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Extended Formulations
-

· Let P = [x/A3EIR" be a holyhedron .

· a = ((x,e)/Bx + Cy = d] = IRXR" and

(x)5yet(x, y)=Q
=P

i
.e. P is the orthogonal projection of

Q onto coordinates

Then Q is an extended formulation of
P
.



Extended Formulations
· Let P = [x/A3EIR" be a holyhedron .

-> many facets
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ExtensionComplexity

xc(P) = min #facet of n formI (



HistoryI (Compact formulations)

Q : Is extension complexity always small ?
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History#I (Lower bounds

-> All problems here are NP-hard !
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-> Goemans - Williamson has 1 . 14 approx using
SDPs
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Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ Rn | Ax ≤ b}
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j
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Slack-matrix

Write: P = conv({x1, . . . , xv}) = {x ∈ Rn | Ax ≤ b}

S# facets

# vertices

U
≥
0

V ≥ 0r
r

Sij
Sij = bi −AT

i xj

slack-matrix

P

Aix = bi

xj

Sij

Non-negative rank:

rk+(S) = min{r | ∃U ∈ R
f×r
≥0 , V ∈ R

r×v
≥0 : S = UV }



Yamakakis'sTheorem ['91)
Let Sle the slack matin of P= [x/Ax=b]
then :

xc(p) = rk
+
(s)



Yamakakis'sTheorem ['91)
Let Sle the slack matin of P= [x/Ax=b]
then :

xc(p) = rk
+
(s)

Factorization => EF EF= Factorization

If S= UV e. t U
,
U >, 0 then

let u
p= [x= (R/5 y>, 0 :

Ax + Uy = by

me



Wonnegative Rank & RectangleCovering

=> 5

= . 10020

=> Sie mosz (2 20
rank) non negative
matrices
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Wonnegative Rank & RectangleCovering

=> +(S) = min(s/sanbewrittenasauis

-> The set of >0 coordinates in non-negative rank

matrices forms a rectangle

-> Possible lowes boundidea :
-

Only consider +ve entries as just +ve and

Centries as O.
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Rectangle Covering Lowerbound



-
Covering Lower boundRectangle ---

=> rk + (5), rectangle
- covering-

number (5)



Unfortunately, this bound is horrible

for perfect matching

=> Need newTechniques !!
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Thank You !



Freely used Thomas’s amazing presentation from IAS, MSR along 
with the paper.

Dr. Yuri Faenza’s Strong Relaxations for Discrete 
Optimization Problems course at EPFL

Unfortunately, this bound is horrible

for perfect matching

=> Need newTechniques
!!

Thank You !
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