RAMIFICATION THEORY. NOTES

MANOJ KUMMINI

OUTLINE

These are notes from a course during Aug–Nov 2018 on the ramification theory of noetherian local rings, following [AB59] and the various differents that appear in this context. These notes begin with a review of commutative algebra ([Eis95], [Mat80], [Mat89])Then comes a discussion of Kähler differentials ([Eis95], [Kun86], [Mat80], [Mat89]). The results of [AB59] and some topics on differents ([Ber61], [SS74]) are discussed next.

NOTATION

By a ring, we mean, unless something is mentioned explicitly to the contrary, commutative rings with identity. Ring homomorphisms are assumed to take the multiplicative identity to the multiplicative identity.

 Mod_R : the category of all *R*-modules, for a ring *R*. *R*, *S*: rings.

1. Examples

1.1. **Background**. Let $R \longrightarrow S$ be a ring homomorphism. For a prime ideal p of R, we are interested in studying when pS is *not* a prime ideal of S. We do not define ramification in this section, but look at two examples that illustrate the question.

1.2. **Example:** Gaussian integers. $R = \mathbb{Z}$, $S = \mathbb{Z}[i]$. Let $p \in \mathbb{Z}$ be a prime number. We look at the ideal *pS*. See [Art91, Section 11.5] for details.

(1) p = 2: In S, we can write $2 = (1 + i)(1 - i) = -i(1 + i)^2$, so $(2)S = ((1 + i)S)^2$. Use the euclidean norm $a + ib \mapsto a^2 + b^2$ for $a, b \in \mathbb{Z}$ to see that S is a PID and that 1 + i is irreducible and, hence, prime. Therefore we say that 2 *ramifies* in S. Precise definition will come later.

(2) p = 5. In R, $5 = 2^2 + 1^2$, so in S, 5 = (2 + i)(2 - i). Can check that (2 + i) and (2 - i) are irreducible in S, so they are prime elements. They are not multiples of each other by units in S, so we say that 5 *splits* into distinct primes in S. Same argument can be given for all prime numbers p that can be expressed as a sum of two squares in R; it is known that such p are exactly those congruent to $1 \mod 4$.

(3) p = 3. Suppose that $3 = (a + \iota b)(c + \iota d)$. Looking at the norms, we see that $(a^2 + b^2)(c^2 + d^2) = 9$, so $(a^2 + b^2) = 1, 3$ or 9. There do no exists integers a, b such that $(a^2 + b^2) = 3$. If $(a^2 + b^2) = 1$, $(a + \iota b)$ is a unit in S. If $(a^2 + b^2) = 9$, $(c + \iota d)$ is a unit in S. Hence 3 is irreducible and hence prime in S.

The following proposition is proved in [Art91, Section 11.5].

1.2.1. **Proposition**. Let p be a prime number. Then p is prime in S or $p = \pi \overline{\pi}$ for a pair of complex conjugate primes in S.

Proof. Since *p* is not a unit in *S*, it has a prime divisor $\pi := a + ib$. Then $\overline{\pi} = a - ib$ divides $\overline{p} = p$, so $a^2 + b^2$ divides p^2 . Since a + ib is not a unit in *S*, $a^2 + b^2 > 1$, so $a^2 + b^2 = p$, in which case $p = \pi \overline{\pi}$, or $a^2 + b^2 = p^2$, in which case $p = u\pi$ for some unit $u \in S$ (look at the euclidean norm), and, hence, *p* is a prime element in *S*.

1.2.2. **Observation**. Note that $\mathbb{Q}(i) \simeq \mathbb{Q}(x)/(x^2 + 1)$ and that $\mathbb{Z}[i] \simeq \mathbb{Z}[x]/(x^2 + 1)$. The discriminant of $x^2 + 1$ is -4. The only prime number that divides it is 2; it is the only prime that ramifies in $\mathbb{Z}[i]$. We will later see that this is not a coincidence.

1.3. **Example: Branched coverings of curves.** Let $R = \mathbb{C}[t]$ and $S = \mathbb{C}[t, x]/((x - f_1(t))(x - f_2(t))(x - f_3(t)))$, where the $f_i(t)$ belong to R. This gives a map Spec $S \longrightarrow$ Spec $R \simeq \mathbb{C}^1$. Take a prime ideal $(t - \alpha)$ of R. $S/(t - \alpha)S \simeq \mathbb{C}[t, x]/((x - f_1(\alpha))(x - f_2(\alpha))(x - f_3(\alpha)))$, $t - \alpha) \simeq \mathbb{C}[x]/((x - f_1(\alpha))(x - f_2(\alpha))(x - f_3(\alpha)))$, so if $f_i(\alpha) = f_j(\alpha)$ for some $i \neq j$, the prime ideal $(t - \alpha)$ ramifies in S. If the three $f_i(\alpha)$ are distinct, there are three distinct points of Spec S that map to the point $\alpha \in \mathbb{C}^1$. Again, ramification happens over the prime ideals $(t - \alpha)$ containing the discriminant $(f_1(t) - f_2(t))(f_1(t) - f_3(t))(f_2(t) - f_3(t))$.

1.4. **Example: blow-up.** Let $R = \mathbb{C}[x, y, z]/(x^2 + y^3 + z^5)$ and $\mathfrak{m} = (x, y, z)R$. Let $S = R \oplus \mathfrak{m} \oplus \mathfrak{m}^2 \oplus \cdots$, thought of as a graded *R*-algebra. Note that if $\mathfrak{p} \in \operatorname{Spec} R$, $\mathfrak{p} \neq \mathfrak{m}$, then $(R \setminus \mathfrak{p})^{-1}S \simeq R_{\mathfrak{p}}[t]$. Hence $f : \operatorname{Proj} S \longrightarrow \operatorname{Spec} R$ is a morphism with the following property: over $\operatorname{Spec} R \setminus \{\mathfrak{m}\}$, it is an isomorphism, since $\operatorname{Proj} A[t] \simeq \operatorname{Spec} A$ for every ring *A*. To understand what happens over $\{\mathfrak{m}\}$, we look at an affine covering of $\operatorname{Proj} S$ given by $\operatorname{Spec} R[\frac{y}{x}, \frac{z}{y}]$, $\operatorname{Spec} R[\frac{x}{y}, \frac{z}{y}]$ and $\operatorname{Spec} R[\frac{x}{z}, \frac{y}{z}]$. Write $A = R[\frac{x}{y}, \frac{z}{y}]$. Note that

$$\frac{\mathbb{C}[x, y, z, x_1, z_1]}{(y^2(x_1^2 + y + y^3 z_1^5), x - yx_1, z - yz_1)} \simeq \frac{\mathbb{C}[y, x_1, z_1]}{(y^2(x_1^2 + y + y^3 z_1^5))} \twoheadrightarrow A$$

By looking at the dimensions and noting that y is a non-zero-divisor in A, we conclude that $A \simeq \mathbb{C}[y, x_1, z_1]/(x_1^2 + y + y^3 z_1^5)$. Then $\mathfrak{m}A = yA = (x_1^2, y)A$. Hence there is a unique minimal prime \mathfrak{P} over $\mathfrak{m}A$, with ht $\mathfrak{P} = 1$. Further

$$\lambda_{A_{\mathfrak{P}}}\left(\frac{A_{\mathfrak{P}}}{\mathfrak{m}A_{\mathfrak{P}}}\right) = 2.$$

2. Tensor products

In this section, we review, mostly without proofs, some facts about tensor products.

Let M, N and P be R-modules. A function $f : M \times N \longrightarrow P$ (where $M \times N$ is the cartesian product, i.e., the product in the category of sets) is said to R-bilinear (or, merely bilinear, if no confusion is likely to arise) if for every $x \in M$, the function $N \longrightarrow P$, $y \mapsto f(x, y)$ is R-linear and for every $y \in N$, the function $M \longrightarrow P$, $x \mapsto f(x, y)$ is R-linear.

2.1. **Definition**. Let M, N be R-modules. Let F be the free R-module with basis $M \times N$ and Q the submodule generated by all the elements of F of the form

$$(x + x', y) - (x, y) - (x', y),$$

(x, y + y') - (x, y) - (x, y')
(rx, y) - (x, ry)

where x, x' are in M, y, y' are in N and r is in R. The *tensor product of* M and N, denoted by $M \otimes_R N$, is the R-module F/Q. The image of $(x, y) \in M \times N$ under the map $M \times N \hookrightarrow F \longrightarrow M \otimes_R N$ is denoted $x \otimes_R y$.

We observe that the elements of $M \otimes_R N$ of the form $x \otimes_R y$ generate $M \otimes_R N$ as an *R*-module. The map $M \times N \longrightarrow M \otimes_R N$ is *R*-bilinear.

2.2. **Proposition.** Let M, N and P be R-modules. Then every R-linear map $M \otimes_R N \longrightarrow P$ induces an R-bilinear map $M \times N \longrightarrow P$. Conversely, if $f : M \times N \longrightarrow P$ an R-bilinear map, then there exists a unique R-linear map $\tilde{f} : M \otimes_R N \longrightarrow P$ such that $\tilde{f}(x \otimes_R y) = f(x, y)$.

This proposition implies that

 $\operatorname{Hom}_{R}(M \otimes_{R} N, P) \simeq \operatorname{Hom}_{R}(N, \operatorname{Hom}_{R}(M, P))$

for all *R*-modules *M*, *N* and *P*. We rephrase this to say that the functor $-\bigotimes_R N$ (from Mod_R to Mod_R) is left-adjoint to the functor $\operatorname{Hom}_R(N, -)$. Using this property, we can prove that the functor $-\bigotimes_R N$ is right exact.

Let *M* and *N* be *R*-modules, with generating sets $\{x_{\lambda} \mid \lambda \in \Lambda\}$ and $\{y_i \mid i \in I\}$ respectively. Then $\{x_{\lambda} \otimes_R y_i \mid \lambda \in \Lambda, i \in I\}$ is a generating set for $M \otimes_R N$. In particular, if *M* and *N* are finitely generated, so is $M \otimes_R N$.

We now discuss base-change. Let $\phi : R \longrightarrow S$ be a ring map. For an *R*-module *M*, we write $\phi^*M = S \otimes_R M$; for an *S*-module *N*, we write and ϕ_*N for the abelian group *N* thought of as an *R*-module through the map ϕ ('restriction of scalars'). If $\{x_{\lambda} \mid \lambda \in \Lambda\}$ is a generating set of *M* as an *R*-module, then $\{1 \otimes_R x_{\lambda} \mid \lambda \in \Lambda\}$ is a generating set of ϕ^*M as an *S*-module.

Let N be an R-module, and M and P S-modules. Then $M \otimes_R N$ has a natural S-module structure, with S acting on M; $\operatorname{Hom}_S(M, P)$ has an R-module structure through ϕ . Then there is a general version of this adjointness; see [Bou98, Chapter II, §4] for a proof (in an even more general set-up).

2.3. **Proposition**. Hom_S($M \otimes_R N, P$) \simeq Hom_R($N, \phi_* \operatorname{Hom}_S(M, P)$). In particular (with M = S) we have Hom_S(ϕ^*N, P) \simeq Hom_R(N, ϕ_*P).

Let $f : R \longrightarrow S$ and $g : R \longrightarrow T$ be ring maps. Then the *R*-module $S \otimes_R T$ is a ring in which multiplication is defined by $(s \otimes_R t)(s' \otimes_R t') = ss' \otimes_R tt'$ and extended *R*-linearly. The maps

$$g': S \longrightarrow S \otimes_R T, s \mapsto s \otimes_R 1$$
, and
 $f': T \longrightarrow S \otimes_R T, t \mapsto 1 \otimes_R t$

are ring homomorphisms giving a commutative diagram

$$T \xrightarrow{f'} S \otimes_R T$$

$$g \uparrow \qquad g' \downarrow \qquad g' \uparrow \qquad g' \downarrow \qquad g' \downarrow$$

of *R*-algebras. Moreover, if *A* is an *R*-algebra such that there are *R*-algebra maps $u: S \longrightarrow A$ and $v: T \longrightarrow A$, then there exists a unique *R*-algebra map $\mu: S \otimes_R T \longrightarrow A$ such that $u = \mu g'$ and $v = \mu f'$. This makes $S \otimes_R T$ the coproduct of *S* and *T* in the category of *R*-algebras. Note that this set-up commutes with localization in *R*.

We can write $T = R[{X_{\lambda} : \lambda \in \Lambda}]/\mathfrak{a}$ for a set ${X_{\lambda} : \lambda \in \Lambda}$ of variables and an ideal $\mathfrak{a} \in R[{X_{\lambda} : \lambda \in \Lambda}]$. Then we get an exact sequence

$$S \otimes_R \mathfrak{a} \longrightarrow S[\{X_{\lambda} : \lambda \in \Lambda\}] \longrightarrow S \otimes_R T \longrightarrow 0.$$

The image of $S \otimes_R \mathfrak{a} \longrightarrow S[\{X_{\lambda} : \lambda \in \Lambda\}]$ is the extension of \mathfrak{a} under the morphism $R[\{X_{\lambda} : \lambda \in \Lambda\}] \longrightarrow S[\{X_{\lambda} : \lambda \in \Lambda\}]$ induced by f.

Taking A = T = S, f = g, $u = v = id_S$, we get a map of

 $(2.4) \qquad \qquad \mu: S \otimes_R S \longrightarrow S, s \otimes s' \longmapsto ss'$

R-algebras. This map comes up often while studying properties of morphisms.

2.5. **Example**. Let $S = R[X_1, ..., X_n]$, where the X_i are variables. Then $S \otimes_R S \simeq R[X_1, ..., X_n, Y_1, ..., Y_n]$ where the Y_j are variables, disjoint from the X_i . The kernel of μ is the ideal $(X_1 - Y_1, ..., X_n - Y_n)$.

2.6. **Remark**. Spec(-) is contravariant functor from the category of rings to the category of schemes. Fix a ring *R*. Then the restriction of Spec(-) to the full subcategory of *R*-algebras is a functor to the category of schemes over Spec *R*. In fact, using Spec(-), we can identify the category of schemes over Spec *R* as the opposite category of the category of *R*-algebras. Hence Spec($S \otimes_R T$) is the fibred product Spec $S \times_{\text{Spec } R}$ Spec *T* [Har77, Section II.3].

