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Abstract

This thesis aims to serve as an introduction to Topological Data Analysis (TDA), a collec-

tion of methods that seek to quantify the topological and geometric features of data using

algebraic topology. The theory behind persistent homology, a stable multi-scale approach

for characterizing the structure of data, is presented here. Further, an algorithm to compute

persistence diagrams, a standard representation of persistent homology, is also discussed.

An overview of some stable vectorized representations of persistent homology that are better

suited for statistical and machine learning tasks is also given. The remainder of the thesis

addresses how these techniques can help analyze images and financial time series data. Sub-

sequently, a topological pipeline for image classification is put forth. Application of TDA to

biological images and financial time series data is also presented to motivate the broad scope

of these techniques.
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Introduction

With the data produced becoming increasingly complex, high-dimensional, and noisy, it often

poses many new challenges. Topological data analysis (TDA) proves effective in overcoming

some of these hurdles by providing a framework to study the ‘shape of data’ using tools from

algebraic topology.

The structure of the data often dictates the effectiveness of a particular mode of analysis.

For example, linear methods fail when the data has a non-linear structure. TDA provides

us qualitative insight into the organization of the data at a global level. It also enables us

to analyse data in a manner independent of the choice of embedding and coordinates.

TDA provides a variety of tools that extract complementary information from data that

can be used in conjunction with standard analytical and statistical techniques. For instance,

combining this topological information with neural networks has offered promising results

for image analysis [22, 16].

This thesis provides an exposition of some of the significant themes in TDA supported by

some applications to biological and financial data. A topological pipeline for image analysis

and classification is presented, and a general framework for analyzing time series data using

TDA is also discussed. The thesis is organized as follows:

Chapter 1 establishes some definitions and results from homology theory required for the

thesis. The computation of simplicial homology modules is also discussed here. Following

this, Chapter 2 looks at the reconstruction theorem [8] for point cloud data, which provides

mathematical backing for inferring topological properties from structures built on the data.

The focus of Chapter 3 is persistent homology, which describes how the topological

features of the data evolve with respect to a changing parameter. We look at its description
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as a graded module and also study an algorithm for its computation as put forth in [3]. The

barcode and diagram representation of this module is described, and some results on their

stability are also discussed.

The structure of persistence diagrams proves insufficient for further statistical analysis or

for integration with machine learning algorithms. To aid these tasks, topological summaries

that map persistence diagrams into a vector space are used. An overview of a few such

commonly used summaries - persistent entropy [12], persistence images [14] and persistence

landscapes [11] is presented in Chapter 4.

Chapter 5 focuses on the application of TDA to the problem of image classification. A

pipeline that extracts topological features from images is constructed using the giotto-tda

library in Python [25]. The stability of the pipeline features under rotation and transfor-

mation of the images is analysed, and a method to extract features that are more robust to

such transformations is also presented. The topological pipeline was also used to analyse a

few image datasets. The results of this have also been discussed in this chapter.

In the final chapter, we look at the application of TDA to time series data. TDA has

proven successful in identifying periods of critical transitions in climate and financial data [9,

17]. Some prerequisite theory - including Taken’s theorem and sliding window embeddings,

as outlined in [21] are first discussed. These ideas are then applied to financial market data

with the aim of identifying market crashes.

Original Contributions

While most steps in the pipeline presented in Chapter 5 were implemented using predefined

functions from the giotto-tda library [25], the ‘line filtration’ function, a generalisation of

the height filtration function available in the library, was separately defined and used.

The classification of Fundus [10], Flower [6] and Fashion MNIST [18] images using the

pipeline features presented in Chapter 5, and Section 5.5 which outlines a method for ex-

tracting features that are robust under some transformations of the images represent original

work done in the thesis.

The same is true of the analysis of financial time series data presented in Chapter 6.
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Chapter 1

Preliminaries

This chapter seeks to establish some definitions and results required for the thesis. Sections

1.1 and 1.2 discuss simplicial and singular homology theory based on [1] and [2]. The

contents of this chapter also include the homotopy invariance property of homology and the

computation of simplicial homology modules using linear algebra.

1.1 Simplicial Homology

A set of points {a0, a1, . . . , an} in RN is said to be geometrically independent iff the vectors

a1 − a0, . . . , an − a0 are linearly independent.

Definition 1.1.1 (n-simplex). The n-simplex σ spanned by a geometrically independent set

of points {a0, a1, . . . , an} from RN , is the set of all points

σ = {
n∑
i=0

tiai |
n∑
i=0

ti = 1 & ti ≥ 0 ∀ i ∈ {0, . . . , n}}.

The set of points {a0, a1, . . . , an} are called the vertices of σ and n is the dimension of

the n-simplex. The simplex spanned by a subset of the vertices is called a face of σ and

the union of all faces of σ is called the boundary of σ. The standard n-simplex ∆n, is the

simplex spanned by the standard basis vectors in {ei}n+1
i=1 in Rn+1.
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Definition 1.1.2 (Orientation). An orientation of an n-simplex is the equivalence class of

an ordering of the vertex set under the equivalence relation that identifies orderings that

differ by an even permutation.

An oriented n-simplex spanned by the ordered set of vertices v0, v1, . . . , vn is denoted by

[v0, v1, . . . vn]

e1
e2

e3

e1
e2

e3

[e1, e3, e2] [e1, e2, e3]

Figure 1.1: The standard ∆2 simplex with both possible orientations.

Definition 1.1.3 (Geometric Simplicial Complex). A geometric simplicial complex K in

RN is a collection of simplices in RN such that,

1. every face of a simplex in K also belongs to K, and

2. the intersection of two distinct simplices in K is a face of both them.

Definition 1.1.4 (Abstract Simplicial Complex). A collection S, of finite non-empty sets is

said to be an abstract simplicial complex if every non-empty subset of an element of S also

belongs to S. In this case, every element A of S is called a simplex of dimension |A| − 1.

The vertex set V , of an abstract simplicial complex S is the union of all singletons in S.

Given a simplicial complex K, the collection of vertices of all the constituent simplices forms

an abstract simplicial complex called the vertex scheme of K.

A bijective map between the vertex sets of two abstract simplicial complexes is an iso-

morphism if it maps every simplex in one complex to a simplex in the other. Every abstract

simplicial complex can be shown to be isomorphic to the vertex scheme of some simpli-

cial complex which is called its geometric realisation. As a result, every abstract simplicial

complex can be associated with a topological space determined by this geometric realisation.
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A related concept is that of a triangulation. A geometric simplicial complex K is said to

be a triangulation of a topological space X, if there exists a homeomorphism γ : K → X. A

space that accepts a triangulation is said to be triangulable.

ab c e

a d f b

K Möbius Strip

homeomorphism

Figure 1.2

Example. The geometric realization K, of the abstract simplicial complex with the vertex

set {{a}, {b}, {c}, {d}, {e}, {f}} whose simplices are given by {a, b, c}, {c, a, d}, {c, e, d},
{e, f, d}, {a, e, f}, {a, b, f} and their non-empty subsets is depicted in Figure 1.2. K is

homeomorphic to a Möbious strip and thus defines a triangulation for this space.

Definition 1.1.5 (p-chains). Given a simplicial complex K, the free abelian group generated

by all the oriented p-simplices in K is called the group of p-chains in K and is denoted by

Cp(K).

Definition 1.1.6 (Boundary Map). The pth boundary map is the linear homomorphism

∂p : Cp(K) −→ Cp−1(K) that maps each oriented p-simplex [v0, v1, . . . vp] as follows,

∂p : [v0, v1, . . . , vp] 7→
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vp].

It can easily be shown that ∂p ◦ ∂p+1 = 0. As a result, one can associate the following

chain map with every simplicial complex K.

. . . −→ Cp+1(K)
∂p+1−−→ Cp(K)

∂p−→ Cp−1(K) −→ . . . C0 −→ 0.

The kernel of the map ∂p is called the group of p-cylces and is denoted by Zp(K) while the

image of ∂p+1 is called the group of p-boundaries and is denoted by Bp(K). As ∂p◦∂p+1 = 0,

Im(∂p+1) = Bp(K) ⊆ Ker(∂p) = Zp(K) ⊆ Cp(k).
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Definition 1.1.7 (Homology). The pth homology group of a simplicial complex K, denoted

by Hp(K) is given by

Hp(K) =
Zp(K)

Bp(K)
.

The rank of Hp(K) is called the pth Betti number of K and is denoted by Bp(K).

1.2 Singular Homology

Definition 1.2.1 (n-singular simplex). Given a space X, a singular n-simplex of X is a

continuous map σ : ∆n −→ X.

One can then define singular homology groups of X by constructing chain groups and

boundary maps in a similar manner as outlined previously using singular n-simplices.

Remark 1.2.1. Similar to how simplicial homology was built by considering simplices as

building blocks, a cubical homology theory can also be developed by using n-cubes given by

In = [0, 1]× . . .× [0, 1]︸ ︷︷ ︸
n− times

.

