
Presentation Notes for a Combinatorial

algorithm for Submodular function

minimization

Aditya Kannan

April 13, 2024

Abstract

We present a strongly polynomial time algorithm for minimizing sub-
modular functions due to Schrijver [2].

1 Notation

We globally let V denote our ground set and f : 2V → R our submodular func-
tion. Let EO denote the time taken for evaluating f on an inuput.

Also n := |V |. For a total order T = (V,≺) on V , we denote by S≺
v the

section {w ∈ V : w ≺ v} for v ∈ V . For s, u ∈ V with s ≺ u, ≺s,u stands for the
total order obtained by laying out the elements of V in a row according to ≺,
and then displacing u to the place just before s. For a total order ≺ on V we
let b≺ denote the extreme base generated by ≺

For x ∈ RV and U ⊆ V , let x(U) denote
∑

u∈U x(u).

2 Subroutine for replacing extreme bases

Lemma 2.1. Let T = (V,≺) be a total order on V and s, t ∈ V with s ≺ t.
There exists a subroutine which writes b≺ + δ(t̂− ŝ) (for some δ ≥ 0 chosen by
the algorithm) as a convex combination of the extreme bases b≺

s,u

for u ∈ (s, t]
in O(n3 + n2EO) time. Here t̂ is the unit vector in RV in the direction of t.

3 Subroutine for eliminating excess extreme bases

Lemma 3.1. Suppose x ∈ Rn is written as the following convex combination:

x =
∑
i∈I

λiyi

1

for yi ∈ Rn and λi ∈ [0, 1] summing up to 1. There exists an algorithm running
in O(n|I|3) time which outputs a J ⊆ I with |J | ≤ n+1 and σi ∈ [0, 1] summing
to 1 such that

x =
∑
i∈J

σiyi

4 The Algorithm

First, place an arbitrary total order < on V for the purpose of breaking ties
Translation by a constant preserves the submodularity of f so we are free to

assume that f(∅) = 0 henceforth.
In lieu of the min-max theorem of Edmonds, which states that

min{f(X) : X ⊆ V } = max{x−(V) : x ∈ B(f)},

(here x−(v) = min(x(v), 0)) the algorithm intends to find a W ⊆ V and an
x ∈ B(f) such that f(W) = x−(V). This W minimizes f .

We maintain at all times, an element

x = λ1b
≺1 + . . . λkb

≺k (1)

of B(f) as a convex combination of extreme bases λib
≺i for 1 ≤ i ≤ k with

k ≤ n+ 1. The algorithm is as follows:

Step 1 : Initialize x by choosing an arbitrary total order ≺ on V , comput-
ing the extreme base b≺ with respect to this total order and setting x to be that.

Step 2: Construct a directed graph D := (V,A), with

A := {(u, v) : u ≺i v for some 1 ≤ i ≤ k}.

Define P := {v ∈ V : x(v) > 0} and N := {v ∈ V : x(v) < 0}. If there is no
directed path from P to N go to Step 3. Else jump to Step 4.

Step 3: Set W to be the set of vertices of D that can reach N via a directed
path. Return W .

We claim that f(W) = x−(V). Indeed, for every 1 ≤ i ≤ k, W is a lower
set of (V,≺i), i.e. if v ∈ W and u ≺i v, then u ∈ W as well. This means that
W is of the form S≺i

v for some v ∈ V . Thus b≺i(W) = f(W) by expanding out
the telescoping sum. As a result of (1), x(W) = f(W). But W ∩ P = ∅, so
x−(V) = x(W) = f(W).

Step 4: For v ∈ V let d(v) denote the distance of v from P in D. Let t be
the element in N reachable from P which also maximizes d(t). Break ties by
picking the maximum element. Let s ∈ V be the maximum element such that
(s, t) ∈ A and d(s) = d(t)− 1. Let α be the maximum size of (s, t]≺i

across all
1 ≤ i ≤ k. By reordering if necessary, assume that (s, t]≺1

= α.

2

Invoke the subroutine in Lemma (2.1) to get a δ ≥ 0 and write b≺1 + δ(t̂− ŝ)
as a convex combination of b≺

s,u
1 for u ∈ (s, t]≺1 . Then (1) gives us

y := x+ λ1δ(t̂− ŝ) (2)

as a convex combination of b≺i for 2 ≤ i ≤ k and b≺
s,u
1 for u ∈ (s, t]≺1

. Intersect
the line segment joining x and y with the hyperplane x(t) = 0. Note that t ∈ N
so the intersection is either a single point or empty. If it’s empty, set x′ := y or
otherwise set x′ to be the point of intersection. Note that x′ is the point in the
line segment closest to y such that x′(t) ≤ 0.

We get x′ in the form of a convex combination of b≺i for 1 ≤ i ≤ k and b≺
s,u
1

for u ∈ (s, t]≺1 . If x
′(t) < 0 (so x = y) then there is no instance of b≺1 in the

convex combination.
The number of terms in the convex combination for x′ might exceed n at

the moment. So relabel the vectors and write

x′ =
∑
i∈I

λib
≺i . (3)

Invoke Lemma (3.1) on (3). Note that |I| = O(n). Set x← x′ and jump to Step
2.

References

[1] S. Iwata: A fully combinatorial algorithm for submodular function mini-
mization, J. Combin. Theory, B84 (2002), 203–212.

[2] A. Schrijver: A combinatorial algorithm minimizing submodular functions
in strongly polynomial time, J. Combin. Theory, B80 (2000), 346–355

3

