COMMUTATIVE ALGEBRA II, JAN-APR 2018: PROBLEM SETS

MANOJ KUMMINI

Notation:

k, a field

R, S, commutative rings, with multiplicative identity.

M, N, etc., sometimes with subscripts: modules.

1. 2019-01-21, IN CLASS

Preliminary version, as of January 7, 2019; can be taken to be final after Sat Jan 19 00:00:00 IST 2019

- 1.1. (10 marks) Let $R = \mathbb{k}[u, v, x, y]$ and I = (ux, vy, uy + vx). Determine dim R/I, a system of parameters for R/I, a chain in Spec R/I of maximum length and a primary decomposition of R/I.
- 1.2. (10 marks) Recall that the M/M_{λ} have discrete topology, $\prod_{\lambda} M/M_{\lambda}$ the product topology and \widehat{M} the subspace topology. Show that this topology on \widehat{M} agrees with the linear topology given by the family M_{λ}^* , $\lambda \in \Lambda$, where $M_{\lambda}^* = \ker \left(\widehat{M} \longrightarrow M/M_{\lambda}\right)$. Show that \widehat{M} is complete with respect to this topology.
- 1.3. (5 marks) Show that the natural map $\iota: M \longrightarrow \widehat{M}$ is *R*-linear and continuous.
- 1.4. (10 marks) Let R be a noetherian ring and $I \subseteq J$ R-ideals. Show that I = J if and only if $I_{\mathfrak{p}} = J_{\mathfrak{p}}$ for every $\mathfrak{p} \in \operatorname{Ass} R/I$. Give an example to show that the hypothesis that $I \subseteq J$ is necessary.
- 1.5. (10 marks) Let R be a standard graded ring, i.e., $R = \bigoplus_{i \in \mathbb{N}} R_i$ with $R = R_0[R_1]$). Let I be the ideal $\bigoplus_{i \geq 1} R_i$. Show that the I-adic completion of R is $\prod_{i \in \mathbb{N}} R_i$. Now drop the assumption that R is standard graded (but still graded by \mathbb{N}). Then describe a topology on R such that the completion is $\prod_{i \in \mathbb{N}} R_i$.

CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA *E-mail address*: mkummini@cmi.ac.in