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Abstract
Hyperplane arrangements in Rn where each hyperplane is of the form xi − xj = s for some
1 ≤ i < j ≤ n and s ∈ Z are called deformations of the braid arrangement. The combinatorics
related to these arrangements have been studied extensively. The main topics of concern in this
thesis are calculating the characteristic polynomial and bijectively counting the regions for such
arrangements.

We will exhibit the calculation of the characteristic polynomials of some examples using the
finite field method. These calculations are based on the seminal work of C. A. Athanasiadis,
who initiated the use of the finite field method to study hyperplane arrangements.

We will then exhibit some of the classical bijections that count the number of regions for
specific examples of deformed braid arrangements. One significant example is the bijection
between regions of the Shi arrangement and parking functions. Recently, O. Bernardi has
expressed the number of regions of any deformation of the braid arrangement as a signed count
of certain boxed trees. For certain special arrangements, he also obtains a bijection between
the regions and certain trees. We will exhibit this bijection for the Catalan, Shi and Linial
arrangements.

Applying the methods used by Bernardi, we then obtain similar bijections for other classes
of hyperplane arrangements. Namely, the type C, D, B and BC Catalan arrangements and some
linear arrangements as well. Finally, we use both the finite field method and Bernardi’s method
to study a particular hyperplane arrangement called the boxed threshold arrangement.
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Introduction

A (real) hyperplane arrangement is a finite set of affine hyperplanes in Euclidean space. For
example, in R2, a hyperplane arrangement is a finite set of lines.

Looking at the above figure, we could say that the arrangement splits the plane into 7 pieces
(regions). We could ask the following: How many regions does a given set of lines split the
plane into? What properties of the arrangement affect this number? Making mathematical
sense and generalizing such questions is what the subject of hyperplane arrangements covers.

For any hyperplane arrangement in Rn, the number of connected components in the space
obtained after removing the hyperplanes from Rn is called the number of regions of the
arrangement. We will be focused of counting the number of regions of arrangements.

In recent years, the combinatorics associated to hyperplane arrangements has been studied
extensively. The first main result in the theory of hyperplane arrangements, by T. Zaslavsky in
1975, gives the number of regions of an arrangement as the evaluation of a certain polynomial
associated to the arrangement. The finite field method, developed by C. A. Athanasiadis in
1996, converts the computation of this polynomial to a counting problem. Hence a combination
of these results allowed for the computation of the number of regions of several hyperplane
arrangements of interest.

The search for direct proofs of these counts is an active field of research. One of the main
classes of hyperplane arrangements that have been studied is the deformed braid arrangements.
The classical papers on this subject covered specific examples of such arrangements using varied
counting methods. In 2018, O. Bernardi developed a uniform method to count the regions of all
the arrangements in this class of arrangements using trees. He in fact obtains explicit bijections
for certain “well-behaved” arrangements.

In this thesis, we will illustrate how the finite field method and Zaslavsky’s theorem can
be used to count regions. We will also discuss the classical bijections that count the regions of
some deformed braid arrangements as well as the bijection in Bernardi’s paper.

iv
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Chapter-wise organization

Chapter 1. In Section 1.1, we define hyperplane arrangements and the various objects associ-
ated with them. In Section 1.2, we mention Zaslavsky’s theorem and the finite field method.
Finally in Section 1.3, we describe the main class of arrangements we will be focused on:
deformations of the braid arrangement.

Chapter 2. In this chapter, we use the finite field method to obtain the characteristic polynomi-
als for the braid (Section 2.1), Shi (Section 2.2), Linial (Section 2.3), extended Shi (Section 2.4)
and extended Linial (Section 2.5) arrangements. The ideas used for counting are from [1] and
[3]. Using Zaslavsky’s theorem, we list the number of regions for the arrangements considered
in this chapter in Table 2.1.

Chapter 3. This chapter contains some of the classical bijections used to count the regions
of the braid, Catalan and Shi arrangements. The bijection for the regions of the Catalan
arrangement in Section 3.2 is with certain ‘sketches’ and is from [5]. These sketches play an
important role in Chapter 4. The bijection for the Shi regions in Section 3.3, from [4], is with
parking functions, which are defined in Section 3.3.1.

Chapter 4. This chapter contains the ideas of Section 8 in [5]. Section 4.1 covers the basic
definitions and terminology associated to labeled rooted trees. Section 4.2 shows how these
trees are in bijection with the regions of the Catalan arrangement. The regions of the Shi
and Linial arrangement are counted in Section 4.3 and Section 4.4 respectively. This is done
by setting up an equivalence relation on the sketches associated to the Catalan regions. The
equivalence is induced by certain valid ‘moves’ on the sketches. Via the bijection between
sketches and trees, we also obtain a bijection between the regions of the arrangements and
certain trees.

Chapter 5. In this chapter, we apply the ‘sketches-moves’ method of [5] to study deformations
of the type C arrangement. We first consider some linear deformations in Section 5.1 and then
move on to the type C Catalan arrangement in Section 5.2. The sketches and count for the type
C Catalan arrangement is a modified version of that in [10]. In Section 5.2.1, we extend the
definition of these sketches to cover the type C m-Catalan arrangement. Finally, in Section 5.3,
we use the idea of ‘moves’ to bijectively count the regions of the type D, B and BC Catalan
arrangement.

Chapter 6. This chapter focuses on a particular arrangement which we call the boxed threshold
arrangement, first studied by Joungmin Song in [18]. The characteristic polynomial is derived
using the finite field method. We then use the ‘sketches-moves’ method of [5] to count the
number of regions of the arrangement. Extending the known bijection between regions of the
threshold arrangement and threshold graphs, we obtain one between regions of the boxed
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threshold arrangement and certain colored threshold graphs. Most of the results in this chapter
are part of [6], which is available on arXiv.

Chapter 7. In the final chapter, we discuss some potential topics for further study. These
include: a better understanding of the sketches associated to the type C m-Catalan arrangement;
applying the ‘sketches-moves’ method to other hyperplane arrangements; and finding suitable
trees in bijection with the regions of the type C m-Catalan arrangement which could help prove
results analogous to [5, Theorem 4.2].

This thesis contains, to the best of our knowledge, some new results. For the benefit of the
reader we enumerate them here:

1. In Section 8.1 of [5], a bijection is described between regions of the m-Catalan ar-
rangement and certain ‘sketches’. The proof that the region defined by such a sketch is
non-empty does not seem to work in general (see Remark 3.1). We provide an alternate
proof of this fact in Proposition 3.3.

2. In [10], similar sketches are described that are in bijection with the regions of the type C
Catalan arrangement. We provide a different way to describe and count these sketches in
Section 5.2 (see Proposition 5.2 and Lemma 5.4). The proof that the sketches describe
non-empty regions given in [10] does not seem to work in general. We provide an
alternate proof in Proposition 5.3, before which we describe sketches for the type C
m-Catalan arrangement (see Definition 5.2).

3. In Section 5.3, we provide bijective counts for the regions of the type D, B and BC Catalan
arrangements.



Chapter 1

Preliminaries

In this chapter, we will cover the basic definitions and results related to hyperplane arrangements.
The interested reader is referred to [21] for more information. We also assume reader’s
familiarity with the notion of posets and related terminologies. The main reference for which is
[20]

1.1 Basic definitions

Definition 1.1 (Hyperplane arrangement). A hyperplane arrangement is a finite set of affine
hyperplanes in Fn, where F is a field. An affine hyperplane is a translate of a codimension 1
subspace of Fn.

We sometimes write just ‘arrangement’ instead of ‘hyperplane arrangement’. We will be
mainly focused on when F = R.

Definition 1.2 (Region). A region of an arrangement A in Rn is a connected component of
Rn \ ⋃

H∈A
H. The number of regions is denoted by r(A).

Definition 1.3 (Rank). The dimension of the span of the normals to hyperplanes in an arrange-
ment A is called the rank of A. It is denoted by rank(A).

Definition 1.4 (Bounded regions). A region of an arrangement A is said to be bounded if its
intersection with the span of the normals of the hyperplanes in A is bounded. The number of
bounded regions is denoted by b(A).

Example 1.1. An arrangement in R2 with 7 regions is shown in Figure 1.1. It has 1 bounded
region, labeled 7.

Definition 1.5 (Intersection poset). The poset of non-empty intersections of hyperplanes in an
arrangement A ordered by reverse inclusion is called its intersection poset. It is denoted by LA.

The ambient space of the arrangement (i.e. Rn) is an element of the intersection poset. It is
considered as the intersection of none of the hyperplanes.

1
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1

2

345

6

7

Figure 1.1: An arrangement in R2.

Example 1.2. Note that the lines L1 and L3 in the second example of Figure 1.2 do not intersect.
Such empty intersections are not included in LA.

Arrangement A in R2 Hasse diagram of LA

L1

L3

L2

P

L1

L2

L3

P

Q

R2

L1 L2 L3

P

R2

L1 L2 L3

P Q

Figure 1.2: Examples of intersection poset.

Definition 1.6 (Möbius function). For an arrangement A in Rn, we define the Möbius function
µ : LA → Z as:

µ(x) =


1, if x = Rn

− ∑
y<x

µ(y), otherwise.

Definition 1.7 (Characteristic polynomial). The characteristic polynomial of an arrangement A
is the generating function of the Möbius values of LA weighted by dimension defined as:

χ(A, t) = ∑
x∈LA

µ(x)tdim(x).

Example 1.3. The numbers next to elements of LA in Figure 1.3 are their Möbius values.
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A LA χ(A, q)

t2 − 3t + 2

t2 − 3t + 3

1

-1 -1 -1

2

1

-1 -1 -1

1 1 1

Figure 1.3: Examples of characteristic polynomial.

Definition 1.8 (Restriction). The restriction of an arrangement A to some x ∈ LA is the
arrangement Ax in x with hyperplanes {H ∩ x | H ∈ A, x * H}.

Definition 1.9 (Face). A face of an arrangement A is a region of Ax for some x ∈ LA. The
dimension of the face is defined as the dimension of the space x (this is the same as the
dimension of its affine span).

The regions of an arrangement are themselves faces (regions of ARn
= A). In fact, they are

the maximum-dimensional faces.

Example 1.4. The numbers inside the circles in Figure 1.4 are the dimensions of the faces.

0 0

0

2

1 1

1 1

11

1 1

1

2

2

2 2

2 2

Figure 1.4: Faces of an arrangement in R2.

Before going further we note some results on arrangements that are consequences of basic
Euclidean geometry.

• Any hyperplane in Rn is of the form:

H = {(x1, ..., xn) ∈ Rn | a1x1 + · · ·+ anxn = c}
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for some a1, . . . , an, c ∈ R. We say that the defining polynomial of H is:

PH = a1x1 + · · ·+ anxn − c.

It is unique up to multiplication by a nonzero scalar.

• Any region of an arrangement A is an intersection of sets of the form PH > 0 or PH < 0,
where one choice is made for each H ∈ A.

• Any face of A is an intersection of sets of the form PH = 0, PH > 0 or PH < 0, where one
choice is made for each H ∈ A.

1.2 Important results

The first major theorem in the theory of arrangements was due to Zaslavsky in 1975 [23].

Theorem 1.1. Let A be an arrangement in Rn. Then,

r(A) = (−1)nχ(A,−1)

= ∑
x∈LA

∣∣µ(x)
∣∣

and

b(A) = (−1)rank(A)χ(A, 1)

= ∑
x∈LA

µ(x).

Remark 1.1. For both r(A) and b(A), the first equality is proved using Deletion-Restriction
arguments. The second is obtained from the fact that the möbius function value of elements of
LA alternate in sign with respect to the dimension.

To apply combinatorial methods, we will be focused on certain “nice” arrangements.

Definition 1.10 (Rational arrangements). Arrangements in Rn such that every hyperplane H
has a defining polynomial PH in Z[x1, . . . , xn] are called rational arrangements.

Even if PH ∈ Q[x1, . . . , xn], we can multiply it by an integer to obtain an integer-coefficient
defining polynomial for H. So the term ‘rational arrangements’ makes sense. Also, for such
arrangements we can obtain related arrangements in vector spaces over finite fields.

Definition 1.11 (Reduction mod q). If A is a rational arrangement in Rn, we can obtain an
arrangement in Zn

q , where q is a prime, by reducing mod q the defining polynomials of the
hyperplanes of A. Call this the arrangement Aq.

We now have the vocabulary required to state a very convenient method to calculate the
characteristic polynomials of rational arrangements. This method was developed by C. A.
Athanasiadis in 1996 [1].



CHAPTER 1. PRELIMINARIES 5

Theorem 1.2 (The finite field method). If A is a rational hyperplane arrangement in Rn, for
large primes q,

χ(A, q) = #(Zn
q \

⋃
H∈Aq

H).

Hence the finite field method converts the problem of calculating the characteristic polyno-
mial of rational arrangements to a counting problem. Combined with Zaslavsky’s theorem, we
get a nice method of getting the number of regions of rational arrangements.

1.3 Deformations of the Braid arrangement

In this subsection, we will introduce certain specific arrangements that we will be focused on.
The braid arrangement in Rn is the arrangement A{0}(n) with the following hyperplanes:

{xi − xj = 0 | 1 ≤ i < j ≤ n}.

A deformation of an arrangement A is an arrangement A′ all of whose hyperplanes are
translates of hyperplanes in A. We will consider deformations of the braid arrangement that
have hyperplanes of the form:

xi − xj = s for some 1 ≤ i < j ≤ n and s ∈ Z.

The deformation of the Braid arrangement:

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}

for some finite set of integers S is denoted by AS(n).
The special cases of AS(n) we will be focused on are enumerated in Table 1.1. For integers

a ≤ b, [a, b] = {z ∈ Z | a ≤ z ≤ b} and for an integer n ≥ 1, [n] denotes [1, n].

Name S Name S

Catalan {-1,0,1} m-Catalan [−m, m]

Shi {0,1} m-Shi [−m + 1, m]

Linial {1} m-Linial [1, m]

Table 1.1: Some special deformations of the braid arrangement.

Here m is any positive integer. Note that taking m = 1 gives us the original arrangement in
all cases. Hence we consider the m−type arrangements to be extensions of the original. Table
1.2 shows the intersection of the arrangements in R3 with the hyperplane x1 + x2 + x3 = 0.
Since all the normals lie on this hyperplane, these figures can be extended to get the original
arrangements. (The braid hyperplanes are not part of the Linial arrangement but they have
been drawn as dotted lines).
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Braid Catalan

Shi Linial

Table 1.2: Deformed braid arrangements in R3.

We will now state some results for these arrangements. We will be proving most of these in
subsequent sections.

• The number of regions of the braid arrangement is n!. The number of faces of dimension
k is k!S(n, k) where S(n, k) is the number of ways to partition an n-element set into k
blocks.

• The number of regions of the m-Catalan arrangement is n!× nth m-Catalan number:

n!× ((m + 1)n)!
n!(mn + 1)!

=
((m + 1)n)!
(mn + 1)!

.

There is a formula for the number of k-dimensional faces of the m-Catalan arrangement
for which we refer to [9].

• The number of regions of the m-Shi arrangement is the number of m-parking functions of
length n, that is, (mn + 1)n−1. The formula for the number of k-dimensional faces of the
m-Shi arrangement is again given in [9].

• The number of regions of the Linial arrangement is the number of alternating trees on n
vertices. See [11] for the relevant definitions. No formula is known for the number of
Linial faces.

There are two ways to prove such results. We could calculate the characteristic polynomial
(directly or via the finite field method) and then apply Zaslavsky’s theorem. Or we could use
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counting methods such as obtaining a bijection between the set we want to count and a set
whose cardinality is known. We will use both methods to obtain most of the results mentioned
above, though we will focus more on bijective methods.



Chapter 2

The finite field method

In this chapter, we will use the finite field method to compute the characteristic polynomial of
some arrangements. As mentioned before, we will be focused on certain deformations of the
braid arrangement. We will derive the characteristic polynomial for the Braid, extended Shi
and extended Linial arrangements. The main references for this chapter are [1] and [3].

We will be using a slight extension ([3, Theorem 2.1]) of the finite field method which we
state now:

Theorem 2.1 (The finite field method). If A is a rational hyperplane arrangement in Rn, there
exist integers m, k such that for all integers q relatively prime to m and greater than k,

χ(A, q) = #(Zn
q \VA) (2.1)

where VA is the union of hyperplanes in Zn
q obtained by reducing A mod q.

Sketch of proof. The proof follows using the Möbius inversion formula (refer [20]) once we can
find integers m, k such that for all q relatively prime to m and greater than k, the dimension of
the intersection of some hyperplanes of A is the same when reduced mod q. An intersection of
hyperplanes is the solution set of a matrix equation of the form

Ax = b

where A is an r× n matrix where r is the number of hyperplanes being intersected. Since we
are dealing with rational arrangements, A and b have integer entries. Using some results from
linear algebra, we get that the solution space of the above equation is isomorphic to one of the
form

A′x = b′

where A′ is a diagonal matrix and both A′ and b′ have integer entries. Taking m to be the least
common multiple of the entries of A′ and k to be greater than absolute values of all entries of b′

satisfies our requirements.

Remark 2.1. Examining the proof of the finite field method tells us that for deformations of
the braid arrangement, we can take m = 1. So when applying the finite field method to
such arrangements, (2.1) is valid for any large enough values of q, without any restriction on
divisibility.

8
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2.1 The braid arrangement

Recall that the braid arrangement in Rn, denoted by A{0}(n), is given by:

{xi − xj = 0 | 1 ≤ i < j ≤ n}.

Hence, by (2.1), we get that for large values of q,

χ(A{0}(n), q) = #{(x1, . . . , xn) ∈ Zn
q : xi 6= xj for all distinct i, j ∈ [n]}

= q× (q− 1)× · · · × (q− (n− 1))

=
n−1

∏
i=0

(q− i).

Since we have obtained a polynomial expression for large values of q, we have determined
the characteristic polynomial. Using Zaslavsky’s theorem we have

r(A{0}(n)) = n!.

2.2 The Shi arrangement

Recall that the Shi arrangement in Rn is given by:

{xi − xj = 0, 1 | 1 ≤ i < j ≤ n}.

We will denote it by Sn instead of A{0,1}(n). The computation of the characteristic polynomial
in this section follows the method in [3].

By (2.1), for large q,

χ(Sn, q) = number of tuples (x1, . . . , xn) ∈ Zn
q such that

xi 6= xj, xi 6= xj + 1 ∀ 1 ≤ i < j ≤ n

To count such tuples, we first need a convenient way to represent them.
We represent a tuple (x1, . . . , xn) in Zn

q with distinct entries by a placement of q symbols: n
numbers 1, . . . , n and q− n balls. Think of the symbols in positions 0, . . . , q− 1 and an integer k
in position i means xk = i.

Example 2.1. The placement

5 © © 1 3 © 2 © 4©

represents the tuple in Z5
10 with the first coordinate being 3 since 1 is in position 3 (recall we

are starting the positions with 0), the second coordinate being 6, and so on. Hence the above
placement represents (3, 6, 4, 8, 0) ∈ Z5

10.
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From now on, we consider such placements and their corresponding tuples as the same.

So, we need to count the number of such placements which satisfy xi 6= xj + 1 ∀
1 ≤ i < j ≤ n, that is, we cannot have a smaller number immediately following a larger
number in the placement.

(2.2)

We make our counting easier by noticing the following fact:

(x1, . . . , xn) ∈ VSn ⇔ (x1 + k, . . . , xn + k) ∈ VSn ∀ k ∈ Zq

where VSn is as in (2.1).
Fix some i ∈ {1, . . . , n} and k ∈ Zq. If c = number of placements with xi = k, for some

fixed i ∈ [n] and k ∈ Zq, by the above observation,

χ(Sn, q) = qc (2.3)

Note that due to the cyclic nature of Zq, (2.2) also means that if the first and last symbols
in a placement are both numbers, the last one must be less than the first.

To avoid having to check the above condition as well, we use (2.3) with i = n and k = 0.
So we have to count the placements with first symbol being n that satisfy (2.2). Call such
placements ‘valid placements’.

First we observe that in valid placements:

The numbers between a ball and the ball following it (the leftmost ball to the right of
it) must be in ascending order.

(2.4)

We count the valid placements by counting the number of ways there are to put in the
numbers 1, . . . , n− 1 in the diagram with n followed by q− n balls shown in Figure 2.1.

n . . .

q− n balls

Figure 2.1: Taking xn = 0.