3. PROJECTIVE AND FLAT MODULES

3.1. **Proposition**. Let P be an R-module. Then the following are equivalent:

(1) The functor $\operatorname{Hom}_R(P, -)$ is exact;

(2) for every surjective morphism $\alpha : M \longrightarrow N$ of R-modules, and every R-linear morphism $f : P \longrightarrow N$, there exists $g : P \longrightarrow M$ such that $f = \alpha g$, or equivalently, the morphism

 $\operatorname{Hom}_{R}(P, M) \longrightarrow \operatorname{Hom}_{R}(P, N), \phi \mapsto \alpha \phi$

is surjective;

(3) every surjective homomorphism $M \longrightarrow P$ splits;

(4) P is a direct summand of a free R-module;

We first note that a functor is exact if and only if it takes short exact sequences to short exact sequences.

Proof. (1) \iff (2): Assume (1). We have an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{R}(P, \ker \alpha) \longrightarrow \operatorname{Hom}_{R}(P, M) \longrightarrow \operatorname{Hom}_{R}(P, N) \longrightarrow 0$

from which we conclude (2). Conversely if (2) holds, then $\operatorname{Hom}_{R}(P, -)$ takes short exact sequences to short exact sequences, so (1) holds.

(2) \implies (3): Apply with P = N and $f = id_P$.

(3) \implies (4): There is a free module F with a surjective map $F \longrightarrow P$.

(4) \implies (2): Let *F* be a free module with *P* as a direct summand. Write $F = P \oplus P'$. Since morphism

$$\operatorname{Hom}_{R}(F, M) \longrightarrow \operatorname{Hom}_{R}(F, N)$$

splits the direct sum

$$(\operatorname{Hom}_{R}(P,M)\longrightarrow \operatorname{Hom}_{R}(P,N))\oplus (\operatorname{Hom}_{R}(P',M)\longrightarrow \operatorname{Hom}_{R}(P',N))$$

it suffices to show that

$$\operatorname{Hom}_{R}(F, M) \longrightarrow \operatorname{Hom}_{R}(F, N)$$

is surjective. Hence we may assume that P is free, with basis $\{e_{\lambda}, \lambda \in \Lambda\}$. Let x_{λ} be a pre-image of $f(e_{\lambda})$. Define $g(e_{\lambda}) = x_{\lambda}$.

3.2. **Definition**. An *R*-module P is said to be *projective* if it satisfies the equivalent conditions of the above proposition.

3.3. **Proposition**. Let P be a finitely generated R-module. Then P is projective if and only if $P_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module for every $\mathfrak{p} \in \operatorname{Spec} R$.

Proof. It follows from Proposition 3.1 that an *R*-module *M* is projective if and only if M_p is a projective R_p -module for every $p \in \text{Spec } R$. Hence it suffices to show that a finitely generated projective module over a local ring is free. Without loss of generality we may assume that (R, \mathfrak{m}, \Bbbk) is a local ring. Let $t = \operatorname{rk}_{\Bbbk} P/\mathfrak{m} P$. Hence there exists a split exact sequence

 $0 \longrightarrow P' \longrightarrow R^t \longrightarrow P \longrightarrow 0.$

We want to show that P' = 0. This follows from observing that

$$t = \operatorname{rk}_{\Bbbk} R^{t} / \mathfrak{m} R^{t} = \operatorname{rk}_{\Bbbk} P / \mathfrak{m} P + \operatorname{rk}_{\Bbbk} P' / \mathfrak{m} P' = t + \operatorname{rk}_{\Bbbk} P' / \mathfrak{m} P'.$$

Let N be an R-module. The functor $\operatorname{Hom}_R(-, N)$ is not exact. However, if $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ is an exact sequence with M_3 projective, it splits, and, therefore, the sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(M_{3}, N) \longrightarrow \operatorname{Hom}_{R}(M_{2}, N) \longrightarrow \operatorname{Hom}_{R}(M_{1}, N) \longrightarrow 0$$

is split exact. Every R-module M has a projective resolution, i.e., a complex

$$P_{\bullet}: \cdots \longrightarrow P_2 \longrightarrow P_1 \longrightarrow P_0 \longrightarrow 0$$

that is exact everywhere except at the 0th stage, where the homology is isomorphic to M. Now any exact sequence $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ of *R*-modules, we can find projective resolutions P, P' and P'' of M_1 , M_2 and M_3 respectively that fit into a double complex

Applying $\operatorname{Hom}_{R}(-, N)$ yields the double complex

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{i+1}'', N) \longrightarrow \operatorname{Hom}_{R}(P_{i+1}', N) \longrightarrow \operatorname{Hom}_{R}(P_{i+1}, N) \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{i}'', N) \longrightarrow \operatorname{Hom}_{R}(P_{i}', N) \longrightarrow \operatorname{Hom}_{R}(P_{i}, N) \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{i-1}'', N) \longrightarrow \operatorname{Hom}_{R}(P_{i-1}', N) \longrightarrow \operatorname{Hom}_{R}(P_{i-1}, N) \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Hom}_{R}(P_{i-1}', N) \longrightarrow \operatorname{Hom}_{R}(P_{i-1}', N) \longrightarrow \operatorname{Hom}_{R}(P_{i-1}, N) \longrightarrow 0$$

in which the rows are (split) exact, by the earlier remark. Now apply the snake lemma to conclude that there exists an exact sequence

We note that $H_0(Hom_R(P_{\bullet}, N)) \simeq Hom_R(M_1, N)$, and similarly for M_2 and M_3 . Hence this construction "repairs" the lack of surjectivity at the right end of the exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(M_{3}, N) \longrightarrow \operatorname{Hom}_{R}(M_{2}, N) \longrightarrow \operatorname{Hom}_{R}(M_{1}, N).$$

We write $\operatorname{Ext}_{R}^{i}(M_{1}, N) = \operatorname{H}_{i}(\operatorname{Hom}_{R}(P_{\bullet}, N))$, and similarly for M_{2} and M_{3} . One has to check that this is independent of the choice of the choice of projective resolutions. We summarise this discussion by saying that projectives are *acyclic* for the functor $\operatorname{Hom}_{R}(-, N)$ and that the its *higher derived functors* can be defined using projective resolutions.

We now consider the functor $- \otimes_R N$. Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Apply $N \otimes_R -$. We now "repair" the lack of injectivity at the left end of the exact sequence

$$N \otimes_R M_1 \longrightarrow N \otimes_R M_2 \longrightarrow N \otimes_R M_3 \longrightarrow 0$$

in a way similar to the earlier situation. If M_3 is projective, then the sequence $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ is split, so

$$0 \longrightarrow N \otimes_R M_1 \longrightarrow N \otimes_R M_2 \longrightarrow N \otimes_R M_3 \longrightarrow 0$$

is a (split) exact sequence. By taking projective resolutions, applying the functor and taking homology, we get, using the snake lemma, an exact sequence

Since $-\otimes_R N$ is right-exact, we see that $H_0(P_{\bullet}\otimes_R N) \simeq M \otimes_R N$. Hence we have "repaired" the lack of injectivity at the left end of the exact sequence. We write $\operatorname{Tor}_i^R(M_1, N) = H_i(P_{\bullet}\otimes_R N)$, and similarly for M_2 and M_3 . One has to check that this is independent of the choice of the choice of projective resolutions. We summarise this discussion by saying that projectives are *acyclic* for the functor $(-\otimes_R N)$ and that the its higher derived functors can be defined using projective resolutions.

3.4. **Definition**. An *R*-module *M* is said to be *flat* if $M \otimes_R -$ is an exact functor.

Note that M is flat if and only if for every injective R-module map $N \longrightarrow N'$, the map $M \otimes_R N \longrightarrow M \otimes_R N'$ is injective. R is flat. For a family $M_{\lambda}, \lambda \in \Lambda$ of R-modules, $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is flat if and only if M_{λ} is flat for every $\lambda \in \Lambda$. Hence projective modules are flat.

3.5. **Proposition**. An *R*-module *M* is flat if and only if $\operatorname{Tor}_{1}^{R}(M, -) = 0$.

Proof. Let

$$0 \longrightarrow N \longrightarrow N' \longrightarrow N'' \longrightarrow 0$$

be an exact sequence. Since $Tor_1^R(M, N') = 0$, we see that

 $0 \longrightarrow M \otimes_R N \longrightarrow M \otimes_R N' \longrightarrow M \otimes_R N'' \longrightarrow 0$

is exact. Conversely, let N be an R-module and $\alpha : P \longrightarrow N$ be a surjective R-module map with P a projective R-module. Then we have an exact sequence

$$\longrightarrow \operatorname{Tor}_{1}^{R}(M,P) \longrightarrow \operatorname{Tor}_{1}^{R}(M,N) \longrightarrow M \otimes_{R} (\ker \alpha) \longrightarrow M \otimes_{R} P \longrightarrow M \otimes_{R} N \longrightarrow 0$$

Now $\operatorname{Tor}_1^R(M, P) = 0$, since *P* is projective. By hypothesis the map $M \otimes_R (\ker \alpha) \longrightarrow M \otimes_R P$ is injective, so $\operatorname{Tor}_1^R(M, N) = 0$.

4. INTEGRAL EXTENSIONS

Let $R \subseteq S$ be an integral extension. Suppose that S is a field. Let $r \in R$. Let $s \in S$ be the inverse of r in S. We then have an equation

$$s^n + r_1 s^{n-1} + \dots + r_n = 0$$

with the r_i in R. Multiplying by r^{n-1} , we conclude that

S

$$s = s^n r^{n-1} = -(r_1 + \dots + r_n r^{n-1}) \in R$$

so R is a field. Conversely suppose that R is a field and that S is a domain. Let $s \in S$. Consider an integral equation

$$s^{n} + r_{1}s^{n-1} + \dots + r_{n} = 0$$

$$-\frac{1}{r_n}(s^{n-1}+r_1s^{n-2}+\cdots+r_{n-1})$$

is the inverse of s. Hence S is field.

Let $R \longrightarrow S$ be a ring map and $\mathfrak{p} \in \operatorname{Spec} R$. A prime ideal $\mathfrak{q} \in \operatorname{Spec} S$ is said to *lie over* \mathfrak{p} if $\mathfrak{q} \cap R = \mathfrak{p}$.

4.1. **Remark**. Let \mathfrak{p} be a prime ideal of R. Write $\kappa(\mathfrak{p}) = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. Then \mathfrak{p} corresponds to the point Spec $\kappa(\mathfrak{p}) \longrightarrow$ Spec R. The fibre over \mathfrak{p} is Spec($\kappa(\mathfrak{p}) \otimes_R S$). Let \mathfrak{q} be a prime ideal of S. Suppose that \mathfrak{q} lies over \mathfrak{p} . Then $\mathfrak{p}S \subseteq \mathfrak{q}$ and \mathfrak{q} is disjoint from the image of $R \setminus \mathfrak{p}$ inside S; in other words, $\mathfrak{q}(\kappa(\mathfrak{p}) \otimes_R S)$ is a prime ideal of $\kappa(\mathfrak{p}) \otimes_R S$. Conversely, if $\mathfrak{q}(\kappa(\mathfrak{p}) \otimes_R S)$ is a prime ideal of $\kappa(\mathfrak{p}) \otimes_R S$, then $\mathfrak{p}S \subseteq \mathfrak{q}$, so $\mathfrak{p} \subseteq \mathfrak{q} \cup R$ and \mathfrak{q} is disjoint from the image of the image of $R \setminus \mathfrak{p}$ inside S, so $\mathfrak{p} \supseteq \mathfrak{q} \cup R$, so \mathfrak{q} lies over \mathfrak{p} .

Now let $R \subseteq S$ be any integral extension. Let \mathfrak{p} be a maximal ideal of Spec R and $\mathfrak{q} \in$ Spec S lie over \mathfrak{p} . Then the extension $R/\mathfrak{p} \longrightarrow S/\mathfrak{q}$ is integral, so by the earlier observation \mathfrak{q} is a maximal ideal of S. Conversely if \mathfrak{p} is a prime ideal that is not maximal, then \mathfrak{q} is not maximal. Note that $R_\mathfrak{p} \longrightarrow (R \setminus \mathfrak{p})^{-1}S$ is integral. Applying the above observation to this extension, we see that there cannot be any containment relation between two S-ideal $\mathfrak{q},\mathfrak{q}'$ lying over \mathfrak{p} . The same argument shows that every maximal ideal of $(R \setminus \mathfrak{p})^{-1}S$ lies over \mathfrak{p} . In other words, the map Spec $S \longrightarrow$ Spec R is surjective.

4.2. **Theorem** (Going-up). Let $R \subseteq S$ be an integral extension and $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ be prime ideals of R. Let \mathfrak{q}_1 be a prime ideal of S lying over \mathfrak{p}_1 . Then there exists a prime ideal \mathfrak{q}_2 of S lying over \mathfrak{p}_2 .

Proof. $R/\mathfrak{p}_1 \subseteq S/\mathfrak{q}_1$ is an integral extension. There exists a prime ideal of S/\mathfrak{q}_1 lying over $\mathfrak{p}_2/\mathfrak{p}_1$; lift it to get \mathfrak{q}_1 .

4.3. Corollary. Let $R \subseteq S$ be an integral extension. Then dim $R = \dim S$. For any S-ideal J, $\operatorname{ht} J \leq \operatorname{ht}(J \cap R)$.

Proof. For any chain of prime ideals $q_1 \subsetneq q_2 \subsetneq \cdots$ of *S*, the prime ideals $q_1 \cap R \subsetneq q_2 \cap R \subsetneq \cdots$ of *R* are distinct, so dim $S \le \dim R$. The goind-up theorem implies that dim $S \ge \dim R$. Suppose first that *J* is a prime ideal. Choose a chain $q_1 \subsetneq q_2 \subsetneq \cdots \subseteq J$ and apply the above argument. For general *J*, note that ht $J = \inf_{q \supseteq J} ht q$.

4.4. **Theorem** (Going-down). Let $R \subseteq S$ be an integral extension, with R a normal domain, and S a domain. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2$ be prime ideals of R. Let \mathfrak{q}_2 be a prime ideal of S lying over \mathfrak{p}_2 . Then there exists a prime ideal \mathfrak{q}_1 of S that lies over \mathfrak{p}_1 .

4.5. **Lemma**. Let R be a normal domain and K its field of fractions. Let L be a normal extension of K and $G = Aut_K(L)$. Let S be the integral closure of R in L. Then for all $\mathfrak{p} \in Spec R$, G acts transitively on the set of prime ideals of S lying over \mathfrak{p} .

