Fair Matchings

Shruti Patil

Chennai Mathematical Institute

April 2024

- What are fair matchings?
- An efficient combinatorial algorithm based on LP duality to compute a fair matching in G.
- In designing our combinatorial algorithm, we show how to solve a generalized version of the minimum weighted vertex cover problem in bipartite graphs, using a single-source shortest paths computation
- Optimality

- Let $G = (A \cup B, E)$ be a bipartite graph, where every vertex ranks its neighbors in an order of preference (with ties allowed) and let r be the largest rank used.
- A matching M is fair in G if it has maximum cardinality, subject to this, M matches the minimum number of vertices to rank r neighbors, subject to that, M matches the minimum number of vertices to rank (r-1) neighbors, and so on.

• The problem can be solved in polynomial time by defining a weight function as follows:

for any edge e with incident ranks i and j, $w(e) = n^{(i-1)} + n^{(j-1)}.$

- A maximum cardinality matching of minimum weight is a fair matching in G. Such a matching can be found using the maximum weight matching algorithm by setting w(e) = 4^{nr} - nⁱ⁻¹ - n^{j-1} (r is the largest rank used in any preference list).
- This is expensive even if we use the fastest maximum-weight bipartite matching algorithms. The running time will be O(rmn)
- One technique is an iterative combinatorial algorithm for the fair matching problem with running time $\tilde{O}\left(r^*m\sqrt{n}\right)$.

- This algorithm is based on LP Duality and in *i*th iteration, we solve dual to a variant of max-weight matching problem.
- Generalized minimum weighted vertex cover problem: Let G_i = (A ∪ B, E_i) be a bipartite graph with edge weights given by w_i : E_i → {0, 1, ..., c}. K_{i-1} ⊆ A ∪ B satisfy the property that there is a matching in G that matches all v ∈ K_{i-1}. Find a cover {yⁱ_u}_{u∈A∪B} so that ∑_{u∈A∪B} yⁱ_u is minimized subject to
 (1) for each e = (a, b) in E_i, we have yⁱ_a + yⁱ_b ≥ w_i(e)
 (2) yⁱ_u ≥ 0 if u ∉ K_{i-1}.

Input : $G = (A \cup B, E)$ and r is the worst (largest) rank used in any preference list.

For $i \in \{1, ..., (r-1)\}$,

$$w_i(e) =$$

- if both *a* and *b* rank each other as rank $\leq r i$ neighbors
- $\begin{cases} 2\\1\\0 \end{cases}$ if exactly one of $\{{\rm a},{\rm b}\}$ ranks the other as a rank $\ \leq r-i$ neighbor otherwise

$$e = (a, b).$$

Signature

where

For a matching M in G,

signature
$$(M) = (|M|, w_1(M), ..., w_{r-1}(M)),$$

 $w_i(M) = \sum_{e \in M} w_i(e), \text{ for } 1 \le i \le r-1.$

• Let
$$w_0: E \to \{1\}$$
 so that $|M| = w_0(M) = \sum_{e \in M} w_0(e)$.

For any matching M and $0 \le j \le r - 1$, signature_j(M) = ($w_0(M)$, ..., $w_j(M)$) be the (j + 1) -tuple

A matching M is j + 1-optimal if signature_i(M) = signature_j(OPT).

Algorithm

- Our algorithm runs for r^* iterations, where $r^* \leq r$ is the largest index *i* such that $w_{i-1}(OPT) > 0$.
- For any j ≥ 0, the j + 1-th iteration of this algorithm will our algorithm solves the minimum weighted vertex cover problem in a subgraph G_j, By computing a maximum w_j -weight matching M_j with the constraint, all vertices of a critical subset K_{j-1} ⊆ A ∪ B have to be matched.
- The problem of computing the matching M_j will be our primal of the j + 1-th iteration and the minimum weighted vertex cover problem is the dual.
- j = 0 corresponds to $G_0 = G$ and $K_{-1} = \emptyset$.
- Since the constraint matrix is totally unimodular so the corresponding polytope is integral, the problem is solved as a linear program.

Primal :

Dual :

$$\begin{split} \max \sum_{e \in E} w_j(e) x_e^j & \min \sum_{v \in V} y_v^j \\ \sum_{e \in \delta(v)} x_e^j &\leq 1 \quad \forall v \in A \cup B \quad y_a^j + y_b^j \geq w_j(e) \quad \forall e = (a, b) \text{ in } G_j \\ \sum_{e \in \delta(v)} x_e^j &= 1 \quad \forall v \in K_j \\ x_e^j \geq 0 \quad \forall e \text{ in } G_j \end{split}$$

 $\delta(v)$ is the set of edges incident on vertex v.

