MODULAR INVARIANT THEORY JAN-APR 2020. NOTES

EXERCISES

⁶⁹ Problem Set, due 2020-02-04. Preliminary version; final on 2020-02-01

- (1) Show that the matrix for the dual representation is given by the transpose ofthe inverse.
- (2) Let *V* and *W* be k-linear representations of *G*. For $g \in G$, describe the matrix of *g* for its action on $V \otimes_k W$ in terms of those for its action on *V* and on *W*.
- (3) Define the *exterior* (or the *wedge*) product $\wedge^{\bullet}(V)$ of V to be the quotient of $T^{\bullet}(V)$ by the two-sided ideal generated by $\{v \otimes w + w \otimes v \mid v, w \in V\}$ and $\{v \otimes v \mid v, w \in V\}$. Show that $\wedge^{\bullet}(V)$ is a finite-dimentional vector-space over \Bbbk and that it inherits the graded *G*-action from $T^{\bullet}(V)$. Describe this action in terms of matrices.
- (4) Let the cyclic group $C_2 = \langle \sigma \rangle$ of two elements act on $R = \mathbb{F}_2[x_1, y_1, x_2, y_2, x_3, y_3]$ by $\sigma(y_i) = y_i$ and $\sigma(x_i) = x_i + y_i$ for i = 1, 2, 3. Show that $(R^{C_2})_2$ is generated
- by y_i , i = 1, 2, 3 and $x_i y_j + x_j y_i$, $1 \le i < j \le 3$.
- (5) Determine the symmetric polynomial of degree *k* in *n* variables, with the small est leading term in degree-lexicographic order.
- (6) Let *V* be a finite-dimensional representation of *G*. Let *H* be a normal subgroup of *G*. Then $V^G = (V^H)^{G/H}$.
- 86 Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India
- 87 *Email address*: mkummini@cmi.ac.in

68