Topics in Combinatorics

Assignment 1 Due Date: 12/01/2018

Problem 1: Let \mathscr{A} be an arrangement of $n \ (n \ge 1)$ lines and f_2 be the number of regions/ chambers of \mathscr{A} . Denote by p the maximal number of parallel lines in \mathscr{A} , by q the maximal number of concurrent lines in \mathscr{A} . Finally, for $i \ge 2$, let t_i be the number of vertices incident with i lines. Now prove the following.

- 1. $f_2 \ge (p+1)(n-p+1)$.
- 2. $f_2 \ge q(n-q+2)$.
- 3. Construct two arrangements \mathscr{A} and \mathscr{B} such that $f_2(\mathscr{A}) = (p+1)(n-p+1)$ and $f_2(\mathscr{B}) = q(n-q+2)$.
- 4. $f_2 = n + 1 + \sum_{i=2}^{q} (i-1)t_i$

Problem 2: Prove that the number f_2 can not belong to the following intervals:

- 1. (n + 1, 2n) for $n \ge 3$,
- 2. (2n, 3n 3) for $n \ge 5$.

Problem 3: Find the maximum possible value of f_2 when, n, p are fixed and when n, q are fixed. **Problem 4:** Given n, p, where $1 \le p \le n$, define the following numbers

$$\beta(n,p) := (p+1)(n-p+1) + \binom{n-p}{2} \qquad \alpha(n,p) := \beta(n,p) - \min\{p, \binom{n-p}{2}\}.$$

For any integer f, where $\alpha(n, p) \le f \le \beta(n, p)$, describe a construction of an arrangement \mathscr{A} of n lines such that $f_2(\mathscr{A}) = f$.