Topics in Combinatorics

Assignment 3

Due Date: 09/03/2018

Given below is a list of rational arrangements. For each arrangement find the characteristic polynomial using the finite field method.

1. For $1 \leq k \leq n$ the arrangement $\mathcal{S}_{n, k}$ contains following hyperplanes:

$$
\begin{aligned}
& x_{i}-x_{j}=0 \text { for } 1 \leq i<j \leq n, \\
& x_{i}-x_{j}=1 \text { for } 1 \leq i<j \leq k .
\end{aligned}
$$

2. For $1 \leq k \leq n$ the arrangement $\mathscr{S}_{n, k}$ contains following hyperplanes:

$$
\begin{aligned}
x_{i} & =0 \text { for } 1 \leq i<j \leq n, \\
x_{i} \pm x_{j} & =0 \text { for } 1 \leq i<j \leq n, \\
x_{i}+x_{j} & =1 \text { for } 1 \leq i<j \leq k .
\end{aligned}
$$

3. The arrangement $\mathscr{T} \mathscr{C}_{n}$ given by

$$
\left\{x_{i}=0 \mid 1 \leq i \leq n\right\} \cup\left\{x_{i}-x_{j}=0 \mid i<j\right\} \cup\left\{x_{i}=2 x_{j} \mid 1 \leq i \neq j \leq n\right\} .
$$

4. The arrangement \mathscr{T}_{n} given by

$$
\left\{x_{i}-x_{j}=0 \mid i<j\right\} \cup\left\{x_{i}=2 x_{j} \mid 1 \leq i \neq j \leq n\right\} .
$$

