A short exposition on jump systems

Ankit Gayen

Chennai Mathematical Institute

April 2024

Ankit Gayen A short exposition on jump systems

白 ト イヨ ト イヨ ト

2

Definition (Box)

Let
$$V = \{1, 2..., n\}$$
. For $x, y \in \mathbb{Z}^V$, define
 $[x, y] = \{x' \mid min(x_i, y_i) \le x'_i \le max(x_i, y_i), \forall i \in V\}$. $[x, y]$ is a **box**

Definition ((x, y) - step)

A point $x' \in \mathbb{Z}^V$ is a (x, y) – step, if $x' \in [x, y]$ and d(x, x') = 1, where $d(x, y) = \sum_{i \in V} |x_i - y_i|$

Definition (Jump system)

A nonempty set $\mathcal{J} \subseteq \mathbb{Z}^V$ is called a *Jump System* if it obeys the following axiom (any point $x \in \mathcal{J}$ is called *feasible*): **two-step axiom**: Given $x, y \in \mathcal{J}$ and a (x, y)-step x', either $x' \in \mathcal{J}$, or there exists a (x', y)-step x'' such that $x'' \in \mathcal{J}$

同 ト イヨ ト イヨ ト 二 ヨ

Fig. 1: A jump system and a set that is not a jump system

▶ ★ 문 ▶ ★ 문 ▶

æ –

Mention only those examples which you need/can justify.

- Jump systems in \mathbb{Z} : \mathcal{J} is a jump system in \mathbb{Z} if and only if between any two *feasible* points with distance > 2, there is atleast one *feasible* point
- Matroids and delta-matroids: Jump systems contained in the unit box({0,1}^V) are delta-matroids. Among them, those delta-matroids with constant coordinate-sum are equivalent to matroids and vice versa.(The feasible points are characteristic vectors of bases)
- Degree systems of Graphs: Let H be a spanning subgraph of a graph G. Define the degree sequence of H to be deg_H ∈ Z^V such that deg_H(v) equals the degree of v in H. Set of all degree sequences of spanning subgraphs of G is called the degree system of G. We will see why it's a jump system in a moment!

同トメモトメモト・モ

Operations on Jump systems

Mention only the necessary operations. Develop some intuition on board for jump systems before this.

Jump systems are closed under the following (not exhaustive):

- **Translation**: Add an integral vector *b* to every *feasible* point.
- **Reflection**: For some *i*, replace i^{th} coordinate x_i by $-x_i$ for every *feasible* x.
- Intersection with a box: Given a box B, J ∩ B is a jump system if it is nonempty.
- **Projection**: Given *S* ⊆ *V*, replace every feasible point by its restriction to *S*.
- Sum: If \mathcal{J}_1 and \mathcal{J}_2 are jump systems, then so is $\mathcal{J}_1 + \mathcal{J}_2 = \{x + y \mid x \in \mathcal{J}_1, y \in \mathcal{J}_2\}$
- Closest points to a box: Given a box B, $\mathcal{J}_B = \{x \in \mathcal{J} \mid d(x, B) = d(\mathcal{J}, B)\}$ is also a jump system.

Now we see why degree systems are jump systems: For a graph *G*, its *degree system* is the sum of *degree systems* of all its one-edge spanning subgraphs (which are trivially jump systems).

ヘロマ ふぼう くほう くほう しゅう

A greedy algorithm for linear optimization in jump systems

Jump systems acquire one special trait of *matroids* — For an integral vector *c*, *c^Tx* can be maximized in **polynomial time** over any jump system (assuming it is bounded!).

Greedy

- 1: Order V as $\{j_1, \ldots, j_n\}$ where
 - $c_{j_1} \geq c_{j_2} \geq \ldots c_{j_k} > 0 = c_{j_{k+1}} = \ldots = c_{j_n}$
- 2: $\mathcal{J}_0 \leftarrow \mathcal{J}$ Do the superscripts and subscripts of J mean different things?
- 3: for i = 1 to k do

4: Set
$$\alpha = max\{x_{j_i} : x \in \mathcal{J}^{i-1}\}$$

5: Set
$$\mathcal{J}_i = \{x \in \mathcal{J}^{i-1} : x_{j_i} = \alpha\}$$

- 6: end for
- 7: return \mathcal{J}^k

Theorem

Each feasible point $x \in \mathcal{J}^k$ maximizes $c^{\mathsf{T}}x$ over \mathcal{J}

< 同 > < 回 > < 回 > …

3

Algorithm Contd.

- But this looks strange! How could it run in polynomial time, if we to calculate Step 4(Afterall \mathcal{J} could have size exponential in V!).
- It might be possible that we are given \mathcal{J} as input, but then this algorithm is meaningless! In one scan we find the answer to the optimization problem!
- Not to worry Shioura and Tanaka proved that provided we have access to membership oracle for \mathcal{J} , one has the following:

Theorem (*Shioura, Tanaka* '07)

The algorithm Greedy finds an optimal solution in $O(n^2 \log \phi(\mathcal{J}))$ time, provided a vector in \mathcal{J} is given. (where size $\phi(S)$ of S is $\phi(S) = \max_{v \in V} \{\max_{y \in S} y(v) - \min_{y \in S} y(v)\}$ and n = |V|).

• But , we will neither explain the correctness, not the claimed running time here.

同 ト イヨ ト イヨ ト 二 ヨ

Definition (2-factor and \leq 2-factor)

A 2-factor(respectively, \leq 2-factor) of a graph G = (V, E) is a set $S \subseteq E$ such that every vertex of G is incident with *exactly* two(respectively, *atmost* two) edges of X

Definition (*k*-restricted factor)

Is this definition meant for graphs? Otherwise what does circuit mean?

