## Topics in Combinatorics

## Assignment 2

Due Date: 22/01/2018

Problem 1: Let $\mathscr{A}$ be an arrangement of hyperplanes in $\mathbb{R}^{n}$. Then prove that the intersection poset $L(\mathscr{A})$ is graded of rank equal to $\operatorname{rank}(\mathscr{A})$. The rank function is given by the codimension of the corresponding intersection.

Problem 2: Prove that

$$
L(\operatorname{ess}(\mathscr{A})) \cong L(\mathscr{A}) .
$$

Problem 3: Let $\mathscr{A}$ be the coordinate (boolean) arrangement in $\mathbb{R}^{n}$. Prove that $L(\mathscr{A})$ is isomorphic to the poset of all subsets of $[n]$ ordered by inclusion. Compute the characteristic polynomial of this arrangement.

Problem 4: Determine the characteristic polynomial of arrangement of $n$ lines in general position. Using this polynomial find $r(\mathscr{A})$ and $b(\mathscr{A})$.

Problem 5: For an arrangement $\mathscr{A}$ and its essentialization ess $(\mathscr{A})$ show that

$$
t^{\operatorname{rank}(\mathscr{A})} \chi_{\mathscr{A}}(t)=t^{\operatorname{dim} \mathscr{A}} \chi_{\mathrm{ess}(\mathscr{A})}(t) .
$$

Moreover, if $\chi_{\mathscr{A}}(t)$ is divisible by $t^{k}$ but not $t^{k+1}$ then show that $\operatorname{rank}(\mathscr{A})=n-k$.

