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Abstract

A triangle group is an infinite reflection group. It is realized geometrically by
sequences of reflection across the sides of a triangle. There are three types of
triangle group- Euclidean, Spherical and Hyperbolic.

Introduction
Let X be either R2 or S2 or H2. Let 4(l,m, n) be a triangle in X with angles
π/l, π/m, π/n and sides α, β, γ and a, b, c be the reflection across the sides α, β, γ
resepectively.

Then the following relation hold

a2 = b2 = c2 = 1

(ab)n = (bc)l = (ca)m = 1

The triangle in X defined using the following presention

∆(l,m, n) = {a, b, c|a2 = b2 = c2 = (ab)n = (bc)l = (ca)m = 1}

Definition: Let l,m, n be the positive integers ≥ 2 and define λ to be

λ =
1

l
+

1

m
+

1

n
− 1 (1)

So, a triangle group ∆(l,m, n) is reflection group which is generated by the
reflections of all sides of the triangle with angles π/l, π/m, π/n.

Now if
λ > 0 then ∆ is spherical,
λ < 0 then ∆ is hyperbolic and
λ = 0 then ∆ is euclidean.
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Classification

1 Euclidean Space

We have for the R2

λ = 0

Hence putting it in (1) we get:

1

l
+

1

m
+

1

n
= 1

Lemma 1.1 4(l,m, n) is isomorphic to4(m,n, l) i.e. 4(l,m, n) ∼= 4(m,n, l)

Proof. We have,

∆(l,m, n) = {a, b, c|a2 = b2 = c2 = (ab)n = (bc)l = (ca)m = 1}

∆(m,n, l) = {x, y, z|x2 = y2 = z2 = (xy)l = (yz)m = (zx)n = 1}

Define a map,
φ : 4(l,m, n)→4(m,n, l)

such that
a 7→ x

b 7→ y

c 7→ z

let u, v ∈4(l,m, n). So we can take u = aibjck and w = apbqcr. Now,

φ(uw) = φ(aibjckapbqcr)

= φ(ai+pbj+qck+r)

= φi+p(a)φj+q(b)φk+r(c)

= xi+pyj+qzk+r

= (xiyjzk)(xpyqzr)

= φ(u)φ(v)

So φ is a homomorphism. φ is also surjective and injective. Hence φ is
isomorphism. Therefore 4(l,m, n) and 4(m,n, l) is isomorphic.

Theorem 1.2 Only values of the triple (l,m, n) can take are: (2, 3, 6), (2, 4, 4)
and (3, 3, 3)

Proof. As l,m, n are positive integers≥ 2 and in R2

1

l
+

1

m
+

1

n
= 1

Thus (l,m, n) must take the values: (2,3,6), (2,4,4), (3,3,3).
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Since we have proved that

4(l,m, n) ∼= 4(m,n, l) ∼= 4(n,m, l)

(2, 3, 6), (6, 3, 2), (3, 6, 2), (2, 6, 3) etc are all similar. Actually they are just the
reflection of each other. Similar argument for the (2, 4, 4) and (3, 3, 3) cases.
Thus (2, 3, 6), (2, 4, 4), (3, 3, 3) is the complement list of (l,m, n).

• Describe the diagram of these groups:

Figure 1: Euclidean triangle groups

2 Spherical Case

2.1 Postulates of Spherical Geometry

• A sphere is a subset of R3 given by

S2 :=
{
x ∈ R3 |‖x‖ = a} , a > 0

• The radius of a sphere is the length of a drawn from the center to the
surface.
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Figure 2: great and small circle

• The intersection of a sphere with a plane passing through the center is
called great circle and its intersection with any other plane, a small
circle.

• The points of intersection of two great circles are called antipode. Acc-
tually, antipodal points are pairs of points diametrically lie on the sphere.

• The shortest path from point A to point B on a sphere is given by the
shorter arc of the great circle passing through A and B is called geodesic.
If A and B are antipodal points (like the North pole and the South pole),
then there are infinitely many shortest paths between them.

• The angle made by the arcs of two great circles is called a spherical
angel, and is to be regarded as the same with the angel between the
planes of circles.Acctually, The spherical angle formed by two intersecting
arcs of great circles is equal to the angle between the tangent lines to their
common point.

2.2 Spherical triangles

When the arcs of three great circles intersect on the surface of a sphere, the
lines enclose an area known as a spherical triangle. spherical triangle are dis-
tinguished as right-angled,isosceles,equilateral etc. same way as plane triangles.

Theorem 2.2.1 Let AA′ be a spherical segment formed by two geodesics. Let
α be the angle between them. Then the area of the segment is equal to 2αR2 ,
where R is the radius of the sphere.

