COMBINATORICS 1
 ASSIGNMENT 4
 (DUE DATE: 10/10/2016)

- All posets are finite and graded. For a poset P the symbol \hat{P} stands P adjoined with $\hat{0}, \hat{1}$.
- The symbol $\mathcal{I}(\mathrm{P})$ stands for the set of all closed intervals in P
- The Möbius polynomial of P is defined as

$$
\mathcal{M}(P, x):=\sum_{[s, t] \in \mathcal{I}(P)} \mu(s, t) x^{\operatorname{rank}(t)-\operatorname{rank}(s)} .
$$

- The characteristic polynomial of a hyperplane arrangement \mathcal{A} is defined as

$$
\chi(\mathcal{A}, x):=\sum_{s \in \mathrm{~L}(\mathcal{A})} \mu(s) x^{\operatorname{dim} \mathrm{s}}
$$

(1) (10 points) If P has either $\hat{0}$ or $\hat{\hat{\imath}}$ then prove that $\mathcal{M}(P, 1)=1$.
(2) (5 points) Further conclude that for an arbitrary poset P

$$
\mathcal{M}(\mathrm{P}, 1)=\mu_{\hat{\mathrm{P}}}(\hat{0}, \hat{\imath})+1 .
$$

(3) (5 points) Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{R}^{n}. Then prove the following

$$
\chi^{\operatorname{dim}(\operatorname{ess}(\mathcal{A}))} \chi(\mathcal{A}, x)=\chi^{\operatorname{dim}(\mathcal{A})} \chi(\operatorname{ess}(\mathcal{A}), x) .
$$

(4) (10 points) Compute the number of connected components of the complement of the braid arrangement A_{n-1} without using the Zaslavsky's formula.
(5) (10 points) Prove that the intersection lattice of the braid arrangement A_{n-1} is isomorphic to the lattice of partitions of $[n]$.
(6) (10 points) Compute the characteristic polynomial of A_{n-1}.

