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Abstract

The emerging field of topological robotics lies on the crossroads of algebraic topology and
engineering. One of the objects studied in this area is the set of all configurations of a given
mechanical linkage. A planar mechanical linkage is a mechanism consisting of n + 1 metal bars
of fixed lengths l1, . . . , ln+1 connected by revolving joints, that can rotate full 360◦, forming a
closed polygonal chain.

Mechanical linkages are modelled by closed piecewise linear paths in R2 called planar
polygons with specified side lengths. The configuration space of such a system is the set of its
all possible states.

We begin by formally defining the configuration space.

Definition 0.1. Consider a length vector L := (l1, l2, . . . , ln+1) ∈ Rn+1
+ that prescribes side

lengths of planar n + 1-gons. The moduli space of such polygons viewed up to the action of
orientation-preserving isometries is denoted ML and defined as:

ML = {(u1, u2, . . . , un+1) ∈ S1 × S1 × · · · × S1;
n+1

∑
i=1

liui = 0}/SO(2).

The moduli space of n + 1-gons viewed up to the action of all isometries is denoted M̄L and
defined as:

M̄L = {(u1, u2 . . . un+1) ∈ S1 × S1 × · · · × S1;
n+1

∑
i=1

liui = 0}/O(2).

Here, both the groups act diagonally.

Geometrically, the elements of ML represent closed piecewise linear paths that differ
either by a rotation or a translation (or both). Similarly, the elements of M̄L represent closed
piecewise linear paths that differ in addition by a reflection.

Definition 0.2. A length vector L ∈ Rn+1
+ is generic if ∀I ⊂ [n + 1]

∑
i∈I

li 6= ∑
j 6∈I

lj

Definition 0.3. A subset I ⊂ [n + 1] is called short with respect to L if

∑
i∈I

li < ∑
i 6∈I

li

i
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Definition 0.4. A cyclically ordered partition of the set [n + 1] := {1, . . . , n + 1} is an
equivalence class of ordered partitions with the relation that two ordered partitions equivalent
if one can be obtained from the other by a cyclic permutation of its blocks.

Given a generic length vector L, the space ML is a manifold and was given a natural regular
cell structure using cyclically ordered partitions of [n + 1] in [9]. The k-cells of ML are given
by cyclically ordered partition of [n + 1] into (k + 3) blocks where each block of the partition is
a short subset of [n + 1] and the attaching relations are given by the refinement of partitions.

Motivated by above, the cyclopermutohedron CPn+1 was introduced by G. Panina in
[8]. It is an (n− 2)-dimensional regular CW complex whose k-cells are labeled by cyclically
ordered partitions of the set [n + 1] into (n + 1− k) non-empty parts, where (n + 1− k) > 2.
The boundary relations in the complex correspond to the refinement of partitions. The
cyclopermutohedron is a "universal object" for moduli spaces of polygonal linkages i.e. given a
generic length vector L, CPn+1 contains a subcomplex homeomorphic to ML .

The aim of this thesis is to understand the topological and combinatorial properties of
CPn+1. In [7] the authors showed that the homology groups of CPn+1 are torsion free and
computed their Betti numbers. This was done using discrete Morse theory.

The moduli space ML admits a natural free Z2 action, wherein each polygon is mapped
to its reflection about the X-axis. The quotient under this action is precisely M̄L. The space
CPn+1 mimicking this action also admits a free Z2 action. The quotient space CPn+1/Z2 will
be called bicyclopermutohedron and will be denoted by QPn+1. This quotient is the universal
object for the moduli spaces M̄L in the same sense as described above.

The main aim of this thesis is to compute homology of QPn+1. This computation is
more involved compared to that of Hi(CPn+1). Our main tool is discrete Morse theory and
approach is similar to the one taken in [8]. However, in our case the boundary maps in the
Morse complex do not vanish. As a result there is torsion in the homology. In Theorem 4.11
we compute the integer homology of QPn+1 and show that there is only 2-torsion. On the
other hand the mod-2 homology of QPn+1 is relatively easy to compute; which is done in
Theorem 4.8.

Chapter-wise organization

Chapter 1. The first chapter contains basic definitions from combinatorics and topology of
posets, and discrete Morse theory needed to understand the results presented in this thesis.
We also introduce here some of the foundational, well-known results of the area (taken mainly
from [10], [11] and [6]).

Chapter 2. We discuss various topological and combinatorial properties of two posets in the
second chapter, the poset of ordered partitions and the poset of unordered partitions. The
main theorem of the chapter is the Homotopy complementation formula for posets. We discuss
in detail the proof of the theorem. Topological aspects of the poset of ordered partitions is
illuminated using permutohedron.
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Chapter 3. With this chapter, the main content of the thesis begins. We start the chapter
with the definition of cyclopermutahedron, following that, a combinatorial description for the
boundary maps in the cellular chain complex is presented. Finally, we discuss the computation
of cyclopermutohedron’s homology as performed in [7]. The authors explicitly construct a
perfect Morse function thereby reducing the complexity of the problem.

Chapter 4. The quotient space QPn+1 is the focus of this chapter and computing its Z-
homology is the main result regarding this space. As in Chapter 3, we construct a discrete
Morse function and this is sufficient to compute the Z2-homology of this quotient space.
Each equivalence class in QPn+1 contains two cells and the Z-homology requires a delicate
calculation of comparing the orientation induced by each of its representative. All results in
this chapter are, to the best of our knowledge, new.
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Chapter 1

Introduction

In this Chapter we state the basics of ideas and techniques needed to understand this thesis.
We have tried to present the material in a self contained manner without going into too many
details.

1.1 Posets

This section introduces combinatorial and topological aspects of posets. The main reference is
Stanley’s book[10].

Definition 1.1. A partially ordered set P (or poset, for short) is a set together with a binary
relation denoted ≤ satisfying the following three axioms:

• For all t ∈ P, t ≤ t (reflexivity).

• If s ≤ t and t ≤ s, then s = t (antisymmetry).

• If s ≤ t and t ≤ u, then s ≤ u (transitivity).

We use the obvious notation t ≥ s to mean s ≤ t, s < t to mean s ≤ t and s 6= t, and
t > s to mean s < t. We say that two elements s and t of P are comparable if s ≤ t or t ≤ s;
otherwise s and t are incomparable, denoted s||t.
Example 1.1. Let n ∈N, n ≥ 0. The set [n] with its usual order forms an n-element poset with
the special property that any two elements are comparable. This poset is denoted [n].

Example 1.2 (Boolean Poset). Let n ∈N, n ≥ 0. We can make the set Pow[n] of all subsets of
[n] into a poset Bn by defining S ≤ T in Bn if S ⊂ T as sets. One says that Bn consists of the
subsets of [n] “ordered by inclusion.”

Example 1.3 (Partition Lattice). Let n ∈N, n ≥ 0. We can make the set Πn of all partitions of
[n] into a poset by defining π ≤ σ in Πn if every block of π is contained in a block of σ. We
then say that π is a refinement of σ and that Πn consists of the partitions of [n] “ordered by
refinement.”

1
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Two posets P and Q are isomorphic, denoted P ∼= Q, if there exists an order-preserving
bijection φ : P→ Q whose inverse is order-preserving; that is,

s ≤ t in P ⇐⇒ φ(s) ≤ φ(t) in Q.

If s, t ∈ P, then we say that t covers s or s is covered by t, denoted s ≺ t, if s < t and no
element u ∈ P satisfies s < u < t. For a ≤ b, the closed interval [a, b] is the set of elements
x ∈ P satisfying a ≤ x ≤ b. If every interval of P is finite, then P is called a locally finite poset.
A locally finite poset P is completely determined by its cover relations. The Hasse diagram of
a finite poset P is the graph whose vertices are the elements of P, whose edges are the cover
relations, and such that if s < t then t is drawn “above” s. See Fig. 1.1 for example.

An element 1̂ ∈ P is called a greatest element if for every element s ∈ P, s ≤ 1̂. An element
0̂ ∈ P is called a least element if for every element t ∈ P, t ≥ 0̂. A poset can only have one
greatest or least element.

A poset P is said to be bounded if it has a top element 1̂ and a bottom element 0̂. The
proper part of a bounded poset P, for which |P| > 1, is defined to be P̄ := P− {0̂, 1̂}. Given a
poset P, we define the bounded extension P̂ := P ∪ {0̂, 1̂}, where new elements 0̂ and 1̂ are
adjoined (even if P already has a bottom or top element).

B2

∅

{1} {2}

{1, 2}

{1, 2, 3}

{2, 3}{1, 3}{1, 2}

{3} {2} {1}

∅

B2

Figure 1.1: Hasse diagram of B2 and B3

A chain in P is a subposet in which any two elements are comparable. A chain C in P is
called maximal if it is not contained in a larger chain of P. The chain C of P is called saturated
(or unrefinable) if there does not exist u ∈ P− C such that s < u < t for some s, t ∈ C and
such that C ∪ {u} is a chain. Thus maximal chains are saturated, but not conversely. The
length l(C) of a finite chain is defined by l(C) = |C| − 1. The length of a finite poset P is
l(P) := max{l(C) : C is a chain of P}. The length of an interval [s, t] is denoted l(s, t). If
every maximal chain of P has the same length n, then we say that P is graded of rank n. In this
case there is a unique rank function ρ : P→ [n] such that ρ(s) = 0 if s is a minimal element of
P, and ρ(t) = ρ(s) + 1 if t covers s.

If P and Q are posets, then the direct product of P and Q is the poset P× Q on the set
{(s, t) : s ∈ P, t ∈ Q} such that (s, t) ≤ (s0, t0) in P× Q if s ≤ s0 in P and t ≤ t0 in Q. If P
and Q are posets on disjoint sets, then the disjoint union (or direct sum) of P and Q is the
poset P + Q on the union P ∪ Q such that s ≤ t in P + Q if either (a) s, t ∈ P and s ≤ t in
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P, or (b) s, t ∈ Q and s ≤ t in Q. It is clear from the definitions that P× Q ∼= Q× P and
P + Q ∼= Q + P.

The join P ∗Q of posets P and Q is the poset whose underlying set is the disjoint union of
P and Q and whose order relation is given by x < y if either

• x < y in P,

• x < y in Q, or

• x ∈ P and y ∈ Q.

Definition 1.2. The Möbius funtion µ of a poset P is defined recursively as follows

µ(s, s) = 1, for all s ∈ P.

µ(s, u) =


− ∑

s≤t<u
µ(s, t), s < u;

0, otherwise.

Proposition 1.1. Let P and Q be posets. Then for (p1, q1) ≤ (p2, q2) ∈ P×Q,

µP×Q((p1, q1), (p2, q2)) = µP(p1, p2) · µQ(q1, q2).

1.1.1 Whitney Numbers and Stirling numbers

In what follows let P be a graded poset.

Definition 1.3 (Whitney numbers of the first kind). The characteristic polynomial χ(x) of a
poset P is defined by

χ(x) = ∑
t

µ(0̂, t)xn−rnk(t)

=
n

∑
k=0

wkxn−k.

The coefficients wk are called the Whitney number of the first kind.

Definition 1.4 (Whitney numbers of the second kind). The number of elements of P of rank
k is denoted Wk and is called the kth Whitney number of P of the second kind. Thus the
rank-generating function F(P, x) of P is given by

F(P, x) = ∑
t∈P

xρ(t)

=
n

∑
k=0

Wkxk.
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Definition 1.5 (Stirling numbers of the second kind). The Stirling numbers of the second kind,

written S(n, k) or
{

n
k

}
, count the number of ways to partition a set of [n] into k nonempty

subsets. For n ≥ 1, S(n, k) = 0 if k > n, S(n, 0) = 0, S(n, 1) = 1, S(n, 2) = 2n−1 − 1,
S(n, n) = 1, S(n, n− 1) = (n

2).
The Stirling numbers of the second kind satisfy the following basic recurrence:

S(n, k) = k · S(n− 1, k) + S(n− 1, k− 1).

The Stirling numbers of the second kind are also given by the explicit formula:

S(n, k) =
k

∑
j=1

(−1)k−j jn−1

(j− 1)!(k− j)!
=

1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
jn.

1.2 Order Complexes and Face posets

This section primarily follows Wachs’s lecture notes [11] and focuses on the topology and
shellability of a poset. By the topology of a poset, we mean the topology of a certain simplicial
complex associated to the poset, called the order complex of the poset. Shellability is a
combinatorial property of simplicial and more general cell complexes, with strong topological
and algebraic consequences.

1.2.1 Simplicial Complex

Definition 1.6. An abstract simplicial complex ∆ on finite vertex set V is a nonempty collection
of subsets of V such that

• v ∈ ∆ for all v ∈ V.

• if G ∈ ∆ and F ⊂ G then F ∈ ∆.

The elements of ∆ are called faces (or simplices) of ∆ and the maximal faces are called facets.
We say that a face F has dimension d and write dim(F) = d if d = |F| − 1. Faces of dimension d
are referred to as d-faces. The dimension dim(∆) of ∆ is defined to be maxF∈∆ dim(F). We also
allow the (-1)-dimensional complex {∅}, which we refer to as the empty simplicial complex.
A pure simplicial k-complex ∆ is a simplicial complex where every simplex of dimension less
than k is a face of some simplex σ ∈ ∆ of dimension exactly k i.e., all facets have dimension k.

Definition 1.7. A d-dimensional geometric simplex in Rn is defined to be the convex hull of
d + 1 affinely independent points in Rn called vertices. The convex hull of any subset of the
vertices is called a face of the geometric simplex. A geometric simplicial complex K in Rn is a
nonempty collection of geometric simplices in Rn such that

• Every face of a simplex in K is in K.

• The intersection of any two simplices of K is a face of both of them.
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From a geometric simplicial complex K, one gets an abstract simplicial complex ∆(K) by
letting the faces of ∆(K) be the vertex sets of the simplices of K. Every abstract simplicial
complex ∆ can be obtained in this way, i.e., there is a geometric simplicial complex K such
that ∆(K) = ∆. We refer to this space as the geometric realization of ∆ and denote it by |∆|. A
simplicial map is a map between simplicial complexes with the property that the images of the
vertices of a simplex always span a simplex.

