The Matching Polytope has Exponential Extension Complexity

April 2024

Thomas Rothvoss
University of Washington, Seattle

Extended Formulations

- Let $P=\{x \mid A x \leq b\} \subseteq \mathbb{R}^{n}$ be a tolohbluon.

$$
\text { - } Q=\{(x, y) \mid B x+C y \leq d\} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{h} \text { and } .
$$

Then Q is an extended formulation of P.

Extended Formulations

- Let $P=\{x \mid A x \leqslant b\} \subseteq \mathbb{R}^{n}$ be a holighedron. \rightarrow many facets
- $Q=\{(x, y) \mid B x+C y \leqslant d\} \subseteq \mathbb{R}^{n} \times \mathbb{R}^{h}$ and

$$
\{x \mid \exists y \text { sit }(x, y) \in Q\}=P
$$

ie. P is the orthogonal projection of $Q_{\text {onto }} x$ coordindis
Then Q is an extended formulation of P.
\rightarrow bow facets
Extension Complexity

$$
x \subset(P)=\min \left(\begin{array}{c|c}
\# \text { facets of } & Q \text { is an } \\
Q & \text { intended form. } \\
\text { of } P
\end{array}\right)
$$

 projection

History I (Compact formulation)

Compact formulations:

- Spanning Tree Polytope [Kipp Martin '91]
- Perfect Matching in planar graphs [Barahona '93]
- Perfect Matching in bounded genus graphs [Gerards '91]
- $O(n \log n)$-size for Permutahedron [Goemans '10] $(\rightarrow$ tight $)$
- $n^{O(1 / \varepsilon)}$-size ε-ap for Knapsack Polytope [Bienstock '08]
- ...

Q ${ }^{n}$: Is extension complexity always small?

History II (Lewer bounds)

- No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for $\log n$ size matchings, but no symmetric one [Kaibel, Pashkovich \& Theis '10]

History II (Lower bounds)

- No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for $\log n$ size matchings, but no symmetric one [Kaibel, Pashkovich \& Theis '10]
- $\mathrm{xc}($ random $0 / 1$ polytope $) \geq 2^{\Omega(n)}[$ R. '11]
- Breakthrough: $\mathrm{xc}(\mathrm{TSP}) \geq 2^{\Omega(\sqrt{n})}$
[Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]
- $n^{1 / 2-\varepsilon}$-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer '12]
Improved to $n^{1-\varepsilon}$ [Braverman, Moitra '13], [Braun, P. '13]

History II (Lower bounds)

- No symmetric compact form. for TSP [Yannakakis '91] Compact formulation for $\log n$ size matchings, but no symmetric one [Kaibel, Pashkovich \& Theis '10]
- $\mathrm{xc}($ random $0 / 1$ polytope $) \geq 2^{\Omega(n)}[$ R. '11]
- Breakthrough: $\mathrm{xc}(\mathrm{TSP}) \geq 2^{\Omega(\sqrt{n})}$
[Fiorini, Massar, Pokutta, Tiwary, de Wolf '12]
- $n^{1 / 2-\varepsilon}$-apx for clique polytope needs super-poly size
[Braun, Fiorini, Pokutta, Steuer '12]
Improved to $n^{1-\varepsilon}$ [Braverman, Moitra '13], [Braun, P. '13]
\rightarrow Hll problems here are N P-hard!

Hitory II (Beyond NP hard froblems)

- $(2-\varepsilon)$-apx LPs for MaxCut have size $n^{\Omega(\log n / \log \log n)}$ [Chan, Lee, Raghavendra, Steurer '13]

History III (Beyond NP hard hroblems)

- $(2-\varepsilon)$-apx LPs for MaxCut have size $n^{\Omega(\log n / \log \log n)}$ [Chan, Lee, Raghavendra, Steurer '13]
\rightarrow Goemans - Willicmsen har ~ 1.14 athroon using SDPs.

Hitory III (Beyond NP hard hroblems)

- $(2-\varepsilon)$-apx LPs for MaxCut have size $n^{\Omega(\log n / \log \log n)}$ [Chan, Lee, Raghavendra, Steurer '13]
\rightarrow Goemans - Willicmsen har ~ 1.14 athroon using SDPs.

This haper: Perfect matching holytofs has $2^{\Omega(n)}$ extension complaxily

Perfect Matching Polytohe

$$
G=(V, E)
$$

$$
\begin{array}{ll}
x(\delta(v))=1 & \forall v \in V \\
x_{e} \geqslant 0 & \forall e \in E
\end{array}
$$

Perfect Malting

Rerfect Matching Polytoho

$$
G=(V, E)
$$

$$
\begin{array}{ll}
x(\delta(v))=1 & \forall v \in V \\
x_{e} \geqslant 0 & \forall e \in E
\end{array}
$$

$x(\delta(U)) \geqslant 1 \quad \forall U \subseteq U$, IUlodd
\rightarrow By Edrrends ' 65
\rightarrow Optimigation possille in strongls hole lime [Edinonds' 65]
\rightarrow Seharation prollem holptime
$\rightarrow 2^{\theta(n)}$ facels

Not a mathhing

Perfect Matching Polytohe

$$
G=(V E)
$$

$$
\begin{array}{cc}
x(\delta(v))=1 & \forall v \in V \\
x_{e} \geqslant 0 & \forall e \in E \\
x(\delta(v)) \geqslant 1 & \forall U \subseteq V,|U| \text { edd }
\end{array}
$$

Rothooss [Tim taker]:

Porfect Malhing

Previren: $\geqslant \Omega\left(n^{c}\right)$

Slack-matrix

Write: $P=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{v}\right\}\right)=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$