Proof. Clearly, the area of the segment (we denote it Sα) is proportional to
the area of the sphere and is proportional to the angle α. So Sα=cα(4πR2).
To find coefficient c let us notice that when α = π we should get the area of
the semi-sphere, i.e. 2πR2 . Therefore, 2πR2 = cπ(4πR2), so c = 1/2π and
Sα=2αR2.
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Figure 3

Lemma 2.2.2 Let ABC be a spherical triangle with angles α, β, γ. Then the
area of the triangle is (α+ β + γ − π)R2,where R is the radius of the sphere.

Proof. Let ABC be a spherical triangle with angles α, β and γ. If we continue
the sides of the triangle they will meet at the other three points A′, B′ and
C ′ opposite to A,B and C respectively. The triangle ∆A′B′C ′ is opposite to
triangle ∆ABC,so it has the same area as ∆ABC. The rest of the surface of
the sphere is covered by three spherical segments: ABA′C ′ with angle π − α,
BCB′A′ with angle π− β, and CAC ′B′ with angle π− γ . These segments are
not overlapping, so we can write:

SABC + SA′B′C′ + Sπ−α + Sπ−β + Sπ−γ = 4πR2

Since SABC = SA′B′C′ , using Theorem 2.2.1 we get:

2SABC = 4πR2 − 2(π − α)R2 − 2(π − β)R2 − 2(π − γ)R2

Finally,
SABC = (α+ β + γ − π)R2

Theorem 2.2.3 In spherical geometry sum of the angles of any triangle is
greater than π.

Proof. Let ABC be a spherical triangle with angles α, β&γ. Then

α+ β + γ = π + SABC/R
2

hence
α+ β + γ = π + SABC/R

2 > π ⇒ α+ β + γ > π

where SABC is the area of the triangle and R is the radius of the sphere.

5



2.3 Spherical Triangle Group

We have in spherical case λ > 0. Substituting it in (1) we get:

1

l
+

1

m
+

1

n
> 1

So upto permutations the triples (l,m, n) of positive integers ≥ 2 are respec-
tively (2, 2, n ≥ 2), (2, 3, 3), (2, 3, 4), (2, 3, 5).

In geometry, spherical triangles are called as Schwarz triangle. It can be
used to tile a sphere,through the re ections in its edges. A Schwarz triangle is
represented by three rational numbers (p q r) each representing the angle at a
vertex. ”2” means a right triangle.

Figure 4: Spherical triangle groups

2.4 Graphical Representation

A Schwarz triangle is represented graphically by a triangular graph. Each node
represents an edge (mirror) of the Schwarz triangle. Each edge is labeled by a
rational value corresponding to the reflection order, being π/vertex angle.

Figure 5: Schwarz triangle
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Order 2 edges represents perpendicular mirrors which can be ignored in this
diagram. The Coxeter-Dynkin diagram represents this triangular graph with
order-2 edges hidden.

A Coxeter group can be used for a simpler notation, as (p q r) for cyclic
graphs, and (p q 2) = [p,q] for (right triangles).

2.4.1 Describe the graphical representation of these group in detail:

(i) Dihedral Symmetry:

Notation: [p,2] or (p 2 2)

Fundamental domain:

Figure 6: D2h

Coxeter dynkin diagram:

Coxeter group: A1 × I2(n)

(ii) Tetrahedral Symmetry:

Notation: [3,3] or (2 3 3)

Fundamental domain:
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Figure 7: Td

Coxeter dynkin diagram:

Coxeter group: A3

(iii) Octahedral Symmetry:

Notation: [3,4] or (2 3 4)

Fundamental domain:

Figure 8: Oh

Coxeter dynkin diagram:

Coxeter group: BC3
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(iv) Icosahedral Symmetry:

Notation: [3,5] or (2 3 5)

Fundamental domain:

Figure 9: Ih

Coxeter dynkin diagram:

Coxeter group: H3

2.4.2 Also describe the graphical diagram of Euclidean triangle groups:

(i) (2 4 4)-Euclidean group

Fundamental domain:

Figure 10: (2 4 4)

9



Coxeter dynkin diagram:

Coxeter group: C̃2

(ii) (2 6 3)-Euclidean group

Fundamental domain:

Figure 11: (2 6 3)

Coxeter dynkin diagram:

Coxeter group: G̃2

(iii) (3 3 3)-Euclidean group

Fundamental domain:

Figure 12: (3 3 3)
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Coxeter dynkin diagram:

Coxeter group: Ã2
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3 Hyperbolic Case

We have for the H2

λ < 0

So from equtaion (1) we get

1

l
+

1

m
+

1

n
< 1

3.1 Describe the diagram of some Hyberbolic triangle groups:

Figure 13: Hyperbolic triangle groups
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