Topics in Combinatorics

Assignment 1

Due Date: 12/01/2018

Problem 1: Let \mathscr{A} be an arrangement of $n(n \geq 1)$ lines and f_{2} be the number of regions/ chambers of \mathscr{A}. Denote by p the maximal number of parallel lines in \mathscr{A}, by q the maximal number of concurrent lines in \mathscr{A}. Finally, for $i \geq 2$, let t_{i} be the number of vertices incident with i lines. Now prove the following.

1. $f_{2} \geq(p+1)(n-p+1)$.
2. $f_{2} \geq q(n-q+2)$.
3. Construct two arrangements \mathscr{A} and \mathscr{B} such that $f_{2}(\mathscr{A})=(p+1)(n-p+1)$ and $f_{2}(\mathscr{B})=$ $q(n-q+2)$.
4. $f_{2}=n+1+\sum_{i=2}^{q}(i-1) t_{i}$

Problem 2: Prove that the number f_{2} can not belong to the following intervals:

1. $(n+1,2 n)$ for $n \geq 3$,
2. $(2 n, 3 n-3)$ for $n \geq 5$.

Problem 3: Find the maximum possible value of f_{2} when, n, p are fixed and when n, q are fixed.
Problem 4: Given n, p, where $1 \leq p \leq n$, define the following numbers

$$
\beta(n, p):=(p+1)(n-p+1)+\binom{n-p}{2} \quad \alpha(n, p):=\beta(n, p)-\min \left\{p,\binom{n-p}{2}\right\} .
$$

For any integer f, where $\alpha(n, p) \leq f \leq \beta(n, p)$, describe a construction of an arrangement \mathscr{A} of n lines such that $f_{2}(\mathscr{A})=f$.

