A short exposition on jump systems

Ankit Gayen

Chennai Mathematical Institute
April 2024

Preliminaries

Definition (Box)

Let $V=\{1,2 \ldots, n\}$. For $x, y \in \mathbb{Z}^{V}$, define $[x, y]=\left\{x^{\prime} \mid \min \left(x_{i}, y_{i}\right) \leq x_{i}^{\prime} \leq \max \left(x_{i}, y_{i}\right), \forall i \in V\right\}$. $[x, y]$ is a box

Definition $((x, y)$ - step)

A point $x^{\prime} \in \mathbb{Z}^{V}$ is a $(x, y)-$ step, if $x^{\prime} \in[x, y]$ and $d\left(x, x^{\prime}\right)=1$, where $d(x, y)=\Sigma_{i \in V}\left|x_{i}-y_{i}\right|$

Definition (Jump system)

A nonempty set $\mathcal{J} \subseteq \mathbb{Z}^{V}$ is called a Jump System if it obeys the following axiom (any point $x \in \mathcal{J}$ is called feasible):
two-step axiom: Given $x, y \in \mathcal{J}$ and a (x, y)-step x^{\prime}, either $x^{\prime} \in \mathcal{J}$, or there exists a $\left(x^{\prime}, y\right)$-step $x^{\prime \prime}$ such that $x^{\prime \prime} \in \mathcal{J}$

Examples

\bullet

Fig. 1: A jump system and a set that is not a jump system

More Examples..

Mention only those examples which you need/can justify.

- Jump systems in $\mathbb{Z}: \mathcal{J}$ is a jump system in \mathbb{Z} if and only if between any two feasible points with distance >2, there is atleast one feasible point
- Matroids and delta-matroids: Jump systems contained in the unit box $\left(\{0,1\}^{V}\right)$ are delta-matroids. Among them, those delta-matroids with constant coordinate-sum are equivalent to matroids and vice versa.(The feasible points are characteristic vectors of bases)
- Degree systems of Graphs: Let H be a spanning subgraph of a graph G. Define the degree sequence of H to be $\operatorname{deg}_{H} \in \mathbb{Z}^{V}$ such that $\operatorname{deg}_{H}(v)$ equals the degree of v in H . Set of all degree sequences of spanning subgraphs of G is called the degree system of G. We will see why it's a jump system in a moment!

Operations on Jump systems

Mention only the necessary operations. Develop some intuition on board for jump systems before this.
Jump systems are closed under the following (not exhaustive):

- Translation: Add an integral vector b to every feasible point.
- Reflection: For some i, replace $i^{\text {th }}$ coordinate x_{i} by $-x_{i}$ for every feasible x.
- Intersection with a box: Given a box $B, \mathcal{J} \cap B$ is a jump system if it is nonempty.
- Projection: Given $S \subseteq V$, replace every feasible point by its restriction to S.
- Sum: If \mathcal{J}_{1} and \mathcal{J}_{2} are jump systems, then so is $\mathcal{J}_{1}+\mathcal{J}_{2}=\left\{x+y \mid x \in \mathcal{J}_{1}, y \in \mathcal{J}_{2}\right\}$
- Closest points to a box: Given a box B, $\mathcal{J}_{B}=\{x \in \mathcal{J} \mid d(x, B)=d(\mathcal{J}, B)\}$ is also a jump system.
Now we see why degree systems are jump systems: For a graph G, its degree system is the sum of degree systems of all its one-edge spanning subgraphs (which are trivially jump systems).

A greedy algorithm for linear optimization in jump systems

- Jump systems acquire one special trait of matroids - For an integral vector $c, c^{T} x$ can be maximized in polynomial time over any jump system (assuming it is bounded!).

