Algorithm to compute Fair Matching

Saptarshi Sadhukhan
April 2024

1 Introduction

e Let G = (AU B, E) be a bipartite graph, where every vertex ranks its neighbors in an order
of preference (with ties allowed) and let r be the largest rank used.

e A matching M is fair in G if it has maximum cardinality, subject to this, M matches the
minimum number of vertices to rank r neighbors, subject to that, M matches the minimum
number of vertices to rank (r — 1) neighbors, and so on.

Here is our algorithm to compute a fair matching in bipartite graph G.

2 Main Algorithm

Input : G = (AU B, E) and r is the worst (largest) rank used in any preference list.

Recall : r is the worst rank in the problem instance, and r* is the worst rank in a fair matching.
Proposition 1 : M; and y? are the optimal solutions to the primal and dual programs of the j-th
iteration, iff the following holds:

1. if u is unmatched in M; (thus u has to be outside K;), then yJ = 0;

2. if e = (u,v) € Mj, then yJ + yJ = w;(e).

We present an algorithm that runs for r iterations and we show how our algorithm terminates
in 7* iterations.

Algorithm:

1. Initialization. Let Go = G and K_; = ().

2. Forj=0tor—1do

a. Find the optimal solution {ny} to the dual program of the j + 1-st iteration.

u€AUB

b. Delete from G; every edge (a,b) such that y/ + y/ > w;(e). Call this subgraph G ;.

c. Add all vertices with positive dual values to the critical set, i.e., K; = K;_1 U {u}%j;1>0.

3. Return the optimal solution to the primal program of the last iteration.

e The solution given by above algorithm is a maximum weight matching in the graph G,_;
under the weight function w,_; such that this matching matches all vertices in K, 5.

e By Proposition 1, this is a matching in subgraph G, that matches all vertices in K, _;.

The following lemma guarantees that the algorithm is never stuck in any iteration (due to the
infeasibility of the primal/dual.

Lemma 1 : The primal and dual programs of the j 4+ 1-th iteration are feasible, for 0 < j < r — 1.
Following proves the correctness of our algorithm.

Lemma 2 : For every 0 < j <r —1, the following hold:
1. any matching M in G; that matches all v € K;_1 is j-optimal;
2. conversely, a j-optimal matching in G is a matching in G; that matches allv € K;_1.

Proof : By induction.
Base case : j = 0. We have that Gg = G and K_; = (). As all matchings are by default 0-optimal,
the lemma holds directly.

For the induction step, j > 1, suppose that the lemma holds up to j — 1. As K;_ 1 D K;_»
and G; is a subgraph of G;_1, M is a matching in G;_; that matches all vertices of K;_o.

By induction hypothesis, M is (j — 1)-optimal. For each edge e = (a,b) € M, e must be a tight edge
in the j-th iteration, to be present in G

- .
ity = wioa(e)

AISO, Kj_l D) {u}y¥fl>0’

wia(M)= Y wiale)= > oy Hy T > D !

e=(a,b)eM e=(a,b)eM u€AUB

where the final inequality holds because all vertices v with positive J~! are matched in M.
By LP duality, M must be optimal in the primal program of the j-th iteration. So the j-th primal
program has optimal solution of value w;_1(M).

By definition, OPT is also (j — 1)-optimal.

By (2) of IH, OPT is a matching in G,;_; and OPT matches all vertices in K;_,.

.. OPT is a feasible solution of the primal program in the j-th iteration.

Thus, wj_1(OPT) < w;_1(M). but this is not possible,

(else signature (M) > signature(OPT), as both signatures have the same first j — 1 coordinates).
S wj—1(OPT) = w1 (M) = M is j-optimal as well. Proved (1).

To show (2), let M’ be a j-optimal matching in G. Hence, it is also (j — 1)-optimal and
by (2) of the IH, it is a matching in G;_; that matches all vertices in K;_».

= M’ is a feasible solution to the primal program of the j-th iteration.

Since signature (M’) has j-th coordinate = w;_; (OPT),

M’ has to be an optimal solution to the primal program of the j-th iteration;

(else theres j-optimal matching with a larger value than w;_;(OPT) in the j-th coordinate of its
signature, which contradicts the optimality of OPT.)

By Proposition 1.2, all edges of M’ are present in G;.

By Proposition 1.1, all vertices v ¢ K;_o with y2=! > 0, (i.e. all v € K;_1\K;_2) have to be
matched by M’. Proved (2).

Our algorithm returns a matching in GG, that matches all vertices in K,._.
.. From (2) of above Lemma that this matching is r-optimal.
Thus the matching returned by our algorithm is fair.

Bounding the running time of the algorithm :
We showed how to solve the dual program in O(m+/n) time once we have the solution to the primal
program and we have seen that the primal program can be solved in O(my/nlogn) time.

Improving the running time :
The algorithm can be modified so that it terminates in r* iterations, where r* is the largest rank
used in OPT. The value of r* can be computed at the start of our algorithm as follows.

e Let M* be a maximum cardinality matching in G. The value r* is the smallest index j such
that the subgraph G admits a matching of size |M*|, where G, is obtained by deleting all
edges e = (a,b) from G where either a or b (or both) ranks the other as a rank > j neighbor.

e We compute 7* by first computing M* and then computing a maximum cardinality matching
in G1,Ga, ... and so on till we see a subgraph G, that admits a matching of size |M*|. This
index j = r* and it can be found in O (r*m+/n) time.

We showed how to solve the dual program in O (m+/n) time after we solve the primal program and
we have seen that the primal program can be solved in O (m+/nlogn) time.

Theorem : A fair matching M in G = (AU B, E) can be computed in O (r*m+/n) time, where
r* is the largest rank incident on an edge in M, n = |AU B|, |m = |E|