Remark 1.2.2. While chain groups for simplicial and singular homology groups were defined

using Z-linear combinations, the same can be done with any base ring R. Using this, one

can define homology modules corresponding to any choice of a ground ring.

1.3 Homotopy Invariance

Let X and Y be topological spaces and f : X −→ Y be a continuous map. For a given

singular n-simplex σ of X, f ◦ σ is a singular n-simplex of Y. Thus, for each n we can define

a map f# : Cn(X) −→ Cn(Y ) by linearly extending the map that assigns σ 7→ f ◦ σ.

Proposition 1.3.1. The maps f# : Cn(X) −→ Cn(Y ), define a chain map f# between the

singular chain complexes of X and Y .
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. . . −−−→ Cn+1(X)
∂n+1−−−→ Cn(X)

∂n−−−→ Cn−1(X) −−−→ . . .yf# yf# yf#
. . . −−−→ Cn+1(Y )

∂n+1−−−→ Cn(Y )
∂n−−−→ Cn−1(Y ) −−−→ . . .

Proof. As the maps f# : Cn(X) −→ Cn(Y ) are linear homomorphisms by construction, all

that is left to be shown is that each square in the diagram commutes. Given an n-simplex

σ in X,

f# ◦ ∂n(σ) = f#(
n∑
i=0

(−1)iσ
∣∣[
e1, . . . , ˆei+1 . . . en+1]

) =
n∑
i=0

(−1)if(σ
∣∣[
e1, . . . , ˆei+1 . . . en+1]

)

=
n∑
i=0

(−1)i(fσ)
∣∣[
e1, . . . , ˆei+1 . . . en+1]

= ∂n ◦ f#(σ).

The proposition thus holds as a result of linearity of ∂n and f#.

Proposition 1.3.1 implies that f#(Zn(X)) ⊆ Zn(Y ) and f#(Bn(X)) ⊆ Bn(Y ). Hence, the

chain map f# induces homomorphisms f∗ at the homology level.

Proposition 1.3.2. Given topological spaces X, Y & Z and maps f, g such that X
f−→ Y

g−→
Z, the following hold:

(g ◦ f)# = g# ◦ f#,

(g ◦ f)∗ = g∗ ◦ f∗.

Theorem 1.3.1. Homotopic maps f, g : X −→ Y induce the same homomorphism at the

homology level, f∗ = g∗ : Hn(X) −→ Hn(Y ).

. . . Cn+1(X) Cn(X) Cn−1(X) . . .

. . . Cn+1(Y ) Cn(Y ) Cn−1(Y ) . . .

∂ ∂

f#
g#P

∂

P

∂

∂ ∂ ∂ ∂

Proof. Given the space ∆n× I, let ∆n×{0} = [e0, e1, . . . en] and ∆n×{1} = [v0, v1 . . . vn]

such that ei maps to vi under the projection ∆n × I → ∆n. The space ∆n × I can then be

expressed as a union of (n+ 1)−simplices {[e0, e1, . . . ei, vi, . . . vn]}ni=0.

7



Let F : X × I −→ Y represent the homotopy from f to g. Given any simplex σ in

Cn(X), we have the map

F ◦ (σ × 1) : ∆n × I −→ Y.

We can thus define a family of maps P : Cn(X) −→ Cn+1(Y ) such that for any singular

n-simplex σ in X,

P (σ) =
n∑
i=0

(−1)i(F (σ × 1))
∣∣∣[
e0, e1, . . . ei, ẽi, . . . ẽn]

.

Consider the maps ∂P and P∂ : Cn(X) −→ Cn(Y ),

P∂(σ) =
∑
j<i

(−1)i+j(F (σ × 1))
∣∣∣[
e0, . . . ej, vj, . . . v̂i, . . . vn]

+
∑
j>i

(−1)i+j+1(F (σ × 1))
∣∣∣[
e0, . . . , êi, . . . ej, vj, . . . vn].

∂P (σ) =
∑
j≤i

(−1)i+j(F (σ × 1))
∣∣∣[
e0, . . . , êj, . . . ei, vi, . . . vn]

+
∑
j≥i

(−1)i+j+1(F (σ × 1))
∣∣∣[
e0, . . . ei, vi, . . . v̂j, . . . vn].

P∂(σ) + ∂P (σ) = F (σ × 1)
∣∣∣[
v0, v1, . . . vn]

− F (σ × 1)
∣∣∣[
e0, e1, . . . en]

= g#(σ)− f#(σ).

Given σ ∈ Zn(X),

g#(σ)− f#(σ) = ∂P (σ) + P∂(σ) = ∂P (σ) ∈ Bn(Y ).

From the previous statement, one can see that f# & g# map a cycle in X to homologous

cycles in Y . Thus, the map induced at the homology level by f and g are the same.

Proposition 1.3.3. Homotopically equivalent spaces X and Y , have isomorphic homology

groups Hn(X) and Hn(Y ) for all n ∈ N ∪ 0.

Proof. Let f : X −→ Y be a homotopy equivalence and g : Y −→ X be its homotopy

inverse. It then follows from Proposition 1.3.2 and Theorem 1.3.1 that g∗f∗ = 1Hn(X) and

f∗g∗ = 1Hn(Y ). Thus, Hn(X) ∼= Hn(Y ).

8



Remark 1.3.1. The singular homology groups of a simplicial complex are the same as its

simplicial homology groups. Using the homotopy invariance property of singular homology,

we can also conclude that the singular homology groups of a triangulable space coincides

with the simplicial homology of its triangulation.

1.4 Required Algebra

Definition 1.4.1 (Graded Ring). A ring R is called graded if there exists a family of sub-

groups {Ri}i∈Z of R such that

1. R =
⊕

i∈ZRi as abelian groups and,

2. RnRm ⊆ Rn+m for all n,m ∈ Z.

A graded ring R is said to be non-negatively graded if Rn = 0 for all n < 0. For a given

i ∈ Z, any element in Ri is called a homogeneous element of degree n.

Definition 1.4.2 (Graded Modules). A module M over a graded ring R is said to be a

graded R-module if there exists a family of subgroups {Mi}i∈Z of M such that

1. M =
⊕

i∈ZMi as abelian groups and,

2. RnMm ⊆Mn+m for all n,m ∈ Z.

A graded R-module is said to be non-negatively graded if Mn = 0 for all n < 0.

Definition 1.4.3 (α-shift). Given a graded ring R and α ∈ Z, one can define a new ring

denoted by
∑

αR as ⊕i∈ZRα+i by shifting the gradation on R by α.

Theorem 1.4.1. Given a finitely generated module M over a PID D, there exist unique

non-zero elements d1, . . . , dm ∈ D, where d1|d2 . . . |dm and β ∈ N ∪ {0} such that M is

isomorphic to a direct sum of cyclic D-modules as follows:

M ∼= Dβ ⊕ (
m⊕
i=1

D/djD). (1.1)

9



A structure theorem for graded modules over a PID can be defined in a similar fashion

as described in Theorem 1.4.1.

Theorem 1.4.2. Given a graded module M over a graded PID D, there exist unique ho-

mogeneous elements d1, . . . , dm ∈ D such that d1|d2 . . . |dm and α1, . . . , αn & γ1, . . . , γm ∈ Z
such that

M ∼= (
n⊕
i=1

∑
αiD) ⊕ (

m⊕
j=1

∑
γjD/djD). (1.2)

1.5 Computing Simplicial Homology over a PID

Simplicial homology over a PID, D can be easily computed using results from linear algebra.

For most practical applications, the ground ring Z/2Z is preferred.



d1 0 . . .

0 d2 0 . . .
...

... 0
. . . 0

... dkn

0 0


Figure 1.3: Smith-normal form of matrix Mn

A matrix Mn associated with boundary map ∂n : Cn(K) → Cn−1(K) with the cycles as

basis is constructed. This matrix can be reduced to the normal form as shown in 1.3 where

d1|d2 . . . |dmn . Using the structure theorem 1.4.1, we can make the following observations.

• The elements greater than 1 in the set {d1, . . . dkn} correspond to the torsion coefficients

in the decomposition of Hn−1(X).

• The number of zero columns in Mn, denoted by αn, represents rank of the Zn(X).

• The (n− 1)th Betti number of K, is given by βn−1 = αn−1 − kn.

10



Thus, we can determine the homology modules of K over D for all dimensions.

Similarly, the structure theorem over graded PIDs can be used to determine the graded

homology modules.

11
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Chapter 2

Geometric Reconstruction of Point

Cloud Data

Before delving into topics in TDA, it is necessary to gain an understanding of the topological

information of interest present in the data and the steps involved in estimating the same.

This chapter explores these ideas by considering the specific example of point cloud data.

Here, a point cloud X is assumed to be a finite collection of points {x1, . . . , xn} in Rd

sampled i.i.d using a probability measure µ with a compact support M . It is the topology

of this underlying space M that one wishes to capture by using TDA.