Greedy

1: Order V as $\left\{j_{1}, \ldots, j_{n}\right\}$ where

$$
c_{j_{1}} \geq c_{j_{2}} \geq \ldots c_{j_{k}}>0=c_{j_{k+1}}=\ldots=c_{j_{n}}
$$

2: $\mathcal{J}_{0} \leftarrow \mathcal{J}$
Do the superscripts and subscripts of J mean different things?
3: for $i=1$ to k do
4: \quad Set $\alpha=\max \left\{x_{j_{i}}: x \in \mathcal{J}^{i-1}\right\}$
5: \quad Set $\mathcal{J}_{i}=\left\{x \in \mathcal{J}^{i-1}: x_{j i}=\alpha\right\}$
6: end for
7: return \mathcal{J}^{k}

Theorem

Each feasible point $x \in \mathcal{J}^{k}$ maximizes $c^{T} x$ over \mathcal{J}

Algorithm Contd.

- But this looks strange! How could it run in polynomial time, if we to calculate Step 4(Afterall \mathcal{J} could have size exponential in V !).
- It might be possible that we are given \mathcal{J} as input, but then this algorithm is meaningless! In one scan we find the answer to the optimization problem!
- Not to worry Shioura and Tanaka proved that provided we have access to membership oracle for \mathcal{J}, one has the following:

Theorem (Shioura, Tanaka '07)

The algorithm Greedy finds an optimal solution in $O\left(n^{2} \log \phi(\mathcal{J})\right)$ time, provided a vector in \mathcal{J} is given. (where size $\phi(S)$ of S is
$\phi(S)=\max _{v \in V}\left\{\max _{y \in S} y(v)-\min _{y \in S} y(v)\right\}$ and $\left.n=|V|\right)$.

- But, we will neither explain the correctness, not the claimed running time here.

Largest restricted factor problem

Definition (2 -factor and ≤ 2-factor)

A 2-factor(respectively, ≤ 2-factor) of a graph $G=(V, E)$ is a set $S \subseteq E$ such that every vertex of G is incident with exactly two(respectively, atmost two) edges of X

Definition (k-restricted factor) Is this definition meant for graphs?
 Otherwise what does circuit mean?

For a positive integer k, a factor X is k-restricted if every circuit formed by the edges of X has length atleast $k+1$.

- For a given graph G and integer k, we want to find the largest k-restricted factor in G.
- For $\mathbf{k} \geq \mathbf{5}$: Hell, Kirkpatrick, Kratchovil and Kriz proved that if the set of circuit lengths to be excluded is not a subset of $\{3,4\}$, then the problem is $\mathcal{N} \mathcal{P}$-hard
- For the weighted restricted factor problem, $\mathcal{N} \mathcal{P}$-hardness is proved even for bipartite graphs(for $k=4$). Here, $k=3$ case remains open,

Connection with jump systems

- To make the link with jump systems, we ask the question: "For what values of k, the set $G(k)$ of degree sequences of restricted factors forms a jump system, for any graph G?". In light of this, we present the following theorem:

Theorem

For any graph G and any $k \leq 3, G(k)$ is a jump system. For any $k>4$ there exists a graph G such that $G(k)$ is not a jump system.

Proof

For $k<=2$, restricted factors are same as normal factors, and therefore For any graph $G, G(k)$ is the intersection of its degree system with the box $\{0,1,2\}^{V}$.
For $k=5$, consider the following graph G.
There are two cycles of length 9 , avoiding u and v respectively, in G.
Take these two as x and y respectively. Obviously $x, y \in G(5)$ and $x_{u}=y_{v}=0, x_{w}=y_{w}=2, \forall w \notin\{u, v\}$. Take x^{\prime} as a (x, y)-step, where $x_{u}^{\prime}=1$ and $x_{w}^{\prime}=x_{w}$ otherwise.

Connection with jump systems contd.

Proof contd.

Now, if $G(5)$ is a jump system, there exists another $\left(x^{\prime}, y\right)$-step $x^{\prime \prime} \in G(5)$. Now, either $x_{w}^{\prime \prime}=2, \forall w$, or $x_{u}^{\prime \prime}=x_{v}^{\prime \prime}=1, x_{w}^{\prime \prime}=2$ otherwise. For the first case, $x^{\prime \prime}$ must be a hamiltonian cycle, which clearly G doesn't have. For the second case, either there is a length 9 path from u to v, or there is a path of length <4 from u to v. But, none of these holds! Hence $G(5)$ is not a jump system. This graph can be easily modified for $k \geq 6$ by adding more degree 2 vertices.

Connection with jump systems contd.

Proof contd.

