COMBINATORICS 1

ASSIGNMENT 1
(DUE DATE: 11/08/2016)
(1) (10 points) Let A_{1}, \ldots, A_{m} be subsets of a finite set A. Let $N_{0}:=|A|$ and for $k>0$, let

$$
N_{k}:=\sum_{\substack{|\mathrm{I}|=k \\ \mathrm{I} \subseteq[\mathrm{~m}]}}\left|\mathcal{A}_{\mathrm{I}}\right|,
$$

where $A_{I}:=\bigcap_{i \in I} A_{i}$. Then prove using the Principle of Inclusion and Exclusion that the number of elements of A that are in none of the A_{i} 's is

$$
\sum_{i=0}^{m}(-1)^{i} N_{i}
$$

Conclude further that
(1)

$$
\left|\bigcup_{i} A_{i}\right|=\sum_{i=1}^{m}(-1)^{i-1} N_{i} .
$$

(2) (5 points) Prove the following identity

$$
\prod_{i=1}^{m}\left(1-x_{i}\right)=\sum_{I \subseteq[m]}(-1)^{|I|} \prod_{i \in I} x_{i} .
$$

(3) (5 points) Prove Equation 1 using induction on m
(4) (10 points) List (draw) all the combinatorially distinct arrangements of 4 lines. Why is your list complete?
(5) (10 points) Let $n \geq 3$ denote the number of straight lines in the plane and p be the maximal number of parallel lines. Then prove that

$$
f_{2} \geq(p+1)(n-p+1)
$$

Further conclude that f_{2} can not take any value in the interval $(n+1,2 n)$.