By (2.4), we only need to specify the set of numbers between two symbols in the above
diagram to specify a valid placement. Also, we cannot put any numbers from 1, . . . , n− 1 in the
space between n and the first ball.

Hence, each number from 1, . . . , n− 1 can be put into any one of q− n spaces (spaces after
each ball). So we get a total of (q− n)n−1 ways of putting in the numbers 1 . . . , n− 1 in the
diagram above to get a valid placement.

So, by (2.3),
χ(Sn, q) = q(q− n)n−1.

Since our expression is a polynomial in q, we have obtained the characteristic polynomial of the
Shi arrangement.
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2.3 The Linial arrangement

Recall that the Linial arrangement in Rn is given by:

{xi − xj = 1 | 1 ≤ i < j ≤ n}.

We will denote it by Ln instead of A{1}(n). The computation of the characteristic polynomial
in this section follows the method in [1].

Since Ln does not include the xi − xj = 0 type hyperplanes, the tuples we have to count
need not have distinct elements. This makes directly counting them quite cumbersome. So, we
instead obtain a bijection of the tuples we need to count with a set that is easier to count.

Though we could modify the “ball-number” description of a tuple, the following might be
easier to visualize:

We represent an n-tuple in Zn
q by a placement of the numbers 1, . . . , n into q boxes arranged

cyclically. Call these “circular placements”. The boxes are labeled cyclically with the elements
of Zq. If the number i is in the box labeled k, then xi = k.

Example 2.2. The diagram corresponding to (0, 0, 5, 2, 3) ∈ Z5
7 is shown in Figure 2.2.

1

0

2,16

5 3

4 3

5

24

Figure 2.2: Example of circular placement.

The numbers in a box are arranged one after the other in the clockwise direction. A circular
placement is called ‘ordered’ if the numbers in each box are arranged in ascending order.

We will work with circular placements without labels on the boxes. We think of them as a
circular arrangement in Zn

q , that is, Zn
q /H where H is the subgroup generated by (1, . . . , 1) ∈ Zn

q .
So we can choose some box to be 0 and label the others cyclically in the clockwise direction to
get an element of Zn

q . Hence the ordered circular placements are in bijection with the quotient
group Zn

q /H = Zn
q .

Remark 2.2. The properties of xi − xj do not depend on the choice of the 0 box in a circular
placement in Zn

q .

Given any circular placement in Zn
q , we can obtain a circular placement in Znq+n by adding

a line immediately after each number in the placement. The resulting placement in Znq+n will
have at most one number in each box.

From a circular placement in Znq+n with at most one number in each box, we get a circular
placement in Zn

q by removing the line immediately following each number. These operations
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give us a bijection between circular placements in Zn
q and circular placements in Znq+n with at

most one number in each box.

Example 2.3. Figure 2.3 shows as example of this bijection.

4

3

2 1

4

3

2 1

Figure 2.3: Example of the bijection between circular placements

We record some properties of this bijection. Let P be a circular placement in Zn
q and Q be

its corresponding placement in Znq+n. Let P̃ = (x1, . . . , xn) and Q̃ = (x′1, . . . , x′n) be one of the
corresponding tuples in Zn

q and Zn
q+n for P and Q respectively. Then,

1. x′i − x′j 6= 0 ∀ 1 ≤ i < j ≤ n.

2. x′i − x′j 6= 0, 1 ∀ 1 ≤ i < j ≤ n⇔ P is ordered.

3. x′i − x′j 6= 0, 1, 2 ∀ 1 ≤ i < j ≤ n⇔ P is ordered and xi − xj 6= 1 ∀ 1 ≤ i < j ≤ n.

Hence, the cardinality of {(x1, . . . , xn) ∈ Zn
q | xi − xj 6= 1 ∀ 1 ≤ i < j ≤ n} is the same as

that of {(x1, . . . , xn) ∈ Znq+n | xi − xj 6= 0, 1, 2 ∀ 1 ≤ i < j ≤ n}.
Remark 2.3. A circular placement with at most one number in each block is ordered.

In fact, we can extend this argument, using the same bijection as above, to prove that for
any integer m ≥ 1:

The cardinality of {(x1, . . . , xn) ∈ Zn
q | xi − xj 6= 1, . . . , m ∀ 1 ≤ i < j ≤ n} is the

same as that of {(x1, . . . , xn) ∈ Znq+n | xi − xj 6= 0, 1, . . . , m + 1 ∀ 1 ≤ i < j ≤ n}.

We do this by extending the list of properties of the bijection so that the kth property of the list
for k > 2 is:

k. x′i − x′j 6= 0, . . . , k− 1 ∀ 1 ≤ i < j ≤ n⇔ P is ordered and xi − xj 6= 1, . . . , k− 2 ∀ 1 ≤
i < j ≤ n.

Note that we can derive the (k + 1)th property from the kth property as follows:
The backward implication of property (k + 1) follows from the fact that the number of boxes

between two numbers increases by at least one when we add a line after each number.
For the forward implication, since we are assuming property k is true, we only have to prove

that if the following hold then x′i − x′j = k for some 1 ≤ i < j ≤ n:
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• P is ordered.

• xi − xj 6= 1, . . . , k− 2 ∀ 1 ≤ i < j ≤ n.

• xi − xj = k− 1 for some 1 ≤ i < j ≤ n.

Suppose 1 ≤ i1 < j1 ≤ n and xi1 − xj1 = k − 1. Let i0 be the first number in the box
containing i1 and j0 be the last number in the box containing j1. Since P is ordered, i0 ≤ i1 and
j0 ≥ j1. Since xi − xj 6= 1, . . . , k− 2 ∀ 1 ≤ i < j ≤ n, if there is a number in the k− 2 boxes
between j0 and i0, it must be ≥ j0 and ≤ i0. Since i0 < j0, there are k− 2 empty boxes between
j0 and i0. When we draw a line after all numbers, there will be k− 1 boxes between j0 and i0.
So, x′i0 − x′j0 = k.

Recall that the arrangement in Rn with hyperplanes:

{xi − xj = 0, . . . , m | 1 ≤ i < j ≤ n}

for any integer m ≥ 1, is denoted by A[0,m](n). We will denote it by Am
n in this chapter.

Also, denote by L m
n the extended Linial arrangement in Rn:

{xi − xj = 1, . . . , m | 1 ≤ i < j ≤ n}

for any integer m ≥ 1.
For any subset T of integers,

#{(x1, . . . , xn) ∈ Zn
q | xi − xj 6= t ∀ t ∈ T, 1 ≤ i < j ≤ n}

= q× #{(x1, . . . , xn) ∈ Zn
q | xi − xj 6= t ∀ t ∈ T, 1 ≤ i < j ≤ n}.

From the above observations and the finite field method, we get:

χ(L m
n , q)
q

=
χ(Am+1

n , q + n)
q + n

.

So if we can obtain the characteristic polynomial of the arrangement Am
n for all m ≥ 2, we

will solve our problem for extended Linial arrangements. We will do this in Section 2.5.

2.4 The extended Shi arrangement

Denote by Sm
n the extended Shi arrangement in Rn:

{xi − xj = −m, . . . , m + 1 | 1 ≤ i < j ≤ n}

for any integer m ≥ 1. Notice that the xi − xj = 0 type hyperplanes are included in Sm
n for all

m ≥ 1.
We apply the finite field method as usual. Just as with the extended Linial arrangements,

we look at circular placements in Zn
q . The computation of the characteristic polynomial in this

section follows the method in [3].
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We have to count the placements P such that if P̃ = (x1, . . . , xn) is a corresponding tuple,

xi − xj 6= −m, . . . , m + 1 ∀ 1 ≤ i < j ≤ n.

That is,
xi 6= xj + k ∀ k ∈ {1, . . . , m + 1}

xj 6= xi + k ∀ k ∈ {0, . . . , m} ∀ 1 ≤ i < j ≤ n.

These are the circular placements in Zn
q such that there is at most one number in each box

and if l1 and l2 are consecutive numbers in the placement (read clockwise)

• If l1 < l2, there should be at least m boxes between them.

• If l2 < l1, there should be at least m + 1 boxes between them.

By removing m boxes after each number, we get a bijection with circular placements in
Znq−mn where no two numbers are in the same box and if l1 and l2 are consecutive in the
placement,

• If l1 < l2, there should be at least 0 boxes between them. (That is, there is no restriction
on number of boxes between them).

• If l2 < l1, there should be at least 1 box between them.

But these are the type of circular placements counted in the usual Shi arrangement. Hence,
using the same observations as before, we get:

χ(Sm
n , q)
q

=
χ(Sn, q−mn)

q−mn
.

So we get, χ(Sm
n , q) = q(q−mn− n)n−1 = q(q− (m + 1)n)n−1.

2.5 The extended Linial arrangement

By the observations made in Section 2.3, we just need to calculate the characteristic polynomial
of the arrangement Am

n . Though the value of the count is more complicated than in the case of
the Shi arrangement (m = 1), the idea is almost the same. The computation of the characteristic
polynomial of Am

n in this section follows the method in [3].
We use the same “ball-number” representations as before. Just as before, we count the

placements with xn = 0 and multiply the result by q.
The conditions we have are:

xi − xj 6= 0, . . . , m ∀ 1 ≤ i < j ≤ n.

So we have to count the placements (with n at the beginning) such that if i is the first number
after j in the placement and i < j, there must be at least m balls between them. Call such
placements valid.

To help in counting such placements, we define the following:
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Given a placement and two consecutive numbers in it, we define the number of m-blocks
between them as follows: If there are p balls between them, then p = ms+ r for unique integers
s, r such that 0 ≤ r < m. We say there are s m-blocks between the numbers (s = b p

mc).

So the valid placements must have at least one m-block between consecutive numbers
j and i if i < j.

(2.5)

What we will do is count the number of valid placements with a fixed total number of
m-blocks.

Let j be the number of m-blocks. We perform the count as follows: We start with a diagram
of n followed by mj balls (representing the j m-blocks) as in Figure 2.4.

n . . . . . . . . .

m balls m balls

j m-blocks

Figure 2.4: Taking number of m-blocks as j and xn = 0.

Then we see how many ways we can put in the numbers 1, . . . , n− 1 in the spaces between
the m-blocks or after the last m-block. By 2.5, we cannot place any number after n and before
the first m-block. Also, because of 2.5, the numbers put in any space (between two m-blocks
or after the last one) should be in ascending order. After placing the numbers 1, . . . , n− 1, we
have to put in the remaining q−mj− n balls. We have assumed that n is in the first position,
so there will be no balls before it. Only the order in which the numbers appear and the number
of balls after each number matters (remember that the balls are identical). So each of the
remaining q−mj− n balls can be put in any of n spaces after the numbers 1, . . . , n and at most
m− 1 can be put in each space (so that the number of m-blocks remains j).

So, the total number of valid placements with j m-blocks is

jn−1 × #{(b1, . . . , bn) | 0 ≤ bi ≤ m− 1 ∀ i ∈ [n],
n

∑
i=1

bi = q−mj− n}.

Here the first term is the number of ways to place the numbers 1, . . . , n− 1 and the second is
the number of ways to place the remaining q−mj− n balls (regard bi as the number of balls
out of the remaining q−mj− n being placed after i).

We can see that this is the same as

[yq−n]

(
(1 + y + · · ·+ ym−1)n × jn−1ymj

)
.

where [yk]F(y) is the coefficient of yk in F(y).
So the number of valid placements is

[yq−n]

(
(1 + y + · · ·+ ym−1)n

∞

∑
j=0

jn−1ymj
)

.
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where the term in brackets is treated as a formal power series (refer [20]). Call this number
VP(q).

So, for large q,
χ(Am

n , q) = qVP(q).

Remember that we were counting the placements with xn = 0, so the factor of q has to be
multiplied.

In fact, it can be shown that for large q (q > mn), VP(q) is a polynomial in q. This follows
because for p > k,

[yp]

(( k

∑
i=0

ciyi
)( ∞

∑
j=0

(mj)n−1ymj
))

= ∑
i≡p (mod a)
i∈{0,...,m}

ci(p− i)n−1.

Hence we have obtained the characteristic polynomial of Am
n and hence, by the arguments

of Section 2.3, of L m
n for any m ≥ 1. After some algebraic manipulations and using Zaslavsky’s

theorem, we can obtain the number of regions and bounded regions of the arrangements
mentioned in this chapter. This is given in Table 2.1. The term bk in the expression for the
m-Linial region numbers is defined for any integer k as

bk = [yk](1 + y + y2 · · ·+ ym)n.

Name A r(A) b(A)

Braid A{0}(n) n! 0

Shi A{0,1}(n) (n + 1)n−1 (n− 1)n−1

Linial A{1}(n) 1
2n

n
∑

k=0
(n

k)(k + 1)n−1 1
2n

n
∑

k=0
(n

k)(k− 1)n−1

m-Shi A[−m+1,m](n) (mn + 1)n−1 (mn− 1)n−1

m-Linial A[1,m](n) 1
(m+1)n

n
∑

k=0
bk(k + 1)n−1 1

(m+1)n

n
∑

k=0
bk(k− 1)n−1

Table 2.1: Number of regions for arrangements considered in this chapter.



Chapter 3

Classical bijections

In this chapter we describe specific bijections for the regions of the braid, Catalan and Shi
arrangements. The one for the Catalan regions is with labeled balanced bracket systems. This
bijection can be found in [5]. The bijection for the Shi regions, due to Athanasiadis and Linusson
[4], is with parking functions. Both these bijections can be extended to ones for the extended
Catalan and Shi arrangements. In each case, the goal is to obtain a bijection between the
regions and some set that is easier to count or whose count is already known.

3.1 The braid arrangement

Recall that the braid arrangement in Rn, denoted by A{0}(n), is given by:

{xi − xj = 0 | 1 ≤ i < j ≤ n}.

Any region of the braid arrangement is of the form xσ(1) < · · · < xσ(n) for some permutation
σ of [n]. This is because validly choosing xi < xj or xi > xj for all 1 ≤ i < j ≤ n gives a total
order on the coordinates. So we see that there is a bijection between the regions of A{0}(n)
and the permutations of [n].

3.2 The Catalan arrangement

Recall that the Catalan arrangement in Rn is given by:

{xi − xj = −1, 0, 1 | 1 ≤ i < j ≤ n}.

We will denote it by Cn instead of A{−1,0,1}(n).
Due to the symmetry of the set {−1, 0, 1}, we can write Cn as:

{xi = xj, xi = xj + 1 | i, j ∈ [n], i 6= j}.

Looking at the Catalan arrangement in this way, we see that specifying a region of Cn is the
same as specifying a ‘valid total order’ on x1, . . . , xn, x1 + 1, . . . , xn + 1.

17
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Definition 3.1 (Valid total order). A total order l1(x) < · · · < lk(x) where each li is a linear
form on Rn is called valid if there is a point x0 ∈ Rn such that l1(x0) < · · · < lk(x0).

Example 3.1. x1 < x2 < x3 < x1 + 1 < x2 + 1 < x3 + 1 is a valid order. Since (0,0.1,0.2)
satisfies this order. However, x1 < x2 < x2 + 1 < x1 + 1 < x3 < x3 + 1 is not a valid order.

We represent such orders by a word with the 2n letters in

A(1)(n) = {α(s)
i | i ∈ [n], s ∈ {0, 1}}.

Here, α
(s)
i represents xi + s. The letters α

(0)
i are called α-letters and α

(1)
i are called β-letters (this

terminology will become clear later).

Example 3.2. The valid order x3 < x2 < x3 + 1 < x2 + 1 < x1 < x1 + 1 would be represented
as

α
(0)
3 α

(0)
2 α

(1)
3 α

(1)
2 α

(0)
1 α

(1)
1 .

Definition 3.2 (1-sketch of size n). A word in the letters A(1)(n) which corresponds to a valid
total order on the symbols x1, . . . , xn, x1 + 1, . . . , xn + 1 is called a 1-sketch of size n. Hence,
1-sketches of size n correspond to regions of Cn.

It is clear that not all words in A(1)(n) correspond to regions. For example: α
(0)
1 α

(0)
2 α

(1)
2 α

(1)
1

is not a 1-sketch since x1 < x2 < x2 + 1 < x1 + 1 is not a valid order.

Proposition 3.1. A word in A(1)(n) is a 1-sketch if and only if

1. Each letter in A(1)(n) appears exactly once.

2. For any i, j ∈ [n], α
(0)
i appears before α

(0)
j ⇒ α

(1)
i appears before α

(1)
j .

3. For any i ∈ [n], α
(0)
i appears before α

(1)
i .

To prove this we must show that there is a point in Rn satisfying the inequalities given by
such a word. We will prove this in greater generality in Proposition 3.3.

From property 2, it is clear that if the subscripts appear in order σ(1), . . . , σ(n) for the
(0)-type letters in a 1-sketch, then they appear in the same order for the (1)-type letters. Hence,
a 1-sketch is specified by a permutation σ and a word with n α’s and n β’s. (Here the α’s
represent the (0)-type letters and β’s the (1)-type letters). By property 3, the number of α’s in
any prefix of the word is greater than or equal to the number of β’s. Hence we get the following:

Proposition 3.2. A 1-sketch of size n is completely specified by:

1. A permutation on [n].

2. A word with n α’s and n β’s such that in any prefix the number of α’s is greater than or equal
to the number of β’s.
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Example 3.3. α
(0)
2 α

(0)
1 α

(1)
2 α

(1)
1 α

(0)
3 α

(1)
3 would correspond to the permutation 213 and the word

ααββαβ, which we can think of as the tuple (213, ααββαβ). For convenience this can also be
written as α2α1ββα3β.

Since a sequence of n left and n right brackets is balanced if and only if the number of left
brackets in any prefix is greater than or equal to the number of right brackets, we get a bijection
from 1-sketches to tuples of the form (permutation, balanced bracket system). And since the
number of balanced bracket systems of length 2n is the nth Catalan number (refer [22]), we
get:

r(Cn) = n!× 1
n + 1

(
2n
n

)
=

(2n)!
(n + 1)!

.

Using similar ideas we can get that the regions of the m-Catalan arrangement in Rn are in
bijection with words having letters in A(m)(n) = {α(s)

i | i ∈ [n], s ∈ [0, m]} such that:

1. Each letter in A(m)(n) appears exactly once.

2. For any i, j ∈ [n] and s, t ∈ [m],

α
(s−1)
i appears before α

(t−1)
j ⇒ α

(s)
i appears before α

(t)
j .

3. For any i ∈ [n] and s ∈ [m], α
(s−1)
i appears before α

(s)
i .

Such words are called m-sketches. Our aim now is to show that there is a point in Rn satisfying
the order given by an m-sketch.

Remark 3.1. The method given in [5] for constructing such a point does not seem to work in
general. We first describe their method below and then exhibit the problem in the method.

Let w = w1 . . . w(m+1)n be an m-sketch. Then construct x = (x1, . . . , xn) ∈ Rn as follows.
Let z0 = 0 (or pick z0 arbitrarily). Then define zp for p = 1, . . . , (m + 1)n in order as follows:

If wp = α
(0)
i then set zp = zp−1 +

1
n+1 and xi = zp, and if wp = α

(s)
i with s 6= 0 then set

zp = xi + s. Then x satisfies the inequalities given by w.
The following example shows that this method does not always work:
Consider the 1-sketch w = α

(0)
1 α

(0)
2 α

(1)
1 α

(0)
3 α

(1)
2 α

(1)
3 . By the above procedure we would get:

• w1 = α
(0)
1 so z1 = 1

4 , x1 = 1
4 .

• w2 = α
(0)
2 so z2 = 2

4 , x2 = 2
4 .

• w3 = α
(1)
1 so z3 = 1 + 1

4 .

• w4 = α
(0)
3 so z4 = 1 + 2

4 , x3 = 1 + 2
4 .

• w7 = α
(1)
2 so z5 = 1 + 2

4 .

• w8 = α
(1)
3 so z6 = 2 + 2

4 .
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Hence x = ( 1
4 , 2

4 , 1 + 2
4 ). But this x does not satisfy x3 < x2 + 1 (which is the inequality given

by α
(0)
3 being before α

(1)
2 ). In fact, the same example will show that replacing 1

n+1 with some
other positive constant will also not work.