The first step towards estimating the topological features of M using X is constructing

structures on the point cloud which capture the required topological information. In section

2.1, we shall look at some complexes that can be built on the point cloud, and in section 2.2

define conditions under which they can be considered good representations of the underlying

space M .

2.1 Complexes from Point Cloud

A space Xε can be naturally constructed from a given a point cloud X = {x1, . . . , xn} by

considering the union of closed balls of radius ε centred at {x1, . . . , xn}. That is,

13



Xε =
n⋃
i=1

Bε(xi).

Xε is known as the ε-offset or ε-thickening of the space X.

Definition 2.1.1 (Nerve of a cover). Given a cover U = {Uα}α∈A of a space Y , the nerve

of U is the abstract simplicial complex, N(U) whose k-simplices are determined by k + 1

elements of U that have a non-empty intersection. That is,

[Ui0 , . . . , Uik ] ∈ N(U) ⇐⇒
k⋂

n=0

Uin 6= ∅.

Theorem 2.1.1 (Nerve Theorem). Let U = {Uα}α∈A be a cover of the space Y such that

for any A′ ⊆ A, the intersection
⋂
α∈A′

Uα is either contractible or empty. Then, the space Y

is homotopically equivalent to N(U).

The Ĉech complex of the point cloud X for a given ε > 0, denoted by Cε(X), is the nerve

of the covering {Bε(xi)}ni=1 of Xε. As the intersection of closed balls in Rd is convex and

hence contractible, it follows from Theorem 2.1.1 that the Ĉech complex is homotopically

equivalent to ε−thickening of X.

Definition 2.1.2 (Ĉech Complex). For a given point cloud X = {x1, . . . , xn} and ε > 0, the

Ĉech complex, Cε(X), is the abstract simplicial complex whose k-simplices are given by all

k + 1 points {xi1 , . . . , xik+1
} such that

k⋂
j=0

Bε(xij) 6= ∅.

Definition 2.1.3 (Rips Complex). For a given point cloud X = {x1, . . . , xn} and ε > 0, the

Rips complex, Rε(X), is the abstract simplicial complex whose k-simplices are determined

by k + 1 points {xi1 , . . . , xik+1
} that are pairwise less than ε apart.

The Rips complex is an instance of a flag complex and is completely determined by the

ε-connectivity graph given by its 1-simplices. It also should be noted that the Rips complex

may lie in a Euclidean space of dimension greater than that in which the point cloud is

embedded.

Proposition 2.1.1. For any given point-cloud X and ε > 0,

Cε(X) ⊆ R2ε(X) ⊆ C2ε(X).

14



Both these inclusions follow from the definitions of the Ĉech & Rips complex and the

triangle inequality property of the Euclidean metric.

ε

a. b. c.

Figure 2.1: a. ε offset of a point cloud X ; b. Ĉech complex Cε(X) ; c. Rips Complex V2ε(X).

Remark 2.1.1. The number of intersections that need to be computed to determine the

Ĉech complex of a point cloud combined with the size of the resultant complex often pose

some practical difficulties. On the other hand, the ε-connectivity graph is more tractable to

compute and store, making the Rips complex a more computationally viable option.

In cases where the point cloud is very large, even the construction of the Rips complex

might prove difficult. In such scenarios, other complexes like the weak and strong witness

complexes are preferred. These complexes are constructed on a smaller subset of the point

cloud called the set of landmark points.
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2.2 Reconstructing the Manifold

Definition 2.2.1 (Hausdorff Distance). Given two subspaces K,K ′ of a metric space (X, d),

the Hausdorff distance dH : between them is given by

dH(K,K ′) = sup
w∈X
| inf
x∈K

d(w, x)− inf
y∈K′

d(w, y)|.

The Hausdorff distance dH defines a metric on the set of compact subspaces of a metric

space (X, d). This can be used to define a distance function between two compact metric

spaces as follows. This distance function can be viewed as a measure of how close the

compact spaces are to being isometric.

Figure 2.2: Point cloud X sampled from a torus along with the thickened spaces correspond-
ing to values a < b < c. The thickened spaces Xa and Xb are homotopically equivalent to the
torus. As the offset value increases, the ‘central hole’ gets filled in and the thickened spaces
are no longer homotopically equivalent to the torus as evidenced by Xc. (Source: [15])

Definition 2.2.2 (Gromov-Hausdorff Distance). Let (K1, d1) and (K2, d2) be two compact

metric spaces. The Gromov-Hausdorff distance dGH(K1, K2) is the infimum over all r ≥ 0

such that there exists a metric space (X, d) and compact subsets C1, C2 ⊆ X which are
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isomteric to K1 and K2 respectively such that dH(C1, C2) ≤ r.

Consider the point cloud X ⊆ Rd sampled using the probability measure µ with compact

support M . As both X and K are compact subsets of Rd, we can compute the Haussdorf

distance between them. Additionally, we can define a map dM : Rd → R+ that gives the

distance of each point in Rd from the subspace M ,

dM : y 7→ inf
m∈M

||m− y||2.

Under this setting, the ε-offsets of M correspond to the sublevel sets d−1M ([0, ε]) of the

distance function dM .

Proposition 2.2.1. The distance function dM as defined, satisfies the following properties:

1. dM is 1-Lipschitz, i.e. |dM(y)− dM(z)| ≤ ||y − z||

2. dM
2 is semiconcave, i.e. the map y 7→ ||y||2 − dM 2(y), is convex.

As a result of these properties, one can define the gradient of the distance function,

∇dM : Rd −→ Rd. In this case, a point y ∈ Rd is said to be α-critical if ||∇xdM || ≤ α. For

an α ∈ (0, 1), the α-reach of dM is the maximum value of R such that d−1M ((0, r]) does not

contain an α- critical point [8].

Theorem 2.2.1 (The Reconstruction Theorem). For X and M in Rd as defined before, let

dH(X,M) < ε and reachα(dM) ≤ R for some α > 0. Then, for any β ∈ [4ε/α2, R − 3ε] and

γ ∈ (0, R), Xβ the β-offset of X is homotopically equivalent to Mγ, the γ-offset of M , when

ε ≤ R

5 + 4
α2

.

The Reconstruction theorem establishes that under certain regularity conditions on the

manifold, small offsets of the underlying manifold are homotopically equivalent to the β

offset of X for suitably chosen values of β. We also know from using the nerve theorem,

that this β-offset of X is homotopically equivalent to the Ĉech complex Cβ(X) constructed

on the point cloud. When the underlying manifold is a compact Riemannian manifold, we

also have the following result.
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Theorem 2.2.2. For a compact Riemannian manifold M , there exists η > 0 such that for

all ε < η, the ε−thickening of the manifold Mε is homotopically equivalent to M .

These results provide a justification for using Ĉech complexes built on the point cloud to

infer the topology of the underlying manifold.

From a practical perspective, there are a few challenges that need to be addressed before

we can utilise these results to analyse data. The validity of the Reconstruction theorem

rests on certain assumptions on the nature of the underlying manifold. Even if we were to

work under the assumption that these satisfied for our data set, we still need a procedure to

determine a suitable value of ε for building the Ĉech complex Cε(X). Following this, we also

need appropriate homotopically invariant objects or descriptors to quantify the topology of

this complex.

The Betti numbers associated with the simplicial homology groups of the complexes are

a good solution to the second issue due to their relative ease of computation. The other

problems, while being more tricky to overcome, can be conveniently circumvented by taking

into consideration all possible values of ε instead of choosing just one. These ideas form

the basis for persistent homology, a central technique in TDA, that is discussed in the next

chapter.
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Chapter 3

Persistence Homology

Persistent homology is a framework to study the topological features of data through the

lens of linear algebra. As indicated in the previous chapter, this is achieved by adopting

homology theory to analyse a paremetrized family of topological spaces, generally simplicial

complexes, built on data. This multi-scale approach helps us decipher complex relationships

between features occurring at different scale levels.

The first section of this chapter will motivate the notion of persistence and the construc-

tion of persistence modules using examples. In the subsequent sections, we shall look at

the algebraic structure of the persistence modules and how this can be utilised to define an

algorithm for computing this object as described in [3]. The subject of the final section will

be persistence barcodes, a parametrization of the persistence modules.

Data

Nested family of simplicial complexes (Filtration)

Persistence modules

Persistence barcodes

Figure 3.1: TDA pipeline
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With this, we would have established most key components required to construct a stan-

dard TDA pipeline. In Figure 3.1 we have a flow chart outlining the steps involved in the

same.

3.1 Persistence

Consider the Ĉech complexes constructed on a point cloud X with respect to the values ε1

and ε2, where ε1 < ε2, as depicted in Figure 3.2. The structure of these complexes suggests

that a majority of the data points are concentrated around a circular loop.

