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Preliminaries

Definition (Box)

Let V = {1, 2 . . . , n}. For x , y ∈ ZV , define
[x , y ] = {x ′ | min(xi , yi ) ≤ x ′i ≤ max(xi , yi ),∀i ∈ V }. [x , y ] is a box

Definition ((x , y)− step)

A point x ′ ∈ ZV is a (x , y)− step, if x ′ ∈ [x , y ] and d(x , x ′) = 1, where
d(x , y) = Σi∈V |xi − yi |

Definition (Jump system)

A nonempty set J ⊆ ZV is called a Jump System if it obeys the
following axiom (any point x ∈ J is called feasible):
two-step axiom: Given x , y ∈ J and a (x , y)-step x ′, either x ′ ∈ J , or
there exists a (x ′, y)-step x” such that x” ∈ J
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Examples

Fig. 1: A jump system and a set that is not a jump system
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More Examples..

Jump systems in Z: J is a jump system in Z if and only if
between any two feasible points with distance > 2, there is atleast
one feasible point

Matroids and delta-matroids: Jump systems contained in the unit
box( {0, 1}V ) are delta-matroids. Among them, those
delta-matroids with constant coordinate-sum are equivalent to
matroids and vice versa.(The feasible points are characteristic
vectors of bases)

Degree systems of Graphs: Let H be a spanning subgraph of a
graph G . Define the degree sequence of H to be degH ∈ ZV such
that degH(v) equals the degree of v in H. Set of all degree
sequences of spanning subgraphs of G is called the degree system of
G . We will see why it’s a jump system in a moment!
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Operations on Jump systems

Jump systems are closed under the following (not exhaustive):

Translation: Add an integral vector b to every feasible point.

Reflection: For some i , replace i th coordinate xi by −xi for every
feasible x .

Intersection with a box: Given a box B, J ∩B is a jump system if
it is nonempty.

Projection: Given S ⊆ V , replace every feasible point by its
restriction to S .

Sum: If J1 and J2 are jump systems, then so is
J1 + J2 = {x + y | x ∈ J1, y ∈ J2}
Closest points to a box: Given a box B,
JB = {x ∈ J | d(x ,B) = d(J ,B)} is also a jump system.

Now we see why degree systems are jump systems: For a graph G ,
its degree system is the sum of degree systems of all its one-edge
spanning subgraphs (which are trivially jump systems).
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A greedy algorithm for linear optimization in jump systems

Jump systems acquire one special trait of matroids — For an
integral vector c , cT x can be maximized in polynomial time over
any jump system (assuming it is bounded!).

Greedy

1: Order V as {j1, . . . , jn} where
cj1 ≥ cj2 ≥ . . . cjk > 0 = cjk+1

= . . . = cjn
2: J0 ← J
3: for i = 1 to k do
4: Set α = max{xji : x ∈ J i−1}
5: Set Ji = {x ∈ J i−1 : xji = α}
6: end for
7: return J k

Theorem

Each feasible point x ∈ J k maximizes cT x over J
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Algorithm Contd.

But this looks strange! How could it run in polynomial time, if we to
calculate Step 4(Afterall J could have size exponential in V !).

It might be possible that we are given J as input, but then this
algorithm is meaningless! In one scan we find the answer to the
optimization problem!

Not to worry Shioura and Tanaka proved that provided we have
access to membership oracle for J , one has the following:

Theorem (Shioura, Tanaka ’07)

The algorithm Greedy finds an optimal solution in O(n2 log ϕ(J )) time,
provided a vector in J is given. (where size ϕ(S) of S is
ϕ(S) = max

v∈V
{max
y∈S

y(v)−min
y∈S

y(v)} and n = |V |) .

But , we will neither explain the correctness, not the claimed
running time here.
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Largest restricted factor problem

Definition ( 2-factor and ≤ 2-factor)

A 2-factor(respectively, ≤ 2-factor) of a graph G = (V ,E ) is a set S ⊆ E
such that every vertex of G is incident with exactly two(respectively,
atmost two) edges of X

Definition (k-restricted factor)

For a positive integer k , a factor X is k-restricted if every circuit formed
by the edges of X has length atleast k + 1.

For a given graph G and integer k , we want to find the largest
k-restricted factor in G .

