Design and Analysis of Algorithms End-semester Examination

April 27, 2012

Maximum marks: 40

Instructions: Write correctness proofs for algorithms. Try to design as efficient algorithms as possible. There are 7 questions.

- 1. (4 marks) State whether the following are true or false. Justify. Here d[u] and f[u] are the discovery and finish time of vertex u.
 - (a) If there is a path from u to v in a directed graph G, and if d[u] < d[v] in a DFS of G, then v is a descendant of u in the depth-first forest produced.
 - (b) If there is a path from u to v in a directed graph G, then any DFS must result in $d[v] \leq f[u]$.
- 2. (4 marks) Let X and Y be two arrays, each containing n elements already in sorted order. Give an $O(\log n)$ time algorithm to find the median $(n^{th} \text{ smallest})$ of all the 2n elements in arrays X and Y.
- 3. (4 marks) We are given a directed graph G = (V, E) on which each edge e = (u, v) has an associated value r(u, v), which is a real number in the range $0 \le r(u, v) \le 1$ that represents the reliability of a communication channel from vertex u to vertex v. Thus r(u, v) is the probability that the channel from u to v will not fail. Assuming that these probabilities are independent, give an efficient algorithm to find the most reliable path between two given vertices s and t.

(Hint: Reliability of a path is the product of reliabilities of edges on the path.)

4. (6 marks) The *edge connectivity* of an undirected graph is the minimum number of edges that must be removed to disconnect the graph. For example, the edge connectivity of a tree is 1, and the edge connectivity of a cycle is 2.

Show how the edge connectivity of an undirected graph G = (V, E) can be determined by running a max-flow algorithm on at most |V| flow networks, each with O(V) vertices and O(E) edges.

5. (8 marks) A perfect matching is a matching in which every vertex is matched. Let G = (V, E) be a bipartite graph with vertex partition $L \cup R$, and |L| = |R| = n. For any $X \subseteq V$, define the neighbourhood of X as

 $N(X) = \{ y \in V : (x, y) \in E \text{ for some } x \in X \}$

That is, the set of vertices adjacent to some member of X. Prove that there exists a perfect matching in G if and only if $|A| \leq |N(A)|$ for every $A \subseteq L$.

(Hint: Construct a flow network. Show that it has a cut of strictly less than n edges if there is $A \subseteq L$ such that |A| > |N(A)|. Prove the other direction similarly.)

6. (10 marks) In the balanced partition problem, a set S of numbers is given as input. The goal is to find an $A \subseteq S$ such that $|\sum_{x \in A} - \sum_{x \in S \setminus A}|$ is minimized. Give an algorithm for this problem and analyze its time complexity.

Consider the special case of the corresponding decision problem where the goal is to check whether there is an $A \subseteq S$ such that $\sum_{x \in A} = \sum_{x \in S \setminus A}$. Show that this problem is NP-complete.

7. (4 marks) In the subset sum problem, input is a set S of integers and a target number t. The goal is to determine if there exists $A \subseteq S$ such that $\sum_{x \in A} = t$. We have seen that this problem is NP-complete. Prove that the problem can be solved in polynomial time if t is given in unary.