all vertices $a \in A \backslash K_{j-1}$ have $y_{a} \geq 0$. By Lemma 1.1 and Lemma 2.1, all vertices $b \in B \backslash K_{j-1}$ have $y_{b} \geq 0$. Also by Lemma 1.2 and Lemma 2.3, and the choice of δ, all edges in E_{j} are properly covered. So $\left\{y_{v}\right\}_{v \in A \cup B}$ is feasible.

Proof

- Optimality We have :

$$
\begin{aligned}
& w_{j}\left(M_{j}\right)=\sum_{e \in M_{j}} w_{e}^{j} \\
& =\sum_{e=(a, b) \in M_{j}, b \in \mathcal{R}}\left(\tilde{y}_{a}+\tilde{y}_{b}\right)+\sum_{e=(a, b) \in M_{j}, b \notin \mathcal{R}}\left(\tilde{y}_{a}+\delta\right)+\left(\tilde{y}_{b}-\delta\right) \\
& =\sum_{e=(a, b) \in M_{j}} y_{a}+y_{b}=\sum_{u \in A \cup B} y_{u}
\end{aligned}
$$

the equality holds because if a vertex u is unmatched, $\tilde{y}_{u}=0$ (Lemma 2) and since u must be in $\mathcal{R}, y_{u}=\tilde{y}_{u}=0$.

By the LP duality theorem, we conclude that the cover $\left\{y_{v}\right\}_{v \in A \cup B}$ is optimal.

