COMBINATORICS 1 ASSIGNMENT 2 (DUE DATE: 22/08/2016)

Each problem is worth 10 points.

- (1) Let n, l be fixed positive integers. Denote by f(l, n) the number of sequences (A_1, \ldots, A_l) of subsets of the set [n] such that $\bigcap_{i=1}^{l} A_i = \emptyset$. Find a recurrence relation for f(l, n).
- (2) Let $F_l(x)$ be the exponential generating function for the above numbers f(l, n) given by:

$$F_{l}(x) = \sum_{n \ge 0} f(l, n) \frac{x^{n}}{n!}.$$

First show that $F_1(x) = e^x F_{1-1}(2x)$. Then use this identity to conclude that

$$f(l,n) = (2^l - 1)^n.$$

(3) Let n, k be fixed positive integers. Denote by c(n, k) the number of permutations in S_n that have exactly k cycles (this number is also known as the signless Stirling number of the first kind). Then prove that

$$c(n,k) = (n-1)c(n-1,k) + c(n-1,k-1),$$

with the initial conditions c(n, k) = 0 if either n < k or k = 0 except c(0, 0) = 1.

(4) Let n, k be fixed positive integers. Denote by P(n, k) the number of partitions of an n-set as a disjoint union of k nonempty subsets (k!P(n, k) is known as the Stirling number of the second kind). Prove the following recurrence:

 $\mathcal{P}(\mathbf{n},\mathbf{k}) = \mathbf{k}\mathbf{P}(\mathbf{n}-1,\mathbf{k}) + \mathbf{P}(\mathbf{n}-1,\mathbf{k}-1),$

with the initial conditions P(n, k) = 0 if either k = 0 or n < k and P(n, k) = 1 if either k = 1 or k = n.

(5) Find a closed form formula for the number of k-dimensional subspace of \mathbb{F}_q^n where q is a prime power and $0 \le k \le n$.