1.2.2 Order Complex

To every poset P, one can associate an abstract simplicial complex ∆(P) called the order
complex of P. The vertices of ∆(P) are the elements of P and the faces of ∆(P) are the chains
of P. This association is functorial i.e., ∆ is a functor from the category of posets to the category
of simplicial complexes,

{Posets} ∆−→ {Simplicial Complexes}
{Order Preserving maps} −→ {Simplicial Maps}.

To every simplicial complex ∆, one can associate a poset P(∆) called the face poset of ∆,
which is defined to be the poset of nonempty faces ordered by inclusion. The face lattice L(∆)
is P(∆) with a smallest element 0̂ and a largest element 1̂ attached.

If we start with a simplicial complex ∆, take its face poset P(∆), and then take the order
complex ∆(P(∆)), we get a simplicial complex known as the barycentric subdivision of ∆. The
geometric realizations are always homeomorphic, ∆ ∼= ∆(P(∆)).

Theorem 1.2 (Philip Hall). For any poset P

χ̃(∆(P)) = µ(P̂).

Define the join of two simplicial complexes ∆ and Γ on disjoint vertex sets to be the
simplicial complex given by

∆ ∗ Γ := {A ∪ B : A ∈ ∆, B ∈ Γ}

Clearly ∆(P ∗Q) = ∆(P) ∗ ∆(Q).

1.2.3 Shellable Simplicial Complexes

For each face F of a simplicial complex ∆, let (F) denote the subcomplex generated by F, i.e.,
(F) = {G : G ⊂ F}. All simplicial complexes that we consider are pure.

Definition 1.8. A simplicial complex ∆ is said to be shellable if its facets can be arranged

in linear order F1, F2, . . . , Ft in such a way that the subcomplex (
k−1⋃
i=1

(Fi)) ∩ (Fk) is pure and

(dim ∆− 1)-dimensional for all k = 2, 3, . . . , t. Such an ordering of facets is called a shelling.

Shellability does have strong topological consequences, however, as is shown by the
following result.
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1

2

3

4

5 6

1

2

3

4

5 6

P ∆(P)

Figure 1.2: Order Complex of a Poset

Theorem 1.3. [4] A shellable simplicial complex has the homotopy type of a wedge of spheres,
where the number of spheres is the number of facets whose entire boundary is contained in the
union of the earlier facets. Such facets are usually called homology facets.

Corollary 1.4. If ∆ is shellable then

H̃i(∆, Z) ∼=

Zr, i = dim(∆);

0, otherwise.

where r is the number of homology facets of ∆.

1.2.4 Shellable Posets

Definition 1.9. A poset P is said to be shellable if the maximal chains M of P has a shelling,
that is, a linear order Ω such that if k <Ω m for k, m ∈M then there is an h ∈M with h <Ω m
such that (k ∩m) ⊂ (h ∩m) and |h ∩m| = |m| − 1.

For any finite poset P we let C(P) denote its covering relation, C(P) = {(x, y) ∈ P× P :
x ≺ y}. An edge-labeling of P is a map λ : C(P) → Λ, where Λ is some poset. An edge-
labeling therefore corresponds to an assignment of elements of Λ to the edges of the Hasse
diagram of P. An unrefinable chain x0 ≺ x1 ≺ · · · ≺ xn in a poset with an edge-labeling λ will
be called rising if λ(x0, x1) < λ(x1, x2) < · · · < λ(xn−1, xn).

Definition 1.10 (EL-shellable posets). Let λ : C(P)→ Λ be an edge-labeling of a graded poset
P. λ is said to be an R-labeling if in every interval [x, y] of P there is a unique rising unrefinable
chain x = x0 ≺ x1 ≺ · · · ≺ xn = y. λ is said to be an EL-labeling or simply L-labeling in case
(i) λ is an R-labeling;
(ii) for every interval [x, y] of P if x = x0 ≺ x1 ≺ · · · ≺ xn = y is the unique rising unrefinable
chain and x ≺ z ≤ y, z 6= x, then λ(x, x1) < λ(x, z).

Definition 1.11. A poset is lexicographically shellable (or L-shellable) if it is graded and admits
an L-labeling.
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Example 1.4. The Boolean poset Bn is Lexicographically shellable.
Given x ≺ y in Bn, there exists k ∈ [n] such that y− x = {k}. The label λ we associate with
(x, y) ∈ C(Bn) is k i.e., λ(x, y) = k. It is clear that the labelling λ is a L-labelling on Bn.

Theorem 1.5. Let P be a lexicographically shellable poset. Then P is shellable.

Theorem 1.6. [4], [2] Suppose P is a bounded poset with an L-labeling. Then the lexicographic
order of the maximal chains of P is a shelling of ∆(P). Moreover, the corresponding order of the
maximal chains of P̄ is a shelling of ∆(P̄).

1.3 Discrete Morse Theory

Discrete Morse theory is a technique for analyzing the topology of a regular cell complex by
defining a special type of function on it, called a discrete Morse function. It is similar to smooth
Morse theory. Several notions of classical Morse theory like critical points and gradient paths
are modified to the category of CW complexes and in turn used to state discrete versions of
the Morse inequalities. This section closely follows R. Forman’s treatment in [6].

1.3.1 Discrete Morse Function

Let K be any finite regular CW complex, K the cells of K, and Kp the cells of dimension p. We
say a function f : K → R a discrete Morse function if ∀σp ∈ Kp

#{τp+1 > σp : f (τ) ≤ f (σ)} ≤ 1,

#{νp−1 < σp : f (ν) ≥ f (σ)} ≤ 1.
(1.1)

We say σp is critical (with index p) if

#{τp+1 > σp : f (τ) ≤ f (σ)} = 0,

#{νp−1 < σp : f (ν) ≥ f (σ)} = 0.
(1.2)

Given c ∈ R, we define a level subcomplex M(c) by

M(c) =
⋃

f (τ)≤c

⋃
σ<τ

σ. (1.3)

Lemma 1.7. Suppose p > 0. For each cell αp of K, at least one of the inequalities in Eq. (1.1)
must be strict.

Proof. Suppose there is some α for which neither inequality is strict. That is, there exists a
β > α and a γ < α such that f (β) ≤ f (α) and f (γ) ≥ f (α). But that means

f (γ) ≥ f (β). (1.4)

Now, since we are in a regular complex, there exists some p-cell α′ such that γ < α′ < β.
Applying condition 1 of the definition to γ, we see that f (α′) > f (γ). Applying condition 2 to
β, we see that f (α′) < f (β). But these inequalities contradict Eq. (1.4).
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0
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1

1

0

1

52

4

1 5

1

Figure 1.3: The discrete Morse function f

Theorem 1.8. Suppose the interval [a, b] contains no critical values of f . Then M(a) is a
deformation retract of M(b). Moreover, M(b) simplicially collapses onto M(a).

Theorem 1.9. Suppose σp is a critical cell with f (σ) ∈ [a, b], and there are no other critical cells
with values in [a, b]. Then M(b) is homotopy equivalent to

M(a)
⋃

ep

where ep is a p-cell, and it is glued to M(a) along its boundary.

Corollary 1.10. Suppose M is a regular cell complex with a discrete Morse function. Then M
is homotopy equivalent to a CW-complex with exactly one cell of dimension p for each critical
simplex of dimension p.

1.3.2 Gradient Flow

Definition 1.12. A Discrete Vector Field V on K is a collection of pair (σp, τp+1) where σ < τ,
such that each cell is in at most one pair of V.

Suppose there is a discrete Morse function f : K → R. The conditions listed above ensure
that if we pair the cells σp < τp+1 whenever f (σ) ≥ f (τ), the resulting collection of pairs is a
discrete vector field, called the gradient vector field of f .

Definition 1.13. Given a discrete vector field V on K, a V-path is a sequence of cells

σ
p
1 , τ

p+1
1 , . . . , σ

p
t , τ

p+1
t , σ

p
t+1

such that, for each i ∈ [t],

• τi > σi+1,
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• (σi, τi) is a pair in V,

• σi+1 6= σi.

A path is called closed if σ1 = σt+1.

Remark 1.1. If σ1, τ1, . . . , σt, τt, σt+1 is a V-path, then f (σ1) ≥ f (τ1) ≥ · · · ≥ f (τt) ≥ f (σt+1).

Theorem 1.11. A discrete vector field is the gradient vector field of a discrete Morse function if
and only if there are no closed V-paths.

1.3.3 Morse Complex

For σp < τp+1 in K, the incidence number [τ : σ] is the degree of the attaching homeomorphism.
Consider two distinct p-cells σ1, σ2 and a (p + 1)-cell τ such that σ1 < τ and σ2 < τ. Fixed
orientations on σ1 and τ, induce an orientation on σ2 so that [τ : σ1] · [τ : σ2] = −1. Let V
be a discrete Morse function on K and let C := σ1, τ1, . . . , σt, τt, σt+1 be a gradient path. An
orientation on σ1 induces an orientation on each σi in turn, and, in particular, on σt+1. Define
w(C) = 1 if the fixed orientation on σ1 induces the fixed orientation on at+1, and w(C) = −1
otherwise.

A cell σ is critical for a discrete Morse function V, if it is not paired in V. Let Mp denote the
free abelian group generated by the critical p-cells. The Morse complex M• on K is defined as
follows,

M• : 0 −→ . . . ∂̃−→Mp+1
∂̃−→Mp

∂̃−→ . . . ∂̃−→M0 → 0

The boundary homomorphism is given by

∂̃τ = ∑
σp∈τ

〈∂̃τ, σ〉σ, ∀τ ∈Mp+1,

〈∂̃τ, σ〉 : = ∑
σ̃p<τ

[τ : σ̃] ∑
c∈Γ(σ̃,σ)

w(c),

where, Γ(σ̃, τ) denotes the set of all gradient paths from σ̃ to τ.



Chapter 2

Posets of Partitions

Posets of partitions are those posets whose elements are certain partitions of a finite set. They
play an important role in combinatorics. They serve not only as test cases for several theorems
but also interesting in their own right. Several topological properties of these posets have
purely combinatorial description. In this chapter we will discuss the topology of the poset of
ordered and unordered partitions.

2.1 Lattices

Let P be a poset and s, t ∈ P, then an upper bound of s and t is an element u ∈ P satisfying
u ≥ s and u ≥ t. A least upper bound (or join or supremum) of s and t is an upper bound u of s
and t such that every upper bound v of s and t satisfies v ≥ u. If a least upper bound of s and
t exists, then it is clearly unique and is denoted s ∨ t. Dually one can define the greatest lower
bound (or meet or infimum) s ∧ t, when it exists. A lattice is a poset L for which every pair of
elements has a least upper bound and greatest lower bound. Clearly,

• The operations ∨ and ∧ are associative, commutative, and idempotent (i.e., t ∨ t =

t ∧ t = t);

• s ∧ (s ∨ t) = s = s ∨ (s ∧ t) (absorption laws);

• s ∧ t = s ⇐⇒ s ∨ t = t ⇐⇒ s ≤ t.

Clearly all finite lattices have a 0̂ and 1̂. If every pair of elements of a poset P has a meet
(respectively, join), then we say that P is a meet-semilattice (respectively, join-semilattice).

Lemma 2.1. Let P be a finite meet-semilattice with 1̂. Then P is a lattice. (Dually a finite
join-semilattice with 0̂ is a lattice.)

Theorem 2.2. [10] Let L be a finite lattice with at least two elements, and let 1̂ 6= a ∈ L. Then

∑
t:t∧a=0̂

µ(t, 1̂) = 0.

Proposition 2.3. Let L be a finite lattice. The following two conditions are equivalent.

10
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1. L is graded, and the rank function ρ of L satisfies ρ(s) + ρ(t) ≤ ρ(s∧ t) + ρ(s∨ t)∀s, t ∈ L.

2. If s and t both cover s ∧ t, then s ∨ t covers both s and t.

Definition 2.1. A finite lattice L satisfying either of the (equivalent) conditions of the previous
proposition is called a finite semimodular lattice.

2.2 Homotopy Complementation formula for Posets

The main result of this section is a homotopy complementation formula and its application to
semimodular lattices proved by Björner in [5].

Theorem 2.4. Let L be a semimodular lattice of finite length r, r ≥ 2. Then the geometric
realization of ∆(L) has the homotopy type of a wedge of (r− 2)-spheres. Furthermore, if L is
finite the number of spheres in the wedge is |µ(0̂, 1̂)|.

The topology needed to prove Theorem 2.4 is condensed into the following two lemmas,

Lemma 2.5 (Contraction Carrier Lemma). Let ∆ be a simplicial complex, X a topological space,
and f , g : |∆| → X two continuous maps. Assume that to each simplex σ of ∆ we can associate a
subspace C(σ) of X in such a way that

1. C(σ) is contractible,

2. σ ⊂ τ =⇒ C(σ) ⊂ C(τ)

3. f (|σ|) ∪ g(|σ|) ⊂ C(σ).

Then f and g are homotopic.

Lemma 2.6 (Contractible Subcomplex Lemma). If ∆ is a simplicial complex and A a contractible
subcomplex then the quotient map π : |∆| → |∆|/|A| is a homotopy equivalence.

Now we will present some combinatorial conditions for homotopies of order-preserving
maps.

Proposition 2.7. Let f , g : P → Q be order-preserving maps of posets. If f (x) and g(x) are
comparable for all x ∈ P, then f and g are homotopic.

Proof. For each finite chain σ of P, let C(σ) = f (σ) ∪ g(σ). Since the subposet C(σ) has a
least element, it is a cone, hence contractible. The result follows by Lemma 2.5.

A poset will be called join-contractible (via s) if there is some element s such that every
element has a join with s. We define meet-contractible dually. By Proposition 2.7, a join-
contractible poset is contractible: the identity map is homotopic to the map x 7→ s ∨ x, which
in turn is homotopic to the constant map s.

