Introduction to Manifolds

Assignment 1

Due Date: 24/08/2017

Problem 1: In each of the following a function f is given, find a generic expression for its derivative $D f$, then determine when the derivative is non-singular. Finally, for the given subset S of the domain sketch its image $f(S)$.

1. $f(r, \theta)=(r \cos \theta, r \sin \theta)$ and $S=[1,2] \times[0,2 \pi]$.
2. $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ and $S=\left\{(x, y) \mid x^{2}+y^{2} \leq a^{2}, x \geq 0, y \geq 0, a \geq 0\right\}$.
3. $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$ and $S=[0,1] \times[0,2 \pi]$.
4. $f(\rho, \phi, \theta)=(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$ and $S=[1,2) \times\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]$.

Problem 2: Let $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be a bilinear function.

1. Prove that if f is bilinear, then

$$
\lim _{(h, k) \rightarrow 0} \frac{\|f(h, k)\|}{\|(h, k)\|}=0
$$

and that f is differentiable everywhere in the domain.
2. Prove that $D f(a, b)(x, y)=f(a, y)+f(x, b)$.
3. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be two differentiable maps and $h: \mathbb{R} \rightarrow \mathbb{R}$ is defined by setting $h(t)=\langle f(t), g(t)\rangle$ (the standard inner product on $\left.\mathbb{R}^{n}\right)$. Prove that h is differentiable everywhere and find $h^{\prime}(a)$.

Problem 3: Let $\left\{V_{1}, \ldots, V_{k}\right\}$ be a collection of finite-dimensional vector spaces such that $\operatorname{dim} V_{i}=n_{i}$ for every i. Let $f: V_{1} \times \cdots \times V_{k} \rightarrow \mathbb{R}^{p}$ be a multilinear map (i.e., linear in each variable).

1. Show that for $a:=\left(a_{1}, \ldots, a_{k}\right)$ and $h:=\left(h_{1}, \ldots, h_{k}\right)$ we have

$$
\lim _{h \rightarrow 0} \frac{\left\|f\left(a_{1}, \ldots, h_{i}, \ldots, h_{j}, \ldots, a_{k}\right)\right\|}{\|h\|}=0 .
$$

2. Prove that f is differentiable everywhere.
3. Find the matrix $D f(a)$ and also $D f(a)(x)$.

Problem 4: Let $M(n, \mathbb{R})$ be the vector space of all $n \times n$ matrices with real entries.

1. Prove that the function $\operatorname{det}: M(n, \mathbb{R}) \rightarrow \mathbb{R}$ which sends a matrix to its determinant is differentiable and find $D \operatorname{det}(A)(X)$.
2. Find $D \operatorname{det}\left(I_{n}\right)(X)$ and use it to show that the trace map is differentiable.

Problem 5: Compute the derivative of the following functions.

1. $f: M(n, \mathbb{R}) \times M(n, \mathbb{R}) \rightarrow M(n, \mathbb{R})$ given by $f(A, B)=A+B$.
2. $g: M(n, \mathbb{R}) \times M(n, \mathbb{R}) \rightarrow M(n, \mathbb{R})$ given by $g(A, B)=A B$.
3. $h: M(n, \mathbb{R}) \rightarrow M(n, \mathbb{R})$ given by $h(A)=A^{2}$.
4. $j: M(n, \mathbb{R}) \rightarrow M(n, \mathbb{R})$ given by $j(A)=A^{t}$.
