# Hints to Assignment 1 

February 12, 2012

- 2-3 a. $\Theta(n)$, b. $\lceil\log k\rceil$ multiplications for $x^{k}$, hence $\Theta(n \log n)$ running time.
- 2-4 a. $(2,1),(3,1),(8,6),(8,1),(6,1)$ b. Reverse sorted array $\frac{n(n-1)}{2}$ c. Running time $=$ number of inversions d. In the merge routine, suppose array $A$ is merged with $B$ to get a new array $C$. Suppose $i>0$ elements of $A$ are yet uncopied. If, at this stage, and still the next element is copied from $B$, increase a counter by $i$. Keep the same global counter for all the calls to the merge routine.
- 3.1-1 $\max \{f(n), g(n)\} \leq f(n)+g(n) \leq 2 \max \{f(n), g(n)\}$
- 3.1-4 yes, no
- 3-2 $o, o$, none, $\omega, \Theta, \Theta$
- 3-4 F, F, T, F, T, T, F, T
- 4.1-6 $S(m)=2 S(m / 2)+1=m=\log n$
- 4.2-4 $\Theta\left(n^{2}\right)$
- 4.2-5 $\Theta(n \log n)$
- 4.3-2 48
- 4.4 c. $\Theta\left(n^{2} \sqrt{n}\right)$, f. $\Theta(n)$, j. $\Theta(n \log \log n)$
- 6-2 a. child: $(i-1) d+j$ parent: $\left\lceil\frac{i-1}{d}\right\rceil$, b. height $=\left\lceil\log _{d}(n(d-1)+1)\right\rceil-1$ (Yet to find out a better expression, if any.)
- 6-3 c. Move $\min \{Y[1,2], Y[2,1]\}$ to $Y[1,1]$ position, replacing the earlier entry by $\infty$. If $Y[1,2]$ is moved, the first row is completely sorted and we have to deal with an $(m-1) \times n$ tableau. Similar case for $Y[2,1]$. Recurrence: $T(p)=T(p-1)+\Theta(1)=\Theta(p)$
d. Insert the new element at $Y[m, n]$ and follow a procedure similar to c. above.
e. Insert all the elements into a $n \times n$ Young's tableau and perform $n^{2}$ extract-min operations as in c. above.
f. Check the last element of the first row. Either the first row or the last column is eliminated.
- 8-6 d. Worst-case: Each of the lists contain alternate elements from the sorted list.