Let us now prove $G(3)$ is a jump system. Denote $G(3)$ by \mathcal{J}.
Let $x, y \in \mathcal{J}$, and let x^{\prime} be a (x, y)-step. Let u be the component on which x^{\prime} differs from x (w.l.o.g. assume $x_{u}<y_{u}$ then $x_{u}^{\prime}=x_{u}+1$). Obviously $x^{\prime} \notin \mathcal{J}$. Therefore, we seek a $\left(x^{\prime}, y\right)$-step $x^{\prime \prime}$ such that $x^{\prime \prime} \in \mathcal{J}$. In the following to come, we show there is an edge simple path \mathcal{P} such that $X^{\prime \prime}=X \triangle \mathcal{P}$ works for $x^{\prime \prime}$.

Consider a path from u to some vertex v. We denote the path by $\mathcal{P}_{m}\left(u=v_{0}, v_{1}, v_{2}, \ldots, v_{m}=v\right)$ and denote the path v_{0}, \ldots, v_{i} by \mathcal{P}_{i}. Also, let $X_{i}=X \triangle \mathcal{P}_{i}$. We want \mathcal{P} to satisfy the following properties(\star):

1. $v_{i} v_{i+1} \in Y \backslash\left(X \cup E\left(P_{i}\right)\right)$ for i even
2. $v_{i} v_{i+1} \in X \backslash\left(Y \cup E\left(P_{i}\right)\right)$ for i odd
3. X_{m} is triangle-free

Connection with jump systems contd.

Proof contd.

Our philosophy is simple: start with $\mathcal{P}_{0}=u$, which trivially satisfies \star, then whenever X_{m} does not satisfy the requirements for $X^{\prime \prime}$, "increase" \mathcal{P}_{m} to \mathcal{P}_{m+1}.

- When m is odd: If X_{m} is a $\left(x^{\prime}, y\right)$-step we are done. Else, $\operatorname{deg}_{X_{m}}(v)=x_{v}+1>y_{v} \Longrightarrow x_{v} \geq y_{v}$. This means \exists an edge $v q \in X \backslash\left(Y \cup E\left(\mathcal{P}_{m}\right)\right)$. Extend \mathcal{P}_{m} to \mathcal{P}_{m+1} by setting $v_{m+1}=q$.
- When m is even: Again, if X_{m} is already a $\left(x^{\prime}, y\right)$-step, we stop. Else, $\operatorname{deg}_{x_{m}}(v)=x_{v}-1<y_{v} \Longrightarrow x_{v} \leq y_{v}$. This means \exists an edge $v q \in Y \backslash\left(X \cup\left(E\left(\mathcal{P}_{m}\right)\right)\right.$. Now, if $X_{m} \cup\{v q\}$ is triangle-free, we simply extend to \mathcal{P}_{m+1} by setting $v_{m+1}=q$. Otherwise, X_{m} contains edges $q w, w v$ for some w forming a triangle.
Now, if $q w \in X \backslash E\left(\mathcal{P}_{m}\right)$, then extend \mathcal{P}_{m} to \mathcal{P}_{m+1} by setting $v_{m+1}=q$ and $v_{m+2}=w$. Else, $q w \in E\left(\mathcal{P}_{m}\right) \cap Y$. Now, $w v \notin Y$ (since Y is triangle-free), therefore we must have $w v \in X \backslash\left(E\left(\mathcal{P}_{m}\right) \cup Y\right)$. Now $\operatorname{deg}_{x_{m}}(v)=x_{v} 1=1$, whereas $y_{v}=2$. Therefore, there exists an edge $v_{p} \neq v_{q}$ in $Y \backslash\left(X \cup E\left(\mathcal{P}_{m}\right)\right.$.

Connection with jump systems contd.

Proof contd.

Suppose that $X_{m} \cup\{v p\}$ contains a triangle. Then the triangle must have vertices v, p, w. But this would imply that $\operatorname{deg}_{X_{m}}(w)=3$, a contradiction. Therefore, we can extend \mathcal{P}_{m} by putting $v_{m+1}=p$.

Since, \mathcal{P}_{m} is edge simple, we should eventually get the required (x^{\prime}, y)-step!