Proof. We will prove this for *finite* G; see [Ser00, III.A, §3] or [Mat89, Theorem 9.3] for the general case. Let $\mathfrak{p} \in \operatorname{Spec} R$. Let $\mathfrak{q}, \mathfrak{q}'$ be prime ideals of S lying over \mathfrak{p} . Note that for every $g \in G$, $g\mathfrak{q}$ is a prime ideal of S, lying over \mathfrak{p} . We want to show that there exists $g \in G$ such that $g\mathfrak{q} = \mathfrak{q}'$. By remarks above, it suffices to show that there exists $g \in G$ such that $\mathfrak{q}' \subseteq g\mathfrak{q}$. By the prime avoidance lemma, it suffices to show that $\mathfrak{q}' \subseteq \bigcup_{g \in G} g\mathfrak{q}$. Let $x \in \mathfrak{q}'$. Then $y := \prod_{g \in G} gx \in L$ and is fixed by G. Since L/K is normal, L^G/K is a purely inseparable extension; so there exists $q \in \mathbb{N}$ such that $y^q \in K$. Hence $y^q \in K \cap S = R$ (since R is integrally closed). Moreover $y^q \in \mathfrak{q}' \cap R = \mathfrak{p} \subseteq \mathfrak{q}$. Therefore there exists $g \in G$ such that $gx \in \mathfrak{q}$, so $x \in g^{-1}\mathfrak{q}$. *Proof of the going-down theorem.* Let *K* and *L*, respectively, be the fraction fields of *R* and *S*. *L* is an algebraic extension of *K*. Let *L'* be a normal extension of *K* containing *L* and let *S'* be the integral closure of *R* in *L'*. Let \mathfrak{q}'_2 be a prime ideal of *S'* lying over \mathfrak{q}_2 . Let \mathfrak{q}'_1 be a prime ideal of *S'* lying over \mathfrak{p}_1 . By the going-up theorem, there exists a prime *S'*-ideal \mathfrak{q}''_2 lying over \mathfrak{p}_2 and containing \mathfrak{q}'_1 . Let $G = \operatorname{Aut}_K(L')$. There exists $g \in G$ such that $g\mathfrak{q}''_2 = \mathfrak{q}'_2$. Then $g\mathfrak{q}'_1 \subseteq \mathfrak{q}'_2$ and $g\mathfrak{q}'_1 \cap R = \mathfrak{p}_1$. Define $\mathfrak{q}_1 = g\mathfrak{q}'_1 \cap S$.

5. Normal domains

A *normal domain* is a noetherian domain that is integrally closed in its field of fractions.

5.1. **Proposition** ([Ser00, Chapter III, Part C, $\S1$]). Let R be a noetherian domain. Then R is normal if and only if the following two conditions are satisfied:

(1) For every prime R-ideal \mathfrak{p} of height 1, $R_{\mathfrak{p}}$ is a DVR.

(2) For every $r \neq 0 \in R$ and for every $\mathfrak{p} \in \operatorname{Ass} R/(r)$, ht $\mathfrak{p} = 1$.

In many applications, we would like the following to be true: Let R be a noetherian domain with field of fractions K. Let L/K be an extension of fields, and S the integral closure of R in L; then the map $R \longrightarrow S$ is of finite-type (equivalently, since S is integral over R, finite, i.e., S is a finitely generated R-module). However, this is not true in general; we look at two situations where this holds for *normal* R.

5.2. **Proposition**. Let R be a normal domain with field of fractions K. Let L be a finite separable field extension of K. Then the integral closure of R in L is a finitely generated R-module.

For a proof see [Ser00, Chapter III, Part C, §3], [Eis95, Proposition 13.14] or [HS06, Theorem 3.1.3].

5.3. **Proposition**. Let \Bbbk be a field, R a domain that is finitely generated as a \Bbbk -algebra, K its field of fractions, and L a finite extension field of K. Then the integral closure of R in L is a finitely generated R-module.

(See [Ser00, Chapter III, Part D §4] or [Eis95, Corollary 13.13].)

Proof. Step 1: Let $A = \Bbbk[x_1, \ldots, x_n]$ be a Noether normalization of *R*. We have

If S is finitely generated A-module, then it is a finitely generated R-module. Hence, replacing R by A we may assume that $R = \Bbbk[x_1, \ldots, x_n]$ and $K = \Bbbk(x_1, \ldots, x_n)$.

Step 2: Let L'/L be a extension so that L'/k is normal and finite. Let S' be the integral closure of S in L'; it is also the integral closure of R in L'. We have

If S' is a finite generated R-module, then so is S. Hence, without loss of generality, L/K is normal.

<u>Step 3</u>: Let $G = \operatorname{Aut}_K(L)$. Then L^G/K is a purely inseparable extension. Let S_1 be the integral closure of R in L^G . We have

 L/L^G is Galois, so it is separable; note that S is the integral closure of S' in L. By the earlier proposition S is a finitely generated S'-module. Hence, if S' is a finitely generated R-module, S is a finitely generated R-module. Therefore replacing L by L^G , we may assume that L/K is purely inseparable.

<u>Step 4</u>: Let $y_1, \ldots, y_m \in L$ be a generating set for L as a K-algebra. There exists power q of the characteristic exponent of \Bbbk such that $y_i^q \in K$ for every $1 \le i \le m$. Hence for each $1 \le i \le m$, y_i^q is a rational function in $\Bbbk(x_1, \ldots, x_n)$. Let $c_1, \ldots, c_r \in \Bbbk$ be the set of coeffecients of these rational functions. Let $\Bbbk' = \Bbbk(c_1^{\frac{1}{q}}, \cdots, c_m^{\frac{1}{q}})$. Then $y_i \in \Bbbk'(x_1^{\frac{1}{q}}, \cdots, x_n^{\frac{1}{q}})$ for each i, so $L \subseteq \Bbbk'(x_1^{\frac{1}{q}}, \cdots, x_n^{\frac{1}{q}})$. Let S_2 be integral closure of R in $\Bbbk'(x_1^{\frac{1}{q}}, \cdots, x_n^{\frac{1}{q}})$. Thus we have

If S_2 is a finitely generated *R*-module, then so is *S*; hence, without loss of generality, $L = k'(x_1^{\frac{1}{q}}, \dots, x_n^{\frac{1}{q}}).$

 $L = \mathbb{k}'(x_1^{\frac{1}{q}}, \dots, x_n^{\frac{1}{q}}).$ Step 5: Let $f \in L$ be integral over R. Then $f^q \in K$ is integral over R, so $f^q \in R$. Hence $f \in \mathbb{k}'[x_1^{\frac{1}{q}}, \dots, x_n^{\frac{1}{q}}].$ Conversely, every element of $\mathbb{k}'[x_1^{\frac{1}{q}}, \dots, x_n^{\frac{1}{q}}]$ is integral over R. Hence $S = \mathbb{k}'[x_1^{\frac{1}{q}}, \dots, x_n^{\frac{1}{q}}]$ which is a finitely generated (free) R-module.

6. DERIVATIONS, KAHLER DIFFERENTIALS

Primary references for this section are [Mat89, § 25], [Kun86, § 1] and [Eis95, Chapter 16].

6.1. **Definition**. Let \Bbbk be a ring, R a \Bbbk -algebra and M an R-module. A \Bbbk -derivation of R in M (or a derivation of R in M over \Bbbk) is a \Bbbk -linear map $d : R \longrightarrow M$ such that d(ab) = ad(b) + bd(a). When $\& = \mathbb{Z}$, we refer to such maps as derivations of R in M. We write $\text{Der}_{\Bbbk}(R, M)$ for the set of \Bbbk -derivations of R in M and denote $\text{Der}_{\mathbb{Z}}(R, M)$ by Der(R, M). When M = R, we write $\text{Der}_{\Bbbk}(R)$ and Der(R).

6.2. **Example**. Let $U \subseteq \mathbb{R}^n$ be an open subset and *R* the ring of C^{∞} -functions on *U*. The partial differential operators

$$\frac{\partial}{\partial x_i}: R \longrightarrow R$$

are \mathbb{R} -derivations of R.

6.3. **Example**. Let $U \subseteq \mathbb{R}^n$ be an open subset and R the ring of C^{∞} -functions on U. Fix $x \in U$. Let $\mathfrak{m}_x = \{f \in R \mid f(x) = 0\}$. It is a maximal ideal of R and $R/\mathfrak{m}_x \simeq \mathbb{R}$. Through this, we can think of \mathbb{R} as an R-module. The maps

$$d_i: R \longrightarrow \mathbb{R}, f \mapsto \frac{\partial f}{\partial x_i}(x)$$

are \mathbb{R} -derivations of R in \mathbb{R} .

6.4. **Example**. Let $R = k[x_1, ..., x_n]$ a polynomial ring over k in *n* variables. We can define derivatives formally by setting

$$\frac{\partial}{\partial x_i}(x_1^{e_1}\cdots x_n^{e_n})=e_ix_1^{e_1}\cdots x_i^{e_i-1}\cdots x_n^{e_n},$$

and extending it k-linearly to R. Let $M = \bigoplus_{i=1}^{n} R dx_i$, where dx_1, \ldots, dx_n are symbols. The map

$$\mathrm{d}: R \longrightarrow M, f \mapsto (\frac{\partial f}{\partial x_i}) \mathrm{d} x_i$$

is a k-derivation of R in M. This is a formal way of defining differentials of (polynomial) functions. Similar arguments can be carried over to $k[[x_1, \ldots, x_n]]$ also.

6.5. **Example**. Consider the map $\mu : R \otimes_{\mathbb{k}} R \longrightarrow R$ from (2.4). Write $I = \ker \mu$. For every $a \in R$, $a \otimes 1 - 1 \otimes a \in I$. One can show that I is the $(R \otimes_{\mathbb{k}} R)$ -ideal generated by $\{a \otimes 1 - 1 \otimes a \mid a \in R\}$. On $R \otimes_{\mathbb{k}} R$, there are two R-module structures (from the ring maps $a \mapsto a \otimes 1$ and $a \mapsto 1 \otimes a$), and so on I. However, on I/I^2 , these structures agree, since

$$(r \otimes 1 - 1 \otimes r)(a \otimes 1 - 1 \otimes a) \in I^2.$$

We can define a k-derivation $\delta : R \longrightarrow I/I^2, a \mapsto (a \otimes 1 - 1 \otimes a) \mod I^2$.

6.6. **Example**. Let *F* be the free *R*-module generated by the set $\{dr \mid r \in R\}$ and *N* the *R*-submodule generated by

$$\{\mathrm{d}(rr')-r\mathrm{d}r'-r'\mathrm{d}r\mid r,r'\in R\}\cup\{\mathrm{d}(ar+a'r')-a\mathrm{d}r-a'\mathrm{d}r'\mid r,r'\in R,a,a'\in\Bbbk\}.$$

Let M = F/N. The map $d : R \longrightarrow M$, $r \mapsto dr$ is a k-derivation of R in M. The pair (M, d) has the following universal property: For every R-module M' and every $d' \in \text{Der}_{\Bbbk}(R, M')$, there exists a unique R-linear map $f : M \longrightarrow M'$ such that d' = f d. Indeed, there exists a

unique *R*-linear map $\tilde{f}: F \longrightarrow M'$, $dr \mapsto d'r$. Since d' is a k-derivation, $N \subseteq \ker \tilde{f}$. Thus we get the unique *R*-linear map $f: M \longrightarrow M'$ such that d' = fd.

6.7. **Definition**. The module M in Example 6.6 is called the *module of Kähler differentials* of R over \Bbbk and is denoted $\Omega_{R/\Bbbk}$. The map $d : R \longrightarrow \Omega_{R/\Bbbk}$ is called the *universal* \Bbbk -derivation of R.

6.8. **Remark**. Let F and N be as in Example 6.6. Let N' be the R-submodule of R generated by

$$\{\mathrm{d}(rr') - r\mathrm{d}r' - r'\mathrm{d}r \mid r, r' \in R\} \cup \{\mathrm{d}(r+r') - \mathrm{d}r - \mathrm{d}r' \mid r, r' \in R\} \cup \{\mathrm{d}a \mid a \in \Bbbk\}.$$

Note that, for every $a \in k$, $da = d(a \cdot 1 + 0 \cdot 0) - ad1 - 0d0 \in N$, so $N' \subseteq N$. Conversely, let $a, a' \in k$ and $r, r' \in R$. Then $d(ar + a'r') - d(ar) - d(a'r') \in N'$ and $d(ar) - adr = d(ar) - adr - rda + rda \in N'$; hence $d(ar + a'r') - adr - a'dr' = d(ar + a'r') - d(ar) - d(a'r') + d(ar) + d(a'r') - adr - a'dr' \in N'$. Therefore N = N'.

The map $M \longrightarrow \text{Der}_{\Bbbk}(R, M)$ is a covariant left-exact functor from *R*-modules to *R*-modules. We have established that $\text{Der}_{\Bbbk}(R, -) = \text{Hom}_{R}(\Omega_{R/\Bbbk}, -)$. (One says that $\Omega_{R/\Bbbk}$ represents the functor $\text{Der}_{\Bbbk}(R, -)$.)

6.9. **Proposition**. Let $I = \ker (\mu : R \otimes_{\mathbb{k}} R \longrightarrow R)$ and $\delta : R \longrightarrow I/I^2, r \mapsto (r \otimes 1 - 1 \otimes r) \mod I^2$. Then for every R-module M and every $e \in \operatorname{Der}_{\mathbb{k}}(R, M)$, there is a unique R-linear map $\tilde{e} : I/I^2 \longrightarrow M$ such that $e = \tilde{e}\delta$. In particular, there is a unique isomorphism $\phi : \Omega_{R/\mathbb{k}} \longrightarrow I/I^2$ such that such that the diagram

commutes (where e' is the unique R-linear map $\Omega_{R/\Bbbk} \longrightarrow M$).

Proof. For now, assume the assertion about the existence of the unique map \tilde{e} . Applying it to the derivation $d: R \longrightarrow \Omega_{R/\Bbbk}$, we get a unique *R*-linear map $\psi: I/I^2 \longrightarrow \Omega_{R/\Bbbk}$ such that $d = \psi \delta$. On the other hand, from the universal property of the pair $(\Omega_{R/\Bbbk}, d)$, we get a map $\phi: \Omega_{R/\Bbbk} \longrightarrow I/I^2$ such that $\phi d = \delta$. Hence $\psi \phi d = d$ and $\phi \psi \delta = \delta$. Since $\Omega_{R/\Bbbk}$ is generated by $\{dr \mid r \in R\}$, we see that $\psi \phi = id_{\Omega_{R/\Bbbk}}$. Similarly, since I/I^2 is generated by $\{\delta r \mid r \in R\}$, we see that $\phi \psi = id_{I/I^2}$. This proves the existence of the unique isomorphism ϕ .