Figure 3.2: Ĉech complexes on point cloud X, Cε1 (Left) and Cε2 (Right). (Source: [7])

The Betti number associated with the complex Cε1(X) is 3. Here, the larger loop indicates

a more prominent feature of the data, while the two smaller loops are likely a result of noise

or errors in sampling.

For a slightly larger value ε2, it can be seen that the smaller loops present at ε1 get filled

in, while the large central loop remains. However, another loop has also been formed now.

While neither ε1 or ε2 are the right choices, the inclusion Hn(i) : Hn(Cε1) → Hn(Cε2) sheds

more light as the image of this map is just the homology class of the large central loop.

From this exercise, one can see that more pertinent information on the topological features

of the data can be extracted by considering all parameter values rather than just one. The
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theory of persistence which is formalised in the following section builds on this very notion.

3.2 Persistence Module

Definition 3.2.1 (Persistence Complex). A persistence complex C consists of a family of

chain complexes {Ci}i∈N∪{0} over a ground ring R along with chain maps {fi : Ci −→
Ci+1}i∈N∪{0}.

. . . −−−→ Ci−1
n+1

fi−1−−−→ Ci
n+1

fi−−−→ Ci+1
n+1 −−−→ . . .y∂ y∂ y∂

. . . −−−→ Ci−1
n

fi−1−−−→ Ci
n

fi−−−→ Ci+1
n −−−→ . . .y∂ y∂ y∂

. . . −−−→ Ci−1
n−1

fi−1−−−→ Ci
n−1

fi−−−→ Ci+1
n−1 −−−→ . . .

Figure 3.3: Persistence Complex

Definition 3.2.2 (Persistence Module). A persistence module M is a family of R-modules

{Mi}i∈N∪{0} along with R-linear maps {φi : Mi −→Mi+1}i∈N∪{0}.

Definition 3.2.3. A persistence complex M is said to be of finite type if each Mi is finitely

generated and if there exists an n such that for all i ≥ n, φi is an isomorphism. One can

similarly define a persistence module of finite type.

Example. A filtered simplicial complex K0 ⊆ K1 ⊆ . . . Km is an example of a persistence

complex. The corresponding homology modules along with the maps induced by inclusion,

constitute a persistence module. If the simplicial complex is finite, then both the persistence

complex and the persistence module are of finite type.

Example. For a point cloud X, given any increasing sequence of real numbers {εi}ni=0, the

corresponding Ĉech complexes {Cεi(X)}ni=0 determine a simplicial filtration. As the objects of

interest in persistence are the inclusion maps at the homology level, and since Rips complexes

can be squeezed between Ĉech complexes, it is sufficient for our purpose to construct Rips

complexes over the point cloud.
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Given a persistence module over M, we can define an R[t]-module α(M) as

α(M) =
∞⊕
i=0

Mi,

where given an element (m0,m1, . . .) ∈ α(M), the action of t is given by

t.(m0,m1, . . .) = (0, φ0(m0), φ1(m1), . . .).

It follows directly from the definition of α(M), that it is in fact a graded module over

R[t].

Remark 3.2.1. The map α defines an equivalence between the category of persistence mod-

ules of finite type and the category of finitely generated non-negatively graded R[t]−modules.

With respect to the example of a filtered simplicial complex, this construction enables us

to view the persistence homology modules of the filtration as a single graded module. Here,

the order of appearance of the simplices is reflected through the gradation of the module.

The structure theorem 1.4.2 for graded modules over graded PIDs, motivates the choice

of base ring of the persistence modules and complex to be a field. In such a case where the

base ring is a field F , we have the following decomposition of the graded module α(M)

α(M) '
n⊕
i=1

ΣαiF [t] ⊕
m⊕
j=1

ΣγjF [t]/tνj . (3.1)

Based on this decomposition, α(M) can be further parametrized by a multiset of ordered

tuples (i, j) of R ∪ {∞}, where i < j, called a P−interval . This is achieved using a map Q

as follows.

Given (i, j) ∈ S,

Q(i, j) = ΣiF [t]/tj−i, when i < j <∞,
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Q(i, j) = ΣiF [t], when i < j =∞, and

Q(S) :=
⊕

(i,j)∈(S)

Q(i, j).

The map Q defines a bijection between finite multisets of P−intervals and the isomor-

phism classes of persistence modules of finite type over F .

3.3 Persistent Homology of a Simplicial Filtration

Consider a filtered simplicial complex K over a field F . The n-th homology module of any

constituent simplex Ki is a vector space that is completely determined by its Betti number.

In the previous section, it has been established that this associated family of homology

vector spaces can be viewed as a graded module over F [t] which accepts a decomposition as

described by Theorem 1.4.2.

This decomposition guarantees the existence of a homogeneous basis for the F [t]-graded

persistence module. This in turn defines a suitable basis for the constituent homology vector

spaces that can be used to devise an algorithm to compute the persistent homology.

In this setting, the basis element of the module Q(i, j) = ΣiF [t]/tj−i, j <∞ corresponds

to an n-cycle that first appears in the complex Ki of the filtration which becomes an n-

boundary only for the simplices Kp where p ≥ n. When j = ∞ the basis of the module

represents an n−cycle born at i that remains unbounded throughout the filtration.

3.3.1 Computing Persistent Homology

This section describes a standard algorithm for computing the persistent homology of a

filtered simplicial complex over a field F as presented in [3]. The filtered simplicial complex

pictured in Figure 3.4 will be used as an example to demonstrate steps in the algorithm over

the field Z2.

Consider a simplicial complex K equipped with the filtration K0 ⊆ K1 . . . ⊆ Km. The

p-th persistence homology module of this filtration is as follows:
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Figure 3.4: Example: Filtered simplicial complex

m⊕
i=0

Hp(K
i) =

m⊕
i=0

Zp(K
i)

Bp(Ki)
=

⊕m
i=0 Zp(K

i)⊕m
i=0Bp(Ki)

.

As a result, the p−th persistent homology module of the filtered complex K is the p− th
homology module corresponding to the chain complex whose p-chains Cp(K), are the graded

Z2[t] module
⊕m

i=1Cp(K
i). The ordering of simplices in the filtration is translated as the

gradation in the p−chains.

Similar to algorithm for computing the homology of a simplicial complex describe in

Section 1.5, the first step here is to define the matrix corresponding to the boundary maps

∂p : Cp(K) −→ Cp−1(K) of the filtered simplicial complex.

Let {ej} and {ẽi} be the standard homogeneous basis for Cp(K) and Cp−1(K) respectively

and Mp denote the matrix of ∂p relative to these bases. The following relationship between

the degrees of the basis and matrix elements can be established,

24



deg(Mp(i, j)) = deg(ej)− deg(ẽi). (3.2)

For the example in consideration, we have the following matrix representation M1 of ∂1
ab bc cd ad ac

d 0 0 t t 0

c 0 1 t 0 t

b t t 0 0 0

a t 0 0 t2 t3


Figure 3.5: Matrix representation M1 of ∂1

Given a matrix representation of ∂p in terms of a homogeneous basis for Cp(K) and

Zp−1(K), the homology module Hp−1(K) can be determined using the Smith normal form.

Since, Z0 = C0, the matrix M1 is in the desired format. A homogeneous basis for Zp(K)

and the matrix representation of ∂p+1 with respect to this can be determined inductively as

sketched out below.

Assume that the representation Mp of ∂p is in terms of these desired bases. Furthermore,

order the basis {ẽj} in decreasing order of degree and {ei} by increasing degree. The matrix

corresponding to this ordering of the bases is then be obtained by performing suitable row

and column swaps. The matrix M1 given above is already in this form.

The next step is to obtain the column echleon M̃p of this matrix. This is obtained by first

performing column operations representing the basis change ej → ej + q ∗ ei, to eliminate

the non - zero entries in the pivot rows and by subsequently swapping columns.


ab bc cd z1 z2

d 0 0 t 0 0

c 0 1 t 0 0

b t t 0 0 0

a t 0 0 0 0


Figure 3.6: Matrix representation M̃1 of ∂1 with the pivot elements in boxes, z1 = ad+ cd+
t.bc+ t.ab and z2 = ac+ t2.bc+ t2.ab.
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The basis elements corresponding to the the non-pivot columns of M̃p forms a basis for

Zp(K). Also,

# pivots of M̃p = rank(M̃k) = rank(Bp−1(K)).

Proposition 3.3.1. The pivot elements of the column echleon matrix M̃p is the same as the

diagonal entries of the Smith normal form of this matrix.

Proof. Given any column j in Mp, deg(Mp(i, j)) = deg(ej)−deg(ẽi). As the rows are already

sorted by decreasing degree, the column element with the highest degree is the pivot. As a

result, all other entries in this column can be eliminated by using row operations. All the

pivot elements remain unchanged during this and the matrix can then be put in the Smith

normal form by suitable row and column swaps.

As a result, the p−th persistent homology module can be determined from M̃p using the

decomposition described in Theorem 1.4.2.