We will now state an alternate proof for the existence of such a point. The idea is to choose
the coordinates of the point one by one in the order on the coordinates specified by the m-sketch.
Before giving a general proof, we first look at an example.

Example 3.4. Consider the 2-sketch α
(0)
2 α

(0)
1 α

(1)
2 α

(1)
1 α

(2)
2 α

(0)
3 α

(2)
1 α

(1)
3 α

(2)
3 . We will choose a point

(a1, a2, a3) ∈ R3 satisfying the required inequalities by choosing a2, then a1 and finally a3 (see
figures below). a2 is chosen arbitrarily. After doing so, a2, a2 + 1 and a2 + 2 are marked off on
the number line. Then a1 is chosen in the correct position with respect to a2, a2 + 1 and a2 + 2
(between a2 and a2 + 1) and again the corresponding numbers and marked off. Finally a3 is
chosen in the correct relative position to the marked off numbers (between a2 + 2 and a1 + 2).
The choices a2 = 0, a1 = 0.5 and a3 = 2.25 done in this way is shown in Figures 3.1, 3.2, 3.3.

a2 a2 + 1 a2 + 2

Figure 3.1: Choosing a2 arbitrarily and marking off a2, a2 + 1, a2 + 2.

a2 a2 + 1 a2 + 2

a1 a1 + 1 a1 + 2

Figure 3.2: Choosing a1 in correct position and marking off a1, a1 + 1, a1 + 2.

a2 a2 + 1 a2 + 2

a1 a1 + 1 a1 + 2

a3 a3 + 1 a3 + 2

Figure 3.3: Choosing a3 in correct position and marking off a3, a3 + 1, a3 + 2.

We will now prove that this method works in general.

Proposition 3.3. There is a point in Rn that satisfies the inequalities specified by an m-sketch.

Proof. Let w be an m-sketch. Without loss of generality, we can assume that the order in which
the α-letters appear is α

(0)
1 , α

(0)
2 , . . . , α

(0)
n . We will construct a point (a1, . . . , an) ∈ Rn satisfying

the inequalities given by w.
Denote by w|k, for any k ∈ [n], the restriction of w to k, that is, the word obtained by

removing the letters αi(s) for any i > k. Hence this w|k gives an order on x1, . . . , xk, x1 +

1, . . . , xk + 1, . . . , x1 + m, . . . , xk + m. The idea is to choose a1, . . . , an in order so that (a1, . . . , ak)

satisfy the inequalities given by w|k for all k ∈ [n]. Also, when ai is chosen, ai, ai + 1, . . . , ai + m
are marked off on the number line.
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Choose a1 arbitrarily. (a1) satisfies w|1. Suppose (a1, . . . , ak) have been chosen to satisfy
w|k. Looking at the number line, choose ak+1 in the correct relative position to a1, . . . , a1 +

m, . . . , ak, . . . , ak + m. After doing so, mark off ak+1 + 1, . . . , ak+1 + m as well. We claim that
(a1, . . . , ak+1) satisfies w|k+1.

To prove this, we just need to check that ak+1, ak+1 + 1, . . . , ak+1 + m are in the correct
position relative to a1, . . . , a1 +m, . . . , ak, . . . , ak +m. This is because ak+1, ak+1 + 1, . . . , ak+1 +

m are already in the correct position with respect to each other. By choice of ak+1, it is in the
correct relative position.

Suppose ak+1, . . . , ak+1 + (s − 1) are in the correct relative position (with respect to
a1, . . . , a1 + m, . . . , ak, . . . , ak + m) for some s ≥ 1. If ak+1 + s is not in the correct relative
position, then one of the following must hold:

1. ak+1 + s is before ai + t but α
(s)
k+1 is after α

(t)
i for some i ∈ [k] and t ∈ [m].

2. ak+1 + s is after ai + t but α
(s)
k+1 is before α

(t)
i for some i ∈ [k] and t ∈ [m].

We have t ∈ [m] because, for any i ∈ [k], ak+1 is after ai and hence we cannot have ak+1 + s
before some ai and since α

(0)
k+1 is after α

(0)
i , so is α

(s)
k+1.

If 1 holds, we have

ak+1 + s < ai + t⇒ ak+1 + (s− 1) < ai + (t− 1)

and by a property of m-sketches,

α
(s)
k+1 after α

(t)
i ⇒ α

(s−1)
k+1 after α

(t−1)
i .

But this would contradict the fact that ak+1 + (s− 1) is in the correct relative position.
A similar argument works in the case when 2 holds.

3.3 The Shi arrangement

Recall that the Shi arrangement in Rn is given by:

{xi − xj = 0, 1 | 1 ≤ i < j ≤ n}.

We will denote it by Sn instead of A{0,1}(n).
Using the finite field method, we already know that Sn has (n + 1)n−1 regions. This is also

the number of parking functions of length n. In this section, we will define and count parking
functions and then obtain a bijection between these objects.

3.3.1 Parking functions

Definition 3.3 (Parking function of length n). A sequence (a1, . . . , an) of numbers in [n] such
that if (b1, . . . , bn) is the sequence in ascending order, we get bi ≤ i for all i ∈ [n]. That is, at
least i numbers in (a1, . . . , an) are less than or equal to i for all i ∈ [n].



CHAPTER 3. CLASSICAL BIJECTIONS 22

Example 3.5. A

• (2, 6, 3, 1, 4, 1) is a parking sequence of length 6 since in ascending order it is (1, 1, 2, 3, 4, 6).

• (6, 1, 3, 5, 1, 5, 6) is not a parking function since it has only 3 terms less than or equal to 4.

These functions are called parking functions because there is an equivalent “parking defini-
tion” which we state now.

Consider the following scenario:
There are n cars that attempt to park in n spots in order. That is, the cars, which we call Car

1, . . . , Car n, attempt to park in Spot 1, . . . , Spot n with Car 1 attempting first, then Car 2, and
so on.

Car n . . . Car 2 Car 1

Spot 1 Spot 2

. . .

Spot n

Figure 3.4: n cars and n spots.

Each car has a preferred spot. Let ai be the preferred spot of Car i . Each car (in order)
drives up to its preferred spot and parks there if it is empty. If it is occupied, it parks in the first
empty spot after it. If no such spot exists, it drives off.

A sequence (a1, . . . , an) for which all cars end up parked is called a parking function of
length n. The sequence (a1, . . . , an) in this parking situation is called the preference sequence.

Example 3.6. The parking for preference sequence (2,1,1,3) would go as shown in Figure 3.5.

Car 4 Car 3 Car 2 Car 1

Spot 1 Spot 2

Car 1

Spot 3 Spot 4

Car 4 Car 3 Car 2

Spot 1

Car 2

Spot 2

Car 1

Spot 3 Spot 4

Car 4 Car 3

Spot 1

Car 2

Spot 2

Car 1

Spot 3

Car 3

Spot 4

Car 4

Spot 1

Car 2

Spot 2

Car 1

Spot 3

Car 3

Spot 4

Car 4

Figure 3.5: Parking for the preference sequence (2, 1, 1, 3).

Notice that in this case (2,1,1,3) is a parking function by both definitions.
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We will now prove that both these definitions are equivalent. That is, if (a1, . . . , an) is a
preference sequence and (b1, . . . , bn) is the sequence is ascending order,

All cars can park⇔ bi ≤ i for all i ∈ [n].

First note that if Car k could not park, then all spots ≥ ak have to be filled. We will prove
that:

At least one car can’t park⇔ bi > i for some i ∈ [n].

Now, suppose some car can’t park and Spot i is last vacant spot after parking is done (since
there are equal number of spots as cars, at least one will be empty). This will mean that the cars
in spot i + 1, . . . , n and the car(s) that left prefer spots strictly greater than i. Since otherwise
Spot i would be filled. But this would mean at least n− i + 1 cars prefer spots strictly greater
than i. Hence, bi, . . . , bn > i since these are the last n− i + 1 terms in the ascending sequence.
Hence we get bi > i.

Conversely, suppose there is some i ∈ [n] such that bi > i. For such an i, we will have
bi, . . . , bn > i. Hence the n− i + 1 cars corresponding to these terms all prefer spots strictly
greater than i. But there are only n− i such spots. Hence at least one of these cars won’t be
able to park.

The reason we have mentioned this equivalent definition is that it gives a nice proof for the
fact that there are (n + 1)n−1 parking functions of length n.

To count the parking functions, we will consider a slightly different situation from that
described in the parking definition.

We consider the spots on a circle instead of on a line. Also, there is an extra spot n + 1. The
number of cars is still n but we allow cars to prefer Spot n + 1. The method of parking is just as
before (first Car 1 attempts to park, then Car 2, and so on) but in this situation, the cars move
in a clockwise direction to find a spot (instead of linearly as before).

n + 1

n 1

Figure 3.6: n + 1 spots placed along a circle.

Hence there is no possibility of a car not being able to park. So all cars park and there will
be exactly one empty spot after the parking is done. In this situation, the preference sequences
are elements of [n + 1]n which we consider as Zn

n+1.
We claim that the preference sequence (a1, . . . , an) in this situation is a parking function of

length n if and only if the spot that is empty after parking is n + 1.



CHAPTER 3. CLASSICAL BIJECTIONS 24

If (a1, . . . , an) is a not parking function, this can happen in two ways. Either some ai = n + 1
and hence Car i or some car before it will park in Spot n + 1. Or all ai ∈ [n] but in the linear
order of the spots, all cars won’t be able to park. In this situation, the first car that would have
left the parking lot in the linear case will fill Spot n + 1. Hence in any case, if (a1, . . . , an) is not
a parking function, Spot n + 1 will be filled.

If (a1, . . . , an) is a parking function, the Spot n + 1 will be empty since the cars never use
the circular structure of the parking lot. They park just as they would have in the linear case.

Now our task is to count the preference sequences for which Spot n + 1 is left empty.
Due to the circular structure of the parking lot, if Spot i is left empty after parking for the

preference sequence (a1, . . . , an), then for any k ∈ [n], Spot i + k is left empty after parking for
the preference sequence (a1 + k, . . . , an + k). Here all the additions are modulo n + 1.

So we get that for any preference sequence (a1, . . . , an), exactly one of the elements of
{(a1 + k, . . . , an + k) : k = 0, . . . , n} is a parking function (since exactly one will have Spot n + 1
empty after parking). But sets of this form partition Zn

n+1. Since each has exactly one parking
function, and there are (n + 1)n−1 such sets, we get our desired count.

3.3.2 The bijection

We will first construct a method of representing regions of the Shi arrangement.
Recall that Sn = {xi − xj = 0, 1 | 1 ≤ i < j ≤ n}. And a region is given by validly choosing :

xi − xj > 0 or xi − xj < 0 for each 1 ≤ i < j ≤ n
and

xi − xj > 1 or xi − xj < 1 for each 1 ≤ i < j ≤ n.

We describe a method of representing the choice of these inequalities. We do so using arc
diagrams, that is, diagrams with numbers in some order and arcs between some numbers.

The xi − xj = 0 type inequalities give us a total order on the coordinates (since the region is
nonempty). If xσ(1) > · · · > xσ(n) we write this as:

σ(1) σ(2) . . . σ(n)

Now we represent the xi − xj = 1 (i < j) type inequalities by drawing arcs. We only need
to specify these inequalities for xi − xj where i < j and i is before j in the diagram. If i < j
and j is before i in the diagram we know xi − xj < 0 and hence xi − xj < 1. But if i is before
j, we can either have 0 < xi − xj < 1 or xi − xj > 1. For such i, j draw an arc from i to j if
xi − xj > 1. After drawing all these arcs, we erase any arc that contains another. This is because
these inequalities are implied by the inner arc. If there is an arc from i to j (hence i < j) and i′

is before i and j′ is after j and i′ < j′, then there must be an arc from i′ to j′ (xi′ ≤ xi < xj ≤ xj′

and xi − xj > 1⇒ xi′ − xj′ > 1).
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... i′ ... i ... j ... j′ ...

Figure 3.7: Redundant arcs.

From the way the arc diagram was constructed, we can get back the inequalities that define
the region. Using the order in which the number appear, we can get back the xi − xj = 0 type
inequalities. For any i < j, if j appear before i in the diagram, we get xi − xj < 1. If i appears
before j, then if we imagine an arc from i to j and it contains some arc of the diagram, we have
xi − xj > 1 and if it does not, we get xi − xj < 1.

Example 3.7. Consider the region in S4 given by: x2 > x1 > x3 > x4, x1 − x2 < 1, x1 − x3 < 1,
x1 − x4 > 1, x2 − x3 > 1, x2 − x4 > 1, x3 − x4 < 1. We obtain the associated arc diagram via
the steps in Figure 3.8.

2 1 3 4 writing the order

2 1 3 4 drawing the arcs

2 1 3 4 removing arcs

Figure 3.8: Example of constructing the arc diagram associated to a region.

We now have to obtain a bijection between arc diagrams that correspond to regions of
Sn and parking functions of length n. So we first have to characterize the arc diagrams that
correspond to regions.

We first note some properties that such arc diagrams will have to satisfy and it turns out
that these properties are sufficient for an arc diagram to correspond to a region:

1. The numbers 1, . . . , n appear in some order.

2. Arcs are only from smaller to larger numbers.

3. Arcs do not contain other arcs.

We call arc diagrams that satisfy these properties valid arc diagrams of length n. To show
that all valid arc diagrams correspond to regions, we have to show that there is a point in Rn

that satisfies the inequalities specified by the arc diagram. The idea is to exhibit a Catalan
region which satisfies all the inequalities given by such an arc diagram. We will just state a
method of constructing such a Catalan region and leave the verification of the details to the
reader.

First note that even if a word in A(1)(n) does not contain all the β-letters but satisfies
property 2 and 3 of 1-sketches (see Proposition 3.1), it still specifies a nonempty subset of Rn
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(one way to prove this is to add the missing β-letters in such a way that a 1-sketch is obtained).
Our goal is to construct such a partial 1-sketch which satisfies the inequalities of a given valid
arc diagram.

Let V be a valid arc diagram. Let an an−1 . . . a1 be the order in which the numbers appear
in V. We construct a partial 1-sketch as follows:

Place α
(0)
a1 , α

(0)
a2 , . . . , α

(0)
an in order. Then insert some β-letters as follows: For each i ∈ [n],

1. If there does not exist some j > i such that aj < ai, we do not place α
(1)
ai .

2. If there exists some j > i such that aj < ai, we place α
(1)
ai in the space between α

(0)
al and

the α-letter following it where l is the largest l > i such an arc drawn between al and ai

does not contain an arc of V (no requirement of al < ai) and if no such l exists, we place
α
(1)
ai between α

(0)
ai and the α-letter following it.

Remark 3.2. Since the order of the α and β letters is the same, if there is more that one β-letter
between two α-letters, there is a unique way to order them.

Example 3.8. Consider the valid arc diagram in Figure 3.9.

2 1 3 4 6 5

Figure 3.9: Example of a valid arc diagram.

Placing the α
(1)
ai for which there exists j > i such that aj < ai:

α
(0)
5 α

(0)
6 α

(1)
5 α

(0)
4 α

(1)
6 α

(0)
3 α

(0)
1 α

(1)
4 α

(1)
3 α

(0)
2

Completing the placement (this is not the only way):

α
(0)
5 α

(0)
6 α

(1)
5 α

(0)
4 α

(1)
6 α

(0)
3 α

(0)
1 α

(1)
4 α

(1)
3 α

(1)
1 α

(0)
2 α

(1)
2

Hence the Catalan region corresponding to this 1-sketch has points that satisfy all the inequalities
specified by the arc diagram.

Given a valid arc diagram of length n, we associate a parking function of length n to it as
follows:

From the valid arc diagram, we obtain a partition of [n] whose blocks are the numbers that
are joined by arc chains (see example below). For each i ∈ [n] define f (i) as the position of
leftmost element in block containing i. Since the first i numbers in the diagram will have f
value less than or equal to i, f is a parking function (we think of f as ( f (1), . . . , f (n))).

Example 3.9. The partition for the valid arc diagram of Figure 3.10 is {{2, 4, 6}, {1, 5}, {3}}.
The parking function is (3,1,6,1,3,1).

2 4 1 6 5 3

Figure 3.10: Example of a valid arc diagram.
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To show that this association is a bijection, we will prove that for any parking function of
length n there is exactly one valid arc diagram of length n for which it is the associated parking
function. We do this by constructing all possible valid arc diagrams that can have it as the
associated parking function and show that there is exactly one way to do this.

Let f be a parking function of length n. Any valid arc diagram associated to it (if such
exists) must have the elements of f−1(i) forming a maximal arc chain for each i ∈ [n] such
that f−1(i) 6= φ. Since valid arc diagrams can only have arcs from smaller to larger numbers,
the elements of f−1(i) must appear in ascending order in such a valid arc diagram. Also, the
maximal chain corresponding to f−1(i) must have its first element in the ith position.

So, from the previous paragraph, we just have to show that there is exactly one way to place
these maximal chains (respecting positions of the first element of each chain) to get a valid arc
diagram. We do so by placing the maximal chains in increasing order of f -value. Before going
ahead with the proof, let us look at an example.

Example 3.10. Consider the parking function (4,2,1,1,1,4,2).

3 4 5 2 7 1 6
(1) (2) (4)

Figure 3.11: Maximal chains corresponding to (4, 2, 1, 1, 1, 4, 2).

Figure 3.11 shows the maximal chains corresponding to the given parking function. The
numbers in brackets represent the position of the first number in each maximal chain, that
is, the f -value of the maximal chain. So placing these maximal chains in increasing order of
f -value, we can see that there is exactly one way to do it to avoid chain containment.

3 4 5
(1)

3 2 4 7 5
(1) (2)

3 2 4 1 7 5 6
(1) (2) (4)

Figure 3.12: Placing maximal chains in increasing order of f -value.

We will call the number immediately before i in the maximal chain containing i the prede-
cessor of i. In the above example, the predecessor of 5 is 4. So the predecessor of a number is
defined if it is not the first element of the maximal chain.
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We will now proceed with the proof, which can be found in [12]. Start with the empty
diagram. Since f is a parking function, f−1(1) 6= φ. Place the maximal chain with f -value 1 in
the empty diagram (there is only one way to do this). We will proceed by induction. Suppose
all maximal chains with f -value < j have been placed so that the diagram has no arc containing
another and the position of the first element of any maximal chain is its corresponding f -value.

If f−1(j) = φ, there is nothing to prove. Suppose f−1(j) 6= φ. Let f−1(j) = {i1, . . . , ik}
where i1 < · · · < ik. Since f is a parking function, there are at least j− 1 elements with f -value
less than or equal to j− 1. Hence, there are at least j− 1 numbers in the diagram (since all
maximal chains with f -value less than or equal to j− 1 have been placed). So there is a unique
place where we should keep i1 in the diagram so that it is in the jth position. This logic is valid
because we are placing chains in increasing order of f -value, so no element will be placed
before i1 and hence it will remain in the jth position till the end.

... i1 ...
j− 1 numbers

Figure 3.13: At least j− 1 numbers before i1.

We will use induction again. Suppose {i1, . . . , im} have been placed uniquely. We will show
that there is a unique way to place im+1. Once we do this, our proof will be complete. Remember
that im+1 should be placed somewhere after im, so if there are no numbers after im, we are done.
Suppose there are numbers after im.

The numbers are after im are from maximal chains having f -value less than or equal to j− 1.
Hence each such number will have an arc chain joining it to some number before im (this arc
chain may have more than one arc). So the predecessor of any such number is well-defined.

If all numbers to the right of im have predecessors to the left of im, im+1 should be placed at
the end. Or else we would have some arc containing another.

im ... im+1

Figure 3.14: All numbers to the right of im having predecessors to the left of im.

Next, suppose there is some number to the right of im whose predecessor is also to the right
of im. Let x be the leftmost such number, x′ be the predecessor of x and y be the number before
x. We will show that the only place that im+1 can be placed such that no arc contains another is
between y and x.

Suppose im+1 is placed to the left of y. By choice of x, the predecessor of y is before im.
Hence the arc from the predecessor of y to y will contain the arc from im to im+1.
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im ... x′ ... y x ...

Figure 3.15: im+1 being placed before y.

Suppose im+1 is placed after x. In this case, the arc from x′ to x will be contained in the arc
from im to im+1.

im ... x′ ... y x ...

Figure 3.16: im+1 being placed after x.