Proposition 2.8. Let P be a poset having an element s such that



CHAPTER 2. POSETS OF PARTITIONS 12

1. s ∨ x or s ∧ x exists for all x ∈ P, and

2. if x < y, s ∧ x does not exist, but s ∧ y does exist, then (s ∧ y) ∨ x exists.

Then P is contractible.

Proof. Let M = {y ∈ P : s ∧ y exists} and Mc = P−M. For each finite non empty chain σ of
P, define the subposet

C(σ) = σ
⋃
{s}

⋃
{s ∨ x : x ∈ σ ∩Mc}

⋃
{s ∧ y : y ∈ σ ∩M}⋃

{(s ∧ y) ∨ x : x < y, x ∈ σ ∩Mc, y ∈ σ ∩M}.

Let z be the least element of σ. It is easy to check that C(σ) is join-contractible via z if
z ∈ Mc, and C(σ) is meet-contractible via z if z ∈ M. In fact, one only has to check for s
and {s ∧ y : y ∈ σ ∩ M}, since everything else in C(σ) is above z. Clearly τ ⊂ σ implies
C(τ) ⊂ C(σ). Since C carries both the identity map and the constant map s, it follows by
Lemma 2.5 that these maps are homotopic, hence P is contractible.

We will say that two elements x, y of a poset P are complements (in symbols, x ⊥ y) if the
set {x, y} has no upper or lower bound in P. For s in P we also define ⊥ (s) = {x ∈ P : x ⊥ s}.
Now Proposition 2.8 can be rephrased as saying that if the poset P has an element s such that

1. for all x ∈ P, either s ∨ x or s ∧ x exists, or else x ∈⊥ (s), and

2. if x < y, y 6∈⊥ (s) and s ∧ x does not exist, but s ∧ y does exist, then (s ∧ y) ∨ x exists.

Then P− ⊥ (s) is contractible.
In the following, "Σ" denotes suspension, " ∼= " denotes homotopy equivalence. If x ∈ P we

write P<x = {y ∈ P : y < x} and P>x is defined similarly. A poset is said to be an antichain if
no two distinct elements are comparable.

Theorem 2.9 (Homotopy Complementation formula). Let P be a poset, and suppose that s ∈ P
satisfies the above conditions and that ⊥ (s) is an antichain. Then

|P| ∼=
∨

Σ(P<x ∗ P>x)

Proof. When ⊥ (s) is an antichain the space |P| can be obtained from |P− ⊥ (s)| by attaching
a cone over (P<x ∗ P>x) for each x ∈⊥ (s). Hence, the quotient space |P|/|P− ⊥ (s)| is
homeomorphic to

∨
x⊥(s)(P<x ∗ P>x), where the wedge point is the image of |P− ⊥ (s)|.

By Lemma 2.5 we know that P− ⊥ (s) is contractible. Therefore, by Lemma 2.6, |P| ∼=
|P|/|P− ⊥ (s)|·

We will also make use of two more facts of homotopy theory, namely:

1. the suspension of a wedge of d-spheres is homotopy equivalent to a wedge of (d + 1)-
spheres and



CHAPTER 2. POSETS OF PARTITIONS 13

2. if Xα = Yα for all α in some indexing set, and these spaces are triangulable and connected,
then

∨
α

Xα =
∨
α

Yα.

Proof of Theorem 2.4. The proper part of any graded lattice of length 2 has the homotopy
type of a wedge of 0-spheres. We continue by induction on r. If s is an atom and x ⊥ s, then
ρ(x) = r − 1, as can be seen from the semimodular inequality. So for every x ∈⊥ (s) the
interval [0̂, x] is a semimodular lattice of length r− 1. By the induction assumption (0̂, x) has
the homotopy type of a wedge of (r− 3)-spheres, so using Theorem 2.9 and the initially cited
facts (1) and (2), we conclude that L is of the required homotopy type.

2.3 Poset of Unordered Partition

Let Πn denote the set of all partitions of the finite set [n] ordered by partition as in Example 1.3.
Clearly Πn is semimodular, so from Theorem 2.4 we conclude that Πn has the homotopy of
wedge of spheres of (n− 3)-spheres. The number of spheres in the wedge is |µ(0̂, 1̂)|.

2.3.1 The Möbius function of the partition poset

It is easy to check that Πn is graded of rank n − 1. The rank ρ(π) of π ∈ Πn is equal to
n-(number of blocks of π) = n− #π. Hence the rank-generating function of Πn is given by

f (Πn, x) =
n−1

∑
k=0

S(n, n− k)xk

where S(n, n− k) is a Stirling number of the second kind. If π, σ ∈ Πn then π ∧ σ has as
blocks the nonempty sets B ∩ C, where B ∈ π and C ∈ σ. Hence Πn is a meet-semilattice.
Since the partition of [n] with a single block is a 1̂ for Πn, it follows from Lemma 2.1 that
Πn is a lattice. Suppose that π = {B1, . . . , Bk}. Then the interval [π, 1̂] is isomorphic in an
obvious way to Ππ, the lattice of partitions of the set {B1, . . . , Bk}. Hence [π, 1̂] ∼= Πk. Let us
now consider the structure of any interval [σ, π]. Suppose that π = {B1, . . . , Bk} and that Bi is
partitioned into λi blocks in σ. An argument similar to above shows that

[σ, π] ∼= Πλ1 ×Πλ2 . . . Πλk .

In particular, [0̂, π] ∼= Πa1
1 × . . . Πan

n if π has ai blocks of size i.
Now set µn = µ(0̂, 1̂), where µn is the Möbius function of Πn. If [σ, π] = Πλ1 × · · · ×Πλk ,

then we have µ(σ, π) = µλ1 × · · · × µλk . Hence to determine µ completely, it suffices to
compute µn. Pick a to be the partition with the two blocks {1, 2, . . . , n − 1} and {n}. An
element t of Πn satisfies t ∧ a = 0̂ if and only if t = 0̂ or t is an atom whose unique two-
element block has the form {i, n} for some i ∈ [n− 1]. The interval [t, 1̂] is isomorphic to
Πn−1, so from Theorem 2.2 we have µn = −(n− 1)µn−1. Since µ0 = 1, we conclude that
µn = (−1)n−1(n− 1)!.
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2.4 Poset of Ordered Partitions

Definition 2.2. Let n ∈ N, n ≥ 0. An ordered partition α = (I1 . . . Ik) of [n] is a partition in
which the order of the Ij’s matters. The subsets Ij’s are called blocks of α.

We can make the set Ωn of all ordered partitions of [n] into a poset by defining π ≤ σ in
Ωn if every block of π is contained in a block of σ in an order preserving way. We then say
that π is a order preserving refinement of σ and that Ωn consists of the ordered partitions of
[n] “ordered by refinement.”

Example 2.1. If n = 9 and if π has blocks (137, 46, 2, 58, 9) and σ has blocks (13467, 2589) then
π ≤ σ. We then say that π is a order preserving refinement of σ. If π

′
= (137, 2, 46, 58, 9) then

π
′ 6≤ σ in Ωn.

2.4.1 Permutohedron

The permutohedron of order n, denoted Pn, is an (n− 1)-dimensional polytope embedded in
an n-dimensional space. It is defined as the convex hull of all points in Rn that are obtained
by permuting the coordinates of the point (1, 2, . . . , n). It has the following properties:

1. The k-faces of Pn are labeled by ordered partitions of the set [n] into (n− k) non-empty
parts.

2. A face F of Pn is contained in a face F′ iff the label of F is a refinement of the label of F′.
Here we mean the order-preserving refinement.

3. In particular, the vertices are labeled by the elements of the symmetry group Sn. For each
vertex, the label is the inverse permutation of the coordinates of the vertex. Two vertices
are joined by an edge whenever their labels differ by a permutation of two neighbor
entries.

4. Each face of Pn equals the Cartesian product of standard permutohedra of smaller
dimensions.

5. The permutohedra P1, P2, and P3 are a one-point polytope, a segment, and a regular
hexagon respectively.

Refer [12], for more detailed analysis of permutohedron.

Theorem 2.10. The face poset of the permutohedron Pn is isomorphic to the poset of ordered
partition Ωn.

Thus, the problem of understanding the topology of the poset Ωn reduces to understanding
the polytope Pn.
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Figure 2.1: Permutohedron P3

Figure 2.2: Face of P3 with 0̂

Denote the poset Pn adjoined with 0̂ also as Pn. This forms a lattice. The proper part of
this lattice P̄n = Pn − {0̂, 1̂} is the face poset of a regular cell structure on (n− 1)-sphere.
Thus the following lemma follows from Philip hall theorem.

Lemma 2.11. Given the poset Ωn of ordered partitions, the Möbius function is

µ(0̂, 1̂) = (−1)n−1.



Chapter 3

The Cyclopermutohedron

The cyclopermutohedron of order n, denoted CPn+1 was introduced by G. Panina in [8]. It is
an (n− 2) - dimensional regular CW complex whose cells are labeled by cyclically ordered
partitions of [n + 1]. Recall that for a generic length vector L := (l1, l2, . . . , ln+1) ∈ Rn+1

+

the moduli space ML of planar polygons is a closed, orientable smooth (n− 2)-manifold. A
remarkable fact is that for every such generic L there is a subcomplex of CPn+1 homeomorphic
to ML. Thus, in this sense, the cyclopermutohedron is an “universal object” for moduli
spaces of polygonal linkages. Unlike the permutohedron, the cyclopermutohedron cannot be
realized as a polytope in any Euclidean space. However, it can be realized as a virtual polytope.
Intuitively, one can think of a virtual polytope as the boundary of a convex polytope with
‘diagonals’ inserted between certain faces.

In this chapter, we focus on combinatorics and topology of CPn+1. On the topological side
we discuss, in detail, the homology computations using discrete Morse theory as described in
[7].

The following notations will be heavily used in this and subsequent chapters:

• A subset of [n + 1] containing the element n + 1 will be called an n + 1-set. Given a
partition of [n + 1], the letter N denotes the n + 1-set.

• The triangle ∇ denotes (a possibly empty) string of singletons arranged in decreasing
order.

• Given two subsets I and J, the expression “I < J” indicates that i < j for each i ∈ I and
j ∈ J. Similarly, the expression “k < ∇” indicates that k is less than the element in each
singleton of ∇.

• The set “I − {m}” is denoted “I −m” and the braces for the singleton will be omitted
i.e., the block “{s}” is denoted by “s”.

• The set “{a1, a2, . . . , ak}” will be denoted “a1a2 . . . ak” when there is no ambiguity.

Definition 3.1. A cyclically ordered partition of the set [n + 1] is an equivalence class
of ordered partitions with the relation that two ordered partitions equivalent if one can
be obtained from the other by a cyclic permutation of its blocks. That is, (I1, . . . , Ik) ∼

16
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(I2, . . . , Ik, I1) ∼ · · · ∼ (Ik, I1, . . . , Ik−1). When dealing with such partitions, we will always
assume that the block containing n + 1 appears last.

Definition 3.2. For a fixed n > 2, the regular cell complex cyclopermutohedron CPn+1 is
defined as follows.

• For k = 0, 1, . . . , n− 2, the k-dimensional cells (k-cells, for short) of the complex CPn+1

are labeled by (all possible) cyclically ordered partitions of the set [n + 1] into (n− k + 1)
non-empty parts.

• A (closed) cell F contains a cell F
′
whenever the label of F

′
refines the label of F. Here,

by refinement we mean orientation preserving refinement.

{1}

{2}

{3}

{4}

{1}

{1}

{1}

{1}

{1} {2}

{2}

{2}

{2}

{2} {3}

{3}

{3}

{3}

{3} {4} {4}

{4}

{4}

{4}

{1,2}

{3}

{4}

{1}

{3}

{2,4}

Figure 3.1: The Complex CP4

In particular, this means that the vertices of the complex CPn+1 are labeled by cyclic
orderings on the set [n + 1]. Two vertices are joined by an edge whenever their labels differ on
a permutation of two neighboring entries. Example n = 3 can be seen in Fig. 3.1.

3.1 Combinatorial description of cellular homology

In this section, we present a purely combinatorial description for the boundary maps of the
cellular chain complex of CPn+1in terms of partitions of sets.
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3.1.1 Canonical orientation of cells

Note that the vertices of CPn+1 are in bijection with the elements of the group Sn. Two vertices
of CPn+1 are joined by an edge whenever their labels differ on a permutation of two neighbor
entries. Given a vertex v in α = (I1, I2, . . . , Il), there are dim(α) many vertices of α that are
connected to v by an edge. We call such vertices neighbors of v and we put an order on these
in the following way. We get the first neighbor of v by interchanging the first two entries of
v that belong to the same Ii, the second neighbor we get by interchanging the second two
entries of v that belong to the same Ii etc. This ordering is called the orientation of the cell
related to the vertex v.

Definition 3.3. The principal vertex PV(α) of a cell α is the vertex with the label ( Î1, Î2, . . . , Îl),
where Îj is a partition of the set Ij into singletons coming in increasing order. The orientation
of the cell α related to its principal vertex PV(α) is called the canonical orientation of α.

Unless otherwise stated, by an orientation of a cell, we mean the canonical orientation.

Example 3.1. For the cell α = ({1}{2, 4, 5}{3}{6, 7, 8}), the principal vertex PV(α) is given by
({1}{2}{4}{5}{3}{6}{7}{8}) and the α-neighbors of PV(α) are ordered as follows:
v1 = (1, 4, 2, 5, 3, 6, 7, 8), v2 = (1, 2, 5, 4, 3, 6, 7, 8), v3 = (1, 2, 4, 5, 3, 7, 6, 8), etc.