Corollary 3.3.1. Given M̃p, a matrix of ∂p in column echelon form with respect to the basis

{ej} for Cp(K) and {ẽi} for Zp−1(K),

1. A pivot element Mp(i, j) of degree n contributes to the module Σ
˜deg(ei)F [t]/tn+deg(ẽi)

in the decomposition of (p− 1)-th persistent module. This corresponds to the element

(deg(ẽi), deg(ẽi + n) in the P−interval.

2. A zero row corresponding to the basis element ei gives rise to the module Σdeg(ẽi)F [t]

and in turn the P-interval element (deg(ẽi),∞).

To represent Mp+1 in terms of a homogeneous basis for Zp(K), the following relation is

used,

∂p ◦ ∂p+1 = 0 =⇒ Mp ◦Mp+1 = 0.

To effect the same basis change, ej → q.ei + ej, achieved by a column operation in Mp, a

row operation where row(i)→ (−q).row(j)+row(i) needs to performed on Mp+1. The above

relation between these matrices remains unchanged under such operations.

Proposition 3.3.2. The matrix representation of ∂p+1 with respect to a basis for Cp+1(K)

and Zp(K) can be obtained from Mp+1 by eliminating rows that correspond to pivot columns

in Mp.
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Proof. As already seen, reducing the matrix Mp to column echleon forms involves using

column operations representing basis change ej → q.ei + ej, where the pivot element in

column i eliminates a non-zero element in non-pivot column j and by subsequently utilising

column swaps.

While the corresponding row swaps doesn’t change the elements of Mp+1(K), the row

operations row(i)→ (−q).row(j) + row(i) changes only the elements in rows that represent

pivot columns in Mp. Eventually, these rows representing pivot columns in Mp become zero

as a result of these operations.



abc acd

ac t t2

ad 0 t3

cd 0 t3

bc t3 0

ab t3 0


Figure 3.7: Matrix representation M2 of ∂2

 abc acd

z2 t t2

z1 0 t3


Figure 3.8: Matrix representation of ∂2 with respect to basis for C2(K) and Z1(K) obtained
by deleting rows in M2 corresponding to pivot columns in M1. z1 = ad+ cd+ t.bc+ t.ab and
z2 = ac+ t2.bc+ t2.ab

The results discussed in this section form the basis for the algorithm described for com-

puting P−intervals of a filtered simplicial complex over all dimensions.

3.3.2 The Algorithm

As seen previously, the persistent homology modules of a filtered simplicial complex can be

determined solely using column operations on the boundary matrices. In fact, it is sufficient

for our purpose to just consider the set of boundary chains corresponding to each columns in
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the boundary matrix. Additionally, equation 3.2 enables us to simulate the process over F

instead of F [t]. Libraries that offer an implementation of this algorithm include the Dionysus

and Gudhi libraries in C++.

The input to the algorithm is an ordering of all simplices in the complex K in terms of

increasing degree where ties are broken arbitrarily. A data structure T with slots for each

simplex which also allows for the marking of a simplex is defined.

Algorithm 1 Computing P-intervals

procedure ComputeIntervals(K)
Initialize:
Lk ← ∅, k = 1, . . . , dim(K)
T [k]← ∅, k = 1, . . . , m
for j = 1 to m do

d = RemovePivotRows(σj);
if d == ∅ then

Mark σj;
else

i = maxindex(d);
k = dim(σi);
T [i] = d, j ;
Lk = Lk ∪ {deg(σi), deg(σj)};

for j = 1 to m do
if σj is marked and T [j] 6= ∅ then

k = dim(σj);
Lk = Lk ∪ {deg(σj),∞}

The procedure ComputeIntervals() iteratively analyses boundary chains of each sim-

plex in the filtration and computes the P−intervals of all homology dimensions. Using the

function RemovePivotRows(), one can determine whether the boundary chain of a given

simplex σj represents a pivot or non-pivot column in the respective boundary matrix. If the

column includes a pivot in row i, this corresponds to a P−interval (deg(σi), deg(σj)) and

both the boundary chain and the value j are stored in T [i]. If not, the simplex is marked as

the corresponding row should not be deleted in the next dimension.

Following this, we loop through T to identify empty slots that also correspond to marked

simplices. These represent intervals that persist till ∞ in persistent homology module.

The function RemovePivotRows() computes the column corresponding to a given
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Algorithm 2 Returns column of boundary matrix in echleon form

function RemovePivotRows(σ)
d = ∂(σ);
Remove rows corresponding to unmarked simplices in d;
while d 6= ∅ do

i = maxindex(d)
if T [i] == ∅ then

break;
else

q = coefficient of σi in T [i];
d = d− q−1T [i];

return d;

simplex in the column echleon form of the boundary matrix. Starting with the boundary

chain, one looks at maximum index as this is potentially a pivot location. If the slot at T

for this index is filled, this implies that it is not a pivot and the element at this location is

then eliminated using a column operation. This process is repeated till a pivot is found or

the set becomes empty. For the example in consideration, the algorithm gives the following

results: L0 = {(0,∞), (0, 1), (1, 2), (1, 1)} and L1 = {(3, 4), (2, 5)}.

3.4 Representing Persistent Homology

While the discussions so far focused on simplicial filtrations, these ideas can easily be gener-

alised in terms of tame functions. A function f : X → R is said to be tame if the homology

module corresponding to each sublevel set f−1((−∞, t]) is of finite rank, and if there are

finitely many values t1 < t2 < . . . < tm ∈ R across which the homology maps are not

isomorphic.

In this case, one selects s0, s1, . . . , sm such that si − 1 < ti ≤ si and uses the persistence

complex given by the sublevel sets {f−1((−∞, si])}mi=0 to computes the persistent homology.

Here, intervals of the form (ti, tj) corresponding to P-intervals (i, j) are used.

The intervals corresponding to the persistent homology modules can be depicted as a

“barcode” as shown below in 3.9. Here, a bar joining the points s and t, represents the

interval (s, t). At any point u ∈ R, the number of bars of dimension k containing the u is
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equal to the kth−Betti number of the space (f−1((−∞, u])).

height value

dim 0

dim 1

Figure 3.9: Persistence barcodes for dimensions 1 and 2, corresponding to the x-height
function on this surface in R3.

Definition 3.4.1 (Persistence Diagram). Another oft used representation is the persistence

diagram. For a fixed homology dimension, the persistence diagram consists of the union

of the set of tuples {(ti, tj)} representing the intervals and the set of all points along the

diagonal, ∆ = {(x, x | x ∈ R} considered with infinite multiplicity.

This can be represented in R2 as shown in Figure 3.10. For features persisting till ∞, it

is often desirable to use a cutoff value instead.

In this setup, the persistence of a feature corresponds to the distance of the point repre-

senting it from the diagonal. Therefore, features caused due to noise or sampling error are

represented by points closer to the diagonal in the persistence diagram.

The set of all persistence diagrams can be viewed as a metric space under the Wasserstein

metric. This can be used to establish results on the stability of persistent homology.

Definition 3.4.2 (Wasserstein Distance). For p, q ∈ [1,∞], and persistence diagrams D1

and D2, the pth−Wasserstein Distance between them using the Lq metric on R2 is as geven
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by,

dp(D1, D2) = inf
φ:D1→D2

( ∑
a∈D1

||a− φ(a)||pq
) 1

p
,

where infimum is over all bijection φ : D1 → D2. When p = q = ∞, this is known as the

Bottleneck distance and is denoted by dB.

height value

Figure 3.10: Persistence diagram corresponding to the height function on space. Red repre-
sents homology dimension 0 and black, dimension 1.

Proposition 3.4.1 (Stability). Given tame functions f, g : X → R, let D(f) and D(g)

represent the respective persistence diagrams for some homology dimension. Then,

dB(D(f), D(g)) ≤ ||f − g||∞.

Corollary 3.4.1. Given point clouds X and Y, let Filt(X) and Filt(Y) denote the filtration

corresponding to the Ĉech or Rips construction for some homology dimension. Then,

dB

(
D(Filt(X)), D(Filt(Y))

)
≤ 2dGH(X,Y),

where dGH denotes the Gromov-Hausdorff distance.
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Chapter 4

Vectorized Representations of

Persistent Homology

The representations of persistent homology - barcodes and diagrams, discussed in the pre-

vious chapter are not good candidates for performing statistical analysis or for serving as

input to machine learning tasks. The is in part due to their restrictive structure which poses

difficulties in defining algebraic operations on them. This problem can be tackled by “vec-

torising” persistence diagram using summaries that map them to elements of a vector space.

In this chapter, we shall review few such summaries.

4.1 Real-valued Summaries

Summaries that map persistence diagrams to real numbers are useful for conducting sta-

tistical analysis on small samples and can also easily be combined with machine learning

techniques. One such summary, is the pth−Wasserstein amplitude, which maps each per-

sistence diagram to its Wasserstein distance from the empty diagram which contains only

the diagonal points. Other commonly used summaries include total persistence, maximum

persistence and persistent entropy [12].