Continuing with our assumption of the existence of \tilde{e} , we need to show that $e' = \tilde{e}\phi$. It suffices to show that $e'dr = \tilde{e}\phi dr$ for every $r \in R$. This indeed is true: $e'dr = er = \tilde{e}\delta r = \tilde{e}\phi dr$.

Now to prove the existence of \tilde{e} . Let N be an R-module Let $R \ltimes N$ be the R-module $R \oplus N$ with multiplication (r, x)(r', x') := (rr, rx' + r'x). There are two natural \Bbbk -algebra maps: $i : R \longrightarrow R \ltimes N, r \mapsto (r, 0)$ which is injective and $\pi : R \ltimes N \longrightarrow R, (r, x) \mapsto r$, which is surjective. Now let $f \in \text{Der}_{\Bbbk}(R, N)$. The map $\hat{f} : R \longrightarrow R \ltimes N, r \mapsto (r, f(r))$ is a map of \Bbbk -algebras.

Let $\hat{e} : R \longrightarrow R \ltimes M$ be the k-algebra map associated to e. The universal property of $R \otimes_k R$ gives a morphism

$$h: R \otimes_{\Bbbk} R \longrightarrow R \ltimes M, r \otimes r' \mapsto \hat{e}(r)i(r') = (r, er)(r', 0) = (rr', r'er).$$

Note that $h(r \otimes 1 - 1 \otimes r) = (0, er)$, so $h(I^2) = 0$. Hence \hat{e} induces an *R*-linear mapping $\tilde{e} : I/I^2 \longrightarrow M, \tilde{e}(r \otimes 1 - 1 \otimes r) = er$. This is unique since *I* is generated by $\{r \otimes 1 - 1 \otimes r \mid r \in R\}$.

For the next two results, we follow the proof in [Eis95, Chapter 16].

6.10. **Theorem** (First fundamental exact sequence). Let $\Bbbk \longrightarrow R \longrightarrow S$ be ring maps. Then there exists an exact sequence

$$S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk} \longrightarrow \Omega_{S/R} \longrightarrow 0$$

of S-modules, where the maps are given by $s \otimes d_{R/\Bbbk}r \mapsto sd_{S/\Bbbk}r$ (thinking of r as its image in S) and $d_{S/\Bbbk}s \mapsto d_{S/R}s$.

Proof. It follows from Remark 6.8 that the map

$$\Omega_{S/\Bbbk} \longrightarrow \Omega_{S/R}, \quad \mathrm{d}_{S/\Bbbk} s \mapsto \mathrm{d}_{S/R} s$$

is surjective and that its kernel is generated by $\{d_{S/\Bbbk}r \mid r \in R\}$. This is precisely the image of the map

$$S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk} \quad s \otimes \mathrm{d}_{R/\Bbbk} r \mapsto s \mathrm{d}_{S/\Bbbk} r. \qquad \Box$$

6.11. **Theorem** (Second fundamental exact sequence). Let R be a k-algebra and I an ideal of R. Write S = R/I. Then there exists an exact sequence

$$I/I^2 \longrightarrow S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk} \longrightarrow 0$$

of S-modules, where the maps are $r \mod I^2 \mapsto 1 \otimes_R d_{R/\Bbbk}r$ and $s \otimes d_{R/\Bbbk}r \mapsto sd_{S/\Bbbk}r$ (thinking of r as its image in S).

The map $S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk}$ is the same from the first fundamental exact sequence. It is surjective, since $\Omega_{S/R} = 0$ as $S \otimes_R S \longrightarrow S$ is an isomorphism. The content of this theorem is that its kernel is given by I/I^2 .

Proof. The map $S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk}$, $s \otimes d_{R/\Bbbk}r \mapsto sd_{S/\Bbbk}r$ is the same as the map

$$\frac{\Omega_{R/\Bbbk}}{I\Omega_{R/\Bbbk}}\longrightarrow \Omega_{S/\Bbbk},$$

which is induced from the map $\Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk}$, $d_{R/\Bbbk}r \mapsto d_{S/\Bbbk}r$. Consider the map

$$\bigoplus_{r \in R} R \mathrm{d}_{R/\Bbbk} r \longrightarrow \bigoplus_{\overline{r} \in S} S \mathrm{d}_{S/\Bbbk} \overline{r}, \quad \mathrm{d}_{R/\Bbbk} r \mapsto \mathrm{d}_{S/\Bbbk} \overline{r}$$

where by \overline{r} , we mean the image of r in S. The kernel of this map is

$$\left(\bigoplus_{r\in R} I \mathrm{d}_{R/\Bbbk} r\right) + R\{\mathrm{d}_{R/\Bbbk} r \mid r \in I\}.$$

Hence, the kernel of the map $\Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk}$, $d_{R/\Bbbk}r \mapsto d_{S/\Bbbk}r$ is $I\Omega_{R/\Bbbk} + R\{d_{R/\Bbbk}r \mid r \in I\}$. This shows that the kernel of $S \otimes_R \Omega_{R/\Bbbk} \longrightarrow \Omega_{S/\Bbbk}$, $s \otimes d_{R/\Bbbk}r \mapsto sd_{S/\Bbbk}r$ is generated by $\{1 \otimes d_{R/\Bbbk}r \mid r \in I\}$. Hence it suffices to justify why the map

$$I/I^2 \longrightarrow S \otimes_R \Omega_{R/\Bbbk}, \quad r \mod I^2 \mapsto 1 \otimes_R \mathrm{d}_{R/\Bbbk}r$$

is S-linear. Let $a \in R$ and $r \in I$. Then $1 \otimes a \mathrm{d}_{R/\Bbbk} r + 1 \otimes r \mathrm{d}_{R/\Bbbk} a = a(1 \otimes \mathrm{d}_{R/\Bbbk} r) + 0 \otimes \mathrm{d}_{R/\Bbbk} a$, so $a(r \mod I^2) \mapsto a(1 \otimes \mathrm{d}_{R/\Bbbk} r)$. \Box

6.12. **Example**. Let $R = \Bbbk[x_1, \ldots, x_n]$ be a polynomial ring in the variables x_1, \ldots, x_n and $I \subseteq R$ an *R*-ideal, generated by $\{f_1, \ldots, f_m\}$. Write S = R/I. Then $S \otimes_R \Omega_{R/\Bbbk} = \bigoplus_{i=1}^n Sdx_i$ is a free *S*-module of rank *n*. The image of $I/I^2 \longrightarrow S \otimes_R \Omega_{R/\Bbbk}$ is the submodule $\{1 \otimes \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \mid f \in I\}$. which is generated (as an *S*-module) by $\{1 \otimes \sum_{i=1}^n \frac{\partial f_j}{\partial x_i} dx_i \mid 1 \le j \le m\}$. Let

$$J := \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_2}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_1} \\ \frac{\partial f_1}{\partial x_2} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \frac{\partial f_2}{\partial x_n} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

be the *jacobian matrix* of f_1, \ldots, f_m with respect to x_1, \ldots, x_n . Let $\bigoplus_{j=1}^m S\xi_j$ be a free module with basis ξ_1, \ldots, ξ_m and let $\bigoplus_{j=1}^m S\xi_j \longrightarrow I/I^2$ be the surjective map with $\xi_j \mapsto f_i \mod I^2$. Thinking of J as a matrix over S, we have the following diagram:

in which the horizontal part is exact and the triangle commutes.

6.13. **Proposition**. Let \Bbbk be a field and L/\Bbbk an algebraic field extension. Let $K \subseteq L$ be the subfield of elements that are seperable over \Bbbk . Then for all L-modules M and for all \Bbbk -derivations $d: L \longrightarrow M, K \subseteq \ker d$. In particular if L/\Bbbk is seperable, then every \Bbbk -derivation of L is trivial.

Proof. Let $a \in K$. Let $x^n + a_1 x^{n-1} + \cdots + a_n \in \Bbbk[x]$ be the minimal polynomial of a over \Bbbk . Then

$$0 = d(0) = (na^{n} + (n-1)a_{1}a^{n-2} + \dots + a_{n-1})da = f'(a)da$$

Since *a* is separable over \Bbbk , $f'(a) \neq 0$, so da = 0.

6.14. Corollary. With notation as in Proposition 6.13, $\Omega_{K/\Bbbk} = 0$ and $\Omega_{L/\Bbbk} = \Omega_{L/K}$.

Proof. It follows immediately from Proposition 6.13 that $\Omega_{K/\Bbbk} = 0$. The other assertion follows from the first fundamental exact sequence (Theorem 6.10).

7. Auslander-Buchsbaum Paper, §2

In this section, R is an k-algebra, and we will denote by R^e the k-algebra $R \otimes_k R$ with the structure map $a \mapsto a \otimes 1$. Write μ for the k-algebra map $R^e \longrightarrow R, r \otimes r' \mapsto rr'$, I for ker μ and $\mathfrak{a} = \operatorname{Ann}_{R^e}(I)$.

For a prime ideal \mathfrak{p} of a ring \Bbbk , we denote $\Bbbk_{\mathfrak{p}}/\mathfrak{p}\Bbbk_{\mathfrak{p}}$ by $\kappa(\mathfrak{p})$.

7.1. **Definition**. Let \Bbbk be a field. Then *R* is said to be *separable* if it is a finite-dimensional \Bbbk -algebra that is a product of separable field extensions of \Bbbk .

7.2. **Definition**. A prime ideal q of *R* is *unramified* if, with $\mathfrak{p} = \mathfrak{q} \cap \Bbbk$, $\mathfrak{p}S_{\mathfrak{q}} = \mathfrak{q}S_{\mathfrak{q}}$ and $\kappa(\mathfrak{q})$ is a (finite) separable field extension of $\kappa(\mathfrak{p})$. We say that the map $\Bbbk \longrightarrow R$ is *unramified* (or R/\Bbbk is *unramified*, or, merely, *R* is *unramified*, if no confusion is likely to occur) if every

prime ideal of R is unramified and over every prime k-ideal, only finitely many prime R-ideals lie over.

The goal of this section is to understand the proof of the following theorem.

7.3. **Theorem** ([AB59, Theorem 2.5]). Suppose that R is a noetherian ring and that I is a finitely generated ideal of R^e . Then the following are equivalent:

(1) R is a projective R^e -module;

- (2) the map $\Bbbk \longrightarrow R$ is unramified;
- (3) every maximal ideal of R is unramified;
- (4) $\operatorname{Der}_{\Bbbk}(R, M) = 0$ for every finitely generated R-module M.

7.4. **Example**. Suppose R/\Bbbk is an algebraic extension of fields. Then for the statements in Theorem 7.3(2) and (3) to hold, it is necessary and sufficient that R/\Bbbk is a separable extension. By Proposition 6.13, the statement of Theorem 7.3(4) holds. Conversely, suppose that $\text{Der}_{\Bbbk}(R, N) = 0$ for every finitely generated *R*-module *M*. Since $\Omega_{R/\Bbbk}$ is a free *R*-module, this means that $\Omega_{R/\Bbbk} = 0$. We want to conclude that R/\Bbbk is separable. We will do this assuming that R/\Bbbk is a *finite* extension, although it is not necessary to make this restriction. By way of contradiction, assume that R/\Bbbk is not separable. Then $\text{char } \Bbbk = p > 0$. Enlarging \Bbbk by adjoining the elements of *R* that are separable over \Bbbk , we may assume that R/\Bbbk is purely inseparable and that $R \neq \Bbbk$. Adjoining $\{r^p \mid r \in R\}$, we may assume that $R^p \subseteq \Bbbk$ and that $R \neq \Bbbk$. By induction $\text{rk}_{\Bbbk} R$, we may assume that $R = \Bbbk[x]/(x^p - r)$ for some $r \in \Bbbk$. Then

$$\Omega_{R/\Bbbk} \simeq (R \otimes_{\Bbbk[x]} \Omega_{\Bbbk[x]/\Bbbk}) / R \cdot (\mathrm{d}(x^p - r)) = R \otimes_{\Bbbk[x]} \Omega_{\Bbbk[x]/\Bbbk} \neq 0.$$

To see the statement of Theorem 7.3(1), again assume that R/k is a finite separable extension. Write R = k(r) and $f(x) \in k[x]$ for the minimal polynomial of r over k. Note that $f(x) = (x - r)g(x) \in R[x]$ for some $g(x) \in R[x]$ such that $g(r) \neq 0$. Hence (x - r, g(x))R[x] = R[x], so $R^e \simeq R[x]/f(x) \simeq R[x]/(x - r) \times R[x]/g(x)$. Therefore R is a direct summand of R^e as an R^e -module.

7.5. Lemma. Then the following are equivalent:

- (1) R is a projective R^e -module;
- (2) the exact sequence $0 \longrightarrow I \longrightarrow R^e \xrightarrow{\mu} R \longrightarrow 0$ splits;
- (3) there exists an element $z \in R^e$ such that $z(x \otimes 1) = z(1 \otimes x)$ for every $x \in R$ and $\mu(z) = 1$. (4) $\mu(\mathfrak{a}) = R$.

Proof. (1) \iff (2): Immediate.

(2) \implies (3): Let $f : R \longrightarrow R^e$ be an R^e -linear map splitting μ . Define z := f(1). The R^e -linear structure of R is through μ , so $z(x \otimes 1) = f(1 \cdot \mu(x \otimes 1)) = f(x) = f(1 \cdot \mu(1 \otimes x)) = z(1 \otimes x)$. Note that $\mu(z) = 1$.

(3) \implies (4): $z \in \mathfrak{a}$ and $1 = \mu(z) \in \mu(\mathfrak{a})$.

(4) \implies (2): Let $z \in \mathfrak{a}$ be such that $\mu(z) = 1$. Define $f : R \longrightarrow R^e$, $r \mapsto (r \otimes 1)z$. It is easy to see that f is additive. Let $r_1 \otimes r_2 \in R^e$. Then $f((r_1 \otimes r_2)r) = (r_1s_2s \otimes 1)z = (r_1 \otimes r_2)(r \otimes 1)z$ since $(r_1s_2s \otimes 1) - (r_1 \otimes r_2)(r \otimes 1) = (r_1 \otimes 1)(r \otimes 1)(r_2 \otimes 1 - 1 \otimes r_2) \in I$ and zI = 0. Hence f is an R^e -linear splitting of μ .

