COMBINATORICS 1
 ASSIGNMENT 3
 (DUE DATE: 08/09/2016)

(1) (5 points) Draw the Hasse diagrams of all (non-isomorphic) posets with 4 elements that are self-dual.
(2) (5 points) Characterize natural numbers N such that the lattice D_{N} is a Boolean algebra.
(3) (10 points) Let L be a lattice. Then show that for all $a, b, c \in L$:
(a) $a \wedge(b \vee c) \geq(a \wedge b) \vee(a \wedge c)$ and $a \vee(b \wedge c) \leq(a \vee b) \wedge(a \vee c)$.
(b) $(a \wedge b) \vee(b \wedge c) \vee(c \wedge a) \leq(a \vee b) \wedge(b \vee c) \wedge(c \vee a)$.
(4) (5 points) An element c in a lattice L is a relative pseudo complement of a w.r.t. b , if c is the largest element such that $\mathrm{a} \wedge \mathrm{c} \leq \mathrm{b}$ and if exists, it is denoted by $\mathrm{a} \Rightarrow \mathrm{b}$.
A Heyting algebra is a lattice with $\hat{0}, \hat{1}$ such that $a \Rightarrow b$ exists for all $a, b \in L$. Then show that every finite distributive lattice is a Heyting algebra. Also, for a Boolean algebra B_{n} find an explicit description for the relative pseudo complement in terms of meets and/or joins.
(5) (5 points)Let L be the set of all convex subsets. Show that this is a lattice by defining appropriate binary operations and an order. Is this lattice distributive? Justify.
(6) (5 points)If L is a lattice satisfying

$$
(a \vee b) \wedge c \leq(a \wedge c) \vee(b \wedge c),
$$

for all a, b, c then show that L is distributive.
(7) (5 points)Show that a Heyting algebra is a distributive lattice.

