Design and Analysis of Algorithms End-semester Examination

April 27, 2012

Maximum marks: 40

Instructions: Write correctness proofs for algorithms. Try to design as efficient algorithms as possible. There are 7 questions.

1. (4 marks) State whether the following are true or false. Justify. Here $d[u]$ and $f[u]$ are the discovery and finish time of vertex u.
(a) If there is a path from u to v in a directed graph G, and if $d[u]<d[v]$ in a DFS of G, then v is a descendant of u in the depth-first forest produced.
(b) If there is a path from u to v in a directed graph G, then any DFS must result in $d[v] \leq f[u]$.
2. (4 marks) Let X and Y be two arrays, each containing n elements already in sorted order. Give an $O(\log n)$ time algorithm to find the median ($n^{t h}$ smallest) of all the $2 n$ elements in arrays X and Y.
3. (4 marks) We are given a directed graph $G=(V, E)$ on which each edge $e=(u, v)$ has an associated value $r(u, v)$, which is a real number in the range $0 \leq r(u, v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. Thus $r(u, v)$ is the probability that the channel from u to v will not fail. Assuming that these probabilities are independent, give an efficient algorithm to find the most reliable path between two given vertices s and t.
(Hint: Reliability of a path is the product of reliabilities of edges on the path.)
4. ($\mathbf{6}$ marks) The edge connectivity of an undirected graph is the minimum number of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1 , and the edge connectivity of a cycle is 2 .
Show how the edge connectivity of an undirected graph $G=(V, E)$ can be determined by running a max-flow algorithm on at most $|V|$ flow networks, each with $O(V)$ vertices and $O(E)$ edges.
5. (8 marks) A perfect matching is a matching in which every vertex is matched. Let $G=(V, E)$ be a bipartite graph with vertex partition $L \cup R$, and $|L|=|R|=n$. For any $X \subseteq V$, define the neighbourhood of X as

$$
N(X)=\{y \in V:(x, y) \in E \text { for some } x \in X\}
$$

That is, the set of vertices adjacent to some member of X. Prove that there exists a perfect matching in G if and only if $|A| \leq|N(A)|$ for every $A \subseteq L$.
(Hint: Construct a flow network. Show that it has a cut of strictly less than n edges if there is $A \subseteq L$ such that $|A|>|N(A)|$. Prove the other direction similarly.)
6. ($\mathbf{1 0} \mathbf{~ m a r k s) ~ I n ~ t h e ~ b a l a n c e d ~ p a r t i t i o n ~ p r o b l e m , ~ a ~ s e t ~} S$ of numbers is given as input. The goal is to find an $A \subseteq S$ such that $\left|\sum_{x \in A}-\sum_{x \in S \backslash A}\right|$ is minimized. Give an algorithm for this problem and analyze its time complexity.
Consider the special case of the corresponding decision problem where the goal is to check whether there is an $A \subseteq S$ such that $\sum_{x \in A}=\sum_{x \in S \backslash A}$. Show that this problem is NP-complete.
7. (4 marks) In the subset sum problem, input is a set S of integers and a target number t. The goal is to determine if there exists $A \subseteq S$ such that $\sum_{x \in A}=t$. We have seen that this problem is NP-complete. Prove that the problem can be solved in polynomial time if t is given in unary.

