COMBINATORICS 1
 ASSIGNMENT 5
 (DUE DATE: 24/10/2016)

- All posets are finite and graded.
- An arrangement of hyperplanes in \mathbb{R}^{n} is a finite collection $\mathcal{A}=\left\{\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{k}}\right\}$ of hyperplanes.
- The characteristic polynomial of a hyperplane arrangement \mathcal{A} is defined as

$$
\chi(\mathcal{A}, x):=\sum_{s \in \mathrm{~L}(\mathcal{A})} \mu(s) \chi^{\operatorname{dim} s} .
$$

- Braid arrangement in \mathbb{R}^{n} is given by

$$
A_{n-1}=\left\{x_{i}-x_{j}=0 \mid 1 \leq \mathfrak{i}<\mathfrak{j} \leq n\right\} .
$$

- The type B arrangement is given by

$$
B_{n}=A_{n-1} \cup\left\{x_{i}+x_{j}=0 \mid 1 \leq \mathfrak{i}<\mathfrak{j} \leq \mathfrak{n}\right\} \cup\left\{x_{i}=0 \mid 1 \leq \mathfrak{i} \leq \mathfrak{n}\right\} .
$$

- For a natural number a, define $[-a, a]_{\mathbb{Z}}^{n}=[-a, a]^{n} \cap \mathbb{Z}^{n}$.
(1) (10 points) Let W be a k-subspace of \mathbb{R}^{n}. Then prove that

$$
\left|W \cap[-a, a]_{\mathbb{Z}}^{n}\right|=\left|[-a, a]_{\mathbb{Z}}^{k}\right|
$$

if and only if $W \in L\left(B_{n}\right)$.
(2) (15 points) For a hyperplane $\mathrm{H} \subset \mathbb{R}^{n}$ given by the linear form $f(x)=\alpha$ define the cone over it as the hyperplane cH in R^{n+1} given by the linear form $f\left(x_{1}, \ldots, x_{n}\right)-$ $\alpha x_{n+1}=0$. Let \mathcal{A} be a non-central arrangement then the cone over this arrangement is

$$
\mathrm{c} \mathcal{A}=\left\{\mathrm{cH}_{1}, \ldots, \mathrm{cH}_{\mathrm{k}}, \mathrm{x}_{\mathrm{n}+1}=0\right\} .
$$

Prove that

$$
\chi(c \mathcal{A}, x)=(x-1) \chi(\mathcal{A}, x) .
$$

(3) (15 points) Let G be a graph and \mathcal{A}_{G} be the associated graphic arrangement. Suppose that G has m-element clique, i.e., m vertices such that any two are joined by an edge. Show that $\mathrm{m}!\mid \mathrm{r}\left(\mathcal{A}_{\mathrm{G}}\right)$.
(4) (10 points) An arrangement of type D is defined as

$$
D_{n}=A_{n-1} \cup\left\{x_{i}+x_{j}=0 \mid 1 \leq i<j \leq n\right\} .
$$

Find the number of chambers of D_{n}.