We must now show that no arc is contained in another if we place im+1 between y and x.
Suppose this is false. Then, by the induction hypothesis, either the arc from im to im+1 contains
an arc, which would mean there is an element before x but after im that has a predecessor to the
right of im (contradiction to choice of x). Or the arc from im to im+1 is contained in some arc,
which would mean that this arc also contains the arc from x′ to x (contradiction to induction
hypothesis). In either case, we get a contradiction. Hence the only way we can place im+1 is
between y and x.

im ... x′ ... y im+1 x ...

Figure 3.17: im+1 being placed between y and x.

Figure 3.18 shows the labelling of the regions of S3 using parking functions. This is usually
called the Athanasiadis-Linusson labelling.

The methods described here can be extended to obtain a bijection between regions of the
m-Shi regions in Rn and m-parking functions of length n. We define m-parking functions and
refer the reader to [4] for the bijection. Notice that 1-parking functions are the usual parking
functions.

Definition 3.4 (m-parking functions of length n). A sequence (a1, . . . , an) of positive integers
such that if (b1, . . . , bn) is the sequence in ascending order, we get bi ≤ 1 + m(i − 1) for all
i ∈ [n].
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x1 = x3

x2 = x3

x1 = x2

221 112

131

113 111

231
132

123
121

122

321

312

311

211

212

213

Figure 3.18: Athanasiadis-Linusson labelling of regions of S3.



Chapter 4

Sketches and trees

In his paper [5], Bernardi describes a method to count the regions of any deformation of the
braid arrangement using certain objects called boxed trees. For certain deformations, which he
calls transitive deformations, he obtains an explicit bijection between the regions and a certain
set of trees. In this chapter, we will describe this bijection for the special case of Catalan, Shi
and Linial arrangements, which are all transitive deformations.

4.1 Trees

We will first state some definitions and results from the paper [5].

Definition 4.1 (Rooted tree). A tree is a graph with no cycles. A rooted tree is a tree with a
distinguished vertex called the root.

We will draw rooted trees with their root at the bottom. Children of a vertex v in a rooted
tree are those vertices w that are adjacent to v and such that the unique path from the root to w
passes through v. Similarly we can define the parent of a vertex v to be the vertex w for which
it v is the child of w. Any non-root vertex has a unique parent. All the vertices that have at least
one child are called nodes and those that do not are called leaves. The children of any node
will be ordered from left to right. Hence the left siblings of a vertex v are the vertices that are
also children of the parent of v but are to the left of v. We denote the number of left siblings of
v as lsib(v). Example 4.1 might help clear up any doubts about the definitions.

r

v

v

Figure 4.1: Example of a rooted tree.

31
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Example 4.1. The vertex r of Figure 4.1 is the root. It has a leaf and the vertex v as its children
and this leaf is the only left sibling of v. So lsib(v) = 1. The nodes are white while the leaves
are black.

Definition 4.2 ((m+1)-ary tree). A rooted tree where each node has exactly m + 1 children.

Definition 4.3. We will denote by T(m)(n) the set of all (m + 1)-ary trees with n nodes labeled
with distinct elements from [n].

Example 4.2. Figure 4.2 shows an element of T(1)(3).

2

3

1

Figure 4.2: An element of T(1)(3)

For trees in T(m)(n), we will denote the node having label i ∈ [n] by just i.

Definition 4.4. If a node i in a tree T ∈ T(m)(n) has at least one child that is a node, we denote
by cadet(i) the rightmost such child.

Definition 4.5. For any finite set of integers S, define TS(n) to be the set of trees in T(m)(n),
where m = max {|s| | s ∈ S}, such that if cadet(i) = j:

• lsib(j) /∈ S ∪ {0} ⇒ i < j.

• − lsib(j) /∈ S⇒ i > j.

Recall that for any finite set of integers S, we defined the arrangement AS(n) as the
deformation of the braid arrangement in Rn with hyperplanes

{xi − xj = k | k ∈ S, 1 ≤ i < j ≤ n}.

Though Bernardi derived results for more general deformations, we will only be focused on
these.

Definition 4.6. A finite set of integers S is said to be transitive if for any s, t /∈ S,

• st > 0⇒ s + t /∈ S.

• s > 0 and t ≤ 0⇒ s− t /∈ S and t− s /∈ S.

We can now state the result for arrangements AS(n) where S is transitive.
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Theorem 4.1. For any transitive set of integers S, the regions of the arrangement AS(n) are in
bijection with the trees in TS(n).

Recall that the Catalan, Shi and Linial arrangements in Rn are A{−1,0,1}(n), A{0,1}(n) and
A{1}(n) respectively. It can be checked that {−1, 0, 1}, {0, 1} and {1} are transitive sets. Also,
for all these arrangements, the corresponding sets TS(n) is a subset of T(1)(n) and for the
Catalan arrangement, that is S = {−1, 0, 1}, T{−1,0,1}(n) = T(1)(n).

Similarly, it can be shown that T{0,1}(n) is the set of trees in T(1)(n) such that if the right
child of node i is the node j then i > j.

i

j

⇒ i > j

Figure 4.3: Condition for an element of T(1)(n) to belong to T{0,1}(n).

Also, T{1}(n) is the set of trees in T(1)(n) such that:

1. If the right child of node i is the node j then i > j.

2. If the left child of node i is the node j and its right child is a leaf then i > j.

i

j

⇒ i > j
i

j

⇒ i > j

Figure 4.4: Conditions for an element of T(1)(n) to belong to T{1}(n).

Hence the idea for the bijections is as follows: We will first obtain the bijection of the regions
of the Catalan arrangement A{−1,0,1}(n) with T(1)(n). Since each Catalan region is in some Shi
(respectively Linial) region and each Shi (respectively Linial) region contains some Catalan
region, we will choose a canonical Catalan region in each Shi (respectively Linial) region. These
choices will induce the desired bijections for the Shi and Linial arrangements.

The constructions and bijections will be done for the usual Catalan, Shi and Linial arrange-
ments. However, these can also be extended to the m-Catalan, m-Shi and m-Linial arrangements.

4.2 The Catalan arrangement

We will first recall the bijection for Catalan regions from Section 3.2.
Any region of Cn is given by a total order on the symbols x1, . . . , xn, x1 + 1, . . . , xn + 1 and

this is represented by a word in A(1)(n) = {α(s)
i | i ∈ [n], s ∈ {0, 1}} such that:

1. Each letter in A(1)(n) appears exactly once.
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2. For any i, j ∈ [n], α
(0)
i appears before α

(0)
j ⇒ α

(1)
i appears before α

(1)
j .

3. For any i ∈ [n], α
(0)
i appears before α

(1)
i .

Such words are called 1-sketches. Here, α
(s)
i represents xi + s and the order of the letters

represents the order on the symbols x1, . . . , xn, x1 + 1, . . . , xn + 1.
We will denote the set of 1-sketches by D(1)(n). Hence our objective is to obtain a bijection

from D(1)(n) to T(1)(n). We will obtain inverse maps φ1 : D(1)(n)→ T(1)(n) and ψ1 : T(1)(n)→
D(1)(n). The subscripts 1 are to indicate that there are similar bijections between T(m)(n) and
D(m)(n), the set of m-sketches defined in Section 3.2.

Before going ahead with the description of these maps, we need to introduce some terminol-
ogy associated to trees.

For any tree rooted tree T, the drift of a vertex v in T is defined as:

drift(v) = lsib(u0) + lsib(u1) + · · ·+ lsib(uk)

where u0 is the root of T and u0, u1, . . . , uk = v is the path from the root to v. Note that
lsib(u0) = 0.

For any rooted tree T, we define the postfix order on the vertices, which we will denote
by <p f , as the order in which the vertices of T occur when traversing the tree in the counter-
clockwise direction, starting from the root. A more formal definition can be found in [22].

Example 4.3. For the rooted tree given in Figure 4.5,

u0

u1 u2

u5u3

u6u4

Figure 4.5: Example of a rooted tree.

• drift(v) = 0 for v = u0, u1.

• drift(v) = 1 for v = u2, u3, u4.

• drift(v) = 2 for v = u5, u6.

• u0 <p f u2 <p f u5 <p f u3 <p f u6 <p f u4 <p f u1.

For any rooted tree T, we define a total order <T on the vertices as follows: u <T v if
drift(u) < drift(v) or drift(u) = drift(v) and u <p f v. That is, we first order them by drift and
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then order those with equal drift in <p f order. So in the example above u0 <T u1 <T u2 <T

u3 <T u4 <T u5 <T u6.
We now describe the map φ1 : D(1)(n) → T(1)(n). For each word in w ∈ D(1)(n), we will

construct the tree φ1(w) via intermediate trees called budding trees. These are trees with at
most n nodes labeled distinctly with elements from [n] and a special set of leaves called buds.
For any budding tree T, we will call the first bud of T the least bud in the <T order.

Let w ∈ D(1)(n) and let w = w1 . . . w2n. Define T0(w) to be the budding tree with just one
bud and no other vertex. For p ∈ [2n], Tp(w) is the tree obtained from Tp−1(w) by replacing its
first bud by

• a leaf if wp is a β-letter (that is, α
(1)
i for some i).

• a node labeled i with 2 bud children if wp = α
(0)
i .

Finally, we get φ1(w) by replacing the bud of T2n(w) (it has exactly one bud) by a leaf. It can be
checked that Tp(w) has 1+ nα− nβ buds where nα is the number of α-letters in w1 . . . wp and nβ

is the number of β-letters in w1 . . . wp. Since w is a 1-sketch, this will mean that Tp(w) always
has at least one bud (property 2 of Proposition 3.2). It can also be checked that φ1(w) ∈ T(1)(n)
and hence φ1 is well-defined.

Example 4.4. Consider the word w = α
(0)
2 α

(1)
2 α

(0)
3 α

(0)
1 α

(1)
3 α

(1)
1 in D(1)(3). The construction of

φ1(w) is given in Figure 4.6 (square vertices represent buds).

α
(0)
2−−→ 2 α

(1)
2−−→ 2 α

(0)
3−−→ 2

3

α
(0)
1−−→

2

3

1

α
(1)
3−−→ 2

3

1

α
(1)
1−−→ 2

3

1

−→ 2

3

1

Figure 4.6: Construction of φ1(α
(0)
2 α

(1)
2 α

(0)
3 α

(0)
1 α

(1)
3 α

(1)
1 ).

Before we proceed with describing the map ψ1, we note the following lemma.

Lemma 4.1. For a rooted tree T, the successor of a node in the <T order is its first child.

Proof. Let u be a node of T. First we note that the first child of u, which we call v, has the same
drift as u and u <p f v. Hence u <T v. Since v has the same drift as u, we just have to show
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that any vertex w of T such that u <p f w <p f v has drift greater than that of u. But this is true
because such w are from the subtrees T1, . . . , Tk which have roots as the right siblings of v (see
Figure 4.7).

u

v T1 . . . Tk

Figure 4.7: Vertices between a node and its first child in the postfix order.

Let w = w1 . . . w2n be a word in D(1)(n). Let T = φ1(w) and v(wp) be the vertex created
corresponding to wp, that is the non-bud created in Tp(w). From the construction of T and the
above lemma, it can be seen that

v(w1) <T · · · <T v(w2n) <T l (4.1)

where l is the leaf substituted for the bud in T2n(w). We use this observation to construct the
inverse.

Before doing so we recall that a word in D(1)(n) can be represented as a word with letters
α1, . . . , αn and n β’s (Proposition 3.2). We will use this notation to describe ψ1. To avoid
confusion, we will denote this representation of ψ1(T) for any T ∈ T(1)(n) as ψ̃1(T).

Let T ∈ T(1)(n). Also, let
u0 <T · · · <T u2n

be the <T order on the vertices of T. We define ψ̃1(T) to be w̃1 . . . w̃2n where

w̃p =

{
αi, if up−1 is the node i

β, if up−1 is a leaf

for any p ∈ [2n]. Let ψ1(T) be the corresponding word in D(1)(n). Using the fact that any node
in a tree T has 2 children, and parent <T child, it can be shown that ψ1(T) is indeed a 1-sketch.

By (4.1), we can see that ψ1 ◦ φ1 is the identity map on D(1)(n). It is also known that T(1)(n)
has n!× 1

n+1 (
2n
n ) elements (refer [22]), which is the same as D(1)(n). Hence φ1 and ψ1 are

bijections.
We will now mention another way to describe ψ1 which will help in the bijections for the

Shi and Linial arrangements.
Let T ∈ T(1)(n) and u0 <T · · · <T u2n be the vertices of T. Let w = w1 . . . w2n where

wp = α
(s)
i if up is the (s + 1)th child of the node i. We claim that ψ1(T) = w. Since any non-root

vertex is the child of some node, the definition of w makes sense. It can be checked that w is a
1-sketch. Also by the lemma above, we know that up is the first child of the node i if and only if
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up−1 is the node i. So wp = α
(0)
i if and only if up−1 is the node i. So w corresponds to the word

ψ̃1(T) and hence ψ1(T) = w.
Using both descriptions of ψ1, we obtain the following lemma.

Lemma 4.2. Let w be a 1-sketch. The (s + 1)th child of node i in φ1(w) is

• the node j if and only if the letter immediately following α
(s)
i is α

(0)
j .

• a leaf if and only if the letter immediately following α
(s)
i is a β-letter.

Combining the bijection of T(1)(n) with D(1)(n) and that of D(1)(n) with the regions of Cn,
we get the bijections Φ1 from the regions of Cn to T(1)(n) and its inverse Ψ1. We will now
describe Ψ1.
For any T ∈ T(1)(n), the region Ψ1(T) of Cn is the region defined by

xi − xj < s, if i <T v where v is the (s + 1)th child of node j

xi − xj > s, otherwise

for s ∈ {0, 1} and distinct i, j ∈ [n].
Note that since i, j ∈ [n] are distinct, the first child of i being less than the (s + 1)th child

of j in the <T order is the same as the node i being less that the (s + 1)th child of j. This is
because the node i is the predecessor of its first child in the <T order and also because a child
of i cannot also be a child of j.

4.3 The Shi arrangement

Each Shi region contains some Catalan regions. Our goal is to choose a canonical Catalan
region for each Shi region which will then induce the desired bijection between regions of Sn

and T{0,1}(n). It will be convenient to think of 1-sketches, trees in T(1)(n) and regions of Cn

interchangeably. The method used will be to order the 1-sketches and choose the maximum
1-sketch in this order from each Shi region to be its canonical representative.

First, we need to partition the 1-sketches based on the Shi region they lie in. To do so, we
make the following definition.

Definition 4.7 (Shi move). Swapping two consecutive letters of the form α
(1)
i and α

(0)
j where

i < j in a 1-sketch is called a Shi move.

Example 4.5. Applying a Shi move to the 1-sketch α
(0)
1 α

(1)
1 α

(0)
2 α

(0)
3 α

(1)
2 α

(1)
3 we can obtain the

following:

• α
(0)
1 α

(0)
2 α

(1)
1 α

(0)
3 α

(1)
2 α

(1)
3 (swapping α

(1)
1 and α

(0)
2 ).

• α
(0)
1 α

(1)
1 α

(0)
2 α

(1)
2 α

(0)
3 α

(1)
3 (swapping α

(1)
2 and α

(0)
3 ).

Remark 4.1. It can be checked that performing a Shi move on a 1-sketch results in a 1-sketch.
Note that swapping consecutive α

(1)
i and α

(0)
j where i < j in a 1-sketch has the effect, in the

corresponding Catalan regions, of changing the inequality between xi − xj and −1 while all
other inequalities remain the same.
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Definition 4.8 (Shi equivalent). Two 1-sketches are said to be Shi equivalent if one can be
obtained from the other by performing a series of Shi moves.

Lemma 4.3. Two 1-sketches are Shi equivalent if and only if their corresponding Catalan regions
lie in the same Shi region.

Proof. By the above remark, two Shi equivalent regions lie on the same side of xi − xj = s
hyperplanes for i < j and s = 0, 1. Hence they lie in the same Shi region. Conversely, let two
Catalan regions R1, R2 lie in the same Shi region. If R1 = R2, we are done. If not, then R2

lies on the opposite side as R1 of at least one of the bounding hyperplanes of R1 (bounding
hyperplane is one such that just changing its inequality and keeping the others the same results
in a nonempty region). Using this and induction, we can get that R2 can be obtained from R1

by changing exactly one inequality of the type xi − xj > −1 or xi − xj < −1 at a time (where
i < j). This corresponds to a series of Shi moves. Hence R1 and R2 are Shi equivalent.

Next, we need to order the 1-sketches. We will use the lexicographic order induced by the
following order on the letters:

α
(1)
1 ≺ α

(1)
2 ≺ · · · ≺ α

(1)
n ≺ α

(0)
1 ≺ α

(0)
2 ≺ · · · ≺ α

(0)
n .

This means that for two distinct 1-sketches w, w′, w ≺ w′ if and only if the first different letter
is lesser in w (that is, if w = w1 . . . w2n and w′ = w′1 . . . w′2n and wk = w′k for all k ∈ [p− 1] and
wp 6= w′p and wp ≺ w′p).

Definition 4.9 (Shi maximal). A 1-sketch is said to be Shi maximal if it is greater than all
1-sketches that are Shi equivalent to it.

Hence, using the lemma above, Shi regions are in bijection with Shi maximal 1-sketches.
However, it is not easy to describe these Shi maximal 1-sketches directly. It turns out that to
check whether a 1-sketch is Shi maximal, we only need to compare it with the 1-sketches that
are obtained by applying a single Shi move to it.

Definition 4.10 (Shi locally maximal). A 1-sketch is said to be Shi locally maximal if it is
greater than all 1-sketches that can be obtained by applying a single Shi move to it.

So we have to show that a 1-sketch is Shi maximal if and only if it is Shi locally maximal.
Note that Shi locally maximal 1-sketches are easier to describe. A 1-sketch is Shi locally maximal
if and only if there is no i < j such that α

(1)
i that is immediately followed by α

(0)
j . In fact, such

1-sketches are precisely the ones that correspond to trees in T{0,1}(n). Once we prove these two
facts, we will obtain the required bijection between regions of Sn and T{0,1}(n) induced by Ψ1

which we call Ψ{0,1}:
For any T ∈ T{0,1}(n), the region Ψ{0,1}(T) of Sn is the region defined by

xi − xj < 0, if and only if i <T j

xi − xj < 1, if and only if i <T v where v is the right child of j

for all 1 ≤ i < j ≤ n.
So it remains to prove the following lemma.
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Lemma 4.4. Let w be a 1-sketch. The following are equivalent:

1. w is Shi maximal.

2. w is Shi locally maximal.

3. The tree corresponding to w, that is, φ1(w) is in T{0,1}(n).

Proof. We will first show 1⇔ 2.
It is clear that 1⇒ 2. For the other implication we proceed by contradiction. Suppose w is

Shi locally maximal but not maximal. That is, there is some w′ that is Shi equivalent to w such
that w ≺ w′. Let w = w1 . . . w2n and w′ = w′1 . . . w′2n. Since w ≺ w′, we have some p ∈ [2n]
such that wk = w′k for all k ∈ [p− 1] and wp ≺ w′p.

Since w and w′ are Shi equivalent, the α-letters (the (0)-type letters) and hence the β-letters
((1)-type) appear in the same order in both (this is because their corresponding regions both
lie on the same side of xi − xj = 0 for all distinct i, j ∈ [n]). Hence both wp and w′p cannot be
of the same type, that is, one should be an α-letter and the other should be a β-letter. Since
wp ≺ w′p, we must have wp = α

(1)
i and w′p = α

(0)
j for some i, j ∈ [n].

Again since the order of the α-letters is the same in both w and w′, the first α-letter after
wp in w has to be α

(0)
j . Let wq = α

(0)
j where q > p. Now wq−1 = α

(1)
k for some k ∈ [n]. Since

wq = α
(0)
j , we cannot have k = j.

If k > j, then α
(1)
k must be before α

(0)
j in w′ as well (since both regions corresponding to w and

w′ lie on the same side of xj− xk = 1). But this would mean α
(1)
k is in w′1 . . . w′p−1 = w1 . . . wp−1,

which is a contradiction since wq−1 = α
(1)
k and q− 1 ≥ p.

If k < j, then w is not Shi locally maximal since we could apply the Shi move of swapping
α
(1)
k and α

(0)
j to obtain a greater 1-sketch. Hence w must be Shi maximal.