3.1.2 Boundary maps

There is a free and transitive action of the group Sn+1 on the vertices of CPn+1. Note that
the action preserves the canonical ordering. For example, let σ = (12345, 6, 7) ∈ CP7, and
w = (24) ∈ S7.

v0 = (1, 2, 3, 4, 5, 6, 7)→ (1, 4, 3, 2, 5, 6, 7)

v1 = (2, 1, 3, 4, 5, 6, 7)→ (4, 1, 3, 2, 5, 6, 7)

v2 = (1, 3, 2, 4, 5, 6, 7)→ (1, 3, 4, 2, 5, 6, 7)

v3 = (1, 2, 4, 3, 5, 6, 7)→ (1, 2, 3, 4, 5, 6, 7)

v4 = (1, 2, 3, 5, 4, 6, 7)→ (1, 4, 3, 5, 2, 6, 7)

Given a pair of cells τp−1 < σp in CPn+1, let vσ and vτ denote the principal vertices of σ

and τ respectively. Let (v1, . . . , vp) be the ordering on neighbors of vσ in σ. Since vσ and vτ

also represent elements of Sn+1, there exists some permutation gσ,τ ∈ Sn such that gσ,τvσ = vτ.
Moreover, there is exactly one index iτ ∈ {1, 2, 3, . . . , p} such that gσ,τviτ

is not adjacent to vτ

in τ.
Let ∆m be the free abelian group with basis the m-cells σm

α of CPn+1. We define the
boundary homomorphism ∂m : ∆m → ∆m−1 by specifying its values on the basis elements:

∂mσ = ∑
τm−1<σm

sign(gσ,τ) · (−1)iτ · τ

〈∂mσ, τ〉 := sign(gσ,τ) · (−1)iτ
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Lemma 3.1. Let σ = (I1, I2, . . . , Ik) and τ = (I1, . . . , J1, J2, . . . , Ik) with some p ∈ {1, 2, . . . , k}
such that Ip = J1 ∪ J2. For every i ∈ {1, 2, . . . , k}, denote |Ii| = ri. Then

〈∂σ, τ〉 = (−1)∑
p−1
i=1 ri+|J1|−(p−1) · sign(gσ,τ)

Proof. Without loss of generality assume PV(σ) = PV(τ) = (1, 2, . . . , n + 1) = v0. The
neighbors of PV(σ) are ordered as follows:

v0 = (1, 2, . . . , n + 1)

v1 = (2, 1, 3, . . . , n + 1)

v2 = (1, 3, 2, . . . , n + 1)
...

vr1−1 = (1, 2, . . . , r1, r1 − 1, . . . , n + 1)

vr1 = (1, 2, . . . , r1, r1 + 2, r1 + 1, . . . , n + 1)
...

vrp−1+|J1|−(p−1)−2 = (1, 2, . . . , rp−1 + |J1| − 1, rp−1 + |J1| − 2, . . . , n + 1)

vrp−1+|J1|−(p−1)−1 = (1, 2, . . . , rp−1 + |J1|, rp−1 + |J1| − 1, . . . , n + 1)

vrp−1+|J1|−(p−1) = (1, 2, . . . , rp−1 + |J1|+ 1, rp−1 + |J1|, . . . , n + 1)

...

From the list, it is clear that the index iτ such that viτ
is not a vertex of τ is rp−1 + |J1| −

(p− 1), since the interchanging is consistent with only σ and not with τ. A similar argument
works for the case where PV(τ) 6= (1, 2, . . . , n + 1). Observe the fact that the missing index
corresponding to the cell which

• has same partition structure (i.e., similar block structure) as τ,

• contained in the boundary of σ and

• has same principal vertex as σ,

is the unique index iτ such that gσ,τviτ
is not adjacent to vτ in τ. Briefly, a missing index is

taken to another missing index by the permutation gτ.

Theorem 3.2. The composition ∆m
∂m−→ ∆m−1

∂m−1−−→ ∆m−2 is zero.

Proof. Let σk+2 = (I1, I2, . . . , In−1−k) , τk = (J1, . . . , Jn+1−k), then it is enough to show that
〈∂2σ, τ〉 = 0. If τk < σk+2 then σ and τ satisfy exactly one of the following relations

1. ∃i, j, k ∈ [n + 1− k] and ∃p ∈ [n− 1− k] such that Ji ∪ Jj ∪ Jk = Ip,

2. ∃i, j, s, t ∈ [n + 1− k] and ∃p, q ∈ [n− 1− k] such that Ji ∪ Jj = Is and Jk ∪ Jl = It.
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(I1, I2, I3)

ω1 = (J1 ∪ J2, J3, J4, J5) ω2 = (J1, J2 ∪ J3, J4, J5)

(J1, J2, J3, J4, J5)

Figure 3.2: The interval [τ, σ] in case 1.

Case 1: Without loss of generality assume J1 ∪ J2 ∪ J3 = I1, so only I1 is involved in the
computation of 〈∂2σ, τ〉. We can also assume that σ has the minimum number of blocks, i.e.,
s = 3. Thus, σ = (I1, I2, I3) and τ = (J1, J2, J3, J4, J5) and we have

• 〈∂σ, ω1〉 = sign(g1) · (−1)|J1|+|J2|

• 〈∂σ, ω2〉 = sign(g2) · (−1)|J1|

• 〈∂ω1, τ〉 = sign(g3) · (−1)|J1|

• 〈∂ω2, τ〉 = sign(g4) · (−1)|J1|+|J2|−1

where, gi’s represent the permutation involved in the comparison of principal vertices. Note
that there is a unique permutation which takes PV(σ) to PV(τ), so g3 ◦ g1 = g4 ◦ g2. This
shows that 〈∂2σ, τ〉 = 0.

Case 2: Without loss of generality assume that J1 ∪ J2 = I1 and J3 ∪ J4 = I2, so only I1

and I2 are involved in the computation of 〈∂2σ, τ〉. Further assume that σ has the minimum
number of blocks, i.e., s = 3. Thus, σ = (I1, I2, I3) and τ = (J1, J2, J3, J4, J5, J6) and we have
the following

(I1, I2, I3)

ω1 = (J1 ∪ J2, J3, J4, J5, J6) ω2 = (J1, J2, J3 ∪ J4, J5, J6)

(J1, J2, J3, J4, J5, J6)

Figure 3.3: The interval [τ, σ] in case 2.

• 〈∂σ, ω1〉 = sign(g1) · (−1)|J1|+|J2|+|J3|−1

• 〈∂σ, ω2〉 = sign(g2) · (−1)|J1|

• 〈∂ω1, τ〉 = sign(g3) · (−1)|J1|

• 〈∂ω2, τ〉 = sign(g4) · (−1)|J1|+|J2|+|J3|−2
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where, gi’s represent the permutation involved in the comparison of principal vertices.
Note that there is a unique permutation which takes PV(σ) to PV(τ), so g3 ◦ g1 = g4 ◦ g2. This
shows that 〈∂2σ, τ〉 = 0.

Theorem 3.3. Let τp−1 < σp, then

[σ : τ] = 〈∂σ, τ〉 (3.1)

i.e., the coefficient of τ in the image of σ under the boundary homomorphism is precisely the
incidence number [σ : τ].

Proof. We will prove this inequality using induction on the dimension of cells. If dimension of
σ is 2, then the boundary complex is exactly one of the following.

Figure 3.4: Possible boundaries of a 2-cell

By computing the incidence numbers explicitly, Eq. (3.1) can be proven easily.
Now assume the induction hypothesis that the Eq. (3.1) is true for all cells of dimension

less than or equal to k. Let σ = (I1, I2 . . . In−k), τ = (I1, I2 . . . J1, J2 . . . In−k) with J1 ∪ J2 = Ip

and |Ii| = ri. Without loss of generality we can assume that the PV(σ) = (1, 2, 3, . . . , n + 1).
Step 1: If τ has the same principal vertex as σ, then J1 = (rp−1 + 1, rp−1 + 2, . . . , rp−1 + t)

and J2 = (rp−1 + t + 1, rp−1 + t + 2, . . . , rp). Let τ̃ = (I1, I2, . . . , J̃1, J̃2, . . . , In−k) where J̃1 =

(rp−1 + 1, rp−1 + 2, . . . , rp−1 + t− 1) and J̃2 = (rp−1 + t, rp−1 + t + 1, . . . , rp).

σ = (I1, I2 . . . In−k)

τ = (I1, I2 . . . J1, J2 . . . In−k) τ̃ = (I1, I2 . . . J̃1, J̃2 . . . In−k)

ω = (I1, I2 . . . J̃1, {rp−1 + t}, J2 . . . In−k)

Figure 3.5

By induction hypothesis we know [τ : ω] · [τ̃ : ω] = 1. Since the square of the boundary
map vanishes in the cellular chain complex, we have [σ : τ] · [σ : τ̃] = −1. Let γ =
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(1, I1 − {1}, I2, . . . , In−k). Then fixing the value of [σ : γ] fixes the value for every τ whose
principal vertex is same as σ. we fix this value to be -1.

Step 2: If PV(σ) 6= PV(τ) then it is enough to consider the cells where permutation
required to take one to the other is just a transposition. Then τ = (I1, I2, . . . , J1, J2, . . . , In−k)

where J1 = (rp−1 + 1, rp−1 + 2, . . . , rp−1 + t + 1), J2 = (rp−1 + t, rp−1 + t + 2, . . . , rp). Let
τ̃ = (I1, I2, . . . , J̃1, J̃2, . . . , In−k) where J̃1 = (rp−1 + 1, rp−1 + 2, . . . , rp−1 + t − 1) and J̃2 =

(rp−1 + t, rp−1 + t + 1, . . . , rp).

σ = (I1, I2, ..In−k)

τ = (I1, I2 . . . J1, J2..In−k) τ̃ = (I1, I2 . . . J̃1, J̃2 . . . In−k)

ω = (I1, I2 . . . J̃1, {rp−1 + t + 1}, J2 . . . In−k)

Figure 3.6

By induction hypothesis and step 1, we know the values [σ : τ̃], [τ : ω], [τ̃ : ω] and hence
we can compute the [σ : τ] by using the fact the square of the boundary map vanishes in
cellular chain complex.

This should be equal to the value defined above in definition because we have already
showed ∂2 = 0.

Here are some examples that illustrate the proof above:

Example 3.2. Let α = (1, 23, 45, 6) , β = (1, 2, 3, 45, 6). The neighbors of PV(α) are ordered
as v1 = (1, 3, 2, 4, 5, 6) and v2 = (1, 2, 3, 5, 4, 6). Since PV(α) = PV(β), gα,β = Id. The vertex
PV(β) has only one neighbor which is (1, 2, 3, 5, 4, 6) and hence the missing vertex is v1. This
shows that 〈∂α, β〉 = −1

Example 3.3. Let α = (1, 23, 45, 6), β1 = (1, 2, 3, 45, 6), β2 = (1, 23, 4, 5, 6) and γ = (1, 2, 3, 4, 5, 6).
Observe γ < β1, β2 and β1, β2 < α. Clearly 〈∂α, β1〉 = −1, 〈∂α, β2〉 = 1 and 〈∂β1, γ〉 =
−1, 〈∂β2, γ〉 = −1. Thus we have 〈∂α, β1〉 · 〈∂β1, γ〉 = 1 and 〈∂α, β2〉 · 〈∂β2, γ〉 = −1 showing
that 〈∂2α, γ〉 = 0.

3.2 A discrete Morse function for the cyclopermutahedron

This section follows closely the construction of a discrete Morse function on CPn+1 described
by I. Nekrasov, G. Panina and A. Zhukova in [7].

Step 1. We pair together two cells

α = (. . . 1, I . . . ) and β = (. . . 1∪ I . . . )

if n + 1 6∈ I.
We proceed for all 2 ≤ k < n, assuming that the k-th step is:
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Step k. We pair together two cells

α = (. . . k, I . . . ) and β = (. . . k ∪ I . . . )

if the following holds:

1. α and β were not paired at any of the previous steps.

2. n + 1 6∈ I.

3. k < I.

Example 3.4. The cell (2, 43, 1, 56) is paired with the cell (243, 1, 56) on the second step. The
cell (4, 5, 3, 1, 26) is paired with the cell (45, 3, 1, 26) on the fourth step. The cell (4, 3, 2, 1, 56)
is not paired.

Lemma 3.4. The above pairing is a discrete Morse function.

Proof. By construction, no cell can be a part of more than one such pairing. The possible paths
are of the form

a0, b0, a1, b1, . . . , ap, bp, ap+1,

where each pair (ai, bi) is of the form described above.
Claim: ap+1 6= a0

If ap+1 is to equal a0, then ∃s ∈ [n] that must move into the (n + 1)-set and re-emerge on the
left by a splitting of the (n + 1)-set, but that is forbidden by the rules.

Lemma 3.5. The critical cells of the above defined Morse function are exactly all the cells of the
following two types:
Type 1. Cells labeled by (∇, {n + 1, . . . }), where ∇ is a string of singletons coming in decreasing
order.
Type 2. Cells labeled by (i, I, {n + 1, . . . }), where i < I.

Proof. let σ = (I1, I2, . . . , Ik) be a critical cell and n + 1 ∈ Ik.

1. If k > 3,

• then the block I1 has to be a singleton, otherwise choose the minimum element,
say m ∈ I1. Then σ is paired to the cell τ = (m, I1 −m, . . . , Ik). The block I1 and I2

satisfy the relation I1 > I2, otherwise

– σ is paired to the cell τ = (I1 ∪ I2, . . . , Ik) if I1 < I2 and

– If ∃j ∈ I2 such that j < I1, then choose the minimum element of I2, say m.
Then σ is paired to the cell τ = (I1, m, I2 −m, . . . , Ik).

• The block I2 has to be a singleton, otherwise choose the minimum element, say
m
′ ∈ I1. Then σ is paired to the cell τ = (I1, m, I2 −m, . . . , Ik). The block I2 and I3

satisfy the relation I2 > I3, otherwise

– σ is paired to the cell τ = (I1, I2 ∪ I3, . . . , Ik) if I1 < I2 and
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– If ∃j ∈ I3 such that j < I2, then choose the minimum element of I3, say m.
Then σ is paired to the cell τ = (I1, I2, m, I3 −m, . . . , Ik).