7.6. **Lemma**. Suppose that \Bbbk is a field. Then R is a separable \Bbbk -algebra if and only if it is a finite-dimensional \Bbbk -algebra and for every extension L of \Bbbk , $L \otimes_{\Bbbk} R$ is semisimple.

Proof. If: Since *R* is a finite-dimensional semisimple \Bbbk , we can write $R = \prod_{i=1}^{n} R_i$ for some positive integer *n* and finite extensions R_i of \Bbbk . We need to show that R_i is separable for

each *i*. If R_j is not separable for some *j*, $R_j \otimes_{\Bbbk} R_j$ is not semisimple, so $R_j \otimes_{\Bbbk} R$, which contains $R_j \otimes_{\Bbbk} R_j$ as a factor, is not semisimple.

Only if: *R* is a finite-dimensional k-algebra, by definition. Write $R = \prod_{i=1}^{n} R_i$ for some positive integer *n* and finite separable extensions R_i of k. It suffices to show that $L \otimes_k R_i$ is semisimple for every *i*, so we may assume that *R* is a finite separable field extension of k. Write R = k[x]/(f(x)) for a separable polynomial $f(x) \in k[x]$. Since f(x) factors as a product of separable polynomials in L[x], none of which share any zero in any extension field of L, $L \otimes_k R \simeq L[x]/(f(x))$ is a product of fields, and hence semisimple.

7.7. **Lemma**. If R is \mathbb{R}^e -projective, then for every \Bbbk -algebra L, the L-algebra $(L \otimes_{\Bbbk} R)$ is $(L \otimes_{\Bbbk} R)^e$ -projective.

Proof. Write $R' = L \otimes_{\Bbbk} R$, Write μ' for the natural map $(R' \otimes_L R') \longrightarrow R'$ and ϕ for the map $R' \otimes_L R' \longrightarrow L \otimes_{\Bbbk} R^e$, $((b_1 \otimes_{\Bbbk} r_1) \otimes_L (b_2 \otimes_{\Bbbk} r_2)) \mapsto (b_1 b_2 \otimes_{\Bbbk} (r_1 \otimes_{\Bbbk} r_2))$. Note that ϕ is an isomorphism and that $\mu' = (1 \otimes \mu) \circ \phi$. Let f be a splitting of μ . Then the map $\phi^{-1} \circ (1 \otimes f)$ is a splitting of μ' . Now apply Lemma 7.5.

7.8. Lemma. Suppose that k is a field and that R is a projective R^e -module. Then $\operatorname{rk}_k R < \infty$.

Proof. Let $\{r_i\}_{i\in\Lambda}$ be an k-basis of R. Then $\{r_i \otimes r_j\}_{i,j\in\Lambda}$ is a basis of R^e . Let $z \in R^e$ be as in Lemma 7.5(3). Write $z = \sum_{ij} a_{ij}r_i \otimes r_j$. Let $r'_i := \sum_{j\in\Lambda} a_{ij}r_j$. Let $\Lambda_1 = \{i \in \Lambda \mid r'_i \neq 0\}$; it is a finite set. Note that $\sum_{i\in\Lambda_1} r_ir'_i = \mu(z) = 1$ and that for every $x \in R$, $\sum_{i\in\Lambda_1} r_ix \otimes r'_i = z(x \otimes 1) = z(1 \otimes x) = \sum_{i\in\Lambda_1} r_i \otimes r'_i x$. Let $R' := \sum_{i\in\Lambda_1} kr'_i \subseteq R$.

<u>Claim</u> R' is an R-ideal. (To be proved.)

Hence $r_j r'_i \in R'$ for every $i \in \Lambda_1$ and $j \in \Lambda$. In particular $1 = \sum_{i \in \Lambda_1} r_i r'_i \in R'$, so R' = R. Hence R is a finitely generated \Bbbk -module.

7.9. **Proposition**. Suppose that \Bbbk is a field. Then R is a projective R^e -module if and only if R is a separable \Bbbk -algebra.

Proof. In view of Lemma 7.8 and the definition of separability, we may assume that $\operatorname{rk}_{\Bbbk} R < \infty$ before proving both the implications. Now suppose that *R* is R^e -projective. Then, by Lemma 7.7, $L \otimes_{\Bbbk} R$ is $(L \otimes_{\Bbbk} R)^e$ -projective for every \Bbbk -algebra *L*. Hence by Corollary A.13, $(L \otimes_{\Bbbk} R)$ is semisimple. By Lemma 7.6, *R* is a separable \Bbbk -algebra.

Conversely assume that *R* is a separable k-algebra. Assume, for now, that *R* is a finite separable field extension of k. Write R = k[x]/(f(x)), with f(x) separable over k, so $R^e \simeq S := k[x,y]/(f(x),f(y))$. The map μ is $S \longrightarrow k[x]/(f(x)), x \mapsto x, y \mapsto x$. Note that as an element of k[x,y]/(f(x)), f(y) splits as (y - x)g(y), where, because of the separability of f(y), (y - x, g(y)) = k[x,y]/(f(x)). Hence there exist $e_1 \in g(y)S$ and $e_2 \in (y - x)S$ such that $e_1^2 = e_1, e_2^2 = e_2, e_1e_2 = 0, e_1 + e_2 = 1$ and

$$Se_1 \simeq \mathbb{k}[x, y]/(f(x), y - x), \quad Se_2 \simeq \mathbb{k}[x, y]/(f(x), g(y)), \text{ and } S \simeq Se_1 \times Se_2$$

Note that $\mu(e_1) = 1$ and $\mu(e_2) = 0$. The S-linear map $R \longrightarrow S$, $1 \mapsto e_1$ is an S-linear splitting of μ .

Now suppose that $R = \prod_{i=1}^{t} R_i$ where the R_i are finite separable field extensions of k. Write $R_i = Re_i$ for a set of orthogonal idempotents e_1, \ldots, e_t (i.e., $\sum_{i=1}^{t} e_i = 1$; $e_i^2 = e_i$ for all i; $e_i e_j = 0$ for $i \neq j$). Then $\mu(e_i \otimes e_j) = e_i e_j = 0$. Hence

$$\mu\left(\left(\sum_{i=1}^{t} r_i e_i\right) \otimes \left(\sum_{j=1}^{t} r'_j e_j\right)\right) = \sum_{i=1}^{t} \mu\left(r_i e_i \otimes r'_i e_i\right)$$

Write $\mu_i = (R_i^e) \longrightarrow R_i$. There exist an (R_i^e) -linear splitting f_i of μ_i . Hence the map $\prod_{i=1}^t f_i$ is a R^e -linear splitting of μ .

7.10. **Lemma**. If R is a projective R^e -module, then R/\Bbbk is unramified.

Proof. Note that R/\Bbbk is unramified if and only if $R \otimes_{\Bbbk} \kappa(\mathfrak{p})$ is a separable $\kappa(\mathfrak{p})$ -algebra for every $\mathfrak{p} \in \Bbbk$. Hence, by Proposition 7.9, it suffices to show that if R is R^e -projective, then $A := R \otimes_{\Bbbk} \kappa(\mathfrak{p})$ is a projective module over $A^e := (R \otimes_{\Bbbk} \kappa(\mathfrak{p})) \otimes_{\kappa(\mathfrak{p})} (R \otimes_{\Bbbk} \kappa(\mathfrak{p}))$. Write $\mu' : A^e \longrightarrow A$.

Let $f : R \longrightarrow R^e$ be an R^e -linear splitting of μ . Then the induced map is an A^e -linear splitting of μ' .

7.11. Lemma. Assume that R is a noetherian ring, such that every maximal ideal of R is unramified. Then $\text{Der}_{\Bbbk}(R, M) = 0$ for every finitely generated R-module M.

Proof. Let $D \in \text{Der}_{\Bbbk}(R, M)$. Let \mathfrak{q} be a maximal ideal of R and $\mathfrak{p} = \mathfrak{q} \cap \Bbbk$. Write $D_{\mathfrak{q}}$ for the induced $\Bbbk_{\mathfrak{p}}$ -derivation $R_{\mathfrak{q}} \longrightarrow M_{\mathfrak{q}}$.

Note that $\mathfrak{p}R_{\mathfrak{q}} = \mathfrak{q}R_{\mathfrak{q}}$. Note that $D_{\mathfrak{q}}(\mathfrak{p}R_{\mathfrak{q}}) \subseteq \mathfrak{p}M_{\mathfrak{q}} = \mathfrak{q}M_{\mathfrak{q}}$. Hence we get a $\kappa(\mathfrak{p})$ -derivation $\overline{D_{\mathfrak{q}}} : R_{\mathfrak{q}}/\mathfrak{q}R_{\mathfrak{q}} \longrightarrow M_{\mathfrak{q}}/\mathfrak{q}M_{\mathfrak{q}}$, which is zero since $R_{\mathfrak{q}}/\mathfrak{q}R_{\mathfrak{q}}$ is a separable extension of $\kappa(\mathfrak{p})$. Hence $\operatorname{Im} D_{\mathfrak{q}} \subseteq \mathfrak{q}M_{\mathfrak{q}}$. Iterating we get $\operatorname{Im} D_{\mathfrak{q}} \subseteq \cap_{i}\mathfrak{q}_{i}M_{\mathfrak{q}} = 0$, so $D_{\mathfrak{q}} = 0$. Since this is true for every maximal ideal, D = 0.

Proof of Theorem 7.3. (1) \implies (2): Follows from Lemma 7.10. (2) \implies (3): immediate. (3) \implies (4): Follows from Lemma 7.11. (4) \implies (1): Since I/I^2 is a finitely generated R-module and $\text{Der}_{\Bbbk}(R, -) = \text{Hom}_R(I/I^2, -)$, we see that $\text{Hom}_R(I/I^2, I/I^2) = 0$, so $I = I^2$. By the determinant trick (see, e.g., [Eis95, Corollary 4.8]) we see that there exists $r_0 \in I$ such that $rr_0 = r$ for every $r \in I$. Define $g : R^e \longrightarrow I, 1 \mapsto r_0$. For every $r \in I$, $g(r) = rg(1) = rr_0 = r$, so the inclusion $I \longrightarrow R^e$ is split. \Box

7.12. **Definition**. The Noether different (homological different in [AB59]) $\mathscr{D}_N(R/\Bbbk)$ of R/\Bbbk is the *R*-ideal $\mu(\mathfrak{a})$.

7.13. **Theorem**. Suppose that R is a noetherian ring and that I is a finitely generated ideal of R^e . For every prime ideal \mathfrak{q} of R, \mathfrak{q} is unramified if and only if $\mathcal{D}_N(R/\Bbbk) \not\subset \mathfrak{q}$.

7.14. **Lemma**. With notation as in Theorem 7.13, let U be a multiplicatively closed set in \Bbbk and V a multiplicatively closed set of R containing the image of U. Then

$$V^{-1}\mathscr{D}_N(R/\Bbbk) = \mathscr{D}_N(V^{-1}R/\Bbbk) = \mathscr{D}_N(V^{-1}R/U^{-1}\Bbbk).$$

Proof. Write $I = \ker (R \otimes_{\Bbbk} R \longrightarrow R)$. Then

$$(V \otimes_{\Bbbk} V)^{-1} I = \ker \left(V^{-1} R \otimes_{\Bbbk} V^{-1} R \longrightarrow V^{-1} R \right)$$
$$= \ker \left(V^{-1} R \otimes_{U^{-1} \Bbbk} V^{-1} R \longrightarrow V^{-1} R \right)$$

Since *I* is finitely generated, $\operatorname{Ann}_{(V^{-1}R\otimes_{\Bbbk}V^{-1}R)}((V\otimes_{\Bbbk}V)^{-1}I) = V^{-1}R\operatorname{Ann}_{R\otimes_{\Bbbk}R}(I)$. Hence the lemma follows.

Proof of Theorem 7.13. Every maximal ideal of R_q is unramified over \Bbbk . By Theorem 7.3 and Lemma 7.5, $\mathscr{D}_N(R_q/\Bbbk) = R_q$. By Lemma 7.14, $\mathscr{D}_N(R/\Bbbk) \not\subset q$. Converse follows in a similar fashion.

7.15. **Proposition**. Let
$$R = \Bbbk[X_1, \ldots, X_n]/\mathfrak{a}$$
. Write x_i for the image of X_i in R . Then
 $\mathscr{D}_N(R/\Bbbk) = \{f(x_1, \ldots, x_n) \mid f(X_1, \ldots, X_n)(X_i - x_i) \in \mathfrak{a}R[X_1, \ldots, X_n] \text{ for every } i\}.$

Proof. Let $I = \ker (\mu : R \otimes_{\mathbb{K}} R \longrightarrow R)$. The exact sequence

$$0 \longrightarrow \mathfrak{a} \longrightarrow \Bbbk[X_1, \dots, X_n] \longrightarrow R \longrightarrow 0$$

gives an exact sequence surjective map

 $0 \longrightarrow \mathfrak{a} R[X_1, \ldots, X_n] \longrightarrow R[X_1, \ldots, X_n] \stackrel{\rho}{\longrightarrow} R \otimes_{\Bbbk} R \longrightarrow 0$

using the isomorphism $R[X_1, \ldots, X_n] \longrightarrow R \otimes_{\mathbb{k}} \mathbb{k}[X_1, \ldots, X_n]$ which takes $rX_1^{e_1} \cdots X_n^{e_n}$ to $r \otimes X_1^{e_1} \cdots X_n^{e_n}$. The composite $\mu \rho$ is given by the substitution $X_i \mapsto x_i$. Hence $\{\rho(X_i - x_i) \mid 1 \leq i \leq n\}$ generate I as an $(R \otimes_{\mathbb{k}} R)$ -ideal. Hence $\operatorname{Ann}_{R \otimes_{\mathbb{k}} R}(I) = \rho(\mathfrak{a}R[X_1, \ldots, X_n] : (X_1 - x_1, \ldots, X_n - x_n))$. Apply μ to conclude the result. \Box

A morphism $\Bbbk \longrightarrow R$ is said to be *essentially of finite-type* (or that R is an essentially finite-type \Bbbk -algebra) if R is a localization of a finite type \Bbbk -algebra. We now restrict to such morphisms of noetherian rings.

7.16. **Theorem**. Let \Bbbk be a noetherian ring and R an essentially finite-type \Bbbk -algebra. For every prime ideal \mathfrak{q} of R, \mathfrak{q} is unramified if and only if $(\Omega_{R/\Bbbk})_{\mathfrak{q}} = 0$.