We will now show 2⇔ 3.
w is Shi locally maximal if and only if there is no i < j such that α

(1)
i that is immediately

followed by α
(0)
j . Translating this in terms of the tree φ1(w), we get that φ1(w) should not have

i < j with the right child of a node i being the node j. But these are precisely the trees in
T{0,1}(n). Hence we get that w is Shi locally maximal if and only if φ1(w) is in T{0,1}(n).

4.4 The Linial arrangement

The bijection between regions of Ln and the T{1}(n) is obtained using the same methods as for
the Shi arrangement. The main difference is in the proof that Linial locally maximal sketches
are Linial maximal (definitions given below).

We will now state the corresponding definitions and lemmas for the Linial arrangement.
The ordering of the 1-sketches is the same as before, that is, the lexicographic order induced by:

α
(1)
1 ≺ α

(1)
2 ≺ · · · ≺ α

(1)
n ≺ α

(0)
1 ≺ α

(0)
2 ≺ · · · ≺ α

(0)
n .

Definition 4.11 (Linial move). A Linial move on a 1-sketch is performing either one of the
following:
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• Swapping two consecutive letters of the form α
(1)
i and α

(0)
j where i < j (Shi move).

• Swapping the letters α
(0)
i and α

(0)
j and also swapping α

(1)
i and α

(1)
j where both pairs are

consecutive in the 1-sketch.

Remark 4.2. It can be checked that performing a Linial move on a 1-sketch results in a 1-sketch.
The first type of Linial move correspond to changing the inequality between xi − xj and −1
while all other inequalities remain the same. While the second type corresponds to changing
the inequality between xi − xj and 0 while all other inequalities remain the same.

Definition 4.12 (Linial equivalent). Two 1-sketches are said to be Linial equivalent if one can
be obtained from the other by performing a series of Linial moves.

Lemma 4.5. Two 1-sketches are Linial equivalent if and only if their corresponding Catalan regions
lie in the same Linial region.

Definition 4.13 (Linial maximal). A 1-sketch is said to be Linial maximal if it is greater than
all 1-sketches that are Linial equivalent to it.

Definition 4.14 (Linial locally maximal). A 1-sketch is said to be Linial locally maximal if it is
greater than all 1-sketches that can be obtained by applying a single Linial move to it.

The main lemma we need to prove to obtain the bijection is the following:

Lemma 4.6. Let w be a 1-sketch. The following are equivalent:

1. w is Linial maximal.

2. w is Linial locally maximal.

3. The tree corresponding to w, that is, φ1(w) is in T{1}(n).

Once this lemma is proved, we will obtain the required bijection between regions of Ln and
T{1}(n) induced by Ψ1 which we call Ψ{1}:
For any T ∈ T{1}(n), the region Ψ{1}(T) of Ln is the region defined by

xi − xj < 1, if and only if i <T v where v is the right child of j

for all 1 ≤ i < j ≤ n.

Proof of Lemma. We will first show 1⇔ 2.
It is clear that 1 ⇒ 2. For the other implication we proceed by contradiction. Suppose w

is Linial locally maximal but not maximal. That is, there is some w′ that is Linial equivalent
to w such that w ≺ w′. Let w = w1 . . . w2n and w′ = w′1 . . . w′2n. Since w ≺ w′, we have some
p ∈ [2n] such that wk = w′k for all k ∈ [p− 1] and wp ≺ w′p.

If both wp and w′p are β-letters, they will be the same (the β corresponding to the (k + 1)th

α if there are k β-letters in w1 . . . wp−1). Hence either both are α-letters or one is an α and the
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other is a β. In either case, since wp ≺ w′p, we must have that w′p is an α-letter, say α
(0)
j for some

j ∈ [n]. Suppose wp+d = α
(0)
j where d > 0.

First we consider the case when all the letters wp, . . . , wp+d are α-letters. Let wp+k = α
(0)
ik

.
Since i0 < j = id,taking ic to be the minimum of all ik we have ic < ic+1 and ic < j. It can be
shown, since w is Linial locally maximal, that the letter following α

(1)
ic

should be of the form α
(0)
k

where k < ic. Since w and w′ are in the same Linial region and α
(0)
k is between α

(1)
ic

and α
(1)
j in

w where k < ic < j, the same is true in w′. But this gives that α
(0)
ic

is before α
(0)
j in w′, which

cannot happen since this would mean α
(0)
ic

appears in both w1 . . . wp−1 as well as wp . . . wp+d.

Next, suppose that one of the letters wp . . . wp+d is a β-letter. Let α
(1)
i be the last β-letter

before wp+d = α
(0)
j . Since w and w′ lie in the same Linial region, i < j. Let the letter immediately

after α
(1)
i be α

(0)
k . Since w is Linial locally maximal, k < i. Hence we have that k < j and all the

letters between α
(0)
k and α

(0)
j are α-letters, and a similar argument as the previous paragraph

leads to a contradiction. Hence w must be Linial maximal.
We will now show 2⇔ 3.
w is Linial locally maximal if and only if

1. There is no i < j such that α
(1)
i that is immediately followed by α

(0)
j .

2. There is no i < j such that α
(0)
i is followed by α

(0)
j and α

(1)
i is followed by α

(1)
j .

Translating these conditions in terms of the tree φ1(w), we get:

1. φ1(w) should not have i < j with the right child of a node i being the node j.

2. φ1(w) should not have i < j with the left child of a node i being the node j and the right
child being a leaf.

But these are precisely the trees in T{1}(n). Hence we get that w is Linial locally maximal if and
only if φ1(w) is in T{1}(n).



Chapter 5

Deformations of type C

We have been looking at arrangements that have hyperplanes of the form xi − xj = s. Now we
include hyperplanes of the form xi + xj = s and 2xi = s as well. Hyperplane arrangements of
this form are called deformations of the type C arrangement. In this chapter we extend, with
a modification inspired by [2], the results of [10] and count the number of regions of some
deformations using the idea of ‘moves’ from Bernardi’s paper [5].

5.1 Type C

The braid arrangement in Rn is the set of reflecting hyperplanes of the root system An−1. The
type C arrangement in Rn is the set of reflecting hyperplanes of the root system Cn. Relevant
definitions can be found in [8]. Its hyperplanes are:

2xi = 0

xi + xj = 0

xi − xj = 0

for 1 ≤ i < j ≤ n. Before going forward with general deformations, we will first look at
linear deformations. That is, sub-arrangements of the type C arrangement. Hence, in the
spirit of Bernardi [5], we will define certain sketches corresponding to the region of the type C
arrangement and for any deformation, we choose a canonical sketch from each region.

We can write the hyperplanes of the type C arrangement as follows:

xi = xj, 1 ≤ i < j ≤ n

xi = −xj, i, j ∈ [n].

Hence, any region of the arrangement is given by a valid total order on x1, . . . , xn,−x1, . . . ,−xn.
We represent xi by i and −xi by −i.

Example 5.1. The region −x2 < x3 < x1 < −x1 < −x3 < x2 is represented as −2 3 1 − 1 − 3 2.

It can be shown that words of the form:

i1 i2 . . . in − in . . . − i2 − i1

42
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where {|i1|, . . . , |in|} = [n] are the ones that correspond to regions. This is because negatives
reverse order and also, choosing n distinct negative numbers, it is easy to construct a point
satisfying the inequalities specified by such a word. Hence the number of regions of the type
C arrangement is 2nn!. We will call such words 0-sketches. We will call the part of the sketch
i1 i2 . . . in its first half and similarly the second half is the part −in . . . − i2 − i1. We will

represent i by
+
i and −i by

−
i for all i ∈ [n] and draw a line between the first and second half.

Example 5.2.
+
3
−
1
−
2

+
4 |
−
4

+
2

+
1
−
3 is a 0-sketch.

We will now look at some sub-arrangements of the type C arrangement. For each such
arrangement, we will define the moves that we can apply to the 0-sketches (which correspond
to changing inequalities of hyperplanes not in the arrangement) and then choose a canonical
representative from each equivalence class to obtain a bijection with the regions of the sub-
arrangement.

5.1.1 Boolean arrangement

One of first examples one encounters when studying hyperplane arrangement is the boolean
arrangement. It is the arrangement in Rn with hyperplanes:

xi = 0

for all i ∈ [n]. It is fairly straightforward to see that the number of regions is 2n. We will do this
using the idea of moves on 0-sketches. The hyperplanes missing from the type C arrangement
in the boolean arrangement are:

xi + xj = 0

xi − xj = 0

for 1 ≤ i < j ≤ n. Hence, the boolean moves, which we call B moves, are:

1. Swapping consecutive
+
i and

−
j as well as the corresponding negatives

+
j and

−
i where i 6= j

in [n].

2. Swapping consecutive
+
i and

+
j as well as the corresponding negatives

−
j and

−
i where i 6= j

in [n].

It can be shown that for any 0-sketch, we can use B moves to convert it to a 0-sketch where
the order of absolute values in the first half is 1, 2, . . . , n. Also, the signs of the numbers in
the first half do not change. Hence the number or boolean regions is the number of ways of
assigning signs to the numbers 1, . . . , n which is 2n.

Example 5.3. We can convert
+
3
−
2
−
1

+
4 |
−
4

+
1

+
2
−
3 to its canonical form as follows:

+
3
−
2
−
1

+
4 |
−
4

+
1

+
2
−
3 B move−−−→

+
3
−
1
−
2

+
4 |
−
4

+
2

+
1
−
3 B move−−−→

−
1

+
3
−
2

+
4 |
−
4

+
2
−
3

+
1 B move−−−→

−
1
−
2

+
3

+
4 |
−
4
−
3

+
2

+
1
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5.1.2 Type D

The type D arrangement is the arrangement in Rn with the following hyperplanes:

xi + xj = 0

xi − xj = 0

for 1 ≤ i < j ≤ n. So the hyperplanes missing from it are:

2xi = 0

for all i ∈ [n]. Hence the type D moves, which we call D moves, are: Swapping
+
i and

−
i if they

are consecutive for any i ∈ [n]. In an 0-sketch the only such pair is the last term of the first
half and the first term of the second half. Hence D moves actually define an involution on the
0-sketches. Hence the number of regions of the type D arrangement is 2n−1n!. We could also
choose a canonical sketch in each type D region to be the one where the last term of the first
half is positive.

Example 5.4.
+
4

+
1
−
3
−
2 |

+
2

+
3
−
1
−
4 D move−−−−→

+
4

+
1
−
3

+
2 |
−
2

+
3
−
1
−
4

5.1.3 Threshold arrangement

The threshold arrangement in Rn is the arrangement with hyperplanes:

xi + xj = 0

for all 1 ≤ i < j ≤ n. So the hyperplanes missing from it are:

2xi = 0

xi − xj = 0

for all 1 ≤ i < j ≤ n. Hence the threshold moves, which we call T moves, are:

1. (D move) Swapping
+
i and

−
i if they are consecutive for any i ∈ [n].

2. Swapping consecutive i and j as well as
−
j and

−
i where i 6= j are of same sign.

Example 5.5. We can use a series of T moves on
+
5
−
4
−
6
−
1

+
2

+
7
−
3 |

+
3
−
7
−
2

+
1

+
6

+
4
−
5 as follows:

+
5
−
4
−
6
−
1

+
2

+
7
−
3 |

+
3
−
7
−
2

+
1

+
6

+
4
−
5 T move−−−−→

+
5
−
4
−
6
−
1

+
2

+
7

+
3 |
−
3
−
7
−
2

+
1

+
6

+
4
−
5 T move−−−−→

+
5
−
4
−
6
−
1

+
2

+
3

+
7 |
−
7
−
3
−
2

+
1

+
6

+
4
−
5 T moves−−−−→

+
5
−
1
−
4
−
6

+
2

+
3

+
7 |
−
7
−
3
−
2

+
6

+
4

+
1
−
5

We will call the set of numbers in a maximal string of completely positive or completely
negative numbers in the first half of a sketch a block. The blocks of the initial sketch in Example
5.5 are: {5}, {1, 4, 6}, {2, 7}, {3} (these blocks appear in this order with the first one being
positive). For any sketch, there is a T equivalent sketch (sketch that can be obtained using a
series of T moves) for which the last block has more than 1 element. This is because, if the
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sketch has last block of size 1, swapping the nth and (n + 1)th term (D move), will result in
a sketch where the last block has size greater than 1 (first step in Example 5.5). To obtain a
canonical sketch for each threshold region, we will need a small lemma.

Lemma 5.1. Two T equivalent sketches that have their last block of size greater than 1 have the
same blocks which appear in the same order with the same signs.

Proof. Looking at what the T moves do to the sequence of signs (above the numbers), we can
see that they at most swap the nth and (n + 1)th sign. Hence, if we require the last blocks to
have size greater than 1, both the sketches have the same number of blocks and the number of
elements in the corresponding blocks are the same. A move of the second type can only reorder
elements in the same block of a sketch. A move of the first kind changes the sign of the last
element of the first half. So if there are k > 1 elements in the last block of a T equivalent sketch,
then the set of mod values of the last k elements remains the same in all T equivalent sketches.
Hence the elements of each block of T equivalent sketches with last block of size greater than 1
is also the same.

Using the above lemma, we can see that for any sketch there is a unique T equivalent sketch
where the size of the last block is greater than 1 and the elements of each block are ascending
order of mod value. The last sketch in Example 5.5 is the unique such sketch in its equivalence
class. To count the number of threshold regions, we count the number of such sketches, which
is the same as the number of ways to form an ordered partition of [n] with last block of size
greater than 1 and then choosing whether the first block should be positive or negative:

∑
(a1,...,ak)

a1+···+ak=n, ak 6=1

2× n!
a1! . . . ak!

= 2× (a(n)− n× a(n− 1)).

Here a(n) is the nth ordered Bell number.

5.2 Type C Catalan

The type C Catalan arrangement in Rn is the arrangement with hyperplanes:

2Xi = −1, 0, 1

Xi + Xj = −1, 0, 1

Xi − Xj = −1, 0, 1

for all 1 ≤ i < j ≤ n. In this case, instead of looking at this arrangement directly, we will
study the arrangement obtained by performing the translation Xi = xi +

1
2 for all i ∈ [n]. The

translated arrangement has hyperplanes:

2xi = −2,−1, 0

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1
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for all 1 ≤ i < j ≤ n. This arrangement can be rewritten as:

xi + 1 = −xi − 1, xi + 1 = −xi, xi = −xi

xi + 1 = −xj − 1, xi + 1 = −xj, xi = −xj

xi + 1 = xj, xi = xj, xi = xj + 1

for all 1 ≤ i < j ≤ n. So the regions of this arrangement are given by valid total orders on:

{xi + s | i ∈ [n], s ∈ {0, 1}} ∪ {−xi − s | i ∈ [n], s ∈ {0, 1}}.

Such orders will be represented by using the symbol α
(s)
i for xi + s and α

(−s)
−i for −xi − s for

all i ∈ [n] and s ∈ {0, 1}. Let C(1)(n) be the set

{α(s)
i | i ∈ [1, n], s ∈ {0, 1}} ∪ {α(s)

i | i ∈ [−n,−1], s ∈ {−1, 0}}.

Considering −xi as x−i, α
(s)
i represents xi + s for any α

(s)
i ∈ C(1)(n). For any α

(s)
i ∈ C(1)(n), α

(s)
i

represents α
(−s)
−i and is called the conjugate of α

(i)
s .

Example 5.6. The region

−x3− 1 < −x3 < x1 < −x2− 1 < x1 + 1 < x2 < −x2 < −x1− 1 < x2 + 1 < −x1 < x3 < x3 + 1

is represented as: α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3 .

Definition 5.1 (Symmetric 1-sketch). A word in the letters C(1)(n) which corresponds to a
valid total order on {xi + s | i ∈ [n], s ∈ {0, 1}} ∪ {−xi − s | i ∈ [n], s ∈ {0, 1}} is called a
symmetric 1-sketch. Hence symmetric 1-sketches correspond to regions of the type C Catalan
arrangement.

Proposition 5.1. A word in the letters C(1)(n) is a symmetric 1-sketch if and only if:

1. Each letter of C(1)(n) appears exactly once.

2. α
(s−1)
i appears before α

(t−1)
j ⇒ α

(s)
i appears before α

(t)
j .

3. α
(s−1)
i appears before α

(s)
i .

4. α
(s)
i appears before α

(t)
j ⇒ α

(t)
j appears before α

(s)
i .

Just as for the usual Catalan arrangement, to prove this proposition, we have to show that
there is a point in Rn satisfying the inequalities given by such a sketch. This will be proved in
greater generality in Subsection 5.2.1.

We will now prove some special properties that symmetric 1-sketches satisfy. A symmetric
1-sketch has 4n letters, so we call the word made by the first 2n letters its first half. Similarly
we define its second half.

Lemma 5.2. The second half of a symmetric sketch is completely specified by its first half. In fact,
it is the ‘mirror’ of the first half.
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Proof. For any symmetric 1-sketch,

α
(i)
s ∈ First half⇔ α

(i)
s ∈ Second half.

This property can be proved as follows: If there is some letter and its conjugate in the first half
of a symmetric 1-sketch, there is some pair of conjugates in the second half as well (this is
because conjugate pairs partition C(1)(n) into 2n pairs). But this would contradict property 4 of
a symmetric 1-sketch in Proposition 5.1.

So the set of letters in the second half are the conjugates of the letters in the first half. The
order in which they appear is forced by property 4, that is, the conjugates appear in the opposite
order as the corresponding letters in the first half. So if the first half of a symmetric 1-sketch is
a1 . . . a2n for some ai ∈ C(1)(n) for all i ∈ [2n], the sketch is:

a1 a2 . . . a2n a2n . . . a2 a1.

We draw a vertical line between the 2nth and (2n + 1)th letter in a symmetric 1-sketch to
indicate both the mirroring and the change in sign (note that if the 2nth letter is α

(s)
i , we have

xi + s < 0 < −xi − s in the corresponding region).

Example 5.7. α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 | α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3 .

For a symmetric 1-sketch, an α-letter is a letter of the form α
(0)
i or α

(−1)
−i where i ∈ [n]. The

other letters are called β-letters. The ‘corresponding’ α-letter (respectively β-letter) to a β-letter
(respectively α-letter) is the one with the same subscript. Hence an α-letter always appears
before its corresponding β-letter by property 3 in Proposition 5.1. The order in which the
subscripts of the α-letters appear is the same as the order in which the subscripts of the α-letters
appear by property 2 of Proposition 5.1. The proof of the following lemma is very similar to the
proof of the previous lemma.

Lemma 5.3. The order in which the subscripts of the α-letters in a symmetric 1-sketch appear is of
the form:

i1 i2 . . . in − in . . . − i2 − i1

where {|i1|, . . . , |in|} = [n].

Using Lemmas 5.2 and 5.3, we only need to specify:

1. The α, β-word corresponding to the first half.

2. The signed permutation given by the first n α-letters.

to specify the sketch. The α, β-word corresponding to the first half is a word of length 2n in the
letters {α, β} such that the ith letter is an α if and only if the ith letter of the symmetric 1-sketch
is an α-letter. There is at most one sketch corresponding to a pair of an α, β-word and a signed
permutation.

Example 5.8. For α
(−1)
−3 α

(0)
−3 α

(0)
1 α

(−1)
−2 α

(1)
1 α

(0)
2 | α

(0)
−2 α

(−1)
−1 α

(1)
2 α

(0)
−1 α

(0)
3 α

(1)
3 ,
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1. α, β-word: α β α α β α.

2. Signed permutation: −3 1 − 2.

If we are given the α, β-word and signed permutation above, the unique sketch corresponding
to it is the one given above. This is because the signed permutation tells us, by Lemma
5.3, that the order in which the subscripts of the α-letters (and hence β-letters) appears is:
−3 1 − 2 2 − 1 3. So, using the α, β-word, we can construct the first half and, by
Lemma 5.2, the entire sketch.

The next proposition characterizes the pairs of α, β-words and signed permutations that
correspond to symmetric 1-sketches.

Proposition 5.2. A pair of

1. An α, β-word of length 2n such that any prefix of the word has at least as many αs as βs.

2. Any signed permutation.

corresponds to a symmetric 1-sketch and all symmetric 1-sketches correspond to such pairs.

Proof. By property 3 of symmetric 1-sketches, any α, β-word corresponding to the first half of a
sketch should have at least as many αs as βs in any prefix.