Consider a persistence diagram D = {(bi, di)}mi=1. Let the persistence of each feature,

given by the length of bars be denoted by {li}mi=1 where li = di − bi.

33



Definition 4.1.1. For the persistence diagram D, The total persistence is given by
∑m

i=1 li

and the maximum persistence is equal to max
i
{li}.

Definition 4.1.2 (Persistent Entropy). Persistence entropy ED of a persistence diagram D

is the Shannon entropy of the distribution of its bar lengths. That is,

ED = −
m∑
i=1

li
L
log
( li
L

)
,

where L =
∑i=m

i=1 li. Persistent entropy is a scale invariant summary function which is stable

under small perturbations.

4.2 Persistence Images

Figure 4.1: Sequence for obtaining persistence images from the given data.(Source: [14])

Persistence images are a stable (with respect to the 1st−Wasserstein distance) and in-

terpretable finite dimensional vector representation of persistence diagrams [14]. Given a

persistence diagram D, its persistence image is obtained as follows.

1. A transformation T : R2 → R2, where T (x, y) = (x, y − x) is applied to the diagram

D. The transformed diagram T (D), is now in birth-persistence coordinates.

2. Φu : R2 → R, a differentiable probability distribution with mean u ∈ R2 and f : R2 →
R, a continuous, piece-wise differentiable weight function which is zero on points on

the x−axis is chosen. For instance, Φu can be a normalised Gaussian distribution with

mean u, and f a weighting function that depends only on the y-persistence coordinate.
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3. The persistence surface PD : R2 → R, is given by

PD(z) =
∑

u∈T (D)

f(u)Φ(z).

The weights corresponding to points along the diagonal in D is zero as T maps them

onto the x-axis and these do not contribute to the above sum.

4. The persistence image I(PD) is obtained from the persistence surface by discretising

the relevant region using a grid and integrating over each box/pixel. That is for any

pixel p in the persistence image, the intensity is given by I(PD)p =
∫∫

p
PD dydx.

The persistence images offer a lot of flexibility through user choices for distribution and

weight function. They can also be integrated with ML algorithms easily.

4.3 Betti Curves

Figure 4.2: (a) A persistence diagram, (b) Its persistence barcode and (c) The corresponding
Betti curve. (Source: [24])

Given a persistence diagram D, the associated Betti curve or persistence indicator func-

tion given by βD : R→ N is defined as follows

βD : t 7→
∣∣{i | t ∈ [bi, di]}

∣∣ =
m∑
i=1

1[bi,di](t).
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The Betti curve is a piecewise linear function on R, and can hence be viewed as an

element of the function space Lp(R) for p ≥ 1. Statistical analysis can be performed by

considering the norm of the Betti curves as random variables [24].

4.4 Entropy Summary Function

Since persistence diagrams lie in an infinite dimensional space, mapping them to R using

persistent entropy may result in the loss of some relevant information. This can be over-

come by using the entropy summary function, a piece-wise linear function which combines

persistent entropy with the persistence indicator function.

For a persistence diagram D, the entropy summary function is given by ESD : R→ R is

given by

ESD : t 7→ −
m∑
i=0

1[
bi,di]

(t)
li
L
log
( li
L

)
.

Figure 4.3: Two persistent diagrams with the same persistent entropy value and Betti curve
but different entropy summary functions (Source: [23])

.
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4.5 Persistence Landscapes

Persistence landscape is a functional summary which associates each persistence diagram

with a sequence of piece-wise linear real valued functions. This structure makes these objects

easy to compute and also lends itself for statistical tasks.

Given a persistence diagram D, the associated persistence landscape λ = {λk : R →
R}k∈N is obtained by rotating the diagram clockwise by 45◦, constructing isoceles triangles as

shown in 4.4 and by tracing out the outermost layer inductively. That is, the k−th landscape

function λk is given by,

λk(t) = kmax
i∈{1,...m}

{min(t− bi, di − t)+},

where kmax gives the kth largest value in the set and c+ = max(c, 0).

Figure 4.4: The persistence landscape functions of the given persistence diagram.(Source:
[11])

λ ∈ Lp (N× R) for 1 ≤ p ≤ ∞ as

||λ||pp =
∑
i∈N

||λi||pp <∞.
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Therefore, a persistence landscape can be viewed as an element in a separable Banach space.

The Banach structure can be used to prove a central limit theorem for these objects [11].

For two persistence diagramsD,D′ and their respective landscapes λ, λ′, the pth−landscape

distance between D and D′ is Λp(D,D
′) = ||λ− λ′||p.

Proposition 4.5.1 (Stability). Let D,D′ be persistence diagrams and f, g : X → R rep-

resent tame functions over X. We have the following results that establish the stability of

persistence landscapes

• Λ∞(D,D′) ≤ W∞(D,D′), and

• Λ∞(D(f), D(g)) ≤ ||f − g||∞.

4.6 Persistence Silhouette

Given a persistence diagram D, a univariate functional summary called persistence silhou-

ette, PSD : R→ R can be obtained from the persistence landscape as shown below.

PSD(t) =

∑m
i=1w(di − bi)λi(t)∑m
i=1wi(di − bi)

.

Here w is a persistence based weight function.
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Chapter 5

Topological Pipeline for Image

Analysis

In problems of image classification, one can often identify distinct shape features that char-

acterize images in each class. In this project, we developed a ‘topological pipeline’ which

uses persistent homology to extract topological descriptors from each image based on which

classification can then be performed.

In 5.3, we shall expand on various aspects of the pipeline using the MNIST dataset of

hand written digit images. This dataset consists of 70,000 grayscale images of dimension

28× 28 pixels.

Subsequently, we used the pipeline for image classification of the Fashion MNIST [18],

High Resolution Fundus [10] and Flower images [6] datasets. The results of these experiments

have been presented in 5.4.

5.1 Topological Pipeline: Filtrations

The natural structure of grayscale images as a pixel intensity map on a rectangular grid,

lends itself for the construction of cubical complexes. Given any function on a grid, a filtered

cubical complex can be constructed corresponding to the sub-level or super-level sets of the
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given function. In the Figure 5.1 below, examples of sublevel and superlevel sets of the

grayscale intensity map is shown. Persistence modules of these filtered cubical complexes

can be obtained using cubical homology in a similar manner to that of simplicial filtrations.

Figure 5.1: Cubical complexes (in purple) obtained using the grayscale function g. (Top)
Sub-level sets g−1((−∞, t]) for t = 2, 10, 50, 100. (Bottom) Super-level sets g−1([t,∞)) for
t = 154, 204, 244, 252.

As the grayscale filtration does not help in distinguishing between digits in the same

homotopy class, other functions on the grid that take into account different aspects of the

image’s shape were also considered in the pipeline. These include the height, density and

radial filtrations for different parameter values which were generated as described in [25]

using the giotto-tda library in Python.

For obtaining these filtrations, the grayscale image is first binarised at a suitable thresh-

old such that the digit corresponds to the 1-pixels. The following filtration functions are

then defined on the grid, and the cubical complexes determined by its sub-level sets are

constructed.

• Height : Each 1-pixel point on the grid is assigned the value of its distance from the

hyperplane determined by a direction vector.

• Radial: Each 1-pixel point on the grid is assigned the value of its distance from a fixed

grid point.

• Density: Each grid point is given the value of the number of 1-pixel points in a neigh-

borhood of fixed radius around it. The radius values 5, 8 & 11 were used.
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• Line : This function is a generalization of the height function present in the giotto-tda

library. For any fixed line in R2, each 1-pixel grid point is given the value of its distance

from the line.

• Grayscale and Inverted-grayscale : The pixel intensity map of the image and its pho-

tographic negative respectively.

A simplicial filtration of Vietoris-Rips complexes is also constructed by considering the

1-pixel points in the binarized image as a point cloud.

Figure 5.2: (Left) Directions and fixed grid points used in the pipeline for height and radial
filtrations (Source: [25]). (Right) Lines used for the line filtrations in the pipeline.

Figure 5.3: (Left-Right) Image; Binarized image; Height filtration with direction (−1, 0);
Radial filtration with center (13, 13).

5.2 Topological Pipeline: Vectorisation

The topological information present in the persistence diagrams of these filtrations are en-

coded into feature vectors which then serve as input to machine learning algorithms. The

vectorisations used on the diagrams are - persistent entropy, 2-norm of the persistence land-

scape, 2-norm of the Betti curve and 2nd-Wasserstein amplitude. With this, all elements of

the pipeline are now in place.
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Figure 5.4: (Left-Right) Height filtration on image with direction (−1, 1); Its persistence
diagram.

Figure 5.5: Schematic of the topological pipeline

5.3 Analysing MNIST

The pipeline generated 210 features for each image. A random forest classifier with 1000

trees was used for both determining feature importance and for classification.