Proof. Note that $\Omega_{R/\Bbbk}_{q} = \Omega_{R_q/\Bbbk}$ [Eis95, 16.9]. Also note that q is unramified if and only if the unique maximal ideal of R_q is unramified. Replacing R by R_q , we may assume that (R,q) is a noetherian local ring that is an essentially finite-type \Bbbk -algebra and show that the unique maximal ideal of R is unramified if and only if $\Omega_{R/\Bbbk} = 0$. Note that $R \otimes_{\Bbbk} R$ is noetherian. Hence, by Theorem 7.3, the unique maximal ideal of R is unramified if and only if $\text{Der}_{\Bbbk}(R,M) = 0$ for every finitely generated R-module M. Hence we need to show that $\text{Der}_{\Bbbk}(R,M) = \text{Hom}_{R}(\Omega_{R/\Bbbk},M) = 0$ for every finitely generated R-module M if and only if $\Omega_{R/\Bbbk} = 0$. One direction is immediate; for the other direction use $M = \Omega_{R/\Bbbk}$, since $\Omega_{R/\Bbbk}$ is a finitely generated R-module (*cf.* Example 6.12 and localization). (Note that every nonzero module has a nonzero identity map.)

8. Auslander-Buchsbaum Paper, §3

Throughout this section, R is a normal domain, K its field of fractions, L a finite separable extension field of K, and S the integral closure of R in L.

8.1. **Definition**. The complementary module (or inverse Dedekind different) of the extension S/R is

$$\mathscr{D}_D^{-1}(S/R) := \{ x \in L \mid \operatorname{Trace}_{L/K}(xS) \subseteq R \}.$$

The Dedekind different of S/R is

$$\mathscr{D}_D(S/R) := \{ x \in L \mid x \mathscr{D}_D^{-1}(S/R) \subseteq S \}.$$

The Dedekind different is called *different* in [AB59]. Since $\operatorname{Trace}_{L/K}(S) \subseteq R$, it is immediate that $\mathscr{D}_D^{-1}(S/R)$ is an S-submodule of L containing S. Hence $\mathscr{D}_D(S/R)$ is an S-ideal.

8.2. **Discussion** ([Ben93, Section 3.10]). An S-module M is said to be *reflexive* if the natural map $M \longrightarrow \operatorname{Hom}_{S}(\operatorname{Hom}_{S}(M, S), S), x \mapsto [f \mapsto f(x)]$ is an isomorphism. $\mathscr{D}_{D}^{-1}(S/R)$ is a reflexive S-module. Let $M \subseteq L$ be an S-module. Let $s, s', t, t' \in S$, all non-zero, be such that $\frac{s}{t}, \frac{s'}{t'} \in M$. Let $\phi \in \operatorname{Hom}_{S}(M, S)$. It is not difficult to check that, as elements of L,

$$\frac{\phi\left(\frac{s}{t}\right)}{\frac{s}{t}} = \frac{\phi\left(\frac{s'}{t'}\right)}{\frac{s'}{t'}}.$$

Call this element α_{ϕ} . The map $\phi \mapsto \alpha_{\phi}$ gives an S-linear isomorphism

$$\operatorname{Hom}_{S}(M,S) \longrightarrow \{x \in L \mid xM \subseteq S\}.$$

Hence $\mathscr{D}_D(S/R) = \operatorname{Hom}_S(\mathscr{D}_D^{-1}(S/R), S)$, so it too is a reflexive S-module.

8.3. **Proposition**. Let A be a normal domain with dim $A \ge 2$. Let $0 \ne J \ne A$ be an A-ideal that is reflexive as an A-module. Then ht p = 1 for every $p \in Ass(A/J)$.

Proof. Write $(-)^* = \text{Hom}_A(-, A)$. We first argue that ht J = 1. For otherwise, the exact sequence

$$0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0$$

gives an isomorphism $J^{**} \longrightarrow A^{**}$ since

$$\operatorname{Ext}^0_A(A/J,A) = \operatorname{Ext}^1_A(A/J,A) = 0.$$

Hence *J* is principal, which contradicts the hypothesis that ht J > 1.

Let $J = \bigcap_{i=1}^{t} \mathfrak{a}_i$ be an irredundant primary decomposition. Let us assume that there exists *i* such that $\operatorname{ht} \mathfrak{a}_i > 1$, and obtain a contradiction.

$$J_1 = \bigcap_{\substack{1 \le i \le t \\ \operatorname{ht} \mathfrak{a}_i = 1}} \mathfrak{a}_i \text{ and } J_2 = \bigcap_{\substack{1 \le i \le t \\ \operatorname{ht} \mathfrak{a}_i > 1}} \mathfrak{a}_i.$$

Since ht Ann_A($(J_1 + J_2)/J_2$) \geq ht $J_2 \geq 2$, we obtain, as ealier,

$$\operatorname{Ext}_{A}^{0}((J_{1}+J_{2})/J_{2},A) = \operatorname{Ext}_{A}^{1}((J_{1}+J_{2})/J_{2},A) = 0,$$

so the natural map $J_1^* \longrightarrow J^*$ is an isomorphism. We have an exact sequence

 $0 \longrightarrow A^* \longrightarrow J^* \longrightarrow \operatorname{Ext}^1_A(A/J, A) \longrightarrow 0,$

from which, applying $(-)^*$ again, we get an injective map $J^{**} \longrightarrow A^{**}$. Under the natural identification $A^{**} = A$, $J^{**} = J$, and J_1^{**} is an ideal containing J_1 . Hence

$$J \subseteq J_1 \subseteq J_1^{**} = J^{**} = J$$

which implies that $ht a_i = 1$ for every *i*, a contradiction.

We say that J has *pure height one* to express the conclusion of the above proposition. Note that if, in the above proposition, $\dim A = 1$, then A is a Dedekind domain, and therefore every non-zero proper ideal is of pure height one.

8.4. Corollary. $\mathcal{D}_D(S/R) = S$ or it is an ideal of pure height one.

8.5. **Theorem** ([AB59, Proposition 3.3]). $\mathscr{D}_N(S/R) \subseteq \mathscr{D}_D(S/R)$. If S is a projective R-module, then equality holds.

Proof. TBD.

8.6. Corollary. The following are equivalent:

(1) $\mathscr{D}_D(S/R) = S;$

- (2) For every $q \in \text{Spec } S$ with ht q = 1, q is unramified.
- If, additionally, S is a projective R-module, the above conditions are equivalent to:
- (3) S is unramified.

Proof. (1) \implies (2): Let $q \in \text{Spec } S$ with $\operatorname{ht} q = 1$ and $\mathfrak{p} = q \cap R$. Then $\mathscr{D}_N((R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}) = (R \setminus \mathfrak{p})^{-1}\mathscr{D}_N(S/R)$ and $\mathscr{D}_D((R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}) = (R \setminus \mathfrak{p})^{-1}\mathscr{D}_D(S/R)$. Since $R_\mathfrak{p}$ is a DVR and $(R \setminus \mathfrak{p})^{-1}S$ is finitely generated, it is free over $R_\mathfrak{p}$, so by $\mathscr{D}_N((R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}) = \mathscr{D}_D((R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}) = \mathscr{D}_D((R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}) = (R \setminus \mathfrak{p})^{-1}S$; therefore $(R \setminus \mathfrak{p})^{-1}S/R_\mathfrak{p}$ is unramified.

(2) \implies (1): By Theorem 7.13, ht $\mathcal{D}_N(S/R) \ge 2$, so by Theorem 8.5 and Corollary 8.4, $\mathcal{D}_D(S/R) = S$.

Now assume that *S* is a projective *R*-module and that $\mathscr{D}_D(S/R) = S$. Then $\mathscr{D}_N(S/R) = S$ (Theorem 8.5), and, therefore, *S* is unramified (Theorem 7.13).

8.7. **Theorem**. Let R be a two-dimensional regular domain and S its integral closure in a finite separable extension of its fraction field. Then S is unramified if and only if for every $q \in \text{Spec } S$ with ht q = 1, q is unramified.

Proof. Use Proposition C.17 (to see that S is a projective *R*-module) and Corollary 8.6. \Box

9. KÄHLER DIFFERENT

We begin with a discussion of Fitting ideals [Eis95, Chapter 20]. Let *R* be a ring and $\phi : F \longrightarrow G$ a map of free *R*-modules of finite rank. Fix bases for *F* and *G* and express ϕ by a matrix *A*. For an integer *t*, $I_t(\phi)$ is the *R*-ideal generated by the $t \times t$ minors of *A*. This is independent of the choice of the bases. If $t \le 0$, $I_t(\phi) = R$.

9.1. Lemma. Let M be a R-module, and let $F \xrightarrow{\phi} G \longrightarrow M \longrightarrow 0$ and $F' \xrightarrow{\phi'} G' \longrightarrow M \longrightarrow 0$ be two presentations of M, with F, F', G, G' free modules of finite rank. Let $n = \operatorname{rk}_R G$ and $n' = \operatorname{rk}_R G'$. Then

$$I_{n-t}(\phi) = I_{n'-t}(\phi')$$

for every $t \in \mathbb{N}$.

Proof. Two ideals are equal if and only if they are equal at all localizations of R at prime ideals. Hence we may assume that R is local with maximal ideal m. Choose bases for F and G and express ϕ as an $n \times m$ matrix A. If any entry in A is a unit, then by suitable row and column operations, we may assume that

$$A = \begin{bmatrix} 1 & 0_{1 \times (m-1)} \\ 0_{(n-1) \times 1} & B_{(n-1) \times (m-1)} \end{bmatrix}.$$

Since $I_{n-t}(A) = I_{n-1-t}(B)$ and $M \simeq \operatorname{coker} B$, we may replace F (respectively G) by a free module of rank one less than that of F (respectively G). Repeating this we may assume that $\operatorname{Im} \phi \subseteq \mathfrak{m} G$, i.e., ϕ is minimal. Repeating this for ϕ' , we may assume that ϕ' is minimal. Note that in this case, $n = n' = \operatorname{rk}_{R/\mathfrak{m}}(M/\mathfrak{m} M)$. Hence it suffices to show that if ϕ and ϕ' are two minimal presentations of M, then $I_j(\phi) = I_j(\phi')$ for every j. This follows from noting that there are isomorphisms $\alpha : F \longrightarrow F'$ and $\beta : G \longrightarrow G'$ such that the following diagram commutes:

9.2. **Definition**. Let *M* be an *R*-module with a finite free presentation $F \xrightarrow{\phi} G \longrightarrow M \longrightarrow 0$. Write $n = \operatorname{rk}_R G$. For $t \in \mathbb{N}$, the *t*th *Fitting ideal* $\operatorname{Fitt}_t(M)$ of *M* is $I_{n-t}(\phi)$.

9.3. **Lemma**. Let M be a finitely presented R-module and S an R-algebra. Then for every $t \in \mathbb{N}$, $\operatorname{Fitt}_t(S \otimes_R M) = \operatorname{Fitt}_t(M)S$.

Proof. Follows from noting that $\phi : F \longrightarrow G$ is a finite *R*-free presentation of *M*, then $1 \otimes \phi$ is a finite *S*-free presentation of $S \otimes_R M$.

9.4. Proposition. Let M be a finitely presented R-module. Then

(1) Fitt₀(M) \subseteq Ann(M);

(2) For every $j \ge 1$, $\operatorname{Ann}(M) \operatorname{Fitt}_{j}(M) \subseteq \operatorname{Fitt}_{j-1}(M)$. In particular, if M can be generated by n elements, then $(\operatorname{Ann}(M))^{n} \subseteq \operatorname{Fitt}_{0}(M)$.

Proof. TBD.

9.5. **Proposition**. Let M be a finitely presented R-module. Then $\text{Supp}(M) = \{\mathfrak{p} \in \text{Spec } R \mid \mathfrak{p} \supseteq \text{Fitt}_0(M)\}.$

Proof. Let $\xrightarrow{\varphi} G \longrightarrow M \longrightarrow 0$ be a finite free presentation of M. Let $\mathfrak{p} \in \operatorname{Spec} R$. Then $M_{\mathfrak{p}} = 0$ if and only if the map $\phi \otimes R_{\mathfrak{p}} : F_{\mathfrak{p}} \longrightarrow G_{\mathfrak{p}}$ is surjective, which holds if and only if some $\operatorname{rk}_R G \times \operatorname{rk}_R G$ minor of $\phi \otimes R_{\mathfrak{p}}$ is a unit in $R_{\mathfrak{p}}$, which holds if and only $\operatorname{Fitt}_0(M_{\mathfrak{p}}) = R_{\mathfrak{p}}$ (as an $R_{\mathfrak{p}}$ -module) which happens if and only of $\operatorname{Fitt}_0(M) \nsubseteq \mathfrak{p}$.

9.6. **Definition**. Let \Bbbk be a noetherian ring and R an essentially finite-type \Bbbk -algebra. The *Kähler different* $\mathscr{D}_K(R/\Bbbk)$ is $\operatorname{Fitt}_0(\Omega_{R/\Bbbk})$.

9.7. **Theorem**. Let \Bbbk be a noetherian ring and R an essentially finite-type \Bbbk -algebra. For every prime ideal \mathfrak{q} of R, \mathfrak{q} is unramified if and only if $\mathscr{D}_K(R/\Bbbk) \not\subseteq \mathfrak{q}$.

Proof. Follows from Theorem 7.16.

9.8. **Theorem**. Let \Bbbk be a noetherian ring and R an essentially finite-type \Bbbk -algebra. Then

$$\mathscr{D}_K(R/\Bbbk) \subseteq \mathscr{D}_N(R/\Bbbk) \subseteq \operatorname{Ann}_R(\Omega_{R/\Bbbk}).$$

Proof. Write $I = \ker (\mu : R \otimes_{\Bbbk} R \longrightarrow R)$. Then $\mathscr{D}_N(R/\Bbbk) = \mu(\operatorname{Ann}_{R \otimes_{\Bbbk} R}(I))$ (Definition 7.12) and $\Omega_{R/\Bbbk} \simeq I/I^2$ (Proposition 6.9). Hence $\mathscr{D}_N(R/\Bbbk) \subseteq \operatorname{Ann}_R(\Omega_{R/\Bbbk})$.