Similarly, It can be proved that blocks Ij for j 6= k are singletons arranged in descending
order.

2. If k = 3, then the block I1 has to be a singleton, otherwise choose the minimum element,
say m ∈ I1. Then σ is paired to the cell τ = (m, I1 −m, . . . , Ik).

• If I1 < I2, then this is a critical cell of type 2.

• If I1 > I2, then the block I2 has to be a singleton, otherwise choose the minimum
element, say m

′ ∈ I1. Then σ is paired to the cell τ = (I1, m, I2 −m, I3).

• If ∃j ∈ I2 such that j < I1, then choose the minimum element of I2, say m. Then σ

is paired to the cell τ = (I1, m, I2 −m, I3).

Lemma 3.6. There are no critical gradient paths that end at critical cells of type 2.

Proof. Critical cells of type 2 have the maximal possible dimension.

Lemma 3.7. The following three cases describe all the gradient paths between critical cells:

1. Let β = (∇′ , {n + 1, . . . }) and α = (∇, {n + 1, . . . }) be two cells of type 1. Then there are
two gradient paths from β to α iff ∇′ = ∇∪ k for some k.

2. Let β = ({i}, {j, k}, {n + 1, . . . }) and α = ({k}, {j}, {i}, {n + 1, . . . }) be cells of type 2
and 1 respectively. Then there are two gradient paths from β to α.

3. Let β = ({i}, {j}, {n + 1, . . . }) and α = (∇, {n + 1, . . . }) be cell of type 2 and type 1
respectively. Then there are two gradient paths from β to α iff ∇ consists of three singletons,
two of which are {i} and {j}.

Proof. See [7, Lemma 9] for the proof.

Lemma 3.8 (The good path lemma). Let (τ1, τ2, σ) be a triple such that τ1 = (X, {k}, I, Y)
and τ2 = (X, I, {k}, Y) are two (p− 1)-cells in the boundary of the p-cell σ = (X, {k} ∪ I, Y) in
CPn+1, where X and Y are sequences of sets. Then

[τ1 : σ][τ2 : σ] = −1. (3.2)

Proof. Let I = {i1, . . . , is} with i1 < · · · < ir < k < ir+1 < · · · < is. Then,

v0 = PR(σ) = (∆X, i1, . . . , ir, k, ir+1, . . . , is, ∆Y).

vτ1 = PR(τ1) = (∆X, k, i1, . . . , is, ∆Y).

vτ2 = PR(τ2) = (∆X, i1, . . . , is, k, ∆Y).
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In the above expressions, given any sequence Z of sets, ∆Z denotes the partition of Z
into singletons (such that a sequence of singletons arising from a single set is contiguous
and in ascending order). Thus gσ,τ1 = (k, i1, . . . , ir) and gσ,τ2 = (k, is, . . . , ir+1). Now, if
X = A1 A2 . . . Aa, then denote by ‖X‖ the quantity ∑a

i=1(‖Ai‖ − 1). Then iτ1 = ‖X‖+ 1 and
iτ2 = ‖X‖+ s. Now we obtain

[τ1 : σ] = sign(gσ,τ1) · (−1)p+iτ1

= (−1)r · (−1)p+‖X‖+1

= (−1)p+‖X‖+r+1,

[τ2 : σ] = sign(gσ,τ2) · (−1)p+iτ2

= (−1)s−r · (−1)p+‖X‖+s

= (−1)p+‖X‖−r

and the result follows.

Definition 3.4. Suppose we have a path b0, a1, b1, . . . , at, bt, at+1, where each triple (ai, ai+1, bi)

is as above for 1 ≤ i ≤ t. We call such a path a good path.

The following lemma follows directly from the proof of Lemma 3.7.

Lemma 3.9. The gradient paths between critical cells in Lemma 3.7 are good paths.

The above results lead to a rather simple proof for the vanishing of boundary maps in the
Morse complex, which clearly mean that the homology groups of CPn+1 are torsion free and
the Betti numbers are exactly equal to number of critical cells.

Theorem 3.10. The boundary operators of the Morse complex vanish.

Proof. From Section 1.3.3, recall that

〈∂̃σ, τ〉 = ∑
σ̃p<σ

〈∂σ, σ̃〉 ∑
c∈Γ(σ̃,τ)

w(c)

Where, Γ(σ̃, τ) denote the set of all gradient paths from σ̃ to τ.
By Lemma 3.9 the paths between critical cells are good paths. Hence ∀σ̃ < σ, ∀c ∈

Γ(σ̃, τ), we have w(c) = 1. Let us denote these two paths as C := σ, a1, b1, . . . , at, bt, τ and
D = σ, α1, β1, . . . , αt, βt, τ. Then 〈∂̃σ, τ〉 = 〈∂σ, a1〉+ 〈∂σ, α1〉. Since the triple (a1, σ, α1) also
forms a good pair, [σ : a1] · [σ : α1] = −1 implying ∂̃ = 0.

Corollary 3.11. The homology of CPn+1 is torsion free and the Betti numbers are given as follows

bi =

2n + 2n−3n−2
2 , i = n− 2;

(n
i ), 0 ≤ i < n− 2.
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3.3 Combinatorics of cyclopermutohedron

In the remaining chapter we study combinatorial properties like Whitney numbers of the first
and the second kind, Möbius function etc.

3.3.1 Whitney numbers of the Second kind

Denote by T(n, k) the number of cyclically ordered partitions of n into k blocks. In cycloper-
mutoherdron CPn+1, the Whitney numbers of the second kind Wk is equal to T(n, k). Clearly
T(n, k) is (k− 1)!S(n, k), where S(n, k) is a Stirling number of the second kind.

Claim 3.12. T(n, k) = (k− 1)T(n− 1, k− 1) + kT(n− 1, k), T(1, 1) = 1

Proof. Use the recursive relation mentioned in Definition 1.5.

S(n + 1, k) = S(n− 1, k− 1) + kS(n− 1, k)

(k− 1)!S(n + 1, k) = (k− 1)!S(n− 1, k− 1) + k(k− 1)!S(n− 1, k)

T(n, k) = (k− 1)T(n− 1, k− 1) + kT(n− 1, k)

Definition 3.5 (Special Falling factorial). Define 〈x〉k = x(x−1)(x−2)...(x−k+1)
(k−1)! .

The set F[x] of all polynomials in the indeterminate x with coefficients in the field F forms
a vector space over F. The sets B1 = {1, x, x2, . . . } and B2 = {1, 〈x〉1, 〈x〉2, . . . } are both bases
for F[x]. Then the following proposition asserts that the (infinite) matrix T := [T(n, k)]k,n∈N

is the transition matrix between the basis B2 and the basis B1.

Proposition 3.13. With the notation as above we have xn =
n

∑
k=0

T(n, k)〈x〉k.

Proof. Let M(n, k) be the transition matrix between the basis B2 and the basis B1. We will
prove that the entries of this matrix satisfy the same recursive relation as T(n, k)’s. We do this
by inducting on n. When n = 1, k = 1, 〈x〉1 = x and so M(1, 1) = 1 = T(1, 1)
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xn = x · xn−1

= x ·
n−1

∑
k=0

M(n− 1, k)〈x〉k

=
n−1

∑
k=0

M(n, k)x · 〈x〉k

=
n−1

∑
k=0

M(n, k)(x− k + k) · 〈x〉k

=
n−1

∑
k=0

M(n, k)(x− k) · 〈x〉k + xn
n

∑
k=0

M(n, k)k · (x)k

=
n−1

∑
k=0

M(n, k)k · 〈x〉k+1 + xn
n

∑
k=0

M(n, k)k · 〈x〉k

=
n

∑
k=1

M(n, k)(x− k) · 〈x〉k + xn
n

∑
k=0

M(n, k)k · 〈x〉k

n

∑
k=0

M(n, k)〉x〉k =
n

∑
k=1

M(n, k)(x− k) · 〈x〉k + xn
n

∑
k=0

M(n, k)k · 〈x〉k

by comparing the coefficients we get the required recurrence relation same as T(n, k).

3.3.2 Whitney numbers of the first kind

Let C be a (k + 1) cell represented by a cyclically ordered partition I = (I1, I2, . . . , In−k) and
|Ij| = aj. All the cells of the k-skeleton that should be incident to C form a subcomplex of
the k-skeleton which is combinatorially isomorphic to the boundary complex of the Cartesian
product of permutohedra ∂(Πa1 × · · · ×Πak). Obviously, it is a k-dimensional sphere, and
there is a unique way to attach the boundary C to the sphere. Thus, we get µ(0, C) = (−1)k.

Proposition 3.14. The following expression holds:

wk = T(n + 1, n + 1− k)(−1)k−1. (3.3)

Proof. Let C be a k-cell represented by a cyclically ordered partition I = (I1, I2, . . . , In+1−k),
then by above µ(0̂, C) = (−1)n+1−k. Since the möbius function depends only on the rank, it is
sufficient to compute the number of k-cells. This is given by T(n + 1, n + 1− k).

Recall, χ(CPn+1) = (−1)n(2n − 2), so χ̃(CPn+1) = (−1)n(2n − 2)− 1

Corollary 3.15. The following expression holds:

n+1

∑
k=1

T(n + 1, k)(−1)k = 0
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Proof.

µ(0̂, 1̂) = −
n+1

∑
k=3

T(n + 1, k)(−1)n−k − 1

= (−1)n+1
n+1

∑
k=1

T(n + 1, k)(−1)k + (−1)n+1T(n + 1, 1) + (−1)nT(n + 1, 2)− 1

= (−1)n+1
n+1

∑
k=1

T(n + 1, k)(−1)k + (−1)n+1 + (−1)n(2n − 1)− 1

(−1)n(2n − 2)− 1 = (−1)n+1
n+1

∑
k=1

T(n + 1, k)(−1)k − 1 + (−1)n(2n − 2)

thus it follows (−1)n+1
n+1

∑
k=1

T(n + 1, k)(−1)k = 0

3.3.3 Intervals in the poset

Given a regular cell complex K and a p-cell σ ∈ K, the proper part of [0̂, σ] is homeomorphic to
a (p− 1)-sphere. More generally by a theorem of Björner in [3] all intervals in the face poset of
a regular cell complex are shellable. The following theorem shows that for cyclopermutohedra
the maximal intervals are in fact L-shellable.

Theorem 3.16. Maximal intervals in CPn+1 are L-shellable.

Proof. It is sufficient to consider intervals of the form [(1, 2, 3, . . . , n + 1), (I1, I2, I3)] because
any other interval can be obtained from this interval by applying suitable permutation.
Moreover, for calculation purposes we’ll reverse the order and show that the dual intervals
[(I1, I2, I3), (1, 2, 3, . . . , n + 1)] are shellable.

Now, define an edge-labelling λ inductively in the following manner.
Step 0:
Let α = (I1, I2, I3), β = (J1, J2, J3, J4) and α ≺ β. Also, denote |Ii| = ni, ∀i = 1, 2, 3. If
J1 = (1, 2, . . . , m), J2 = (m + 1, . . . , n1) and J1 ∪ J2 = I1, then define λ(α, β) = m. If J2 =

(n1 + 1, n1 + 2, . . . , n1 + l), J3 = (n1 + l + 1, . . . , n2) and J2 ∪ J3 = I2, then define λ(α, β) =

l + (n1 − 1).
Similarly, if Jt = (nt−1 + 1, nt−1 + 2, . . . , nt−1 + l), Jt+1 = (nt−1 + l + 1, . . . , nt) and Jt ∪ Jt+1 =

It, then define λ(α, β) = l + (n1 − 1) + (n2 − 1) + · · ·+ (nt−1 − 1).
Step 1:
Let α = (I1, I2, I3, I4), β = (J1, J2, J3, J4, J5) and α ≺ β. Also, let |Ii| = ni, ∀i = 1, 2, 3, 4.
If J1 = (1, 2, . . . , m), J2 = (m + 1, . . . , n1) and J1 ∪ J2 = I1, then define λ(α, β) = m. If
J2 = (n1 + 1, n1 + 2, . . . , n1 + l), J3 = (n1 + l + 1, . . . , n2) and J2 ∪ J3 = I2, then define
λ(α, β) = l + (n1 − 1).
Similarly, if Jt = (nt−1 + 1, nt−1 + 2, . . . , nt−1 + l), Jt+1 = (nt−1 + l + 1, . . . , nt) and Jt ∪ Jt+1 =

It, then define λ(α, β) = l + (n1 − 1) + (n2 − 1) + · · ·+ (nt−1 − 1).



CHAPTER 3. THE CYCLOPERMUTOHEDRON 29

Step k: (k ≥ 2)
Let α = (I1, I2, I3, . . . , Ik+3), β = (J1, J2, J3, J4, . . . , Jk+4) and α ≺ β. Also, denote |Ii| =
ni, ∀i = 1, 2, . . . , k + 3. If J1 = (1, 2, . . . , m), J2 = (m + 1, . . . , n1) and J1 ∪ J2 = I1, then define
λ(α, β) = m. If J2 = (n1 + 1, n1 + 2, . . . , n1 + l), J3 = (n1 + l + 1, . . . , n2) and J2 ∪ J3 = I2,
then define λ(α, β) = l + (n1 − 1).
Similarly, if Jt = (nt−1 + 1, nt−1 + 2, . . . nt−1 + l), Jt+1 = (nt−1 + l + 1, . . . , nt) and Jt ∪ Jt+1 = It,
then define λ(α, β) = l + (n1 − 1) + (n2 − 1) + · · ·+ (nt−1 − 1).

Denote by M the chain (I1, I1, I3) ≺ (1, I1 − {1}, I2, I3) ≺ (1, 2, I1 − {1, 2}, I2, I3) · · · ≺
(1, 2, . . . , n1, I2, I3) ≺ (1, 2, . . . , n1, n1 + 1, I2 − {n1 + 1}, I3) ≺ · · · ≺ (1, 2, . . . , n + 1). Clearly,
λ(a, b) = 1 ∀a, b ∈ M.