We now prove that given such a pair, there is a symmetric 1-sketch corresponding to it. If
the given α, β-word is l1 l2 . . . l2n and the given signed permutation is i1 i2 . . . in, we construct
the symmetric 1-sketch as follows:

1. Extend the α, β-word to one of length 4n as:

l1 l2 . . . l2n l2n . . . l2 l1.

where li = α⇔ li = β.

2. Extend the signed permutation to a sequence of length 2n as:

i1 i2 . . . in − in . . . − i2 − i1.

3. Label the subscripts of the α-letters of the extended α, β-word in the order given by the
extended signed permutation and similarly the β-letters.

If we show that the word constructed it a symmetric 1-sketch, it is clear that it will correspond
to the given α, β-word and signed permutation. We have to check that the constructed word
satisfies properties 1 to 4 of Proposition 5.1. The way the word was constructed, we see that it
is of the form

a1 a2 . . . a2n a2n . . . a2 a1.

for some ai ∈ C(1)(n) for all i ∈ [n]. Since the conjugate of the ith α is the (2n− i + 1)th β and
vice-versa, the first half of the word cannot have a pair of conjugates. Hence the word has all



CHAPTER 5. DEFORMATIONS OF TYPE C 49

letters of C(1)(n). This gives that both property 1 and 4 hold. Property 2 is taken care of since
we labeled the α and β-letters in the same order.

To show that property 3 holds, it is sufficient to show that any prefix of the word has at least
as many αs as βs. This is already true for the first half. To show that this is true for the entire
word, we look at α as +1 and β as −1. Hence the condition is that any prefix has a non-negative
sum. Since any prefix (of size greater than 2n) is of the form:

a1 a2 . . . a2n a2n . . . ak

for some 1 ≤ k ≤ 2n, the sum is 0 if k = 1 and a1 + · · ·+ ak−1 ≥ 0 if k > 1. So property 3 holds
as well and hence the constructed word is a symmetric 1-sketch.

We can use this description to count the symmetric 1-sketches (the case of 1-sketches is
simpler than that of m-sketches which will be defined later).

Lemma 5.4. The number of α, β-words of length 2n having at least as many αs and βs in any
prefix is (2n

n ).

Proof. We will consider α as +1 and β as −1. So we have to show that there are (2n
n ) sequences

consisting of +1s and −1s such that the sum of the first k terms is non-negative for all k ∈ [2n].
We will use induction on n, the case of n = 1 being trivial. Given a sequence of length

2n + 2 with all partial sums non-negative, removing the last two terms gives a sequence of
length 2n with the same property. So, we count the number of ways of adding two terms to
the end of a sequence of length 2n having all partial sums non-negative to obtain one of length
2n + 2 with the same property.

If the sequence of length 2n has exactly n +1s, then it has exactly n −1s and hence has sum
zero. So we cannot add the term −1 immediately after this sequence. We can either add +1
then −1 or two +1s. On the other hand, if the sequence of length 2n has more +1s than −1s,
it has sum greater than zero. Since the length of the sequence is even, this sum cannot be 1.
Hence we can add any two terms to the end of this sequence.

Since the number of sequences with n +1s and n −1s with all partial sums non-negative is
the nth Catalan number, 1

n+1 (
2n
n ) (refer [22]), we get, by our induction hypothesis, that there

are

2× 1
n + 1

(
2n
n

)
+ 4×

((
2n
n

)
− 1

n + 1

(
2n
n

))
=

(
2n + 2
n + 1

)
sequences of length 2n + 2 having all partial sums non-negative.

Since there are 2nn! signed permutations, the total number of symmetric 1-sketches and
hence regions of the type C Catalan arrangement is

2nn!
(

2n
n

)
.
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5.2.1 Extended Catalan

Just as how the m-Catalan arrangement was defined as a deformation of the braid arrangement,
the type C m-Catalan arrangement for any m ≥ 1 is the arrangement in Rn with hyperplanes:

2Xi = −m, . . . , 0, . . . , m

Xi + Xj = −m, . . . , 0, . . . , m

Xi − Xj = −m, . . . , 0, . . . , m

for all 1 ≤ i < j ≤ n. Instead of looking at this arrangement directly, we will study the
arrangement obtained by performing the translation Xi = xi +

m
2 for all i ∈ [n]. The translated

arrangement has hyperplanes:

2xi = −2m, . . . , 0

xi + xj = −2m, . . . , 0

xi − xj = −m, . . . , 0, . . . , m

for all 1 ≤ i < j ≤ n. The regions of this arrangement are given by valid total orders on:

{xi + s | i ∈ [n], s ∈ [0, m]} ∪ {−xi − s | i ∈ [n], s ∈ [0, m]}.

Just as for the usual type C Catalan arrangement, such orders will be represented by using
the symbol α

(s)
i for xi + s and α

(−s)
−i for −xi − s for all i ∈ [n] and s ∈ [0, m]. Let C(m)(n) be the

set
{α(s)

i | i ∈ [1, n], s ∈ [0, m]} ∪ {α(s)
i | i ∈ [−n,−1], s ∈ [−m, 0]}.

For any α
(s)
i ∈ C(m)(n), α

(s)
i represents α

(−s)
−i and is called the conjugate of α

(i)
s . Letters of the

form α
(0)
i or α

(−m)
−i for any i ∈ [n] are called α-letters. The others are called β-letters.

Definition 5.2 (Symmetric m-sketch). A word in the letters C(m)(n) which corresponds to a
valid total order on {xi + s | i ∈ [n], s ∈ [0, m]} ∪ {−xi − s | i ∈ [n], s ∈ [0, m]} is called a
symmetric m-sketch. Hence symmetric m-sketches correspond to regions of the type C m-Catalan
arrangement.

Proposition 5.3. A word in the letters C(m)(n) is a symmetric m-sketch if and only if:

1. Each letter of C(m)(n) appears exactly once.

2. α
(s−1)
i appears before α

(t−1)
j ⇒ α

(s)
i appears before α

(t)
j .

3. α
(s−1)
i appears before α

(s)
i .

4. α
(s)
i appears before α

(t)
j ⇒ α

(t)
j appears before α

(s)
i .

Proof. We will prove this proposition by showing that there is a point in Rn satisfying the
inequalities given by a word satisfying the above properties. The idea of the proof is same as
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that of Lemma 5.2 of [2]. Let w be a word in the letters C(m)(n) satisfying the properties given
above. Using the same method as Lemma 5.2, we can prove that w is of the form

w1 w2 . . . w(m+1)n w(m+1)n . . . w2 w1

for some w1, . . . , w(m+1)n ∈ C(m)(n) none of which is a conjugate of the other. The idea is to
construct a point satisfying the inequality defined by

wk wk+1 . . . w(m+1)n w(m+1)n . . . wk+1 wk

from a point satisfying the inequalities defined by

wk+1 . . . w(m+1)n w(m+1)n . . . wk+1

for all k ∈ [(m + 1)n − 1]. By the way the inequalities are associated to the words, this
amounts to choosing points ak < ak+1 < · · · < a(m+1)n < 0 on the real line corresponding to

wk, . . . , w(m+1)n respectively such that the distance between any pair corresponding to α
(s−1)
i

and α
(s)
i are at a distance 1 apart given points a′k+1 < · · · < a′(m+1)n < 0 that satisfy the same

property. The case k = (m + 1)n being satisfied by choosing any negative number.
First, suppose wk is a letter of the form α

(m)
i or α

(0)
−i . This means that there is no letter after

it in the first half with the same subscript and hence choosing any ak < a′k+1 and taking ai = a′i
for all i ∈ [k + 1, (m + 1)n], we get our required point. Next, suppose there is some letter after
wk in the first half which has the same subscript as it. Say wl where l ∈ [k + 1, (m + 1)n] is the
first such letter, then by property 3 in the above list that w satisfies, we must have ak = al − 1.
We choose ak = a′l − 1 and ai = a′i for all i ∈ [l, (m + 1)n]. Let j ∈ [k + 1, l − 1] be the smallest
integer such that wj has a letter after it in the first half with the same subscript. Take ai = a′i for
all i ∈ [j, l− 1] as well. Since aj − 1 and ak − 1 = al are the same as a′j − 1 and a′l, by property 2
and our inductive hypothesis, we have that aj − 1 < ak − 1 and hence aj < ak. For the letters wi

for i ∈ [k + 1, j− 1], since they do not have any letter with same subscript after them in the first
half, we are free to choose any ak+1 < · · · < aj−1 between ak and aj.

Similar to Lemma 5.3, it can be shown that the order in which the subscripts of the α-letters
appear in a symmetric m-sketch is of the form

i1 i2 . . . in − in . . . − i2 − i1

where {|i1|, . . . , |in|} = [n]. Just as in the case of symmetric 1-sketches, we associate an
α, β-word and signed permutation to a symmetric m-sketch which completely determines it.

Example 5.9. To the symmetric 2-sketch: α
(0)
2 α

(−2)
−1 α

(1)
2 α

(−1)
−1 α

(0)
1 α

(−2)
−2 | α

(2)
2 α

(0)
−1α

(1)
1 α

(−1)
−2 α

(2)
1 α

(0)
−2

we associate:

1. α, β-word: ααββαα.

2. Signed permutation: 2 −1.
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The set of α, β-words associated to symmetric m-sketches for m > 1 does not seem to have
a simple characterization like those for symmetric 1-sketches (see Proposition 5.2). However,
looking at symmetric m-sketches as certain labeled non-nesting partitions as done in [2], we
see that such objects have already been counted bijectively (refer [7]).

In [2], C. A. Athanasiadis, obtains a bijection with several classes of non-nesting partitions
and regions of certain arrangements. We will mention the one for the translated type C m-
Catalan arrangement, which gives a bijection between the α, β-words associated to symmetric
m-sketches and certain non-nesting partitions.

Definition 5.3 (Symmetric non-nesting partition). A symmetric m-non-nesting partition is a
partition of [−(m + 1)n, (m + 1)n] such that

1. Each block is of size (m + 1).

2. If B is a block, so is −B.

3. If a, b are in some block B, a < b and there is no number a < c < b such that c ∈ B, then
if a < c < d < b, c and d are not in the same block.

Consider the numbers [−(m + 1)n, (m + 1)n] arranged as:

−(m + 1)n . . . − 2 − 1 1 2 . . . (m + 1)n

If the consecutive elements in each block of a symmetric m-non-nesting partition are joined by
arcs, the diagram we get is symmetric and without nesting. It can also be seen that there are
exactly n pairs of blocks of the form {B,−B} with no block containing both a number and its
negative. Also, the first n blocks, with blocks being read in order of the smallest element in it,
do not have a pair of the form {B,−B}. Hence we can label the first n blocks with a signed
permutation and label −B the negative of the label of B for all blocks B. Such objects will be
called labeled symmetric m-non-nesting partitions.

We can obtain a labeled symmetric m-non-nesting partition from a symmetric m-sketch by
writing −(m + 1)n for the first letter and so on till (m + 1)n for the last letter and joining the
letters α

(0)
i , α

(1)
i , . . . , α

(m)
i and similarly α

(−m)
−i , . . . , α

(0)
−i with arcs and labeling each such chain

with the subscript of the letters being joined. It can be shown that this construction is a bijection
between symmetric m-sketches and labeled symmetric m-non-nesting partitions. Hence the
α, β-words associated with symmetric m-sketches are in bijection with symmetric m-non-nesting
partitions.

Example 5.10. To the symmetric 2-sketch: α
(0)
2 α

(−2)
−1 α

(1)
2 α

(−1)
−1 α

(0)
1 α

(−2)
−2 | α

(2)
2 α

(0)
−1α

(1)
1 α

(−1)
−2 α

(2)
1 α

(0)
−2

we associate the labeled 2-non-nesting partition of Figure 5.1.
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2 -2 2 -1 1 -2 2 -1 1 -2 1 -2

Figure 5.1: A labeled 2-non-nesting partition

The number of various classes of non-nesting partitions have been counted bijectively. In
terms of [7] or [2], the symmetric m-non-nesting partitions defined above are called type C
partitions of size (m + 1)n of type (m + 1, . . . , m + 1) where this is an n-tuple representing the
size of the (nonzero) block pairs {B,−B}. The number of such partitions is(

(m + 1)n
n

)
and hence the number of symmetric m-sketches, which is the number of type C m-Catalan
regions is

2nn!
(
(m + 1)n

n

)
.

5.3 Catalan arrangement in other root systems

We will now use ‘moves’, as in [5], to count the regions of Catalan arrangements in other root
systems.

5.3.1 Type D Catalan

The type D Catalan arrangement is the arrangement in Rn with the hyperplanes:

Xi + Xj = −1, 0, 1

Xi − Xj = −1, 0, 1

for 1 ≤ i < j ≤ n. Translating this arrangement by putting Xi = xi +
1
2 for all i ∈ [n], we get:

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for 1 ≤ i < j ≤ n. Figure 5.2 shows how this arrangement is a sub-arrangement of the type C
Catalan arrangement in R2. It also shows how the regions of the type D Catalan arrangement
partition the regions of the type C Catalan arrangement.
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1 2 -2 -1

1 2 -2 -1

Figure 5.2: Type C Catalan arrangement in R2. Two type C Catalan regions are labeled with
their symmetric labeled non-nesting partition. Bold lines are the type D Catalan hyperplanes.

We use the idea of ‘moves’ to count the number of type D Catalan regions. The hyperplanes
missing from the translated type C Catalan arrangement in the translated type D Catalan
arrangement are:

2xi = −2,−1, 0

for all i ∈ [n]. So, the type D Catalan moves, which we call D(1) moves, are:

1. Corresponding to 2xi = −2, 2xi = 0: Swapping the 2nth and (2n + 1)th letter.

2. Corresponding to 2xi = −1: Swapping the nth and (n + 1)th α if they are consecutive
(along with the nth and (n + 1)th β).

The first move covers the inequalities of the type 2xi = −2 or 2xi = 0 (which is the same as
xi + 1 = −xi − 1 or xi = −xi) since the only conjugates that are consecutive, by Lemma 5.2,
are the 2nth and (2n + 1)th letter.

The second move covers the inequalities of the type 2xi = −1 (which is the same as
xi = −xi − 1 and xi + 1 = −xi) since the only way α

(0)
i and α

(−1)
−i as well as α

(1)
i and α

(0)
−i can



CHAPTER 5. DEFORMATIONS OF TYPE C 55

be consecutive is, by Lemma 5.3, when the nth and (n + 1)th α-letters are consecutive. Also, by
Lemma 5.2, the nth and (n + 1)th α-letters are consecutive if and only if the nth and (n + 1)th

β-letters are consecutive.

Example 5.11. A series of D(1) moves applied to a symmetric 1-sketch is given below:

α
(−1)
−1 α

(0)
2 α

(−1)
−2 α

(0)
−1 | α

(0)
1 α

(1)
2 α

(0)
−2α

(1)
1

D(1) move−−−−−→ α
(−1)
−1 α

(0)
2 α

(−1)
−2 α

(0)
1 | α

(0)
−1α

(1)
2 α

(0)
−2α

(1)
1

D(1) move−−−−−→ α
(−1)
−1 α

(−1)
−2 α

(0)
2 α

(0)
1 | α

(0)
−1α

(0)
−2α

(1)
2 α

(1)
1

D(1) move−−−−−→ α
(−1)
−1 α

(−1)
−2 α

(0)
2 α

(0)
−1 | α

(0)
1 α

(0)
−2α

(1)
2 α

(1)
1

To count the number of regions of the type D Catalan arrangement, we have to count the
number of equivalence classes of symmetric 1-sketches where two sketches are equivalent if one
can be obtained from the other via a series of D(1) moves. In Figure 5.2, it can be seen that the
two labeled type C Catalan regions are adjacent and lie in the same type D Catalan region. They
are related by swapping of the fourth and fifth letters of their sketches, which is a D(1) move.

The fact about these moves that will help with the count is that a series of D(1) moves cannot
change the sketch too much. Hence we can list the sketches that are D(1) equivalent to a given
sketch.

First, consider the case when the nth α-letter of the symmetric 1-sketch is not in the (2n− 1)th

position. In this case, the nth α-letter is far enough from the 2nth letter that a D(1) move of the
first kind (swapping the 2nth and (2n + 1)th letter) will not affect the letter after the nth α-letter.
Hence it does not change whether the nth and (n + 1)th α-letters are consecutive.

The number of sketches equivalent to a sketch when the nth α-letter is not in the (2n− 1)th

position and:

1. nth and (n + 1)th α-letter are consecutive is 4.

. . . α
(−1)
−i α

(0)
i . . . α

(s)
j | α

(−s)
−j . . . α

(0)
−i α

(1)
i . . .

. . . α
(−1)
−i α

(0)
i . . . α

(−s)
−j | α

(s)
j . . . α

(0)
−i α

(1)
i . . .

. . . α
(0)
i α

(−1)
−i . . . α

(s)
j | α

(−s)
−j . . . α

(1)
i α

(0)
−i . . .

. . . α
(0)
i α

(−1)
−i . . . α

(−s)
−j | α

(s)
j . . . α

(1)
i α

(0)
−i . . .

2. nth and (n + 1)th α-letter are not consecutive is 2.

. . . α
(s)
j | α

(−s)
−j . . . . . . α

(−s)
−j | α

(s)
j . . .

Notice also that the equivalent sketches also satisfy the same properties (nth α-letter not being
in the (2n− 1)th position and whether nth and (n + 1)th α-letters are consecutive).

In case the nth α-letter is in the (2n− 1)th position of the symmetric 1-sketch, it can be
checked that it has exactly 4 equivalent sketches all of which also have the nth α-letter in the
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(2n− 1)th position.

. . . α
(0)
i α

(1)
i | α

(−1)
−i α

(0)
−i . . .

. . . α
(0)
i α

(−1)
−i | α

(1)
i α

(0)
−i . . .

. . . α
(−1)
−i α

(0)
i | α

(0)
−i α

(1)
i . . .

. . . α
(−1)
−i α

(0)
−i | α

(0)
i α

(1)
i . . .

Figure 5.2 shows that in R2, each type D Catalan region contains exactly 4 or exactly 2 type
C Catalan regions, as expected from the above observations.

Notice that the number of sketches equivalent to a given sketch only depends on its α, β-word
(see Proposition 5.2). So, we need to count the number of α, β-words of length 2n with any
prefix having at least as many αs as βs such that:

1. The nth α-letter is not in the (2n− 1)th position and

(a) The letter after the nth α-letter is an α.

(b) The letter after the nth α-letter is a β.

2. The nth α-letter is in the (2n− 1)th position.

We first count the second type of α, β-words. If the nth α-letter is in the (2n− 1)th position,
the first (2n− 2) letters have (n− 1) αs and (n− 1) βs. The (2n− 1)th and 2nth letters are α

and β or α and α respectively. So the total number of such α, β-words is

2× 1
n

(
2n− 2
n− 1

)
since the number of sequences of length (2n− 2) having (n− 1) αs and having at least as many
αs as βs in any prefix is the (n− 1)th Catalan number (see [22]).

The number of both the types 1(a) and 1(b) of α, β-words mentioned above are the same.
This is because, on the set of α, β-word of length 2n with any prefix having at least as many αs
as βs, changing the letter after the nth α-letter is an involution. Since we have the number of
words that do not have the nth α-letter in the (2n− 1)th position and the total number of words,
the number of words of type 1(a) and 1(b) are both equal to:

1
2
×
[(

2n
n

)
− 2

n

(
2n− 2
n− 1

)]
.

Combining the observations made above, we get that the number of type D Catalan regions is

2nn!×
(

1
4
×
[

2
n

(
2n− 2
n− 1

)
+

1
2
×
[(

2n
n

)
− 2

n

(
2n− 2
n− 1

)]]
+

1
2
×
[

1
2
×
[(

2n
n

)
− 2

n

(
2n− 2
n− 1

)]])

which simplifies to

2n−1 × (2n− 2)!
(n− 1)!

