Topics in Combinatorics

Assignment 2 Due Date: 22/01/2018

Problem 1: Let \mathscr{A} be an arrangement of hyperplanes in \mathbb{R}^n . Then prove that the intersection poset $L(\mathscr{A})$ is graded of rank equal to rank (\mathscr{A}) . The rank function is given by the codimension of the corresponding intersection.

Problem 2: Prove that

$$L(ess(\mathscr{A})) \cong L(\mathscr{A}).$$

Problem 3: Let \mathscr{A} be the coordinate (boolean) arrangement in \mathbb{R}^n . Prove that $L(\mathscr{A})$ is isomorphic to the poset of all subsets of [n] ordered by inclusion. Compute the characteristic polynomial of this arrangement.

Problem 4: Determine the characteristic polynomial of arrangement of *n* lines in general position. Using this polynomial find $r(\mathcal{A})$ and $b(\mathcal{A})$.

Problem 5: For an arrangement \mathcal{A} and its essentialization $ess(\mathcal{A})$ show that

$$t^{\operatorname{rank}(\mathscr{A})}\chi_{\mathscr{A}}(t) = t^{\dim \mathscr{A}}\chi_{\operatorname{ess}(\mathscr{A})}(t).$$

Moreover, if $\chi_{\mathscr{A}}(t)$ is divisible by t^k but not t^{k+1} then show that rank $(\mathscr{A}) = n - k$.