Hints to assignment 2 (Total marks: 80)

April 23, 2012

- 15.1, 6 marks Use the recurrence

$$
C(i, j)= \begin{cases}\operatorname{distance}\left(p_{i}, p_{j}\right) & i=1, j=2 \\ C(i, j-1)+\operatorname{distance}\left(p_{j-1}, p_{j}\right) & i<j-1 \\ \min _{1 \leq k<i}\left\{C(k, i)+\operatorname{distance}\left(p_{k}, p_{j}\right)\right. & j>2, i=j-1\end{cases}
$$

where $C(i, j)$ is length of a shortest bitonic path between p_{i} and p_{j}.

- 23-1, marks: $\mathbf{1 , 2 , 2 , 2}$ Add an edge e_{1} from $G \backslash T$ to T. Remove an edge e_{2} from the unique cycle formed. For some choice of e_{1}, e_{2} the weight increase is minimum.
- 23.1-4, 3 marks A cycle with all edges of equal weight make a counter example.
- 23-4, marks: 2,2,2 Yes, No, Yes.
- 23.1-11, 4 marks Put the new edge in the tree, remove max wt edge from the cycle formed.
- 24.1-3, 2 marks In every iteration, update a flag variable if any d value changes. There will be no change after m iterations.
- 24-2, marks: $1,2,3$ a. Trivial b. Sort the dimensions of each box in nondecreasing order. Compare coordinatewise.
c. Just reduces to finding a longest path in a DAG.
- 24-4, marks: 2 each=12 a. Dijkstra's algorithm with counting sort.
b. BFS.
c. Trivial.
d. Triangle inequality.
- 25.1-5, 3 marks After calculating L^{n-1} as in the book, multiply with a column vector with s th entry 1 and rest 0s.
- 26.2-8, 3 marks On each s to t path, there is an edge with 0 residual capacity once the max flow is set. Remove this edge and repeat this process. There can be at most $|E|$ iterations.
- 26.2-10, 4 marks Both $\delta(s, u)$ and $\delta(v, t)$ reduce by 2 .
- 26.3-5, 6 marks Show that every cut in the graph is of capacity at least n by taking a generic cut.
- 1, marks: 1,1,3,3
- 2, 5 marks
- 3, 5 marks

