COMBINATORICS 1

ASSIGNMENT 2 (DUE DATE: 22/08/2016)

Each problem is worth 10 points.
(1) Let \mathfrak{n}, l be fixed positive integers. Denote by $f(l, n)$ the number of sequences $\left(A_{1}, \ldots, A_{l}\right)$ of subsets of the set $[n]$ such that $\bigcap_{i=1}^{l} A_{i}=\emptyset$. Find a recurrence relation for $f(l, n)$.
(2) Let $F_{l}(x)$ be the exponential generating function for the above numbers $f(l, n)$ given by:

$$
F_{l}(x)=\sum_{n \geq 0} f(l, n) \frac{x^{n}}{n!} .
$$

First show that $F_{l}(x)=e^{x} F_{l-1}(2 x)$. Then use this identity to conclude that

$$
f(l, n)=\left(2^{l}-1\right)^{n} .
$$

(3) Let n, k be fixed positive integers. Denote by $\mathrm{c}(\mathrm{n}, \mathrm{k})$ the number of permutations in S_{n} that have exactly k cycles (this number is also known as the signless Stirling number of the first kind). Then prove that

$$
c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1),
$$

with the initial conditions $\mathfrak{c}(n, k)=0$ if either $n<k$ or $k=0$ except $c(0,0)=1$.
(4) Let n, k be fixed positive integers. Denote by $P(n, k)$ the number of partitions of an n-set as a disjoint union of k nonempty subsets ($k!P(n, k)$ is known as the Stirling number of the second kind). Prove the following recurrence:

$$
\mathcal{P}(n, k)=k P(n-1, k)+P(n-1, k-1),
$$

with the initial conditions $P(n, k)=0$ if either $k=0$ or $n<k$ and $P(n, k)=1$ if either $k=1$ or $k=n$.
(5) Find a closed form formula for the number of k-dimensional subspace of \mathbb{F}_{q}^{n} where q is a prime power and $0 \leq \mathrm{k} \leq \mathrm{n}$.