5.3.1 Feature Importance

The feature importance scores give a measure of how important a feature is in distinguishing

between classes. The prominent filtrations by feature importance were height and radial
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while by vectorisation it was persistence entropy. While dimension 1 features are useful in

identifying the presence and position of the loops in the digits, the dimension 0 vectors cue in

on how the digits are built. As evidenced by their feature importance scores, the dimension

0 vectors are quite effective in distinguishing between digits, especially ones in the same

homotopy class.

Figure 5.6: Feature importance (using random forest classifier) of the pipeline vectors by
dimension; filtration and vectorisation. (Bottom Left) Description of the 10 vectors with the
highest feature importance scores.

5.3.2 Visualising MNIST Feature Vectors

Low dimensional projections of the feature vectors from the pipeline can be used to gain a

better understanding of the topological properties of the images being captured by the it.

UMAP [20] is used to generate the 2-dimensional projections of the features corresponding

to the persistence entropy and betti curve vectorisation depicted in Figure 5.8. There are a

few observations that can be made from these plots:

• In both these plots, points corresponding to digits of different homotopy types are

farther apart while the clusters of digits of the same type are closer to each other.
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Figure 5.7: Instances of varying styles and thickness of digits

• The clusters in the projection of entropy feature vectors are generally well separated

and quite dense. There are also multiple clusters corresponding to the same digit.

These correspond to different ways that a digit is written: for instance, 2 with or

without a loop.

• In the projection of feature vectors obtained from betti curves, the clusters start out

narrowly at one end and then later fan out. A gradation based on thickness of the

digit and also the inclination angle can be observed within many digit clusters.

Figure 5.8: UMAP projection of (Left) entropy and (Right) Betti Curve feature vectors

5.3.3 Classification

Classification was performed using random forest classifier with 1000 trees. For a reference

performance, all the pixel values except those that are 0 for all images were considered as a
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vector. The dimension of the feature vector space can be reduced by dropping features with

Pearson correlation coefficient more than 0.95. The accuracy for these is documented in the

table 5.1 below.

Dimension Description Accuracy
703 Reference 96.3
210 Pipeline feature vectors 97.18
95 Uncorrelated pipeline feature vectors 97.05

Table 5.1: Classification Accuracy : MNIST

Figure 5.9.b is a plot of the accuracy for a varying number of features that are ranked in

decreasing order of feature importance. An accuracy of over 96%, can be achieved just by

considering the 50 most important features and this can be further increased by others.

Figure 5.9: a. Normalized confusion matrix for pipeline vector classification; b. Classification
accuracy plot for varying number of features; c. Correlation matrix for 50 most important
features

In the previous sections, we have described a pipeline for extracting topological features

from images and also looked at how they can be used for classification. It should be noted

that this just offers a general framework and that the choice of filtration and vectorisation

should be tailored to the dataset in question.
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Dimension Vectorisation Accuracy
54 Entropy 96.02
52 Landscapes 94.94
52 Betti 95.84
52 Wasserstein 95.05

(a) Accuracy by Vectorisation

Dimension Filtration Accuracy
64 Height 96.33
72 Radial 95.45
24 Density 73.42
32 Line 91.6
8 Grayscale 36.19
8 Inverse Grayscale 35.69
2 Vietoris-Rips 33.19

(b) Accuracy by Filtration

Table 5.2: Accuracy of the MNIST pipleine features by vectorisation and filtration

5.4 Applications

5.4.1 Fashion MNIST

Figure 5.10: Sample images

The Fashion MNIST data set consists of

70,000 (60,000 training + 10,000 test) im-

ages of 10 classes of fashion apparel. The

topological pipeline (excluding the Rips sim-

plicial filtration) was used to generate 200

features which then served as input to a ran-

dom forest classifier with 1000 trees. A clas-

sification accuracy of 85.02% was achieved..

5.4.2 Flower Dataset

Figure 5.11: Correlation matrix

A subset of 7 categories of the 102 - Category Flowers

dataset as shown in [6] was considered for classifica-

tion. All 3 of the RGB filters were used to generate cu-

bical complexes. Apart from this, the height and ra-

dial filtrations along with all four vectorisations were

used to obtain 160 features. By dropping those fea-

tures that had a Pearson correlation coefficient over

0.95, this number was reduced to 48. The classifi-
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cation performed on a random 33-67 test-train split

using a random forest classifier with 1000 trees gave

anaccuracy of 67.75%.

Figure 5.12: Flower categories considered for classification

5.4.3 Fundus Images

The High Resoultion Fundus image dataset contains 15 images each corresponding to healthy

patients and also patients diagnosed with diabetic retinopathy. The images are converted to

grayscale by considering a weighted sum of the RGB channels. Filtrations corrresponding to

the grayscale and inverse grayscale maps along with persistence entropy and Wasserstein am-

plitude vectorisations were then used to generate 8 features. An estimate of the linear SVM

classification accuracy: 86.67 ± 19.43%, was then obtained using 5-fold cross validation.

Figure 5.13: Fundus images and their corresponding grayscales (Left) Diabetic retinopathy
(Right) Healthy
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From these applications, it is clear that the features extracted from the pipeline capture

sufficiently rich topological and shape properties of the image to facilitate classification. In

fact, these topological features offer complementary information to those obtained from tra-

ditional machine learning algorithms and can be combined with the latter to boost accuracy.

Work done in [16] and [22] in combining topological features with neural networks stands to

support this claim.

In the next section, we shall analyse the robustness of the pipeline features under rotations

and translations of the images and also look at a method for generating features which exhibit

invariance to such transformations.

5.5 Rotational and Translational Invariance

Figure 5.14: The persistence diagram corresponding to the height filtration (1,0) of an image
under rotation and translation. (Left-Right) Unchanged, Translated by (6,3) and Rotated
by 30◦ .

While the grayscale features are invariant under rotation and translation, the features

obtained from other filtrations are not. This is because these filtrations in the pipeline

capture how certain pixels, in the image are distributed relative to either the boundary, a

line or fixed point. As a result, when an image is translated or rotated, the persistence

diagrams corresponding to these filtrations change considerably. This is then reflected in a

drop in accuracy when classification is performed on test data which has been rotated or

translated.

For this analysis, we come back to the MNIST dataset. Of the 10000 MNIST test images,
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3000 were modified using OpenCV to generate the new test data while the training data was

left unchanged. Classification was performed on the pipeline features using random forest

classifier with 1000 trees.

S.no Description Accuracy
1 Reference : Unchanged test 96.7
2 Translated by (-6,3) 60.17
3 Translated by 30◦ anticlockwise 80.94

Table 5.3: Classification accuracy using random forest on 3000 transformed MNIST test
images

In the next section, we will look at a method to generate feature vectors that might be

more robust to such transformations.

5.5.1 Simplicial Filtration generated from Thinned Images

Figure 5.15: Directions

Given an image, a 1-pixel wide skeleton was obtained by thin-

ning. This was then used to generate a simplicial filtration

with the skeleton points as vertices. This filtration was built

by starting from a fixed point and iteratively adjoining the ver-

tices neighbouring the ones added in the previous step along

with an edge connecting both vertices. Figure 5.16 contains an

example presenting the steps in this process.

Persistent homology followed by vectorisation using persis-

tent entropy, landscapes, Betti curves and Wasserstein ampli-

tude were then considered for generating features. To address the question of choosing the

initial fixed point, two approaches are considered:

1. The first vertex encountered along each of the 4 directions shown in Figure 5.15 is used

to build the simplex streams and the features subsequently obtained are appended.

This generates 40 features.

2. Computing an average of all the feature vectors obtained by considering all vertices in

the graph as a fixed point for building the simplex stream. A total of 10 features are

generated by this.
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Figure 5.16: Simplicial filtratation obtained from using the 1-pixel skeleton of the image.
The labelling of the vertices corresponds to the order of its appearance in the filtration.

Description 4-Dir Features Avg Features PL PL+4-Dir PL+Avg
Reference 62.03 55.4 96.4 96.27 96.47

Translation:(-6,3) 60.03 52.83 49.3 61.9 57.57
Translation:(6,3) 59.97 52.9 67.3 73.83 69.53
Rotation:−30◦ 49.47 47.43 80.6 81.5 80.83

Table 5.4: Classification accuracy under translation and rotation of test images. (PL: Un-
correlated pipeline features)

The features in the first approach capture the positional information in the image which

might be lost while taking the average. On the other hand, as the initial vertex is chosen

along fixed directions, the first method might be less robust to rotational transformations

than the second.

The classification accuracy of the simplicial stream features with transformed test and

unchanged training obtained using random forest (1000 trees) is documented below in Table

5.4. The robustness to transformations these features impart when combined with uncorre-

lated features (Pearson correlation coefficient cutoff of 0.95) from the topological pipeline is

also studied.