Slack-matrix

Write: $P=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{v}\right\}\right)=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$

Non-negative rank:

$$
\operatorname{rk}_{+}(S)=\min \left\{r \mid \exists U \in \mathbb{R}_{\geq 0}^{f \times r}, V \in \mathbb{R}_{\geq 0}^{r \times v}: S=U V\right\}
$$

Yannakakis's Theorem ['91]
Let She the slack matrix of $P=\left\{x \mid A_{x} \leq b\right\}$ un:

$$
x c(P)=r k_{+}(S)
$$

Yannakakis's Theorem ['91]
Let sle Uo slacte malric of $P=\left\{x \mid A_{x \leq b}\right\}$ un:

$$
x c(P)=r k_{+}(s)
$$

Factorination $\Rightarrow E F$
If $S=U V_{\text {a }} t \quad V, V \geqslant 0 \mathrm{um}$ let

$$
\begin{array}{r}
P=\left\{x \in \mathbb{R}^{n} \mid \exists y \geqslant 0:\right. \\
\left.A x+U_{y}=b\right\}
\end{array}
$$

$E F \Rightarrow$ Fuctoriesation

Non negative Rank \& Rectangle Covering

Non negative Rank \& Rectangle Covering

$$
\Rightarrow r k_{+}(s)=\min \left(\begin{array}{l}
r
\end{array}\binom{S_{c o n} \text { be wilton asa sum of }}{\text { non- Negative rank } 1 \text { matuicics }}\right.
$$

Non negative Rank \& Rectangle Covering

$$
\Rightarrow r k_{+}(S)=\min \left(r \left\lvert\, \begin{array}{c}
\text { Scan be written as a sum of } r \\
\text { nonnegative rank } 1 \text { matrices }
\end{array}\right.\right)
$$

\rightarrow The see of >0 coordinates in non-negative rank) matrices forms a rectangle

Non negative Rank \& Rectangle Covering

$$
\Rightarrow r k_{+}(S)=\min \left(r \left\lvert\, \begin{array}{c}
\text { Scan be written as a sum of } r \\
\text { nonnegative rank } 1 \text { matrices }
\end{array}\right.\right)
$$

\rightarrow The set of >0 coordinates in nen-negative rank matrices forms a rectangle
\rightarrow Possible lower boundided:
Only consider + be entries as just toe and 0 entries as 0 .

Rectangle Covering Lower bound

$$
\begin{aligned}
& \begin{array}{|ccc|}
\hline 0 & 0 & ++ \\
0 & + & + \\
\hline
\end{array} \\
& U\left[\begin{array}{ll}
+ & + \\
+ & + \\
0 & + \\
0 & 0 \\
+ & 0
\end{array}\right]\left[\begin{array}{llll}
0 & + & + & + \\
0 \\
0 & + & + & + \\
0 & + & + & 0 \\
+ \\
0 & 0 & 0 & 0
\end{array} 0\right.
\end{aligned}
$$

Rectangle Covering Lower bound

$$
\begin{aligned}
& \begin{array}{|c|}
\hline 0 \begin{array}{ll}
& V \\
0 & ++0 \\
0 & + \\
\hline
\end{array} \\
\hline
\end{array} \\
& U\left[\begin{array}{ll}
+ & + \\
+ & + \\
0 & + \\
0 & 0 \\
+ & 0
\end{array}\right]\left[\begin{array}{llll}
0 & ++ & + & + \\
0 & + & + & + \\
\hline
\end{array} \left\lvert\, \begin{array}{lllll}
+ \\
0 & + & + & 0 & + \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & + & + & 0
\end{array}\right.\right] S
\end{aligned}
$$

Rectangle Covering Lower bound

$$
\begin{aligned}
& \begin{array}{|c|}
\hline 0 \\
\hline 0++0 \\
0++0+ \\
\hline
\end{array} \\
& \left.\left.U\left[\begin{array}{c}
+ \\
+ \\
+ \\
+ \\
0 \\
+ \\
0
\end{array}\right] \begin{array}{llll}
0 \\
+ & 0
\end{array}\right] \begin{array}{llll}
0 & +++ & + \\
0 & +++ & + \\
0 & + & + & 0 \\
0 & + & 0 & 0 \\
0 \\
0 & 0 & ++ & 0
\end{array}\right] S
\end{aligned}
$$

Rectangle Covering Lower bound

$$
\begin{aligned}
& \begin{array}{c}
V \\
\begin{array}{cc}
0 & 0++ \\
0 & + \\
0 & + \\
\hline
\end{array} \\
\hline
\end{array} \\
& U\left[\begin{array}{ll}
++ \\
+ \\
+ \\
0 & + \\
0 & 0 \\
+ & 0
\end{array}\right]\left[\begin{array}{llll}
0 & +++++ \\
0 & + & + & + \\
0 \\
0 & + & + & + \\
0 & 0 & 0 & + \\
0 & 0 & + & 0 \\
0 & 0 & + & 0
\end{array}\right] S \\
& \Rightarrow r k_{t}(S) \geqslant \text { rectangle - covering - } \\
& \text { number (S) }
\end{aligned}
$$

Unfortunately, this bound is horrible for perfect matching
\Rightarrow Need new techniques!!

Unfortunately, this bound is horrible for perfect nothing
\Rightarrow Need new techniques!!
Thank You!

Unfortunately, this bound is horrible for perfect mating
\Rightarrow Need new techniques!!
Thank You!
References:

- Freely used Thomas's amazing presentation from IAS, MSR along with the paper.
- Dr. Yuri Faenza's Strong Relaxations for Discrete Optimization Problems course at EPFL