• *M_j* and *y^j* are the optimal solutions to the primal and dual programs of the *j*-th iteration, iff the following holds:

(1) if u is unmatched in M_j (thus u has to be outside K_j), then $y_u^j = 0$; (2) if $e = (u, v) \in M_j$, then $y_u^j + y_v^j = w_j(e)$.

Follows from the complementary slackness conditions in the LP duality theorem. This gives us :

• prune edges : if e = (u, v) and $y_u^j + y_v^j > w_j(e)$, then no optimal solution to the primal program of the j + 1-th iteration can contain e. So we prune such edges from G_j and let G_{j+1} denote the resulting graph. The graph G_{j+1} will be used in the next iteration.

expand the set K_{j-1}: if y^j_u > 0 and u ∉ K_{j-1}, then u has to be matched in every optimal solution of the primal program of the j + 1-th iteration. So u should be added to the critical set. Adding vertices like u to K_{j-1} gives the critical set K_j for the next iteration.

Solving the dual

 For 1 ≤ j ≤ r − 1, let G_j = (A ∪ B, E_j) be the subgraph in the j-th iteration and let K_{j−1} ⊆ A ∪ B be the critical set of vertices.

For every e ∈ E_j, w_j(e) ∈ {0,1,2}.
We show how to solve the dual problem efficiently for w_j(e) ∈ {0,1,...,c} for each e ∈ E_j.

Let M_j be the optimal solution of the primal program. We know that M_j matches all vertices in K_{j-1} .

- Add a new vertex z to A and let A' = A ∪ {z}.
 Add an edge of weight 0 from z to each vertex in B\K_{j-1}.
- Direct all edges e ∈ E_j\M_j from A' to B, set the edge weight d(e) = -w_j(e);
- Also direct all edges in M_j from B to A', let the edge weight $d(e) = w_j(e)$.
- Create a source vertex s and add a directed edge of weight 0 from s to each unmatched vertex in A'. (Fig. 1)

Let \mathcal{R} denote the set of all vertices in $A' \cup B$ that are reachable from *s*.

Fig. 1 The bold edges are edges of M_j and are directed from B to A' while the edges of $E_i \setminus M_j$ are directed from A' to B

Lemma 1 : By the above transformation,

- **2** There is no edge between $A' \cap \mathcal{R}$ and $B \setminus \mathcal{R}$.
- **③** M_j projects on to a perfect matching between $A' \setminus \mathcal{R}$ and $B \setminus \mathcal{R}$.

- There may be some edges in $E_j \setminus M_j$ directed from $A' \setminus R$ to $B \cap \mathcal{R}$.
- Some vertices of $A \setminus K_i$ can be in $A \setminus \mathcal{R}$.
- Delete all edges from $A' \setminus \mathcal{R}$ to $B \cap \mathcal{R}$ from G_j to get H_j
- Add a directed edge from the source vertex s to each vertex in $B \setminus \mathcal{R}$.
- Each of these edges e has weight d(e) = 0.
- Now all vertices can be reached from s.
- There cannot be negative-weight cycle, otherwise, we can augment M_j along this cycle and get matching of larger weight, this gives contradiction to the optimality of M_j .

Fig. 2 The set $A' \cup B$ in the graph H_j is split into two parts: $(A' \cup B) \cap \mathcal{R}$ and $(A' \cup B) \setminus \mathcal{R}$

- Applying the single-source shortest paths algorithm from the source vertex s in H_j where edge weights are given by $d(\cdot)$ take $O(m\sqrt{n})$ time.
- Let d_v be the distance label of vertex $v \in A' \cup B$.
- We define an initial vertex cover as : If $a \in A'$, let $\tilde{y}_a := d_a$; if $b \in B$, let $\tilde{y}_b := -d_b$. (will adjust this later.)
- Lemma 2 : The constructed initial vertex cover {ỹ_v}_{v∈A'∪B} for the graph H_j satisfies the following properties:
- For each vertex $v \in ((A \cup B) \cap \mathcal{R}) \setminus \mathcal{K}_{j-1}, \tilde{y}_v \geq 0$.
- ② If $v \in (A \cup B) \setminus K_{j-1}$ is unmatched in M_j , then $\tilde{y}_v = 0$.
- So For each edge $e = (a, b) \in M_j$, we have $\tilde{y}_a + \tilde{y}_b = w_e^j$.
- For each edge $e = (a, b) \in H_j$, we have $\tilde{y}_a + \tilde{y}_b \ge w_e^j$.