• While the accuracy offered by these features are not very high, it is still greater than

that of grayscale features. Also, the accuracies of the transformed images lie within a

few percentages of the reference indicating some level of invariance.

• When appended to the feature vectors from the pipeline, these features can be seen
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to increase the classification accuracy significantly for translation and marginally for

rotation.

• Considering the extreme situation in use here, of unchanged training sets and signif-

icantly transformed test images, these improvements in accuracy suggest that these

features are helpful in contributing to robustness under rotation and translation.
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Chapter 6

Analysing Time Series Data

TDA has proven to be an effective tool for analyzing time series data. Methods from TDA

have been successfully used to detect critical transitions in real-world dynamic systems,

specifically climate models [9] and financial markets [17]. There is also evidence to suggest

that it can be used to detect early warning signals that precede a market crash from financial

time series data [19].

In this chapter, we shall explore how tools from dynamical systems theory can be com-

bined with TDA to analyse time series data as discussed in [21].

Subsequently, these ideas were applied to analyse financial time series data, the results

of which are presented in 6.2.

6.1 Dynamical Systems: Taken’s Embedding Theorem

A dynamical system is a mathematical model of a time dependant process. The system is

described completely by a state space and a set of rules which dictate how the states evolve

with time.

Definition 6.1.1 (Dynamical System). A global continuous dynamical system is given by

the pair (M,Φ), where M is a topological space and Φ : R×M → R is a continuous function

such that Φ(0, p) = p and Φ(t,Φ(s, p)) = Φ(t+ s, p) for all p ∈M and t, s ∈ R.
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An attractor, A, of a dynamical system (M,Φ) is a subset of M to which most states

evolve to over time. Mathematically, A ⊆ M , is said to be an attractor of (M,Φ) if it is

compact, invariant under Φ and if it has an open basis of attraction.

Example (Lorenz System). The Lorenz system is a dynamical system in R3 whose dynamics

is given by the solution to the following system of differential equations.

Given σ, ρ, β ∈ R

x′(t) = σ(y − x) ; y′(t) = x.(ρ− z)− y ; z′(t) = xy − βz.

Figure 6.1: The attractor of the Lorenz system with σ = 10, β = 8
3

and ρ = 28.

In practice, it is not often possible to determine the dynamical system completely, and

all we have access to are observations of certain quantities for each state in the system. For

instance, temperature and humidity in climate models or market indices in financial systems.

Let the map F : M → R denote these observations. We can then define, for each state

p ∈M , a time series φp : R→ R where φp : t 7→ F ◦ Φ(t, p).

Theorem 6.1.1 (Taken’s Embedding). Let M be a smooth compact Riemannian manifold.

Let τ > 0 and let d ≥ 2dim(M) be an integer. If Φ ∈ C2(R×M,M) and F ∈ C2(M,R) are

generic, then the delay map φ : M → Rd+1, where

φ : p 7→ (φp(0), φp(τ), . . . φp(dτ),

is an embedding. The function φp is as defined previously.
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This theorem forms the basis for defining the sliding window embedding, which associates

a point cloud with any time series.

Definition 6.1.2 (Sliding Window Embedding). Given a function f : R → R, a real number

τ > 0 and an integer d > 0, the sliding window embedding map SWd,τf : R→ Rd+1 is given

by

SWd,τf : t 7→
(
f(t), f(t+ τ), . . . , f(t+ dτ)

)
.

Here, τ is the time delay, dτ the window size and d + 1, the embedding dimension. For a

subset T ⊆ R, the set

{SWd,τf(t) | t ∈ T}

is the the associated sliding window point cloud.

Given a time series representing observations from an abstract dynamical system, Taken’s

embedding theorem implies (under suitable conditions and parameter choices) that the slid-

ing window embedding is a reconstruction of the system’s attractor. TDA applied to this

sliding window point cloud can hence be used to understand the topological properties of

the dynamical system.

The following section will focus on applying these ideas to financial time series data for

identifying market crashes.

6.2 Analysing Financial Data

Three stock market indices: S&P 500, Nasdaq Composite and Russell 2000, were considered

for this exercise. The log returns of the adjusted stock prices of these indices from 12/1990

to 2/21 were used as the time series for constructing the sliding window point cloud.

6.2.1 Choosing Embedding Dimension & Time Delay

While the embedding theorem 6.1.1 guarantees the reconstruction with any choice of τ >

0, this fails in practice as the time series data is often noisy or short. To determine an

appropriate time delay, the autocorrelation function, which provides a measure of how similar
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a time series is with delayed copies of itself, is used. The time delay was chosen as the delay

value at which the autocorrelation function decays to 1/e.

The false nearest neighbours (FNN) method was used to determine the embedding di-

mension. This technique is based on the idea that points that are neighbours at a good

choice of embedding dimension continue to remain so when the dimension increases. False

neighbours refer to points that fail to be close to each other at higher values of embedding

dimension. Increasing values of embedding dimension are considered, and the value m that

ensures a sufficiently small number of false neighbours for the next dimension, m + 1, is

chosen.

For all three market indices, the time delay and embedding dimension were determined

to be 1 and 11 respectively, using the NonlinearTseries package in R.

6.2.2 Persistent Homology of Point Clouds

For every 50th day in the considered time period, a sliding window point cloud was generated

by considering T to be the next 75 days. In all, a sequence of 152 point clouds with 75 points

each were built corresponding to each index. Persistent homology was then used to obtain

the persistence diagrams of these point clouds.

Since we wish to understand how the topology of the system changes with time, for each

point cloud in the sequence, the 2nd−Wasserstein distance of its persistence diagram from

that of the point cloud preceding it is computed. The plots of the Wasserstein distances for

all indices are shown below in Figure 6.2.

6.2.3 Analysis

The following observations can be made from Figure 6.2.

• The peaks in the dimension 0 plots of the Wasserstein distance appear to correspond to

time periods around market crashes. The descriptions of the point clouds corresponding

to the peaks is given in Table 6.1 and details of the relevant market crashes in this

period in Table 6.2. No similar trends could be identified for the dimension 1 plots.
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Figure 6.2: Wasserstein Distance Plots for Dimension 0 (Left) and 1 (Right) corresponding
to (Top - Bottom) S&P 500 (GSPC) ; Nasdaq (IXIC) and Russell 2000 (RUT) indices.
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• The first five peaks for all three market indices include the point clouds for periods

around the 2007-2008 financial crisis and the 2020 market crash. The plot correspond-

ing to the Russell 2000 index also has a peak corresponding to the Dotcom bubble

crash.

• The time frames 14-01-2009 to 04-05-2009 and 26-06-2000 to 11-10-2000 which present

as peaks, immediately follow the 2008 market crash and the Dotcom bubble respec-

tively. The peaks at these periods can be attributed to changes in the system’s topology

when recovering from a crash.

• On the other hand, the time frame 07-10-2019 to 24-01-2020, which corresponds to

a period before the 2020 stock market crash, is a peak in all three indices. This can

potentially be due to some early topological changes in the system predating a crash

as described in [19].

S.no S & P 500 Nasdaq Russell 2000
1 11-06-2008 to 26-09-2008 11-06-2008 to 26-09-2008 11-06-2008 to 26-09-2008
2 07-10-2019 to 24-01-2020 02-03-2020 to 17-06-2020 07-10-2019 to 24-01-2020
3 02-03-2020 to 17-06-2020 07-10-2019 to 24-01-2020 19-11-1999 to 09-03-2000
4 21-08-2008 to 08-12-2008 12-08-2011 to 29-11-2011 26-06-2000 to 11-10-2000
5 14-01-2009 to 04-05-2009 17-12-2019 to 06-04-2020 02-03-2020 to 17-06-2020

Table 6.1: Time frame of point clouds corresponding to first 5 peaks in the dimension 0
Wasserstein distance plots.

Date Description
24-02-2020 to 7-04-2020 2020 Stock market crash

16-09-2008 2007-08 financial crisis
10-03-2000 Dot-com bubble
1-09-2011 August ’11 stock market fall

Table 6.2: Relevant market crashes between 1990 and 2021

The purpose of this exercise was to showcase the potential of TDA as a tool for time

series analysis. Here, we had segmented the time series to obtain 152 point clouds with 75

points each. By varying these numbers or the vectorisation method used, one can potentially

gain more insight from the data.
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Chapter 7

Conclusion

In conclusion, we have looked at some theoretical aspects of TDA and studied its application

to image classification and time series analysis.

The topological pipeline for MNIST presented in Chapter 6 uncovered finer information

from the images, based on the writing styles, than required for classification. We have also

looked at how TDA can be used to extract features from images that are robust to translation

and rotation. In Chapter 7, we saw that persistent homology proved successful in identifying

periods of market crashes from stock market index data. The range of these applications

speaks to the versatility of these methods.

TDA is a relatively new field with active research being undertaken in different areas.

Hopefully, this thesis has provided the reader with enough justification that it offers promis-

ing tools for data analysis with broad scopes of application.
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