Let α = (I1, I2, I3), β = (J1, J2, J3, J4) and α ≺ β. Also, denote |Ii| = ni, ∀i = 1, 2, 3. If
J1 = (1, 2, . . . , m), J2 = (m + 1, . . . , n1) and J1 ∪ J2 = I1, then

λ(α, β) = 1 ⇐⇒ β = (1, I1 − {1}, I2, I3). (3.4)

Thus M is the unique unrefinable rising chain.

Example 3.5. Consider a maximal chain, α0 = (123, 456, 78) ≺ (1, 23, 456, 78) ≺ (1, 2, 3, 456, 78) ≺
(1, 2, . . . , 4, 56, 78) ≺ · · · ≺ (1, 2, . . . , 7, 8) = α6. Then, λ(α0, α1) = λ(α1, α2) = · · · =
λ(α5, α6) = 1.

Example 3.6. Consider another maximal chain, α0 = (123, 456, 78) ≺ (12, 3, 456, 78) ≺
(1, 2, 3, 456, 78) ≺ (1, .., 45, 6, 78) ≺ · · · ≺ (1, 2, . . . , 7, 8) = α6. Then, λ(α0, α1) = 2, λ(α1, α2) =

1, λ(α2, α3) = 2, λ(α3, α4) = λ(α4, α5) = λ(α5, α6) = 1.

Theorem 3.17. Let T = {x ∈ CPn+1 : x > (1, 2, 3, . . . , n + 1)}. Then we have the following
homotopy equivalence

∆(T) '
∨

n(n−1)
2

Sn−3. (3.5)

Proof. If α = (I1, I2, . . . , Ik) ∈ T, then I1 < I2 < · · · < Ik. From Section 3.2, recall the pairing
defined on CPn+1.

Claim: If α and β are paired in CPn+1, then α ∈ T ⇐⇒ β ∈ T
Let α = (. . . , I, {i}, J, . . . ) be paired with β = (. . . , I, {i} ∪ J, . . . ), K = {i} ∪ J. If α ∈ T, then
I < i < J =⇒ I < K. Thus β ∈ T. Similarly, the converse holds.

So, the critical cells of f restricted to T are of type 2 with one exception α = (12, 3, 4, . . . , n+

1) which was earlier paired to (1, 2, 3, . . . , n + 1) in CPn+1. Thus by Corollary 1.10, the ∆(T)
is homotopy equivalent to a CW-complex with one 0-cell and some (n− 3)-cells.

The critical cells of type-2 contained in T will be of the form:

1. (1, {2, 3, . . . , i}, {n + 1, n, . . . , i + 1}),

2. (2, {3, 4, . . . , i}, {1, n + 1, . . . , i + 1})
...

k. (k, {k + 1, k + 2, . . . , i}, {1, 2, . . . , k− 1, n + 1, . . . , i + 1})
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Thus, there are (n− 1) + (n− 2) + · · ·+ 1 = n(n−1)
2 copies of (n− 3)-cells proving the

homotopy type of ∆(T) is
∨

n(n−1)
2

Sn−3.



Chapter 4

The Bicyclopermutohedron

In this Chapter we first construct a certain quotient of CPn+1 then define a discrete Morse
function on it and use it compute the mod-2 homology.

Recall that for a generic length vector L := (l1, l2, . . . , ln+1) ∈ Rn+1
+ the moduli space ML

of planar polygons admits a natural free Z2 action; wherein each polygon is mapped to its
reflection about the X-axis. The quotient space ML/Z2, denoted M̄L, is the space of polygons
viewed up to the action of all isometries.

Consider a Z2 action on CPn+1 given by the involution.

r : CPn+1 −→ CPn+1

(I1, I2, . . . , Ik−1, Ik) 7→ (Ik−1, . . . , I2, I1, Ik).
(4.1)

Essentially the action identifies cyclically ordered partitions that are obtained by cyclically
permuting blocks in either direction. Clearly this action is fixed point free and we have the
quotient CPn+1/Z2 which we name the bi-cyclopermutohedron and denote it by QPn+1. See
Figure 4.1 for an example when n = 3.

Note that the involution defined in Equation (4.1) mimics the above reflection. Moreover
the complex QPn+1 is the “universal object” for the moduli space M̄L in the same sense as
CPn+1 is for ML.

Definition 4.1. The regular CW complex bi-cyclopermutohedron QPn+1 is defined as:

• For k = 0, 1, . . . , n − 2, the k-cells of QPn+1 are labeled by (all possible) bi-cyclically
ordered partitions of the set [n + 1] into (n− k + 1) non-empty parts.

• A closed cell F̄ contains a cell F′ whenever the label of F′ refines that of F̄.

We begin by introducing some notions that are useful when dealing with equivalence classes
of bi-cyclically ordered partitions. The aim is to show how to choose a nice representative for
these equivalence classes. These ideas were originally introduced by Adhikari in his Masters’
thesis [1].

31
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{2}

{2}
{2}

{1}

{1}

{1}

{3}

{3}
{3}

{4}

{4}

{4}

Figure 4.1: The complex QP4

Definition 4.2. Let λ = (I1, I2, . . . , Ik) be a cyclically ordered partition of [n + 1]. Let j be the
greatest element outside the n + 1 set and j ∈ Il for 1 ≤ l < k. Further, let i be the greatest
element outside n + 1 set and Il and i ∈ Im for 1 ≤ m < k and m 6= l. Then λ is said to be of
class (i, j) if m ≤ l and of class (j, i) otherwise. The class of λ is denoted cl(λ).

Definition 4.3. Let λ be a cell of cl(i, j). λ is called an ascending cell if i < j and descending
otherwise.

Lemma 4.1. The cells of CPn+1 can be partitioned into two classes: one with ascending cells and
the other with descending cells. Involution defined in Equation (4.1) establishes bijection between
these two classes.

{Ascending Cells}←→{Descending Cells}

Therefore, each cell in the quotient complex QPn+1 is an equivalence class containing an
ascending cell and a descending cell(each the reflection of the other). So it does not make
sense to talk about ascending and descending cell in QPn+1. Henceforth, unless otherwise
mentioned, all the cells will be considered ascending.

Definition 4.4. A cell λ̄ is said to be of class {i, j} if one of the preimages under the quotient
map is of class (i, j). We denote the class by cl(λ̄).

Clearly the class {i, j} is equal to class {j, i}. Now, we define a sense of hierarchy on the
cells of QPn+1.

Definition 4.5. Let λ̄ and λ̄′ be two cells of class {i, j} and {i′, j′} respectively. If min{i, j} ≤
min{i′, j′} and max{i, j} ≤ max{i′, j′}, then λ̄′ is said to be higher than λ̄.

Lemma 4.2. If ᾱ, β̄ ∈ QPn+1 and ᾱ is contained in the boundary of β̄, then ᾱ is higher than β̄.
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Proof. Let cl(β̄) = {i, j} and i < j. Since ᾱ is in the boundary of β̄, each block of ᾱ is a subset
of a block of β̄. Therefore, the largest element in ᾱ outside the n + 1 set (say j′) has to be
greater than or equal to j, i.e., j′ ≥ j. Similarly, the second largest element outside the n + 1
set and the set containing j′ has to be greater than or equal to i.

4.1 A discrete Morse function and mod-2 homology

Here, we first define a discrete Morse function on QPn+1 inductively.
Step 1: Pair α = (. . . , 1, I, . . .) and β = (. . . , 1 ∪ I, . . .) in CPn+1 if the following conditions
hold:

1. n + 1 6∈ I.

2. α is ascending.

3. cl(α) = cl(β).

Note that, the conditions 2 and 3 together imply that β also is an ascending cell.
Step k: Pair α = (. . . , k, I, . . .) and β = (. . . , k ∪ I, . . .) if the following conditions hold.

1. n + 1 6∈ I.

2. α and β have not yet been paired.

3. α is ascending.

4. cl(α) = cl(β)

After the (n− 2)nd step, we have-
The final step: If α and β have been paired in CPn+1, then match ᾱ with β̄ in QPn+1 (here ᾱ

with β̄ represents the image of α and β under the map π : CPn+1 → QPn+1).
Following is a straightforward observation about the above matching.

Lemma 4.3. If there is a gradient path

β̄0, ᾱ1, β̄1, . . . , ᾱp,

then ᾱp is higher than β̄0.

Proof. Since we only match the cells in the same class, we have cl(ᾱi) = cl(β̄i) for each
i ∈ {1, 2, . . . , p − 1}. Moreover, using Lemma 4.2, we get that cl(ᾱj) ≥ cl(β̄ j−1) for each
j ∈ {1, . . . , p}. Thus, the result follows.

Theorem 4.4. The pairing on QPn+1, as described above is a discrete Morse function.

Proof. On the contrary, assume that the matching defined is not acyclic, i.e. there is a path

ᾱ0, β̄0, ᾱ1, β̄1, . . . , ᾱp
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with p > 1 and ᾱ0 = ᾱp. Since ᾱ0 and β̄0 are matched, they are in the same class, Therefore,
using Lemma 4.3, we get that cl(ᾱ0) = cl(β̄0) = cl(ᾱ1) = . . . = cl(ᾱp).

We now “lift” this cycle to CPn+1. Let a0 be the ascending cell such that π(a0) = ᾱ0. Let
b0 the cell with which a0 is paired (in particular, π(b0) = β̄0). Next, suppose a1 is ascending
with π(a1) = ᾱ1. Note that cl(a0) = cl(b0) = cl(a1) = (i, j) for some i < j. If a1 is not in the
boundary of b0, then it must be in the boundary of r(b0) (for otherwise a1 would not be in the
boundary of b0). But since cl(r(b0)) = (j, i), we have a cell of class (i, j) in the boundary of
a cell of class (j, i), which is impossible. Hence a1 is in the boundary of b0. Continuing thus,
we obtain a path a0, b0, a1, b1, . . . , ap with ai and bi ascending for each i (and, in particular,
a0 = ap). Thus the cycle in QPn+1 lifts to the cycle in CPn+1. The matching on the ascending
cells is, however, a subset of the matching of CPn+1 described in Section 3.2, and hence the
cycle cannot exist.

Notation: Let λ denote the unique ascending representative of λ̄ ∈ QPn+1.

Theorem 4.5. The critical cells of the discrete Morse function on QPn+1 are the images under π

of the cells of the type (i,I,∇,N) with ∇ < i < I.

Proof. Assume λ̄ = (I1, I2, . . . , Ik) is critical and cl(λ̄)={i, j}.
Claim 1: i ∈ I1.
Proof. Assume, without loss of generality that i ∈ I2.

1. If |I1| = 1, then by construction I1 < i ≤ I2. Hence, the cell λ = (I1, I2, . . . , Ik) can be
matched with λ′ = (I1 ∪ I2, . . . , Ik) as they have the same class type.

2. Let |I1| > 1 and denote the minimum of I1 by m. Then the cells λ = (I1, I2, . . . , Ik) and
λ′ = (m, I1 − {m}, I2, . . . , Ik) can be matched as they have the same class type.

Claim 2: I1 = {i}
Proof. Assume on the contrary that |I1| > 1. Denote the minimum of I1 be m. Then the

cells λ and λ′ = (m, I1 − {m}, . . . , Ik) can be matched.
Claim 3: j ∈ I2.
Proof. Assume without loss of generality that j ∈ I3.

1. |I2| = 1.

(a) If I2 < I3, then the cell λ = ({i}, I2, . . . , Ik) and λ′ = ({i}, I2 ∪ I3, . . . , Ik) can be
matched as they have the same class type.

(b) If I2 6< I3, then ∃m ∈ I3 such that m < I2 The cell λ = ({i}, I2, . . . , Ik) and
λ′ = ({i}, I2, m, I3 − {m}, . . . , Ik) can be matched as they have the same class type.

2. Let |I2| > 1 and denote the minimum of I2 by m. Then the cells λ = ({i}, I2, . . . , Ik) and
λ′ = ({i}, m, I2 − {m}, . . . , Ik) can be matched as they have the same class type.

Claim 4: i < I2.
Proof. If ∃m ∈ I2 such that m < i then Then the cells λ = ({i}, I2, . . . , Ik) and λ′ =

({i}, m, I2 − {m}, . . . , Ik) can be matched as they have the same class type.
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A similar argument shows that all other subsets I3, . . . , Ik−1 are singletons arranged in
decreasing order.

Proposition 4.6. Let ᾱ = (i, I,∇, N) and β̄ = (j, J,∇′, N′). If there is a path from ᾱ to β̄ then
either N ∩ J = ∅ or I ∩ J = ∅.

Proof. let x ∈ N ∩ J and t ∈ I ∩ J. Clearly x > j ≥ i and t > j ≥ i. Denote the maximum
element of I by m and m > j. Let the path from ᾱ to β̄ be

ᾱ = ᾱ0, β̄0, ᾱ1, β̄1, . . . , ᾱp, β̄p = β̄

During the course of the path, x leaves the set N, say at β̄k. Then min cl(β̄k) ≥ min{x, m} ≥
min{x, t} > j = min cl(β̄). This contradicts the fact that the class increases along a gradient
path.

The following theorem about the paths between critical cells is crucial in computing the
homology of QPn+1.

Theorem 4.7. Let ᾱ = (i, I,∇, N) and β̄ = (j, J,∇′, N′) be two critical cells. If there is a path
from ᾱ to β̄, then β̄ takes exactly one of the following form

1. (a) If J = I and N′ = N − t. Then

β̄ =

(t, I, i,∇, N′), if i < t < I,

(i, I,∇∪ t, N′), if t < i.

(b) If N′ = N − t and |I| = 1. Then

β̄ =


(I, t, i,∇, N′), if t > I,

(t, I, i,∇, N′), if i < t < I,

(i, I, t ∪∇, N′), if t < i.