Proof of Lemma 2

 Suppose a ∈ (A ∩ R)\K_{j-1} and ỹ_a < 0. There is an alternating path P starting from some unmatched vertex a' ∈ (A' ∩ R) \K_{j-1} and ending at a. Since d_a = ỹ_a < 0, the distance from a' to a along path P must be negative, Therefore,

$$\sum_{e \in M_j \cap P} w_e < \sum_{e \in P \setminus M_j} w_e$$

we can replace the matching M_j by $M_j \oplus P$, which gives a feasible matching with weight larger than M_j , a contradiction.

② $b \in (B \cap \mathcal{R}) \setminus K_{j-1}$. $\tilde{y}_b = -d_b$. Claim : $d_b \leq 0$. If not, then the shortest distance from s to b >0. But this cannot be, since there is a path with edges (s, z) and (z, b), and this path has weight = 0.

Proof

- By Lemma 1.3, an unmatched vertex must be in *R*. If this unmatched vertex is a ∈ (A ∩ *R*)\K_{j-1}, By construction, there is only one path from s to a,and its weight = 0.
 - If this unmatched vertex is b ∈ (B ∩ R)\K_{j-1}. By (1), ỹ_b ≥ 0. Let ỹ_b > 0. Then d_b = -ỹ_b < 0. The shortest path from s to b cannot go through (A ∪ B)\R. The shortest path from s to b must have the edge from s to some unmatched a ∈ (A' ∩ R) \K_{j-1}, followed by an augmenting path P (of odd length) ending at b.

We can replace M_j by $M_j \oplus P$ to get a matching of larger weight, contradiction.

- Suppose $e = (a, b) \in M_j$. It is directed from b to a.
 - e is the only incoming edge of a, So e is part of the shortest path tree rooted at s.

As a result,
$$-\tilde{y}_b + w_e^j = d_b + d(e) = d_a = \tilde{y}_a$$
.

• Suppose
$$e = (a, b)$$
 outside M_j in H_j .
It is directed from a to b .
So $\tilde{y}_a - w_e^j = d_a + d(e) \ge d_b = -\tilde{y}_b$.

We possibly still do not have a valid cover for the dual program due to the following two reasons.

- Some vertex $a \in A \setminus K_{j-1}$ has $\tilde{y}_a < 0$.
- The edges deleted from G_j to form H_j are not properly covered by the initial vertex cover {ỹ_ν}_{ν∈A∪B}.
 We can fix this by defining δ = max {δ₁, δ₂, 0},

where
$$\delta_1 = \max_{e=(a,b)\in E} \left\{ w_e^j - \tilde{y}_a - \tilde{y}_b \right\}$$
 and $\delta_2 = \max_{a\in A\setminus K_j} \left\{ -\tilde{y}_a \right\}$

- We can compute δ in O(n+m) time.
- If $\delta = 0$, the initial cover is already a valid solution to the dual program then it is also optimal, by next theorem.

Optimality

The final vertex cover is then built as follows (assume that $\delta > 0$ exists)

- For each vertex $u \in (A \cup B) \cap \mathcal{R}$, let $y_u = \tilde{y}_u$;
- **2** For each vertex $a \in A \setminus \mathcal{R}$, let $y_a = \tilde{y}_a + \delta$;
- Solution For each vertex $b \in B \setminus \mathcal{R}$, let $y_b = \tilde{y}_b \delta$.

Theorem

The final vertex cover $\{y_v\}_{v \in A \cup B}$ is an optimal solution for the dual program.

Proof

• Feasibility

By Lemma 2.1 and the choice of δ , all vertices $a \in A \setminus K_{j-1}$ have $y_a \ge 0$. By Lemma 1.1 and Lemma 2.1, all vertices $b \in B \setminus K_{j-1}$ have $y_b \ge 0$. Also by Lemma 1.2 and Lemma 2.3, and the choice of δ , all edges in E_j are properly covered. So $\{y_v\}_{v \in A \cup B}$ is feasible.

Proof

• Optimality We have :

$$w_j (M_j) = \sum_{e \in M_j} w_e^j$$
$$= \sum_{e = (a,b) \in M_j, b \in \mathcal{R}} (\tilde{y}_a + \tilde{y}_b) + \sum_{e = (a,b) \in M_j, b \notin \mathcal{R}} (\tilde{y}_a + \delta) + (\tilde{y}_b - \delta)$$
$$= \sum_{e = (a,b) \in M_j} y_a + y_b = \sum_{u \in A \cup B} y_u$$

the equality holds because if a vertex u is unmatched, $\tilde{y}_u = 0$ (Lemma 2) and since u must be in \mathcal{R} , $y_u = \tilde{y}_u = 0$. By the LP duality theorem, we conclude that the cover $\{y_v\}_{v \in A \cup B}$ is optimal.