Write $R = U^{-1}S$ for a finite-type k-algebra S and a multiplicatively closed system $U \subseteq S$. Since $\mathscr{D}_K(R/\Bbbk) = U^{-1}\mathscr{D}_K(S/\Bbbk)$, $\mathscr{D}_N(R/\Bbbk) = U^{-1}\mathscr{D}_N(S/\Bbbk)$ and $\operatorname{Ann}(\Omega_{R/\Bbbk}) = U^{-1}\operatorname{Ann}(\Omega_{S/\Bbbk})$, we may replace R by S and assume that $R = \Bbbk[X_1, \ldots, X_n]/\mathfrak{a}$. Write x_i for the image of X_i in R. Abbreviate X_1, \ldots, X_n by X and x_1, \ldots, x_n by x. Then, by Proposition 7.15,

$$\mathscr{D}_N(R/\Bbbk) = \{f(\mathbf{x}) \mid f(\mathbf{X}) \in R[\mathbf{X}] \text{ and } f(\mathbf{X})(X_i - x_i) \in \mathfrak{a}R[\mathbf{X}] \text{ for every } i\}.$$

Write π for the natural map $\Bbbk[X] \longrightarrow R$; let ρ and $\mu : R \otimes_{\Bbbk} R$ be as in the proof of Proposition 7.15. Since $\mathscr{D}_{K}(R/\Bbbk)$ is generated (as an *R*-ideal) by

$$\left\{\pi\left(\det\left(\left[\frac{\partial f_j}{\partial X_i}\right]_{n\times n}\right)\right)\mid f_1,\ldots,f_n\in\mathfrak{a}\right\},\,$$

it suffices to show that

$$\det\left(\left[\frac{\partial f_j}{\partial X_i}\right]_{n \times n}\right) \cdot (X_k - x_k) \in \mathfrak{a}R[X]$$

for every $f_1, \ldots, f_n \in \mathfrak{a}$ and $1 \leq k \leq n$. Let $f_1, \ldots, f_n \in \mathfrak{a}$. Note that $\mathfrak{a}R[X] \subseteq \ker(\mu\rho) = (X_1 - x_1, \ldots, X_n - x_n)$, so there exist $h_{ij} \in R[X]$ such that

$$f_i = \sum_{j=1}^n h_{ij}(X_j - x_j)$$

 $H = \left[h_{ij}\right]_{n \times n}$

for every $1 \le i \le n$. Write

By Cramer's rule,

$$\operatorname{adj}(H) \begin{bmatrix} f_1\\ \vdots\\ f_n \end{bmatrix} = (\det H) \begin{bmatrix} X_1 - x_1\\ \vdots\\ X_n - x_n \end{bmatrix}$$

so

$$(\det H)(X_k - x_k) \in (f_1, \ldots, f_n)R[X] \subseteq \mathfrak{a}R[X]$$

for every $1 \le k \le n$. We conclude the proof by observing that

$$\mu \rho(H) = \mu \rho \left(\det \left(\left[\frac{\partial f_j}{\partial X_i} \right]_{n \times n} \right) \right).$$

9.9. Corollary. Suppose R is a localization of $k[X_1, \ldots, X_n]/\mathfrak{a}$. Then

$$(\mathscr{D}_N(R/\Bbbk))^n \subseteq \left(\operatorname{Ann}_R(\Omega_{R/\Bbbk})\right)^n \subseteq \mathscr{D}_K(R/\Bbbk) \subseteq \mathscr{D}_N(R/\Bbbk) \subseteq \operatorname{Ann}_R(\Omega_{R/\Bbbk}).$$

Proof. Since $\Omega_{R/k}$ is a quotient of a free module of rank *n* (*cf.* Example 6.12),

 $\left(\operatorname{Ann}_{R}(\Omega_{R/\Bbbk})\right)^{n} \subseteq \mathscr{D}_{K}(R/\Bbbk)$

by Proposition 9.4.

9.10. **Example**. Let $S = \mathbb{C}[x, y]$ where x, y are variables and $R = \mathbb{C}[x^2, xy, y^2]$. We will show that $\mathscr{D}_K(S/R) = (x, y)^2$. It then follows from Theorem 9.8, Theorem 8.5 and Corollary 8.4 that $(x, y)^2 \subseteq \mathscr{D}_N(S/R) \subseteq (x, y)$ and that $\mathscr{D}_D(S/R) = S$.

Let $L = \mathbb{C}(x, y)$ and $K = \mathbb{C}(x^2, \frac{y}{x})$ denote their respective fields of fractions. The extension L/K is Galois, with Galois group $\mathbb{Z}/2\mathbb{Z} = \{1, \sigma\}$ acting \mathbb{C} -linearly on L by $\sigma x = -x$ and $\sigma y = -y$. Hence $\operatorname{Trace}_{L/K} f = f + \sigma f$ for every

Note that

$$S \simeq \frac{R[U,V]}{(U^2 - x^2, UV - xy, V^2 - y^2, x^2V - xyU, xyV - y^2U)}.$$

Hence

$$\Omega_{S/R} \simeq \operatorname{coker} \left(S^5 \xrightarrow{J} S^2 \right)$$

where J is the 2×5 jacobian matrix

$$\begin{bmatrix} 2x & y & 0 & -xy & -y^2 \\ 0 & x & 2y & x^2 & xy \end{bmatrix}.$$

Therefore $\mathcal{D}_K(S/R) = \text{Fitt}_0(\Omega_{S/R}) = I_2(J) = (x, y)^2$.

9.11. **Example**. Continuing the above example, let $\Bbbk = \mathbb{C}[x^2, y^2]$. Write $\Bbbk = \mathbb{C}[u, w]$ and $R = \Bbbk[v]/(v^2 - uw)$. Then $\Omega_{R/\Bbbk} \simeq R/(v)$, so $\mathscr{D}_K(R/\Bbbk) = (v)$, which is a reduced ideal. Moreover, R is a free \Bbbk -module, with basis $\{1, v\}$. Hence $\mathscr{D}_K(R/\Bbbk) = \mathscr{D}_N(R/\Bbbk) = \mathscr{D}_D(R/\Bbbk)$. Note that $(v) = (u, v) \cap (v, w)$, so the ramification locus has two components, one defined by (u, v) and the other by (v, w). Note that the branch locus (the image of the ramification locus in Spec \Bbbk) has two components, one defined by $u\& = (u, v)R \cap \Bbbk$ and the other by $w\& = (v, w)R \cap \Bbbk$.

22

10. DISCRIMINANTS

10.1. **Definition**. Let *R* be a ring, *y* a variable, $f(y) = \sum_{i=0}^{n} a_i y^i$, and $g(y) = \sum_{i=0}^{m} b_i y^i$, with $a_n b_m \neq 0$. The resultant $\operatorname{Res}(f,g)$ of *f* and *g* is the element

$$\det \begin{bmatrix} a_n & a_{n-1} & \cdots & a_0 & 0 & \cdots \\ 0 & a_n & a_{n-1} & \cdots & a_0 & 0 \\ \ddots & \ddots & & \ddots & \ddots \\ 0 & \cdots & 0 & a_n & a_{n-1} & \cdots & a_0 \\ b_m & b_{m-1} & \cdots & b_0 & 0 & \cdots \\ 0 & b_m & b_{m-1} & \cdots & b_0 & 0 \\ \ddots & \ddots & & \ddots & \\ 0 & \cdots & 0 & b_m & b_{m-1} & \cdots & b_0 \end{bmatrix}$$

(There are *m* rows of the a_i s and *n* rows of the b_i s.) If f = 0 or g = 0, we set Res(f, g) = 0. The *discriminant* Disc(f) is Res(f, f').

10.2. **Proposition**. Let R be a UFD. If $a_nb_m = 0$, then f and g have a non-constant common divisor in R[y] if and only if Res(f,g) = 0.

Proof. Claim: f and g have a non-constant common divisor in R[y] if and only if there exist two non-zero polynomials $u, v \in R[y]$ such that

(1) $\deg u < \deg f$ and $\deg v < \deg g$;

(2) vf = ug.

Assume the claim. Write $u = \sum_{i=0}^{n-1} c_i y^i$ and $v = \sum_{i=0}^{m-1} d_i y^i$. Write *M* for the matrix in Definition 10.1. Expanding the relation vf = ug gives linear equation

$$M \begin{bmatrix} d_{m-1} \\ d_{m-2} \\ \vdots \\ d_0 \\ -c_{n-1} \\ -c_{n-2} \\ \vdots \\ c_0 \end{bmatrix} = 0.$$

This proves the proposition, assuming the claim.

Now to prove the claim, assume that f and g have a non-constant common divisor $h \in R[y]$. Write f = hu and g = hv. Conversely, assume that there exist u and v satisfying the conditions above. Since R[y] is a UFD, every irreducible factor of f must divide ug; since $\deg u < \deg f$, some irreducible factor of f must divide g. \Box

10.3. **Theorem.** Let R be a Dedekind domain, K its field of fractions, L a finite separable extension of K, and S the integral closure of R in L. Let $\delta_{S/R}$ be the R-ideal generated by

$${\text{Disc}(\mu_{\alpha,K}) \mid \alpha \in S \text{ such that } L = K(\alpha)}$$

where, for $\beta \in L$, we denote its minimal polynomial over K by $\mu_{\beta,K}$. Let $\mathfrak{p} \in \operatorname{Spec} R$. If \mathfrak{p} ramifies in S then $\delta_{S/R} \subseteq \mathfrak{p}$. The converse is true if we assume that $S = R[\alpha]$ for some $\alpha \in S$.

There is a 'discriminant ideal' of R, which characterizes the prime ideals of R that ramify in S (without assuming that $S = R[\alpha]$ for some α), but we will not define it here.

Proof. Assume that \mathfrak{p} ramifies in S. Then $\mathfrak{p}R_{\mathfrak{p}}$ ramifies in $(R \setminus \mathfrak{p})^{-1}S$. As subsets, it is clear that $\delta_{S/R} \subseteq \delta_{(R \setminus \mathfrak{p})^{-1}S/R_{\mathfrak{p}}}$, so it is enough to show that $\delta_{(R \setminus \mathfrak{p})^{-1}S/R_{\mathfrak{p}}} \subseteq \mathfrak{p}R_{\mathfrak{p}}$. Hence without loss of generality, R is local (i.e., a DVR) with maximal ideal \mathfrak{p} . Then there exists $\alpha \in S$ such that $\operatorname{Disc}(\mu_{\alpha,K})R = \delta_{S/R}$.

Let $q \in \text{Spec } S$ be such that $q \cap R = p$ and q is ramified. INCOMPLETE.

APPENDIX A. SEMISIMPLE RINGS

In this section, we summarize various results regarding global dimension and semisimplicity. The primary reference for this section is [CE99]. In the beginning of this section, we do not assume that R is necessarily commutative (but is associative and has 1); when we talk of ideals and modules, we mean left ideals and left modules.

A.1. **Definition**. Let R be a ring and M an R-module. It is said to be *simple* if it is nonzero and has no submodules different from M and 0. It is said to be *semisimple* if it is a direct sum of simple modules. R is said to be a *semisimple ring* if it is semisimple as an R-module.

A.2. **Proposition** ([CE99, I, 4.1]). M is semisimple if and only if every submodule of it is a direct summand.

A.3. **Proposition** ([CE99, I, 4.2]). The following are equivalent:

- (1) R is semisimple;
- (2) every ideal of R is a direct summand of R;
- (3) every ideal of R is an injective R-module;
- (4) every *R*-module is semisimple;
- (5) every short exact sequence of R-modules is split;
- (6) every R-module is injective;
- (7) every R-module is projective;

A.4. **Theorem** (Wedderburn [Bou12, VIII, §7.1, Théorèm 1 and §8.1, Théorèm 1]). Semisimple ring are precisely those of the form

$$\prod_{i=1}^n M_{d_i}(D_i)$$

where n > 0 and d_i , i = 1, ..., n are integers and D_i , i = 1, ..., n are division rings.

A.5. Corollary. Commutative semisimple rings are precisely the finite products of fields.

Proof. It is necessary and sufficient that $d_i = 1$ and D_i is commutative for every i, in Theorem A.4.

A.6. **Definition**. We denote the projective dimension of an *R*-module *M* by $pd_R M$.

A.7. **Theorem** ([CE99, VI, 2.6]). Let $n \ge 0$ be an integer. The following are equivalent:

- (1) $\operatorname{pd}_R M \leq n$ for every *R*-module *M*;
- (2) $\operatorname{Ext}_{R}^{k}(M, -) = 0$ for every k > n;
- (3) $\operatorname{Ext}_{R}^{n+1}(M, -) = 0.$

Proof. The implications $(1) \implies (2) \implies (3)$ are immediate; we will show that $(3) \implies (1)$ assuming that n = 0, which is the only case that we need. Let M an R-module and F a

free *R*-module with a surjective *R*-linear map $F \xrightarrow{f} M$. Since $\operatorname{Ext}^{1}_{R}(M, \ker f) = 0$, we see that f is split, so M is projective.

A.8. **Definition**. By the *(left)* global dimension of *R*, denoted gldim *R*, we mean the smallest integer *n*, if such an integer exists, satisfying the conditions of the above theorem; otherwise we say that gldim $R = \infty$.

A.9. Corollary. Let R be a ring. Then R is semisimple if and only if gldim R = 0.

In order to simplify our discussion, we will restrict ourselves to the commutative case for the rest of this section. Let k be a commutative ring and R a (commutative associative) k-algebra.

A.10. **Definition**. Let *M* be an *R*-module. Define

$$\operatorname{H}_n(R,M) = \operatorname{Tor}_n^{R^c}(R,M) \text{ and } \operatorname{H}^n(R,M) = \operatorname{Ext}_{R^e}^n(R,M).$$

A.11. **Definition**. Define \Bbbk -dim(R) to be the projective dimension of R as an R^e -module.

A.12. **Proposition.** $\operatorname{H}^{n}(R, \operatorname{Hom}_{\mathbb{K}}(M, N)) \simeq \operatorname{Ext}_{R}^{n}(M, N)$ for every pair of R-modules M, N and for every $n \geq 0$.

A.13. Corollary. If R is R^e -projective, then R is semisimple.

Proof. By Proposition A.12, $\operatorname{Ext}_{R}^{1}(-,-) = 0$. Now use the implication Theorem A.7 (3) \implies (1) (which was proved for n = 0) to conclude that gldim R = 0. Apply Corollary A.9. \square

APPENDIX B. FREE RESOLUTIONS

Let *R* be a noetherian ring and *M* a finitely generated *R*-module. We build a free resolution of *M* as follows: Set $M_0 = M$ and let F_0 be a finitely generated free *R*-module with a surjective map $\epsilon_0 : F_0 \longrightarrow M_0$. Let $M_1 = \ker \epsilon_0$; it is a finitely generated *R*module. Let F_1 be a finitely generated free *R*-module with a surjective map $\epsilon_1 : F_1 \longrightarrow M_1$. Repeating this process, assume by induction, we have constructed $M_i = \ker(\epsilon_{i-1} : F_{i-1} \longrightarrow M_{i-1})$ and a surjective map $\epsilon_i : F_i \longrightarrow M_i$ where F_i is a finitely generated free *R*-module. For $i \ge 1$, define $\partial_i : F_i \longrightarrow F_{i-1}$ to be the composite of the ϵ_i followed by the inclusion map $M_i \longrightarrow F_{i-1}$. Then the complex

$$(F_{\bullet}, \partial_{\bullet}): \longrightarrow F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \longrightarrow 0$$

is a free resolution of M.