2. If N = N′ and J = I − j. Then
β̄ = (j, J, i,∇, N).

Proof. We will prove this explicitly i.e., by following the paths from ᾱ to β̄. Let ∇ be
{a1}, {a2}, . . . , {al} with a1 > a2 > · · · > al
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1. (a) i. For ᾱ = (i, I,∇, N), β = (t, I, i,∇, N′) and i < t < I, we’ve the paths

(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , t, N − t)

(t, al , . . . , a1, I, i, N − t)

(t, al , . . . , a1 ∪ I, i, N − t)

(t, al , . . . , I, a1, i, N − t)
...

(t, I, al , . . . , a1, i, N − t)

(t, I, al , . . . , {a1, i}, N − t)

(t, I, al , . . . , i, a1, N − t)
...

(t, I, i, al , . . . , a1, N − t)

(t, I, i, al , . . . , {a2, a1}, N − t)

(t, I, i, al , . . . , a0, a1, N − t)
...

(t, I, i, a1, a2, . . . , al , N − t)

(4.2)

and
(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , N − t, t)

(t, i ∪ I, a1, a2, . . . , al , N − t)

(t, I, i, a1, a2, . . . , al , N − t).

(4.3)

ii. For ᾱ = (i, I,∇, N), β = (i, I,∇∪ t, N′) and ap > t > ap+1, we’ve the paths

(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , t, N − t)

(i, I, a1, a2, . . . , {al , t}, N − t)

(i, I, a1, a2, . . . , t, al , N − t)

(i, I, a1, a2, . . . , {al−1, t}, al , N − t)
...

(i, I, a1, a2, . . . , {ap+1, t}, . . . , al , N − t)

(i, I, a1, a2, . . . , t, ap+1, . . . , al , N − t)

(4.4)
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and
(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , N − t, t)

({t, i}, I, a1, a2, . . . , al , N − t)

(i, t, I, a1, a2, . . . , al , N − t)

(i, t ∪ I, a1, a2, . . . , al , N − t)

(i, I, t, a1, a2, . . . , al , N − t)

(i, I, {t, a1}, a2, . . . , al , N − t)

(i, I, a1, t, a2, . . . , al , N − t)
...

(i, I, a1, a2, . . . , {t, ap}, . . . , al , N − t)

(i, I, a1, a2, . . . , ap, t, . . . , al , N − t).

(4.5)

(b) For ᾱ = (i, I,∇, N), β = (I, t, i,∇, N′) and t > I, we’ve the paths

(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , N − t, t)

(t, i, I, a1, a2, . . . , al , N − t)

(al , al−1, . . . , a1, I, i, t, N − t)

(al , al−1, . . . , a1, I, i ∪ t, N − t)

(al , al−1, . . . , a1, I, t, i, N − t)

(al , al−1, . . . , a1 ∪ I, t, i, N − t)

(al , al−1, . . . , I, a1, t, i, N − t)
...

(I, al , al−1, . . . , a1, t, i, N − t)

(I, al , al−1, . . . , {a2, a1}, t, i, N − t)

(I, al , al−1, . . . , a1, a2t, i, N − t)
...

(t, I, i, a1, a2, . . . , al , N − t)

(4.6)

and
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(i, I, a1, a2, . . . , al , N)

(i, I, a1, a2, . . . , al , t, N − {t})
(i ∪ I, a1, a2, . . . , al , t, N − {t})
(I, i, a1, a2, . . . , al , t, N − {t})

...

(I, t, i, a1, a2, . . . , al , N − {t}).

(4.7)

The proofs for the other two cases are similar to (a).

2. For ᾱ = (i, I,∇, N), β = (j, I − {j}, i,∇, N) and i < j, we’ve the paths

(i, I, a1, a2, . . . , al , N)

(i, j, I − j, a1, a2, . . . , al , N)

({i, j}, I − j, a1, a2, . . . , al , N)

(j, i, I − j, a1, a2, . . . , al , N)

(j, i ∪ I − j, a1, a2, . . . , al , N)

(j, I − j, i, a1, a2, . . . , al , N)

(4.8)

and
(i, I, a1, a2, . . . , al , N)

(i, I − j, j, a1, a2, . . . , al , N)

(al , al−1, . . . , a1, j, I − j, i, N)

(al , al−1, . . . , {a1, j}, I − j, i, N)

(al , al−1, . . . , j, a1, I − j, i, N)

...

(j, al , al−1, . . . , a1, I − j, i, N)

(j, al , al−1, . . . , a1 ∪ I − j, i, N)

(j, al , al−1, . . . , I − j, a1, i, N)

...

(j, I − j, i, a1, a2, . . . , al , N).

(4.9)

The Z2-homology of QPn+1 can be computed directly from Theorem 4.7.

Theorem 4.8. The Z2-homology of QPn+1 is given as follows

Hi(QPn+1, Z2) =


⊕

ξ(n,i) Z2, 0 ≤ i ≤ n− 2;

0, otherwise.
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Where, ξ(n, i) denotes the sum
i

∑
k=0

(
n
k

)
.

Proof. One can infer from Theorem 4.7 that between any two critical cells in consecutive
dimensions either there is no path between them or there are exactly two paths. This implies
that the boundary maps in the Morse complex of QPn+1 with Z2- coefficients are zero. So,
the mod-2 Betti numbers are given by the number of critical cells. Once the dimension is
fixed, say i, the (n + 1)-set completely determines the critical cell and it contains at most i + 1
elements.

4.2 The integral homology of the quotient

To compute the Z-homology we need a well-defined notion of orientation on the cells of
QPn+1. So, we induce an orientation on each cell of QPn+1 from its ascending representative in
CPn+1. But, this is not sufficient to compute the Z-homology because the paths between some
critical cells involve identification of ascending and descending cells. If {σ, τ} = σ̄ ∈ QPn+1

and σ ascending, a compatible way of inducing an orientation on the cell σ from canonical
orientation of τ is required and is defined as follows.

Let L denote the ordered neighbors of the vertex PV(τ) as defined in Section 3.1.1. The
ordered vertices L′ obtained from L by the action of r on individual elements induce a
orientation on σ.

Now, we need to compute the difference in the orientation induced by each representative
on σ̄. The following examples demonstrate the existence of a closed-expression for the
difference in the induced orientations.

Example 4.1. Let n = 6, σ = {1, 2, 3}{4, 5}{6, 7} and τ = {4, 5}{1, 2, 3}{6, 7} are two cells in
CP7 such that σ̄ = τ̄ in QP7.

Neighbors of PV(σ) Neighbors of PV(τ)
v0 = ({1}{2}{3}{4}{5}{6}{7}) w0 = ({4}{5}{1}{2}{3}{6}{7})
v1 = ({2}{1}{3}{4}{5}{6}{7}) w1 = ({5}{4}{1}{2}{3}{6}{7})
v2 = ({1}{3}{2}{4}{5}{6}{7}) w2 = ({4}{5}{2}{1}{3}{6}{7})
v3 = ({1}{2}{3}{5}{4}{6}{7}) w3 = ({4}{5}{1}{3}{2}{6}{7})
v4 = ({1}{2}{3}{4}{5}{7}{6}) w4 = ({4}{5}{1}{2}{3}{7}{6})

Let ξ be the permutation which takes the vertex PV(σ) to the vertex r(PV(τ)) i.e., ξ =

(13)(45)(76). This permutation has been chosen to preserve the entries of each block.

ξ(v0) = ({6}{3}{2}{1}{5}{4}{7}) r(w0) = ({6}{3}{2}{1}{5}{4}{7})
ξ(v1) = ({6}{3}{2}{1}{4}{5}{7}) r(w1) = ({2}{3}{1}{5}{4}{7}{6})
ξ(v2) = ({6}{3}{1}{2}{5}{4}{7}) r(w2) = ({3}{1}{2}{5}{4}{7}{6})
ξ(v3) = ({6}{2}{3}{1}{5}{4}{7}) r(w3) = ({3}{2}{1}{4}{5}{7}{6})
ξ(v4) = ({3}{2}{1}{5}{4}{6}{7}) r(w4) = ({3}{2}{1}{5}{4}{6}{7})
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π(v0)

ξ(v1)

ξ(v2)

ξ(v3)

ξ(v4)

r(w0)

r(w1)

r(w2)

r(w3)

r(w4)

Figure 4.2

Comparing the orientations induced on the cell σ̄ = τ̄ by the cells σ and τ involves exactly
two permutations. The permutation ξ and the permutation from the comparing the orientation
induced on σ ∈ CP7 by the vertices v0 and ξ(w0), refer Fig. 4.2.

Example 4.2. Let n = 8, σ = {1, 2, 3}{4, 5}{6, 7, 8, 9} and τ = {4, 5}{1, 2, 3}{6, 7, 8, 9} are
two cells in CP9 such that σ̄ = τ̄ in QP9.

Neighbors of PV(σ) Neighbors of PV(τ)
v0 = ({1}{2}{3}{4}{5}{6}{7}{8}{9}) w0 = ({4}{5}{1}{2}{3}{6}{7}{8}{9})
v1 = ({2}{1}{3}{4}{5}{6}{7}{8}{9}) w1 = ({5}{4}{1}{2}{3}{6}{7}{8}{9})
v2 = ({1}{3}{2}{4}{5}{6}{7}{8}{9}) w2 = ({4}{5}{2}{1}{3}{6}{7}{8}{9})
v3 = ({1}{2}{3}{5}{4}{6}{7}{8}{9}) w3 = ({4}{5}{1}{3}{2}{6}{7}{8}{9})
v4 = ({1}{2}{3}{4}{5}{7}{6}{8}{9}) w4 = ({4}{5}{1}{2}{3}{7}{6}{8}{9})
v5 = ({1}{2}{3}{4}{5}{6}{8}{7}{9}) w5 = ({4}{5}{1}{2}{3}{6}{8}{7}{9})
v6 = ({1}{2}{3}{4}{5}{6}{7}{9}{8}) w6 = ({4}{5}{1}{2}{3}{6}{7}{9}{8})

Let ξ be the permutation which takes the vertex PV(σ) to the vertex r(PV(τ)) i.e., ξ =

(13)(45)(69)(78).

ξ(v0) = ({8}{7}{6}{3}{2}{1}{5}{4}{9}) r(w0) = ({8}{7}{6}{3}{2}{1}{5}{4}{9})
ξ(v1) = ({8}{7}{6}{2}{3}{1}{5}{4}{9}) r(w1) = ({8}{7}{6}{3}{2}{1}{4}{5}{9})
ξ(v2) = ({8}{7}{6}{3}{1}{2}{5}{4}{9}) r(w2) = ({8}{7}{6}{3}{1}{2}{5}{4}{9})
ξ(v3) = ({8}{7}{6}{3}{2}{1}{4}{5}{9}) r(w3) = ({8}{7}{6}{2}{3}{1}{5}{4}{9})
ξ(v4) = ({7}{6}{3}{2}{1}{5}{4}{8}{9}) r(w4) = ({8}{6}{7}{3}{2}{1}{5}{4}{9})
ξ(v5) = ({7}{8}{6}{3}{2}{1}{5}{4}{9}) r(w5) = ({7}{8}{6}{3}{2}{1}{5}{4}{9})
ξ(v6) = ({8}{6}{7}{3}{2}{1}{5}{4}{9}) r(w6) = ({7}{6}{3}{2}{1}{5}{4}{8}{9})
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π(v0)

ξ(v1)

ξ(v2)

ξ(v3)

ξ(v4)

ξ(v5)

ξ(v6)

r(w0)

r(w1)

r(w2)

r(w3)

r(w4)

r(w5)

r(w6)

Figure 4.3

Comparing the orientations induced on the cell σ̄ = τ̄ by the cells σ and τ involves exactly
two permutations. The permutation ξ and the permutation from the comparing the orientation
induced on σ ∈ CP9 by the vertices v0 and ξ(w0), refer Fig. 4.3.

From the examples, it is clear that the permutation involved in comparing the orientations
induced are of the type

(1, 2, 3, . . . , k)→ (k, k− 1, . . . , 2, 1).

and the following function is useful in computing the sign of such permutations.

Definition 4.6. Define a function, sgn : [n] ∪ {0} → {1,−1} as follows, given s ∈ [n]

sgn(s) =

(−1)
s−1

2 , if s is odd,

(−1)
s
2 , if s is even.

Let σ = (I1, I2, . . . , Ik, Iω) and τ = r(σ) = (Ik, Ik−1, . . . , I1, Iω) be two cells in CPn+1.
Observe that

• The number of neighbours of a particular vertex v̄0 in σ̄ is same as number of neighbours
of v0 in σ.

• The neighbours of vertex v0 in σ are naturally in 1-1 correspondence with the neighbours
r(v0) in r(σ).
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Theorem 4.9. Let σ = (I1, I2, . . . , Ik, Iω) and τ = r(σ) = (Ik, Ik−1, . . . , I1, Iω). Then the
difference in the orientations induced on the cell σ̄ = τ̄ in QPn+1 by σ and τ in CPn+1 is
given by the expression

sgn(|A| − |Iω|+ 1) · sgn(|Iω| − 1) ·
k

∏
i=1

sgn(|Ii|) · sgn(|Iω|), (4.10)

where |A| is the number of neighbors of PV(σ).