× (3n− 2).
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5.3.2 Type B Catalan

The type B Catalan arrangement in Rn has the hyperplanes:

Xi = −1, 0, 1

Xi + Xj = −1, 0, 1

Xi − Xj = −1, 0, 1

for all 1 ≤ i < j ≤ n. Translating this arrangement by putting Xi = xi +
1
2 , we get the

arrangement:

xi = −
3
2

,−1
2

,
1
2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for all 1 ≤ i < j ≤ n. While it is possible to consider this arrangement as a sub-arrangement of
the translated type C 2-Catalan arrangement (see Subsection 5.2.1), this would add too many
extra hyperplanes. Also, we do not have a simple characterization of symmetric 2-sketches, as
we do for symmetric 1-sketches (see Proposition 5.2).

We instead consider this translated type B Catalan arrangement as a sub-arrangement of the
arrangement in Rn which has hyperplanes:

xi = −
5
2

,−3
2

,−1,−1
2

, 0,
1
2

,
3
2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

(5.1)

for all 1 ≤ i < j ≤ n. Rewriting the hyperplanes of the arrangement as

xi + 1 = −3
2

, xi = −
3
2

, xi + 1 = −xi − 1, xi = −
1
2

, xi = −xi, xi =
1
2

, xi =
3
2

xi + 1 = −xj − 1, xi + 1 = −xj, xi = −xj

xi + 1 = xj, xi = xj, xi = xj + 1

for all 1 ≤ i < j ≤ n, we can see that a region of this arrangement is given by a valid total order
on:

{xi + s | i ∈ [n], s ∈ {0, 1}} ∪ {−xi − s | i ∈ [n], s ∈ {0, 1}} ∪ {−3
2

,−1
2

,
1
2

,
3
2
}.

Now we define sketches that represent such orders. We will represent xi + s as α
(s)
i and −xi − s

as α
(−s)
−i for any i ∈ [n] and s ∈ {0, 1}. − 3

2 ,− 1
2 , 1

2 , 3
2 will be represented as α

(−1.5)
− , α

(−0.5)
− , α

(0.5)
+ ,

α
(1.5)
+ respectively.

Example 5.12. The region

−3
2
< x2 < −x1 − 1 < −1

2
< x1 < x2 + 1 < −x2 − 1 < −x1 <

1
2
< x1 + 1 < −x2 <

3
2

is represented as α
(−1.5)
− α

(0)
2 α

(−1)
−1 α

(−0.5)
− α

(0)
1 α

(1)
2 α

(−1)
−2 α

(0)
−1 α

(0.5)
+ α

(1)
1 α

(0)
−2 α

(1.5)
+ .
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Call the words in the letters

B(1)(n) = {α(s)
i | i ∈ [n], s ∈ {0, 1}} ∪ {α(−1.5)

− , α
(−0.5)
− , α

(0.5)
+ , α

(1.5)
+ }

that correspond to regions ‘valid sketches’. Denote by α
(s)
x the letter α

(−s)
−x for any α

(s)
x ∈ B(1)(n).

We have the following characterization of valid sketches:

Proposition 5.4. A word in the letters B(1)(n) is a valid sketch if and only if:

1. Each letter of B(1)(n) appears exactly once.

2. α
(s−1)
x appears before α

(t−1)
y ⇒ α

(s)
x appears before α

(t)
y .

3. α
(s−1)
x appears before α

(s)
x .

4. α
(s)
x appears before α

(t)
y ⇒ α

(t)
y appears before α

(s)
x .

Just as was done for the type C sketches, we associate a symmetric non-nesting diagram to
each valid sketch and can inductively construct a point satisfying the inequality specified by a
valid sketch (see 5.2.1). Also, just as for type C sketches, it can be shown that the valid sketches
are symmetric about the center.

Example 5.13. To the valid sketch given below, we associate the arc diagram in Figure 5.3.

α
(−1.5)
− α

(0)
2 α

(−1)
−1 α

(−0.5)
− α

(0)
1 α

(1)
2 |α

(−1)
−2 α

(0)
−1α

(0.5)
+ α

(1)
1 α

(0)
−2α

(1.5)
+

- 2 -1 - 1 2 -2 -1 + 1 -2 +

Figure 5.3: Arc diagram associated to α
(−2)
− α

(0)
2 α

(−1)
−1 α

(−1)
− α

(0)
1 α

(1)
2 α

(−1)
−2 α

(0)
−1 α

(1)
+ α

(1)
1 α

(0)
−2 α

(2)
+

To valid sketches, we can associate a pointed α, β-word of length (2n + 2) and a signed
permutation as follows:

1. For the letters in the first half of the valid sketch of the form α
(0)
i , α

(−1)
−i or α

(−1.5)
− for any

i ∈ [n], we write α and for the others we write β (α corresponds to ‘openers’ in the arc
diagram and β to ‘closers’). The β corresponding to α

(0.5)
− is pointed to.

2. The subscripts of the first n α letters other than α
(−1.5)
− gives us the signed permutation.

Example 5.14. To the valid sketch α
(−1.5)
− α

(0)
2 α

(−1)
−1 α

(−0.5)
− α

(0)
1 α

(1)
2 α

(−1)
−2 α

(0)
−1 α

(0.5)
+ α

(1)
1 α

(0)
−2

α
(1.5)
+ , we associate:
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1. Pointed α, β-word: αααβαβ.

2. Signed permutation: 2 −1.

Just as was done for type C sketches, we can see that the method given above to get a signed
permutation does actually give a signed permutation and that the pointed α, β-word satisfies
the property that in any prefix, there are at least as many α-letters as β-letters. Also, just as in
type C sketches, such a pair has at most one valid sketch associated to it. We now characterize
the pointed α, β-words and signed permutations associated to valid sketches.

Proposition 5.5. A pair of

1. A pointed α, β-word satisfying the property that in any prefix, there are at least as many
α-letters as β-letters and that the number of α-letters before the pointed β is (n + 1).

2. Any signed permutation.

corresponds to a valid sketch and all valid sketches correspond to such pairs.

Proof. Most of the proof is just the same as for the type C sketches. The main difference is
pointing at the α

(−0.5)
− β-letter. The property we have to take care of is that there is no nesting

in the arc joining α
(0.5)
− to α

(0.5)
+ . This is the same as finding a condition for an arc drawn from a

β-letter in the first half to its mirror image in the second half to not cause any nesting.

. . . β . . . . . . α . . .

Figure 5.4: Arc from β to its mirror image.

Denote by Nα,b the number of α-letters before the β under consideration, Nα,a the number
of α-letters in the first half after the β and similarly define Nβ,b and Nβ,a. The condition that we
do not want an arc inside the one joining the β to its mirror is given by:

Nα,b ≥ Nβ,b + 1 + Nβ,a + Nα,a (5.2)

This is because of the symmetry of the arc diagram and the fact that we want any β-letter
between the pointed β and its mirror to have its corresponding α before the pointed β. Similarly,
the condition that we do not want the arc joining the β to its mirror to be contained in any arc
is given by:

Nα,b ≤ Nβ,b + 1 + Nβ,a + Nα,a (5.3)

This is because of the symmetry of the arc diagram and the fact that we want any α-letter before
the pointed β to have its corresponding β before the mirror of the pointed β. Combining the
conditions (5.2) and (5.3), we get:

Nα,b = Nβ,b + 1 + Nβ,a + Nα,a.
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But this is saying that the number of α-letters before the pointed β should be equal to the
number of remaining letters in the first half. Since the total number of letters in the first half is
(2n + 2), we get that: The arc joining a β in the first half to its mirror does not cause nesting
problems if and only if the number of α letters before it is (n + 1).

Now we go back to the translated type B arrangement. The hyperplanes missing from (5.1)
are:

xi = −
5
2

,−1, 0,
3
2

for all i ∈ [n]. Hence the moves on valid sketches, which we call B moves, corresponding to
changing one of these inequalities are:

1. Corresponding to xi = 0, xi = −1: Swapping to (2n + 2)th and (2n + 3)th letter if they
are not α

(0.5)
− and α

(0.5)
+ .

2. Corresponding to xi = − 5
2 , xi =

3
2 : Swapping the pointed β, that is, α

(−0.5)
− and a β-letter

immediately before or after it (and making the corresponding change in the second half).

We can see that such moves change the pointed α, β-word associated to a sketch by at most
changing the last letter or changing which of the β-letters between the (n + 1)th and (n + 2)th

α-letter (or just after the (n + 1)th α if there are only (n + 1) α-letters) is pointed to. So if we
force that the last letter of the sketch has to be a β-letter and that the β-letter immediately after
the (n + 1)th α-letter has to be pointed to, we get a canonical sketch in each equivalence class.
We will call such sketches type B sketches.

Since there is no condition on the signed permutation, we will now count α, β-words
associated to type B sketches. From Proposition 5.5, we can see that the α, β-words we need to
count are those such that:

1. Length of the word is (2n + 2).

2. In any prefix, there are at least as many α-letters as β-letters.

3. The letter immediately after the (n + 1)th α-letter is a β (pointed β).

4. The last letter is a β.

The number of words satisfying all properties but also has the (n + 1)th α-letter in the
(2n + 1)th position is the nth Catalan number. This is because the 2n letters before the (n + 1)th

α need to have exactly n αs and satisfy property 2. Hence such words can be constructed by
adding α as the (2n + 1)th and β as the (2n + 2)th letter (to satisfy property 4) to such a ballot
sequence of length 2n (refer [22]). So, the number of α, β-words satisfying all properties listed
above and has the (n + 1)th α-letter in the (2n + 1)th position is:

1
n + 1

(
2n
n

)
.
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We know that the number of α, β-words satisfying properties 1 and 2 is (2n+2
n+1 ) (from type

C counting). Also, on the set of α, β-words satisfying properties 1 and 2, changing the letter
immediately after the (n + 1)th α-letter (α to β or β to α) is an involution. Changing the last
letter of such a words is also an involution. If the (n + 1)th α-letter for a sketch is not in the
(2n + 1)th position, its orbit under these two involutions has 4 sketches of which exactly one
satisfies all properties listed above. So, the number of α, β-words satisfying all properties listed
above and does not have the (n + 1)th α-letter in the (2n + 1)th position is:

1
4
×
((2n + 2

n + 1

)
− 2× 1

n + 1

(
2n
n

))
.

The −2× 1
n+1 (

2n
n ) removes the α, β-words satisfying property 1 and 2 with the (n + 1)th α-letter

at the (2n + 1)th position (ballot sequence of length 2n + αα or ballot sequence of length 2n +
αβ). So the total number of α, β-words satisfying the required properties is:

1
n + 1

(
2n
n

)
+

1
4
×
((2n + 2

n + 1

)
− 2× 1

n + 1

(
2n
n

))
=

(
2n
n

)
.

Hence, the number of type B sketches, which is the number of regions of the type B Catalan
arrangement in Rn is:

2nn!
(

2n
n

)
.

5.3.3 Type BC Catalan

The type BC Catalan arrangement in Rn is the arrangement with hyperplanes:

Xi = −1, 0, 1

2Xi = −1, 0, 1

Xi + Xj = −1, 0, 1

Xi − Xj = −1, 0, 1

for all 1 ≤ i < j ≤ n. Translating this arrangement by putting Xi = xi +
1
2 , we get the

arrangement:

xi = −
3
2

,−1,−1
2

, 0,
1
2

xi + xj = −2,−1, 0

xi − xj = −1, 0, 1

for all 1 ≤ i < j ≤ n. Again we consider this arrangement as a sub-arrangement of (5.1). To
define moves on valid sketches note that the hyperplanes missing from (5.1) are:

xi = −
5
2

,
3
2

for all i ∈ [n]. Hence the moves on valid sketches, which we call BC moves, corresponding to
changing one of the inequalities corresponding to xi = − 5

2 or xi =
3
2 are: Swapping the pointed
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β, that is, α
(−0.5)
− and a β-letter immediately before or after it (and making the corresponding

change in the second half).
We can see that such moves change the pointed α, β-word associated to a sketch by at most

changing which of the β-letters between the (n + 1)th and (n + 2)th α-letter (or just after the
(n + 1)th α if there are only (n + 1) α-letters) is pointed to. So if we force that the β-letter
immediately after the (n + 1)th α-letter has to be pointed to, we get a canonical sketch in each
equivalence class. We will call such sketches type BC sketches.

So we have to count the number of α, β-words such that:

1. Length of the word is (2n + 2).

2. In any prefix, there are at least as many α-letters as β-letters.

3. The letter immediately after the (n + 1)th α-letter is a β (pointed β).

Using the involution on the set of words satisfying properties 1 and 2 of changing the
letter immediately after the (n + 1)th α-letter and the fact that there are (2n+2

n+1 ) words satisfying
properties 1 and 2, we get that the number of words satisfying the required properties is:

1
2
×
(

2n + 2
n + 1

)
.

Hence, the number of type BC sketches, which is the number of regions of the type BC
Catalan arrangement in Rn is:

2n−1n!
(

2n + 2
n + 1

)
.



Chapter 6

Boxed threshold arrangement

In this chapter, we consider the hyperplane arrangement BTn in Rn whose hyperplanes are
{Xi + Xj = 1 | 1 ≤ i < j ≤ n} ∪ {Xi = 0, 1 | 1 ≤ i ≤ n}. This arrangement has been studied
via graphs in a series of papers by Joungmin Song ([18], [17], [19]). First we obtain the
characteristic polynomial of the arrangement via the finite field method. We will then show
how the method of sketches and moves makes counting of its regions simpler and also exhibit a
bijection between the regions and certain colored threshold graphs.

6.1 The characteristic polynomial

First translate the hyperplanes in BTn in order to obtain a combinatorially isomorphic arrange-
ment with the same characteristic polynomial. Putting Xi = xi +

1
2 for every i we get:

{xi + xj = 0 | 1 ≤ i < j ≤ n} ∪ {xi = −
1
2

,
1
2
| 1 ≤ i ≤ n}.

We will stick to the notation BTn to denote the above arrangement. Consider the following
relationship between the characteristic polynomial of certain central arrangements and that of
their “boxed” versions.

Proposition 6.1. Let A be an arrangement in Rn that is a sub-arrangement of the type C
arrangement, that is, a sub-arrangement of {xi ± xj = 0 | 1 ≤ i < j ≤ n} ∪ {xi = 0 | i ∈ [n]}
and let BA = A∪ {xi = − 1

2 , 1
2 | i ∈ [n]}. Then

χBA(t) = χA(t− 2).

Proof. The proof is by using the form of the finite field method given in Theorem 2.1. Let
q be any large odd number. Set Dn

q := {(a1, . . . , an) ∈ Zn
q | ai 6= ± q−1

2 }. Define a bijection

f : Zq−2 → Zq \ { q−1
2 ,− q−1

2 } as

f (i) = i for i ∈ [−q− 3
2

,
q− 3

2
].

It is clear that for any a, b ∈ Zq−2

63
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1. a + b = 0 if and only if f (a) + f (b) = 0.

2. a− b = 0 if and only if f (a)− f (b) = 0.

3. a = 0 if and only if f (a) = 0.

Using f , we can define a bijection F : Zn
q−2 → Dn

q as

F(a1, . . . , an) = ( f (a1), . . . , f (an)) for (a1, . . . , an) ∈ Zn
q−2.

By the properties of f , we can see that F induces a bijection between those tuples in Zn
q−2 that

do not satisfy the defining equation of any hyperplane in A and those tuples in Zn
q that do not

satisfy the defining equation of any hyperplane in BA. So, we get that for large odd numbers q,

χBA(q) = χA(q− 2).

Since χBA and χA are polynomials, we get the required result.

Denote by Tn the threshold arrangement in Rn, i.e., Tn := {xi + xj = 0 | 1 ≤ i < j ≤ n}.
The reason this is called the threshold arrangement is that its regions are in bijection with labeled
threshold graphs on n vertices (see Section 6.3 for details). This is clearly a sub-arrangement of
type C arrangement.

Corollary 6.1. The characteristic polynomials of BTn and Tn are related as follows:

χBTn(t) = χTn(t− 2).

Consequently, the number of bounded regions of BTn is equal to the number of regions of
Tn. Moreover, these bounded regions are contained in the cube (or a box)

[
− 1

2 , 1
2

]n
. Next, we

derive a closed form expression for χTn(t) using the finite field method.

Proposition 6.2. The characteristic polynomial of the threshold arrangement Tn is

χTn(t) =
n

∑
k=1

(S(n, k) + nS(n− 1, k))
k

∏
i=1

(t− (2i− 1)).

Here S(n, k) are the Stirling numbers of the second kind.

Proof. Using the finite field method, we see that the characteristic polynomial of Tn satisfies,
for large values of q,

χTn(q) = |{(a1, . . . , an) ∈ Zn
q | ai + aj 6= 0 for all 1 ≤ i < j ≤ n}|.

This means that we need to count the functions f : [n]→ Zq such that:

1. There is at most one i ∈ [n] such that f (i) = 0.

2. f can take at most one value from each of the sets

{1,−1}, {2,−2}, . . . , {q− 1
2

,−q− 1
2
}.
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We split the count into the two cases. If 0 is not attained by f , then all values must be from

{1,−1} ∪ {2,−2} ∪ · · · ∪ {q− 1
2

,−q− 1
2
}.

with at most one value attained in each set. So, there are( q−1
2
k

)
× 2k × k!S(n, k)

ways for f to attain values from exactly k of these sets. Since we have (
q−1

2
k )× 2k ways to choose

the k sets and which element of each set f should attain and k!S(n, k) ways to choose the images
of the elements of [n] after making this choice. So the total number of f such that 0 is not
attained is:

n

∑
k=1

( q−1
2
k

)
× 2k × k!S(n, k).

When 0 is attained, there are n ways to choose which element of [n] gets mapped to 0 and
using a similar logic for choosing the images of the other elements, we get that the total number
of f where 0 is attained is:

n×
n−1

∑
k=1

( q−1
2
k

)
× 2k × k!S(n− 1, k).

So we get that for large q,

χTn(q) =
n

∑
k=1

( q−1
2
k

)
× 2k × k!S(n, k) + n×

n−1

∑
k=1

( q−1
2
k

)
× 2k × k!S(n− 1, k)

=
n

∑
k=1

(S(n, k) + nS(n− 1, k))
k

∏
i=1

(q− (2i− 1)).

Since χTn is a polynomial, we get the required result.

Remark 6.1. Note that the absolute value of the coefficient of tj in (t− 1)(t− 3) · · · (t− (2k− 1))
counts the number of signed permutations on [k] with j odd cycles (See A028338 in [16]). Let
us denote that number by a(k, j).

Using this we get a compact expression for the coefficient of tj in χTn(t) as

n

∑
k=j

(S(n, k) + nS(n− 1, k))a(k, j).

Corollary 6.2. The characteristic polynomial of BTn has the following form:

χBTn(t) =
n

∑
k=1

(S(n, k) + nS(n− 1, k))
k

∏
i=1

(t− (2i + 1)).

http://oeis.org/A028338
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Remark 6.2. We can also derive an expression for the exponential generating function for the
characteristic polynomial. Using Problem 25(c) of [20, Lecture 5] we get

∑
n≥0

χBTn(t)
xn

n!
= (1 + x)(2ex − 1)

(t−3)
2 .

The generating function for the number of regions is

∑
n≥0

r(BTn)
xn

n!
=

e2x(1− x)
(2− ex)2 .

Remark 6.3. Just as in Remark 6.1 we give here a compact expression for the coefficient of tj in
χBTn(t) as

n

∑
k=j

(S(n, k) + nS(n− 1, k))b(k, j)

where b(k, j) is the coefficient of tj in (t− 3)(t− 5) · · · (t− (2k + 1)). It can be shown that

b(k, j) = −
j

∑
i=0

a(k + 1, i) where a(k, j) is defined in Remark 6.1.