For a positive integer k, a factor X is k-restricted if every circuit formed by the edges of X has length atleast k + 1.

- For a given graph G and integer k, we want to find the largest k-restricted factor in G.
- For $k \ge 5$: Hell, Kirkpatrick, Kratchovil and Kriz proved that if the set of circuit lengths to be excluded is not a subset of $\{3,4\}$, then the problem is \mathcal{NP} -hard
- For the *weighted restricted factor* problem, NP-hardness is proved even for bipartite graphs(for k = 4).Here, k = 3 case remains open,

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

The slides from here are too dense. Add more explanation, split into multiple slides or prepare to use Connection with jump systems the board.

• To make the link with jump systems, we ask the question: "For what values of k, the set G(k) of degree sequences of restricted factors forms a jump system, for any graph G?". In light of this, we present the following theorem:

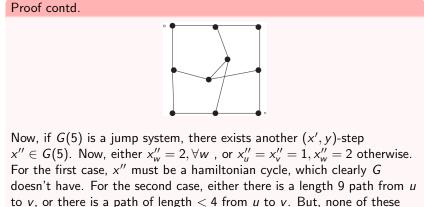
Theorem

For any graph G and any $k \le 3$, G(k) is a jump system. For any k > 4 there exists a graph G such that G(k) is not a jump system.

Proof

For $k \le 2$, restricted factors are same as normal factors, and therefore For any graph *G*, *G*(*k*) is the intersection of its degree system with the box $\{0, 1, 2\}^V$. For k = 5, consider the following graph *G*. There are two cycles of length 9, avoiding *u* and *v* respectively, in *G*. Take these two as *x* and *y* respectively. Obviously $x, y \in G(5)$ and $x_u = y_v = 0, x_w = y_w = 2, \forall w \notin \{u, v\}$. Take *x'* as a (*x*, *y*)-step, where $x'_u = 1$ and $x'_w = x_w$ otherwise.

Connection with jump systems contd.



holds! Hence G(5) is not a jump system. This graph can be easily modified for $k \ge 6$ by adding more degree 2 vertices.

Proof contd.

Let us now prove G(3) is a jump system. Denote G(3) by \mathcal{J} . Let $x, y \in \mathcal{J}$, and let x' be a (x, y)-step. Let u be the component on which x' differs from x(w.l.o.g. assume $x_u < y_u$ then $x'_u = x_u + 1$). Obviously $x' \notin \mathcal{J}$. Therefore, we seek a (x', y)-step x'' such that $x'' \in \mathcal{J}$. In the following to come, we show there is an edge simple path \mathcal{P} such that $X'' = X \triangle \mathcal{P}$ works for x''.

Consider a path from u to some vertex v. We denote the path by $\mathcal{P}_m(u = v_0, v_1, v_2, \dots, v_m = v)$ and denote the path v_0, \dots, v_i by \mathcal{P}_i . Also, let $X_i = X \triangle \mathcal{P}_i$. We want \mathcal{P} to satisfy the following properties(*):

- 1. $v_iv_{i+1} \in Y \setminus (X \cup E(P_i))$ for i even
- 2. $v_iv_{i+1} \in X \setminus (Y \cup E(P_i))$ for i odd
- 3. X_m is triangle-free

回 ト イヨト イヨト 「ヨ」 のへの

Connection with jump systems contd.

Proof contd.

Our philosophy is simple: start with $\mathcal{P}_0 = u$, which trivially satisfies \star , then whenever X_m does not satisfy the requirements for X'', "increase" \mathcal{P}_m to \mathcal{P}_{m+1} .

- When *m* is odd: If X_m is a (x', y)-step we are done. Else, $deg_{X_m}(v) = x_v + 1 > y_v \implies x_v \ge y_v$. This means \exists an edge $vq \in X \setminus (Y \cup E(\mathcal{P}_m))$. Extend \mathcal{P}_m to \mathcal{P}_{m+1} by setting $v_{m+1} = q$.
- When *m* is even: Again, if X_m is already a (x', y)-step, we stop. Else, $deg_{X_m}(v) = x_v - 1 < y_v \implies x_v \le y_v$. This means \exists an edge $vq \in Y \setminus (X \cup (E(\mathcal{P}_m)))$. Now, if $X_m \cup \{vq\}$ is triangle-free, we simply extend to \mathcal{P}_{m+1} by setting $v_{m+1} = q$. Otherwise, X_m contains edges qw, wv for some *w* forming a triangle.

Now, if $qw \in X \setminus E(\mathcal{P}_m)$, then extend \mathcal{P}_m to \mathcal{P}_{m+1} by setting $v_{m+1} = q$ and $v_{m+2} = w$. Else, $qw \in E(\mathcal{P}_m) \cap Y$. Now, $wv \notin Y$ (since Y is triangle-free), therefore we must have $wv \in X \setminus (E(\mathcal{P}_m) \cup Y)$. Now $deg_{X_m}(v) = x_v 1 = 1$, whereas $y_v = 2$. Therefore, there exists an edge $v_p \neq v_q$ in $Y \setminus (X \cup E(\mathcal{P}_m))$.

Proof contd.

Suppose that $X_m \cup \{vp\}$ contains a triangle. Then the triangle must have vertices v, p, w. But this would imply that $deg_{X_m}(w) = 3$, a contradiction. Therefore, we can extend \mathcal{P}_m by putting $v_{m+1} = p$.

Since, \mathcal{P}_m is edge simple, we should eventually get the required (x', y)-step!

E > < E >