Proof. Without loss of generality assume PV(σ) = (1, 2, . . . , n + 1) i.e., the blocks I1 =

{1, 2, . . . , a1}, . . . , Ij = {aj−1 + 1, aj−1 + 2, . . . , aj} for every j such that 1 ≤ j ≤ k or j = ω.
The neighbors of PV(σ) are ordered as follows.

v0 = ({1}{2}{3} . . . {n + 1})
v1 = ({2}{1}{3} . . . {n + 1})
v2 = ({1}{3}{2} . . . {n + 1})

...

va1−1 = ({1} . . . {a1}{a1 − 1} . . . {n + 1})
...

vak−k−1 = ({1} . . . {ak − 1}{ak} . . . {n + 1})
vak−k = ({1} . . . {ak + 2}{ak + 1} . . . {n + 1})

...

v|A| = ({1}{2} . . . {n + 1}{n})

(4.11)

The neighbors of PV(τ) are ordered as follows.

w0 = ({ak−1 + 1}{ak−1 + 2} . . . {ak}{ak−2} . . . {n + 1})
w1 = ({ak−1 + 2}{ak−1 + 1} . . . {ak}{ak−2} . . . {n + 1})

...

wak−ak−1 = ({ak−1 + 1}{ak−1 + 2} . . . {ak−2 + 1}{ak−2} . . . {n + 1})
...

w|A|−ak−ak−1−1 = ({ak−1 + 1}{ak−1 + 2} . . . {2}{1} . . . {n + 1})
...

w|A|−ak−1 = ({ak−1 + 1}{ak−1 + 2} . . . {a1}{a1 − 1} . . . {n + 1})
w|A|−ak

= ({ak−1 + 1}{ak−1 + 2} . . . {a1}{ak + 2}{ak + 1} . . . {n + 1})
...

w|A| = ({ak−1 + 1}{ak−1 + 2} . . . {n + 1}{n})

(4.12)
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Now apply r on the neighbours of PV(τ) to obtain an ordered collection of vertices in σ.
This would enable us to compare the orientations induced by 4.11 and 4.12 on σ̄.

r(w0) = ({n}{n− 1} . . . {ak + 1}{a1} . . . {ak−1 + 1}{n + 1})
r(w1) = ({n}{n− 1} . . . {ak + 1}{a1} . . . {ak−1 + 1}{ak−1 + 2})

...

r(wak−ak−1) = ({n}{n− 1} . . . {ak−2}{ak−2 + 1} . . . {ak−1 + 1}{n + 1})
...

r(w|A|−ak−ak−1−1) = ({n}{n− 1} . . . {1}{2} . . . {ak−1 + 1}{n + 1})
...

r(w|A|−ak−1) = ({n}{n− 1} . . . {a1 − 1}{a1} . . . {ak−1 + 1}{n + 1})
r(w|A|−ak

) = ({n}{n− 1} . . . {a1 + 1}{ak + 2}{ak} . . . {ak−1 + 1}{n + 1})
...

r(w|A|) = ({n− 1}{n− 2} . . . {ak−1 + 1}{n}{n + 1})

(4.13)

Let ξ be the permutation which takes the vertex PV(σ) to the vertex r(PV(τ)).

ξ(v0) = ({a1}{a1 − 1} . . . {2}{1}{a2} . . . {n + 1} . . . {ak + 1})
ξ(v1) = ({a1}{a1 − 1} . . . {1}{2} . . . {n + 1} . . . {ak + 1})

ξ(v2) = ({a1}{a1 − 1} . . . {2}{3}{1} . . . {n + 1} . . . {ak + 1})
...

ξ(va1−1) = ({a1 − 1}{a1} . . . {2}{1} . . . {n + 1} . . . {ak + 1})
...

ξ(vak−k−1) = ({a1}{a1 − 1} . . . {ak}{ak − 1} . . . {n + 1}{ak + 1})
ξ(vak−k) = ({a1}{a1 − 1} . . . {ak + 1}{ak + 2} . . . {n + 1}{ak + 1})

...

ξ(v|A|) = ({a1}{a1 − 1} . . . {n}{n + 1} . . . {ak + 1})

(4.14)

It is clear from above that if σ = (I1, I2, . . . , Ik, Iω) the sign of the permutation ξ is
k

∏
i=1

sgn(|Ii|) · sgn(|Iω|). The sign of permutation coming from comparing the induced orienta-

tions on σ ∈ CPn+1 by the vertices v0 and ξ(w0) is sgn(|A| − |Iω|+ 1) · sgn(|Iω| − 1). Thus

the total sign to be taken into account is sgn(|A| − |Iω| + 1) · sgn(|Iω| − 1) ·
k

∏
i=1

sgn(|Ii|) ·

sgn(|Iω|).
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Table 4.1: Integer homology, Hi(QPn+1)

i →
0 1 2 3 4 5 6 7

n + 1 4 Z Z4

↓ 5 Z Z5
2 Z6

6 Z Z6
2 Z10 Z26

7 Z Z7
2 Z15 Z42

2 Z15

8 Z Z8
2 Z21 Z64

2 Z35 Z120

9 Z Z9
2 Z28 Z93

2 Z70 Z219
2 Z28

10 Z Z10
2 Z36 Z130

2 Z126 Z382
2 Z84 Z502

The following observations are helpful in computing the Z-homology of QPn+1.

1. There exists no path or exactly two paths between critical cells whose dimension differ
by one. Thus the matrices corresponding to the boundary maps contain only 2’s and 0’s
depending on whether the orientation induced by the paths match or not.

2. These are good paths, except some paths involves a identification of a cell σ with r(σ),
where the orientation change involved is given by Eq. (4.10).

Definition 4.7. Two rectangular matrices A, B ∈ Mn×m(Z) are called equivalent if they can
be transformed into one another by a combination of elementary row and column operations.

Definition 4.8 (2-full rank). Let f : Zm → Zn be a group homomorphism. The map f is 2-full
rank, denoted 2F, if it is equivalent to a scalar matrix with scalar multiple 2.

Proposition 4.10. The boundary maps in the Morse complex of QPn+1 are either 2-full rank or
null maps. i.e., if the Morse complex M· on QPn+1 is

0 −→Mn−2
∂̃n−2−→Mn−3

∂̃n−3−→ . . .
∂̃1−→M0 → 0

then the boundary maps

∂̃µ ≡

0, if µ is odd;

2F, if µ is even.

Proof. If the sign correction for the identification involved in the path is positive (resp. nega-
tive), then by Lemma 3.8 and Lemma 3.9 the coefficient 〈∂α, β〉 = 0 (resp. 〈∂α, β〉 = 2).

Claim 1: ∂̃1 = 0.
Proof. Let α = (i, I,∇, N) and β = (j, J,∇′, N′) be two critical cells contained in M1 and

M0 respectively.

1. If |N| = 1, then |I| = 2 and N′ = N = {n+ 1}. Otherwise there will be no path between
the cells giving 〈∂̃α, β〉 = 0. There is an identification of the cell (i, I − j, j,∇, N) with its
image under the map r during the path. All the blocks of this cell are singletons, thus the
sign correction given by the Eq. (4.10) is 1.
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2. If |N| = 2, then |I| = 1, N′ ⊂ N and |N′| = 1. Otherwise an argument similar to
above shows that 〈∂̃α, β〉 = 0. There is an identification of the cell (i, I,∇, N − t, t) or
(i, I,∇, t, N − t) with its image under the map r during the path. All the blocks of these
cells are singletons, thus the sign correction given by the Eq. (4.10) is 1.

Since there is no effect on the orientation induced along the paths by the action, an argument
similar to Theorem 3.10 shows that ∂̃1 = 0.

Claim 2: ∂µ = 0 when µ is odd.
Proof. Let α = (i, I,∇, N) and β = (j, J,∇′, N′) be two critical cells contained in Mµ and

Mµ−1 respectively. Also, let d denote the number of blocks in α which is equal to (n + 1− µ).

1. Let N = N′ and J = I − j.

• Let |N| = k + 1 for some k odd. There is an identification of the cell (i, I− j, j,∇, N)

with its image under r during the path. From Eq. (4.10), the sign correction S is
given by sgn(|J|) · sgn(|N|) · sgn(|J| − 1) · sgn(|N| − 1).
Observe that the |J| = n− k− d− 3 = (n + 1− d)− (k + 4). Since (n + 1− d) = µ

is odd and (k + 4) is odd, |J| is even and

sgn(|J|) = (−1)
n−k−d−3

2 .

Similarly,

sgn(|N|) = (−1)
k+1

2 ,

sgn(|J| − 1) = (−1)
n−k−d−5

2 ,

sgn(|N| − 1) = (−1)
k−1

2 .

This shows that the sign correction S is equal to 1.

• Let |N| = k+ 1 for some k even. There is an identification of the cell (i, I− j, j,∇, N)

with its image under r during the path. From Eq. (4.10), the sign correction S is
given by sgn(|J|) · sgn(|N|) · sgn(|J| − 1) · sgn(|N| − 1).
Observe that the |J| = n− k− d− 3 = (n + 1− d)− (k + 4). Since (n + 1− d) = µ

is odd and (k + 4) is even, |J| is odd and

sgn(|J|) = (−1)
n−k−d−4

2 .

Similarly,

sgn(|N|) = (−1)
k
2 ,

sgn(|J| − 1) = (−1)
n−k−d−4

2 ,

sgn(|N| − 1) = (−1)
k
2 .

This shows that the sign correction S is equal to 1.

2. Let I = J and N′ = N − t for some t ∈ N.
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• Let |N| = k+ 1 for some k odd. There is an identification of the cell (i, I,∇, N− t, t)
or (i, I,∇, t, N− t) with its image under the map r during the path. From Eq. (4.10),
the sign correction S is given by sgn(|I|) · sgn(|N′|) · sgn(|I| − 1) · sgn(|N′| − 1).
Observe that the |I| = n− k− d− 2 = (n + 1− d)− (k + 3). Since (n + 1− d) is
odd and (k + 3) is even, |I| is odd and

sgn(|I|) = (−1)
n−k−d−3

2 .

Similarly,

sgn(|N|) = (−1)
k−1

2 ,

sgn(|J| − 1) = (−1)
n−k−d−3

2 ,

sgn(|N| − 1) = (−1)
k−1

2 .

Clearly, the sign correction S is equal to 1.

• Let |N| = k+ 1 for some k even. There is an identification of the cell (i, I,∇, N− t, t)
or (i, I,∇, t, N− t) with its image under the map r during the path. From Eq. (4.10),
the sign correction S is given by sgn(|I|) · sgn(|N′|) · sgn(|I| − 1) · sgn(|N′| − 1).
Observe that the |I| = n− k− d− 2 = (n + 1− d)− (k + 3). Since (n + 1− d) is
odd and (k + 3) is odd, |I| is even and

sgn(|I|) = (−1)
n−k−d−2

2 .

Similarly,

sgn(|N|) = (−1)
k
2 ,

sgn(|J| − 1) = (−1)
n−k−d−4

2 ,

sgn(|N| − 1) = (−1)
k−2

2 .

Clearly, the sign correction S is equal to 1.

From Theorem 4.5, it is clear that for a fixed (n + 1)-set, there is a unique cell of dimension
µ. For the rest of this section, we arrange the basis elements of Mµ as follows: cells are
arranged in increasing order of the cardinality of their (n + 1)-set and if the cardinality of
(n + 1)-set of two different cells is same then they are arranged in lexicographic ordering on
their (n + 1)-set.

Using the above defined ordering on the basis of Mµ and Mµ−1 and from Theorem 4.7,
we observe that the matrix corresponding to the boundary map ∂̃µ is upper triangular with 2
being the only non-zero entry. We now prove that when µ is even, all the diagonal entries of
∂̃µ are 2.

Claim 3: ∂µ = 2F when µ is even.
Proof. Let α = (i, I,∇, N) and β = (j, J,∇′, N′) be two critical cells contained in Mi and

Mi−1 respectively. Also, let d denote the number of blocks in α which is equal to (n + 1− µ).
It is enough to show that 〈∂α, β〉 = 2 whenever N = N′.
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1. Let |N| = k + 1 for some k odd. There is an identification of the cell (i, I − j, j,∇, N)

with its image under r during the path. From Eq. (4.10), the sign correction S is given by
sgn(|J|) · sgn(|N|) · sgn(|J| − 1) · sgn(|N| − 1).
Observe that the |J| = n− k− d− 3 = (n + 1− d)− (k + 4). Since (n + 1− d) is even
and (k + 4) is odd, |J| is odd and

sgn(|J|) = (−1)
n−k−d−4

2 .

Similarly,

sgn(|N|) = (−1)
k+1

2 ,

sgn(|J| − 1) = (−1)
n−k−d−4

2 ,

sgn(|N| − 1) = (−1)
k−1

2 .

Clearly, the sign correction S is equal to -1.

2. Let |N| = k + 1 for some k even. There is an identification of the cell (i, I − j, j,∇, N)

with its image under r during the path. From Eq. (4.10), the sign correction S is given
by sgn(|J|) · sgn(|N|) · sgn(|J| − 1) · sgn(|N| − 1). Observe that |J| = n− k− d− 3 =

(n + 1− d)− (k + 4). Since (n + 1− d) is even and (k + 4) is even, |J| is even and

sgn(|J|) = (−1)
n−k−d−3

2 .

Similarly,

sgn(|N|) = (−1)
k
2 ,

sgn(|J| − 1) = (−1)
n−k−d−5

2 ,

sgn(|N| − 1) = (−1)
k
2 .

Clearly, the sign correction S is -1.

Theorem 4.11. The Z-homology of QPn+1 is given as follows.
If n is even, then

Hi(QPn+1, Z) =



⊕
ξ(n,i)

Z2, if i is odd and 0 ≤ i ≤ n− 2;

⊕
(n

i )

Z, if i is even and 0 ≤ i ≤ n− 2;

0, otherwise.

If n is odd, then
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Hi(QPn+1, Z) =



⊕
ξ(n,i)

Z, if i = n− 2;

⊕
ξ(n,i)

Z2, if i is odd and 0 ≤ i < n− 2;

⊕
(n

i )

Z, if i is even and 0 ≤ i ≤ n− 2;

0, otherwise.

Where, ξ(n, i) denotes the sum
i

∑
k=0

(
n
k

)
.

Proof. We will present the proof for the case of n being odd, the proof for the even case is
similar in nature.

1. If i = n− 2, then the Morse complex looks like

0 0−→Mn−2
0−→Mn−3.

Then the homology at Mn−2 is Zrnk(Mn−2).

2. If i is odd and i 6= n− 2, then the Morse complex looks like

Mi+1
2F−→Mi

0−→Mi−1.

Then the homology at Mi is Z
rnk(Mi)
2 .

3. If i is even, then the Morse complex looks like

Mi+1
0−→Mi

2F−→Mi−1.

Then the homology at Mi is Zrnk(Mi)−rnk(Mi−1).
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