For k ≥ 5: Hell, Kirkpatrick, Kratchovil and Kriz proved that if the
set of circuit lengths to be excluded is not a subset of {3, 4}, then
the problem is NP-hard
For the weighted restricted factor problem, NP-hardness is proved
even for bipartite graphs(for k = 4).Here, k = 3 case remains open,
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Connection with jump systems

To make the link with jump systems, we ask the question: “For
what values of k, the set G (k) of degree sequences of restricted
factors forms a jump system, for any graph G?”. In light of this, we
present the following theorem:

Theorem

For any graph G and any k ≤ 3, G (k) is a jump system. For any k > 4
there exists a graph G such that G (k) is not a jump system.

Proof

For k <= 2, restricted factors are same as normal factors, and therefore
For any graph G , G (k) is the intersection of its degree system with the
box {0, 1, 2}V .
For k = 5, consider the following graph G .
There are two cycles of length 9, avoiding u and v respectively, in G .
Take these two as x and y respectively. Obviously x , y ∈ G (5) and
xu = yv = 0, xw = yw = 2, ∀w /∈ {u, v}. Take x ′ as a (x , y)-step, where
x ′u = 1 and x ′w = xw otherwise.
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Connection with jump systems contd.

Proof contd.

Now, if G (5) is a jump system, there exists another (x ′, y)-step
x ′′ ∈ G (5). Now, either x ′′w = 2,∀w , or x ′′u = x ′′v = 1, x ′′w = 2 otherwise.
For the first case, x ′′ must be a hamiltonian cycle, which clearly G
doesn’t have. For the second case, either there is a length 9 path from u
to v , or there is a path of length < 4 from u to v . But, none of these
holds! Hence G (5) is not a jump system. This graph can be easily
modified for k ≥ 6 by adding more degree 2 vertices.
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Connection with jump systems contd.

Proof contd.

Let us now prove G (3) is a jump system. Denote G (3) by J .
Let x , y ∈ J , and let x ′ be a (x , y)-step. Let u be the component on
which x ′ differs from x(w.l.o.g. assume xu < yu then x ′u = xu + 1).
Obviously x ′ /∈ J . Therefore, we seek a (x ′, y)-step x ′′ such that
x ′′ ∈ J . In the following to come, we show there is an edge simple path
P such that X ′′ = X△P works for x ′′.

Consider a path from u to some vertex v . We denote the path by
Pm(u = v0, v1, v2, . . . , vm = v) and denote the path v0, . . . , vi by Pi .
Also, let Xi = X△Pi . We want P to satisfy the following properties(⋆):

1. vivi+1 ∈ Y \ (X ∪ E (Pi )) for i even

2. vivi+1 ∈ X \ (Y ∪ E (Pi )) for i odd

3. Xm is triangle-free
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Connection with jump systems contd.

Proof contd.

Our philosophy is simple: start with P0 = u, which trivially satisfies ⋆,
then whenever Xm does not satisfy the requirements for X ′′, ”increase”
Pm to Pm+1.

When m is odd: If Xm is a (x ′, y)-step we are done. Else,
degXm(v) = xv + 1 > yv =⇒ xv ≥ yv . This means ∃ an edge
vq ∈ X \ (Y ∪ E (Pm)). Extend Pm to Pm+1 by setting vm+1 = q.

When m is even: Again, if Xm is already a (x ′, y)-step, we stop.
Else, degXm(v) = xv − 1 < yv =⇒ xv ≤ yv . This means ∃ an edge
vq ∈ Y \ (X ∪ (E (Pm)). Now, if Xm ∪ {vq} is triangle-free, we
simply extend to Pm+1 by setting vm+1 = q. Otherwise, Xm contains
edges qw ,wv for some w forming a triangle.

Now, if qw ∈ X \ E (Pm), then extend Pm to Pm+1 by setting
vm+1 = q and vm+2 = w . Else, qw ∈ E (Pm) ∩ Y . Now, wv /∈ Y
(since Y is triangle-free), therefore we must have
wv ∈ X \ (E (Pm) ∪ Y ) . Now degXm(v) = xv1 = 1, whereas yv = 2.
Therefore, there exists an edge vp ̸= vq in Y \ (X ∪ E (Pm).
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Connection with jump systems contd.

Proof contd.

Suppose that Xm ∪ {vp} contains a triangle. Then the triangle must have
vertices v , p,w . But this would imply that degXm(w) = 3, a
contradiction. Therefore, we can extend Pm by putting vm+1 = p.

Since, Pm is edge simple, we should eventually get the required
(x ′, y)-step!
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