
Algorithm to compute Fair Matching

Saptarshi Sadhukhan

April 2024

1 Introduction

• Let G = (A ∪ B,E) be a bipartite graph, where every vertex ranks its neighbors in an order
of preference (with ties allowed) and let r be the largest rank used.

• A matching M is fair in G if it has maximum cardinality, subject to this, M matches the
minimum number of vertices to rank r neighbors, subject to that, M matches the minimum
number of vertices to rank (r − 1) neighbors, and so on.

Here is our algorithm to compute a fair matching in bipartite graph G.

2 Main Algorithm

Input : G = (A ∪B,E) and r is the worst (largest) rank used in any preference list.
Recall : r is the worst rank in the problem instance, and r∗ is the worst rank in a fair matching.
Proposition 1 : Mj and yj are the optimal solutions to the primal and dual programs of the j-th
iteration, iff the following holds:

1. if u is unmatched in Mj (thus u has to be outside Kj), then yju = 0;

2. if e = (u, v) ∈ Mj , then yju + yjv = wj(e).

We present an algorithm that runs for r iterations and we show how our algorithm terminates
in r∗ iterations.

Algorithm:

1. Initialization. Let G0 = G and K−1 = ∅.

2. For j = 0 to r − 1 do

a. Find the optimal solution
{
yju

}
u∈A∪B

to the dual program of the j + 1-st iteration.

b. Delete from Gj every edge (a, b) such that yja + yjb > wj(e). Call this subgraph Gj+1.

c. Add all vertices with positive dual values to the critical set, i.e., Kj = Kj−1 ∪ {u}yj−1
u >0.

3. Return the optimal solution to the primal program of the last iteration.

1

• The solution given by above algorithm is a maximum weight matching in the graph Gr−1

under the weight function wr−1 such that this matching matches all vertices in Kr−2.

• By Proposition 1, this is a matching in subgraph Gr that matches all vertices in Kr−1.

The following lemma guarantees that the algorithm is never stuck in any iteration (due to the
infeasibility of the primal/dual.

Lemma 1 : The primal and dual programs of the j + 1-th iteration are feasible, for 0 ≤ j ≤ r − 1.

Following proves the correctness of our algorithm.

Lemma 2 : For every 0 ≤ j ≤ r − 1, the following hold:

1. any matching M in Gj that matches all v ∈ Kj−1 is j-optimal;

2. conversely, a j-optimal matching in G is a matching in Gj that matches all v ∈ Kj−1.

Proof : By induction.
Base case : j = 0. We have that G0 = G and K−1 = ∅. As all matchings are by default 0-optimal,
the lemma holds directly.

For the induction step, j ≥ 1, suppose that the lemma holds up to j − 1. As Kj−1 ⊇ Kj−2

and Gj is a subgraph of Gj−1,M is a matching in Gj−1 that matches all vertices of Kj−2.
By induction hypothesis, M is (j−1)-optimal. For each edge e = (a, b) ∈ M , e must be a tight edge
in the j-th iteration, to be present in Gj

yj−1
a + yj−1

b = wj−1(e)

Also, Kj−1 ⊇ {u}yj−1
u >0,

wj−1(M) =
∑

e=(a,b)∈M

wj−1(e) =
∑

e=(a,b)∈M

yj−1
a + yj−1

b ≥
∑

u∈A∪B

yj−1
u

where the final inequality holds because all vertices v with positive yj−1
v are matched in M .

By LP duality, M must be optimal in the primal program of the j-th iteration. So the j-th primal
program has optimal solution of value wj−1(M).

By definition, OPT is also (j − 1)-optimal.
By (2) of IH, OPT is a matching in Gj−1 and OPT matches all vertices in Kj−2.
∴ OPT is a feasible solution of the primal program in the j-th iteration.
Thus, wj−1(OPT) ≤ wj−1(M). but this is not possible,
(else signature (M) ≻ signature(OPT), as both signatures have the same first j − 1 coordinates).
∴ wj−1(OPT) = wj−1(M) ⇒ M is j-optimal as well. Proved (1).

To show (2), let M ′ be a j-optimal matching in G. Hence, it is also (j − 1)-optimal and
by (2) of the IH, it is a matching in Gj−1 that matches all vertices in Kj−2.
⇒ M ′ is a feasible solution to the primal program of the j-th iteration.
Since signature (M ′) has j-th coordinate = wj−1(OPT),

2

M ′ has to be an optimal solution to the primal program of the j-th iteration;
(else theres j -optimal matching with a larger value than wj−1(OPT) in the j-th coordinate of its
signature, which contradicts the optimality of OPT.)
By Proposition 1.2, all edges of M ′ are present in Gj .
By Proposition 1.1, all vertices u /∈ Kj−2 with yj−1

u > 0, (i.e. all v ∈ Kj−1\Kj−2) have to be
matched by M ′. Proved (2).

Our algorithm returns a matching in Gr that matches all vertices in Kr−1.
∴ From (2) of above Lemma that this matching is r-optimal.
Thus the matching returned by our algorithm is fair.

Bounding the running time of the algorithm :
We showed how to solve the dual program in O(m

√
n) time once we have the solution to the primal

program and we have seen that the primal program can be solved in O(m
√
n log n) time.

Improving the running time :
The algorithm can be modified so that it terminates in r∗ iterations, where r∗ is the largest rank
used in OPT. The value of r∗ can be computed at the start of our algorithm as follows.

• Let M∗ be a maximum cardinality matching in G. The value r∗ is the smallest index j such
that the subgraph Ḡj admits a matching of size |M∗|, where Ḡj is obtained by deleting all
edges e = (a, b) from G where either a or b (or both) ranks the other as a rank > j neighbor.

• We compute r∗ by first computing M∗ and then computing a maximum cardinality matching
in Ḡ1, Ḡ2, . . . and so on till we see a subgraph Ḡj that admits a matching of size |M∗|. This
index j = r∗ and it can be found in O (r∗m

√
n) time.

We showed how to solve the dual program in O (m
√
n) time after we solve the primal program and

we have seen that the primal program can be solved in O (m
√
nlogn) time.

Theorem : A fair matching M in G = (A ∪B,E) can be computed in O (r∗m
√
n) time, where

r∗ is the largest rank incident on an edge in M , n = |A ∪B|, |m = |E|

3