For the sake of completeness we enumerate the coefficients of the characteristic polynomial
for smaller values of n (see Table 6.1). Song, in [17], also computed the characteristic
polynomial for n ≤ 10, however there are typos in all the expressions for n ≥ 4, consequently
the region numbers are wrong. We also note here that the sequence of number of regions of
BTn is not listed in the OEIS [16].

n χBTn(t) r(BTn)

2 t2 − 5t + 6 12

3 t3 − 9t2 + 27t− 27 64

4 t4 − 14t3 + 75t2 − 181t + 165 436

5 t5 − 20t4 + 165t3 − 695t2 + 1480t− 1263 3624

6 t6 − 27t5 + 315t4 − 2010t3 + 7320t2 − 14284t + 11559 35516

7 t7− 35t6 + 546t5− 4865t4 + 26460t3− 87010t2 + 158753t−
122874

400544

8 t8 − 44t7 + 882t6 − 10402t5 + 78155t4 − 379666t3 +

1154965t2 − 1995487t + 1486578
5106180

9 t9 − 54t8 + 1350t7 − 20286t6 + 200025t5 − 1331022t4 +

5932143t3 − 16952157t2 + 27979203t− 20158695
72574936

10 t10 − 65t9 + 1980t8 − 36840t7 + 459585t6 − 3986031t5 +

24172575t4 − 100548090t3 + 272771475t2 − 432836011t +
302751327

1137563980

Table 6.1: Characteristic polynomial and the number of regions of BTn for n ≤ 10.
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6.2 The signed ordered partitions

We will now look at a larger arrangement which is obtained by adding the hyperplanes xi = − 1
2

and xi =
1
2 to the type C arrangement. That is, the boxed version of the type C arrangement

(see Proposition 6.1) which we denote by BCn. Namely, the arrangement with hyperplanes:

2xi = 0

xi + xj = 0

xi − xj = 0

xi = −
1
2

xi =
1
2

for 1 ≤ i < j ≤ n. The regions of this arrangement are given by a valid total order on

x1, x2, . . . , xn,−x1,−x2, . . . ,−xn,
1
2

,−1
2

.

We will represent such orders by writing i for xi and −i for −xi.

Example 6.1. −x2 < − 1
2 < −x4 < x3 < −x1 < x1 < −x3 < x4 < 1

2 < x2 is represented as
−2 − 1

2 − 4 3 − 1 1 − 3 4 1
2 2.

It can be checked that such an order is valid if and only if:

1. The order on the numbers 1, . . . , n,−1 . . . ,−n is of the form

i1 i2 . . . in − in . . . − i2 − i1

where {|i1|, . . . , |in|} = [n].

2. − 1
2 is before 1

2 and both appear between in and −in or − 1
2 is between ik and ik+1 for some

k ∈ [n− 1] and 1
2 is between the corresponding −ik+1 and −ik.

We will call such orders sketches. We also write i as
+
i and −i as

−
i for all i ∈ [n]. Two numbers

that are: both before − 1
2 , both between − 1

2 and 1
2 or both after 1

2 , are said to be in the same
‘portion’ of the sketch. The portion between − 1

2 and 1
2 is called the middle portion.

Since BTn is a sub-arrangement of BCn, we can define moves on sketches that correspond
to changing some the inequality of some hyperplane in BCn that is not in BTn. The moves are:

1. Swapping in and −in if − 1
2 is before in.

2. Swapping consecutive i and j (as well as −i and −j) for some i, j ∈ [n] if they are in the
same portion.
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Example 6.2. An example of a series of the above moves is given below:

−
2 − 1

2

+
4

+
3

−
1

+
1

−
3

−
4

1
2

+
2

−→
−
2 − 1

2

+
4

+
3

+
1

−
1

−
3

−
4

1
2

+
2

−→
−
2 − 1

2

+
3

+
4

+
1

−
1

−
4

−
3

1
2

+
2.

We will now count the number of regions of BTn by counting the number of equivalence
classes of sketches where two sketches are said to be equivalent if one can be obtained from
the other by a series of moves of the types mentioned above (which is the same as saying the
corresponding BCn regions are in the same region of BTn).

Define a ‘block’ to be a maximal string of numbers in the same portion of a sketch having
the same sign. If there is some number in the middle portion of the sketch, we can always make
−in and −in−1 have the same sign using a move of the first kind. It can be shown that once this
is done, two equivalent sketches have the same elements in each block, the same order of the
blocks and same signs for the blocks. Using similar logic as Lemma 5.1, it can be shown that
equivalence classes of sketches correspond to orders of the following forms, where B1, . . . , Bk is
a partition of [n] with a sign assigned to each block:

1. 1
2 < B1 < B2 < · · · < Bk where Bi and Bi+1 are of opposite signs for all i ∈ [k− 1].

2. B1 < · · · < Bl <
1
2 < Bl+1 < · · · < Bk where the size of B1 is greater than 1 and Bi and

Bi+1 are of opposite signs for all i ∈ [l − 1] and i ∈ [l + 1, k− 1].

3. B1 < 1
2 < B2 < · · · < Bk where the size of B1 is 1, B1 and B2 are of same sign, and Bi and

Bi+1 are of opposite signs for all i ∈ [2, k− 1].

Proposition 6.3. The total number of orders of the forms mentioned above is

4a(n) +
n

∑
k=1

4(k!− (k− 1)!)(kS(n, k)− nS(n− 1, k− 1)).

Here a(n) is the nth ordered Bell number and S(n, k) are Stirling numbers of the second kind.

Proof. We will count the number of orders of each of the above forms.

1. In the first case, we just have to define an ordered partition of [n] and assign alternating
signs to them. The number of ways this can be done is

n

∑
k=1

∑
(a1,...,ak)

a1+···+ak=n

2× n!
a1! . . . ak!

= 2× a(n).

2. In the second case, we have to choose the element of [n] in B1 and then define an ordered
partition of the remaining (n− 1) elements and assign alternating signs to them. Since we
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want B1 and B2 to have the same sign, we just need to assign a sign to B2. So, the number of
orders of the second type is:

n×
n−1

∑
k=1

∑
(a1,...,ak)

a1+···+ak=n−1

2× (n− 1)!
a1! . . . ak!

= n× 2× a(n− 1).

3. In the third case, we consider two sub-cases:

(a) There is no block after 1
2 . In this case, we have to define an ordered partition of [n]

whose first part has size greater that 1 and assign alternating signs to them. The number
of ways this can be done is

n−1

∑
k=1

∑
(a1,...,ak)

a1+···+ak=n, a1 6=1

2× n!
a1! . . . ak!

= 2× (a(n)− n× a(n− 1))

where the equality is because the number of ordered partitions of [n] with first block
having size 1 is n× a(n− 1).

(b) There is some block after 1
2 . In this case, we have to again define an ordered partition of

[n] whose first part has size greater that 1. But we then have to choose a spot between
two blocks to place 1

2 and then choose a sign for the first block and the block after 1
2 .

The number of ways this can be done is
n−1

∑
k=1

∑
(a1,...,ak)

a1+···+ak=n, a1 6=1

4× (k− 1)× n!
a1! . . . ak!

.

Making the following substitution for all k ∈ [n− 1]

∑
(a1,...,ak)

a1+···+ak=n, a1 6=1

n!
a1! . . . ak!

= ∑
(a1,...,ak)

a1+···+ak=n

n!
a1! . . . ak!

− ∑
(1,a2,...,ak)

1+a2+···+ak=n

n!
1!a2! . . . ak!

= k!S(n, k)− n(k− 1)!S(n− 1, k− 1)

we get that the initial expression is the same as
n

∑
k=1

4(k!− (k− 1)!)(kS(n, k)− nS(n− 1, k− 1)).

Adding up the counts made for each form gives us the required result.

So, from the observations made above, we have proved the following theorem:

Theorem 6.3. The number of regions of BTn is

4a(n) +
n

∑
k=1

4(k!− (k− 1)!)(kS(n, k)− nS(n− 1, k− 1)).

Remark 6.4. It is also possible to get the block order corresponding to a region of BTn directly.
This can be done by defining an equivalence on [−n, n] \ {0} induced by the region of BTn and
then defining an order on the blocks of this equivalence, − 1

2 and 1
2 . The details of this method

can be found in [6].
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6.3 The colored threshold graphs

Before defining the colored threshold graphs that are in bijection with the regions of the boxed
threshold arrangement, we recall the bijection between regions of the threshold arrangement
and labeled threshold graphs.

Definition 6.1. A threshold graph is defined recursively as follows:

1. The empty graph is a threshold graph.

2. A graph obtained by adding an isolated vertex to a threshold graph is a threshold graph.

3. A graph obtained by adding a vertex adjacent to all vertices of a threshold graph is a
threshold graph.

Definition 6.2. A labeled threshold graph is a threshold graph having n vertices with vertices
labeled distinctly using [n].

Such labeled threshold graphs can be specified by a signed permutation of [n], that is, a per-
mutation of [n] with a sign associated to each number. The signed permutation i1 i2 . . . in would
correspond to the labeled threshold graph obtained by adding vertices labeled |i1|, |i2|, . . . , |in|
in order where a positive ik means that |ik| is added adjacent to all previous vertices and a
negative ik means that it is added isolated to the previous vertices. A maximal string of positive
numbers or negative numbers in a signed permutation will be called a block.

Example 6.3. The labeled threshold graph associated to the signed permutation on [5] given by:
−
2
−
3
+
1
+
4
−
5 is shown in Figure 6.1.

2

4

−
3−→ 2 3

4

+
1−→ 2 3

1

4

+
4−→ 2 3

1
−
5−→

4

2 3

1

4

5

Figure 6.1: Construction of threshold graph corresponding to
−
2
−
3
+
1
+
4
−
5.

The following facts can be verified:

1. The sign of the first number in the permutation does not matter and hence we can make
the first block have size greater than 1.

2. Elements in the same block can be reordered.

Hence, labeled threshold graphs can be specified by an ordered partition of [n] with first block
size greater than 1 and alternating signs assigned to the blocks. In fact, this association is a
bijection.

Example 6.4. The signed permutation
+
4
−
3
+
1
+
2
−
5
+
6 would correspond to

−
{3, 4}

+

{1, 2}
−
{5}

+

{6}.
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Given a threshold graph G1, we can obtain this alternating signed ordered partition of [n]
as follows: Since G1 is a threshold graph, it has at least one isolated vertex or at least one
vertex that is adjacent to all other vertices. If it has an isolated vertex, set D1 to be the set of all
isolated vertices, assign it a negative sign and set G2 to be the graph obtained by deleting all
the vertices of D1 from G1. If G1 has at least one vertex adjacent to all other vertices, set D1

to be the set of all such vertices, assign it a positive sign and set G2 to be the graph obtained
by deleting all the vertices of D1 from G1. We repeat this process until we obtain a graph Gk

which is complete, in which case we set Dk to be all vertices of Gk and assign it a positive sign,
or Gk has no edges, in which case we set Dk to be all vertices of Gk and assign it a negative sign.
Then set Bi = Dk−i+1 and assign it the same sign as Dk−i+1 for all i ∈ [k]. The signed ordered
partition B1, . . . , Bk is the one associated to G1.

Example 6.5. Figure 6.2 shows an example of obtaining the signed blocks from a threshold

graph. The corresponding signed ordered partition for this example is:
−
{2, 3}

+

{1, 4}
−
{5}.

2 3

1

4

5 −→

D2 =
+

{1, 4}

2 3

1

−→

4

D1 =
−
{5}

2 3

4

−→

D2 =
+

{1, 4} D3 =
−
{2, 3}

Figure 6.2: Obtaining blocks from a threshold graph.

Hence, regions of Tn and labeled threshold graphs on n vertices are both in bijection with
ordered partitions of [n] with first block size greater than 1 and alternating signs assigned to
the blocks (see Section 5.1.3). So we obtain a bijection between regions of Tn and labeled
threshold graphs on n vertices. By combining the definitions of the two bijections we see that to
a labeled threshold graph on n vertices we assign the region where xi + xj > 0 if and only if
there is an edge between i and j.

This can be proved as follows: If −Bk < · · · < −B1 < B1 < · · · < Bk is the threshold block
order corresponding to some region of Tn, xi + xj > 0 for some i 6= j in [n] if and only if one of
the following hold:

1. −j and i both appear in B1, . . . , Bk with −j appearing first.

2. −j appears in −Bk, . . . ,−B1 and i appears in B1, . . . , Bk.

3. −j and i both appear in −Bk, . . . ,−B1 with −j appearing first.

This is the same as saying: One of the following holds:

1. −j and i both appear in B1, . . . , Bk with −j appearing first.

2. i and j both appear in B1, . . . , Bk.



CHAPTER 6. BOXED THRESHOLD ARRANGEMENT 72

3. −i and j both appear in B1, . . . , Bk with −i appearing first.

But this is precisely the condition for there to be an edge between i and j in the threshold graph
corresponding to B1 < · · · < Bk.

We now move on to the boxed threshold arrangement.

Definition 6.3. A colored threshold graph is defined recursively as follows:

1. The empty graph is a colored threshold graph.

2. A graph obtained by adding an isolated vertex to a colored threshold graph is a colored
threshold graph. If there are colored vertices in the initial colored threshold graph, the
new vertex should be colored red. If not, the new vertex can be left uncolored or colored
red.

3. A graph obtained by adding a vertex adjacent to all vertices of a colored threshold graph
is a colored threshold graph. If there are colored vertices in the initial colored threshold
graph, the new vertex should be colored blue. If not, the new vertex can be left uncolored
or colored blue.

Definition 6.4. A labeled colored threshold graph is a colored threshold graph with n vertices
with the vertices labeled distinctly with elements of [n].

Just as for threshold graphs, labeled colored threshold graphs can be represented as a signed
permutation. However, we also have to specify if and when the coloring of the vertices starts.
This is done by using the symbol 1

2 . Having 1
2 at the end of the signed permutation means that

none of the vertices should be colored.

Example 6.6. The sequence
+
2 1

2

+
1
+
3
−
4
−
5 corresponds to the graph shown in Figure 6.3.

2 1

3

4 5

Figure 6.3: Labeled colored threshold graph corresponding to
+
2 1

2

+
1
+
3
−
4
−
5.

Using similar observations about these sequences associated to labeled colored threshold
graphs as done for labeled threshold graphs, we get that: labeled colored threshold graphs
are in bijection with orders of the forms counted in Proposition 6.3. Since these orders also
correspond to region of BTn, we get a bijection between labeled colored threshold graphs with
n vertices and regions of BTn. Just as before, the inequalities describing the region associated
to a colored threshold graph are as follows: xi + xj > 0 if and only if there is an edge between i
and j, − 1

2 < xi <
1
2 if i is not colored, xi >

1
2 if i is colored blue and xi < − 1

2 if i is colored red.
Notice that the underlying labeled threshold graph corresponds to the Tn region that the BTn

region lies in.
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Also, we can see that the bounded regions of BTn are in bijection with the regions of Tn.
Both are represented by labeled threshold graphs with n vertices. The bounded region of BTn

corresponding to a region of Tn is the one satisfying the same inequalities between xi + xj and
0 for all i 6= j in [n] and having − 1

2 < xi <
1
2 for all i ∈ [n].

x1 = − 1
2 x1 = 1

2

x2 = − 1
2

x2 = 1
2

x1 + x2 = 0

1

2

2

1

2

1

2

1

2

1

2

1

2

1 2

1

2

1

2

1

2

1

2

1

Figure 6.4: Regions of BT2 represented by labeled colored threshold graphs



Chapter 7

Future Directions

In this chapter, we will mention some possible extensions of the methods used to study hyper-
plane arrangements mentioned in this thesis.

Extended Catalan. As mentioned in Subsection 5.2.1, it is possible to define sketches that
are in bijection with the regions of the extended type C Catalan arrangement. A simpler
characterization of these sketches would allow for a broader application of the method of
‘sketches and moves’ to count regions of other arrangements bijectively. It is possible to describe
sketches that are in bijection with the extended Catalan arrangements corresponding to the
type D, B and BC root systems, using the same method of choosing a canonical sketch from
each region. However, counting such sketches would require a better understanding of the
symmetric m-sketches.

Other arrangements. The ‘sketches and moves’ method seems to work for other classes of
arrangements as well. For example, the proofs in [14] can be viewed as such. Two interesting
deformation of the type C Catalan arrangement are the Catalan and Shi threshold arrangement.
The characteristic polynomials of these arrangements have been calculated in [15] and [13]
using the finite field method. Using moves, it is possible to define sketches (labelled non-nesting
partitions) that are in bijection with the regions of the Catalan and Shi threshold arrangement.
Similar arguments might be applicable to other arrangements of interest.

Trees. In Chapter 4, we focused on the bijections between regions of deformed braid arrange-
ments, sketches and trees mentioned in [5]. The main result of the paper is one that specifies
the number of regions of any deformation of the braid arrangement in terms of boxed trees. It
would be interesting to see if such a result could be obtained for deformed type C arrangements.
Though a bijection between symmetric 1-sketches and certain symmetric forests is mentioned in
[10], this bijection does not seem to simplify the study of the sketches.

74



Bibliography

[1] C. A. Athanasiadis. Characteristic polynomials of subspace arrangements and finite fields.
Adv. Math., 122(2):193–233, 1996.

[2] C. A. Athanasiadis. On noncrossing and nonnesting partitions for classical reflection
groups. Electron. J. Combin., 5:Research Paper 42, 16, 1998.

[3] C. A. Athanasiadis. Extended Linial hyperplane arrangements for root systems and a
conjecture of Postnikov and Stanley. J. Algebraic Combin., 10(3):207–225, 1999.

[4] C. A. Athanasiadis and S. Linusson. A simple bijection for the regions of the Shi arrange-
ment of hyperplanes. Discrete Math., 204(1-3):27–39, 1999.

[5] O. Bernardi. Deformations of the braid arrangement and trees. Adv. Math., 335:466–518,
2018.

[6] P. Deshpande, K. Menon, and A. Singh. Counting regions of the boxed threshold arrange-
ment. arXiv preprint arXiv:2101.12060, 2021.

[7] A. Fink and B. Iriarte Giraldo. Bijections between noncrossing and nonnesting partitions
for classical reflection groups. Port. Math., 67(3):369–401, 2010.

[8] J. E. Humphreys. Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 1990.

[9] D. Levear. Bijections for faces of the Shi and Catalan arrangements. arXiv preprint
arXiv:2008.02357, 2020.

[10] A. Micheli and V. N. Dinh. Regions of the type C Catalan arrangement. arXiv preprint
arXiv:1912.09753, 2019.

[11] A. Postnikov. Intransitive trees. J. Combin. Theory Ser. A, 79(2):360–366, 1997.

[12] A. Rattan. Parking functions and related combinatorial structures. Master’s thesis, Univer-
sity of Waterloo, 2001.

[13] S. Seo. Shi threshold arrangement. Electron. J. Combin., 19(3):Paper 39, 9, 2012.

[14] S. Seo. Combinatorial enumeration of the regions of some linear arrangements. Bull.
Korean Math. Soc., 53(5):1281–1289, 2016.

75



BIBLIOGRAPHY 76

[15] S. Seo. The Catalan threshold arrangement. J. Integer Seq., 20(1):Article 17.1.1, 12, 2017.

[16] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://oeis.org.

[17] J. Song. Enumeration of graphs and the characteristic polynomial of the hyperplane
arrangements Jn. J. Korean Math. Soc., 54(5):1595–1604, 2017.

[18] J. Song. On certain hyperplane arrangements and colored graphs. Bull. Korean Math. Soc.,
54(2):375–382, 2017.

[19] J. Song. Characteristic polynomial of the hyperplane arrangements Jn via finite field
method. Commun. Korean Math. Soc., 33(3):759–765, 2018.

[20] R. P. Stanley. Enumerative combinatorics. Vol. 1, volume 49. Cambridge: Cambridge
University Press, 1997.

[21] R. P. Stanley. An introduction to hyperplane arrangements. In Geometric combinatorics,
volume 13 of IAS/Park City Math. Ser., pages 389–496. Amer. Math. Soc., Providence, RI,
2007.

[22] R. P. Stanley. Catalan numbers. Cambridge University Press, New York, 2015.

[23] T. Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by
hyperplanes. Mem. Amer. Math. Soc., 1(issue 1, 154):vii+102, 1975.

http://oeis.org

	Abstract
	Acknowledgments
	Introduction
	Preliminaries
	Basic definitions
	Important results
	Deformations of the Braid arrangement

	The finite field method
	The braid arrangement
	The Shi arrangement
	The Linial arrangement
	The extended Shi arrangement
	The extended Linial arrangement

	Classical bijections
	The braid arrangement
	The Catalan arrangement
	The Shi arrangement
	Parking functions
	The bijection


	Sketches and trees
	Trees
	The Catalan arrangement
	The Shi arrangement
	The Linial arrangement

	Deformations of type C
	Type C
	Boolean arrangement
	Type D
	Threshold arrangement

	Type C Catalan
	Extended Catalan

	Catalan arrangement in other root systems
	Type D Catalan
	Type B Catalan
	Type BC Catalan


	Boxed threshold arrangement
	The characteristic polynomial
	The signed ordered partitions
	The colored threshold graphs

	Future Directions