Now assume that (R, \mathfrak{m}, \Bbbk) is a noetherian local ring. In the construction above, we may choose, recursively, F_i to be of the smallest possible rank, i.e., with $\operatorname{rk}_R F_i = \operatorname{rk}_{\Bbbk} M_i / \mathfrak{m} M_i$. Applying $- \otimes_R \Bbbk$ to the exact sequence

$$0 \longrightarrow M_{i+1} \longrightarrow F_i \xrightarrow{\epsilon_i} M_i \longrightarrow 0$$

we get the exact sequence

$$M_{i+1}/\mathfrak{m}M_{i+1}\longrightarrow F_i/\mathfrak{m}F_i\xrightarrow{\epsilon_i\otimes 1} M_i/\mathfrak{m}M_i\longrightarrow 0.$$

- 1

By the choice of F_i , the map $\epsilon_i \otimes 1$ is an isomorphism, so the $\text{Im}(M_{i+1}/\mathfrak{m}M_{i+1} \longrightarrow F_i/\mathfrak{m}F_i) = 0$, i.e., $\text{Im}(M_{i+1} \longrightarrow F_i) \subseteq \mathfrak{m}F_i$. Therefore $\text{Im} \partial_{i+1} \subseteq \mathfrak{m}F_i$.

B.1. **Definition**. Let (R, \mathfrak{m}) be a noetherian local ring and M a finitely generated R-module. A free resolution

$$(F_{\bullet},\partial_{\bullet}): \longrightarrow F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \longrightarrow 0$$

of *M* that satisfies $\text{Im } \partial_{i+1} \subseteq \mathfrak{m} F_i$ for every $i \ge 0$ is called a *minimal* free resolution of *M*.

Let F_{\bullet} be a minimal free resolution and G_{\bullet} any free resolution of M. Then F_{\bullet} is a direct summand of G_{\bullet} ; see, e.g., [Eis95, Theorem 20.2]. In particular,

$$\mathrm{pd}_R(M) = \sup\{i \mid F_i \neq 0\}.$$

Additionally, the maps in the complex

$$F_{\bullet} \otimes_{R} (R/\mathfrak{m})$$

are zero, so $\operatorname{rk}_R F_i = \operatorname{rk}_{R/\mathfrak{m}} \operatorname{Tor}_i^R(M, R/\mathfrak{m})$. In particular

(B.2)
$$pd_R(M) = \sup\{i \mid \operatorname{Tor}_i^R(M, R/\mathfrak{m}) \neq 0\}.$$

We now look at a specific complex of finitely generated free *R*-modules that, in some important cases, becomes a resolution of a quotient of *R* by an ideal. Let $r_1, \ldots, r_d \in R$. Define the *Koszul complex*

$$K_{\bullet}(r_i): \qquad 0 \longrightarrow R \xrightarrow{r_1} R \longrightarrow 0$$

where the rank-one free modules are place in homological indices 0 and 1. Define

 $K_{\bullet}(r_1,\ldots,r_d) := K_{\bullet}(r_1) \otimes_R \cdots \otimes_R K_{\bullet}(r_d).$

Note that there is an exact sequence of complexes

$$0 \longrightarrow R \longrightarrow K_{\bullet}(r_d) \longrightarrow R[-1] \longrightarrow 0$$

where *R* is thought of as the complex with *R* at homological index 0 and 0s elsewhere, and *R*[-1] is the complex with *R* at homological index -1 and 0s elsewhere. Identifying $K_{\bullet}(r_1, \ldots, r_{d-1}) \otimes_R R$ with $K_{\bullet}(r_1, \ldots, r_{d-1})$, and using the fact that, at each homological index, the above short exact sequence of complexes is a split exact sequence of *R*-modules, we get another exact sequence of complexes,

$$0 \longrightarrow K_{\bullet}(r_1, \ldots, r_{d-1}) \longrightarrow K_{\bullet}(r_1, \ldots, r_d) \longrightarrow K_{\bullet}(r_1, \ldots, r_{d-1})[-1] \longrightarrow 0.$$

Abbreviate $K_{\bullet}(r_1, \ldots, r_d)$ by K_{\bullet} and $K_{\bullet}(r_1, \ldots, r_{d-1})$ by K'_{\bullet} for now. Further, note that $H_i(K'_{\bullet}[-1]) \simeq H_{i-1}(K'_{\bullet})$. Then we have an an exact sequence in homology:

(B.3)
$$\longrightarrow \operatorname{H}_{i}(K_{\bullet}') \longrightarrow \operatorname{H}_{i}(K_{\bullet}) \longrightarrow \operatorname{H}_{i-1}(K_{\bullet}') \xrightarrow{\delta} \operatorname{H}_{i-1}(K_{\bullet}') \longrightarrow \operatorname{H}_{i-1}(K_{\bullet}) \longrightarrow$$

It can be seen by diagram-chasing that the connecting morphism δ is given by multiplication by r_d .

APPENDIX C. DEPTH, AUSLANDER-BUCHSBAUM FORMULA, ETC.

Let *R* be a ring, *I* an *R*-ideal and *M* an *R*-module.

C.1. **Definition**. Define $\Gamma_I(M) := \{x \in M \mid \text{there exists } n \ge 0 \text{ such that } I^n x = 0\}.$

The map $M \mapsto \Gamma_I(M)$ is a left-exact covariant functor from the category of *R*-modules to itself.

C.2. **Definition**. Define $H_I^i(-)$ to be the right-derived functors of $\Gamma_I(-)$. $H_I^i(M)$ is called the *i*th local cohomology module of M with support in I.

Note that $\Gamma_I(M) = \Gamma_{\sqrt{I}}(M)$; hence $\operatorname{H}^i_I(M) = \operatorname{H}^i_{\sqrt{I}}(M)$ for all $i \ge 0$.

C.3. **Definition**. An *M*-regular sequence in *R* is a sequence $r_1, \ldots, r_t \in R$ such that r_1 is a non-zero-divisor on *M*, and for every $2 \le i \le t$, r_i is a non-zero-divisor on $M/(r_1, \ldots, r_{i-1})M$ and such that $(r_1, \ldots, r_t)M \ne M$. The length of the longest *M*-regular sequence in *I* is denoted depth_I(*M*). If *R* is local with maximal ideal m, we write depth $M = \text{depth}_{\mathfrak{m}}(M)$.

C.4. **Proposition**. Let r_1, \ldots, r_t be an *R*-regular sequence. Then the Koszul complex $K_{\bullet}(r_1, \ldots, r_t)$ is a free resolution of $R/(r_1, \ldots, r_t)$.

Proof. Induct on *t*. If *t* = 1, then it is immediate from the definition of *K*_•(*r*₁) that $H_1(K_{\bullet}(r_1)) = Ann_R(r_1) = 0$ and that $H_0(K_{\bullet}(r_1)) = R/(r_1)$. Hence $K_{\bullet}(r_1)$ is a free resolution of $R/(r_1)$. Now assume that the proposition holds for r_1, \ldots, r_{t-1} , which is an *R*-regular sequence. From (B.3), with notation from there, we see that $H_i(K_{\bullet}) = 0$ for i > 1. Further, we see that $H_1(K_{\bullet}) \simeq \ker \left(H_0(K'_{\bullet}) \xrightarrow{r_d} H_0(K'_{\bullet})\right)$. Since $H_0(K'_{\bullet}) \simeq R/(r_1, \ldots, r_{t-1})$ and r_t is a non-zero-divisor on $R/(r_1, \ldots, r_{t-1})$, we conclude that $H_1(K_{\bullet}) = 0$. Similarly, $H_0(K_{\bullet}) \simeq \operatorname{coker} \left(H_0(K'_{\bullet}) \xrightarrow{r_d} H_0(K'_{\bullet})\right) \simeq R/(r_1, \ldots, r_t)$. □

C.5. **Proposition.** Let R be a noetherian ring and M a finitely generated R-module. Then $\operatorname{depth}_{I}(M) \leq \dim M$.

Proof. We prove this by induction on $t := \operatorname{depth}_{I}(M)$. If t = 0, the assertion is immediate. Hence assume that t > 0. Let $r_1, \ldots, r_t \in I$ be an *M*-regular sequence. Write $M' = M/r_1M$. Then r_2, \ldots, r_t is an *M'*-regular sequence of maximum length in *I*, so depth M' = t - 1. Hence, by induction, dim $M' \ge t - 1$. Note that $r_1 \notin p$ for any $p \in \operatorname{Supp}(M)$ with dim $R/p = \dim M$ (for any such p is in Ass(*M*)), so dim $M' < \dim M$. Hence dim $M \ge t$.

C.6. **Proposition**. Let R be a noetherian ring and M a finitely generated R-module. Then $depth_I(M) = \min\{i \mid H_I^i(M) \neq 0\}.$

Proof. We apply induction on $t := \text{depth}_I(M)$. Write $s = \min\{i \mid H_I^i(M) \neq 0\}$. Suppose that t = 0. Since R is noetherian, $I \subseteq \bigcup_{\mathfrak{p} \in \text{Ass } M} \mathfrak{p}$. By the prime avoidance lemma, there exists $\mathfrak{p} \in \text{Ass } M$ such that $I \subseteq \mathfrak{p}$. Since there exists $0 \neq x \in M$ such that $\text{Ann}_R(x) = \mathfrak{p}$, we see that Ix = 0, so $H_I^0(M) \neq 0$.

Now suppose that t > 0. Since *I* contains a non-zero-divisor on *M*, $\Gamma_I(M) = 0$, so s > 0. Let $r_1, \ldots, r_t \in I$ be an *M*-regular sequence. Write $M' = M/r_1M$. Then r_2, \ldots, r_t is an *M'*-regular sequence of maximum length in *I*, so depth M' = t - 1. From the exact sequence

$$0 \longrightarrow M \xrightarrow{r_1} M \longrightarrow M' \longrightarrow 0$$

we get

$$\cdots \longrightarrow \mathrm{H}^{i}_{I}(M) \xrightarrow{r_{1}} \mathrm{H}^{i}_{I}(M) \longrightarrow \mathrm{H}^{i}_{I}(M') \longrightarrow \mathrm{H}^{i+1}_{I}(M) \xrightarrow{r_{1}} \mathrm{H}^{i+1}_{I}(M) \longrightarrow \cdots$$

(To determine the maps we note that multiplication by r_1 on an injective resolution of M lifts the corresponding map on M; hence the induced map $\operatorname{H}^i_I(M) \longrightarrow \operatorname{H}^i_I(M)$ is, again, multiplication by r_1 .) Hence $\operatorname{H}^i_I(M') = 0$ for every $i \leq s - 2$. Further, note that for every i, and every $x \in I$, $\operatorname{ker}(\operatorname{H}^i_I(M) \longrightarrow \operatorname{H}^i_I(M)) \neq 0$ if $\operatorname{H}^i_I(M) \neq 0$, since $\operatorname{H}^i_I(M)$ is a quotient of a submodule of $\Gamma_I(N)$ for some module N. Hence $\operatorname{H}^{s-1}_I(M') \neq 0$. By induction, s - 1 = t - 1.

C.7. **Definition**. Let $I = (r_1, \ldots, r_n)$. Define

$$\check{\mathrm{C}}^{\bullet}(r_i): \qquad 0 \longrightarrow R \longrightarrow R_{r_i} \longrightarrow 0$$

where the middle map is the natural (localization) map. This is indexed cohomologically: $\check{C}^0(r_i) = R$ and $\check{C}^1(r_i) = R_{r_i}$. Define

$$\check{\mathbf{C}}^{\bullet}(r_i,\ldots,r_n) := \check{\mathbf{C}}^{\bullet}(r_1) \otimes_R \check{\mathbf{C}}^{\bullet}(r_2) \otimes_R \cdots \check{\mathbf{C}}^{\bullet}(r_n)$$

and for an *R*-module M, $\check{C}^{\bullet}(r_i, \ldots, r_n; M) := \check{C}^{\bullet}(r_i, \ldots, r_n) \otimes_R M$. These complexes are called *(extended) Čech complexes* or *stable Koszul complexes*.

C.8. **Proposition**. *Let* $I = (r_1, ..., r_n)$.

$$\mathrm{H}^{i}_{I}(M) \simeq \mathrm{H}^{i}(\mathrm{C}(r_{1},\ldots,r_{n};M)).$$

Sketch of the proof. Write $\check{H}^{l}(-) = H^{i}(\check{C}(r_{1},...,r_{n};M))$. By a standard argument in homological algebra involving δ -functors, it suffices to show the following:

(1) The assertion is true with i = 0 for all *R*-modules *M*.

(2) For every injective *R*-module *M* and every $i \neq 0$, $\check{H}^{i}(M) = 0$.

(3) For every exact sequence $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ there are connecting homomorphisms

$$\check{\mathrm{H}}^{i}(M'') \longrightarrow \check{\mathrm{H}}^{i+1}(M')$$

such that for every commutative diagram

with exact rows (i.e., maps of short exact sequences)) there is a commutative diagram

with exact rows.

See, e.g., [ILL⁺07, Chapter 7] for details.

C.9. **Proposition**. (1) Let $R \longrightarrow S$ be a ring map, M an S-module and $I = (r_1, \ldots, r_n)R$. Then, for every i,

$$\mathrm{H}^{i}_{I}(M) = \mathrm{H}^{i}_{IS}(M)$$

(2) Let $U \subseteq R$ be a multiplicatively closed set. Then

$$\mathrm{H}^{i}_{I^{I-1}I}(U^{-1}M) = U^{-1}\mathrm{H}^{i}_{I}(M).$$

Proof. (1) Write ϕ for the map $R \longrightarrow S$. Notice that

$$\check{\mathbf{C}}^{\bullet}(r_1,\ldots,r_n;M)\simeq\check{\mathbf{C}}^{\bullet}(r_1,\ldots,r_n)\otimes_R S\otimes_S M\simeq\check{\mathbf{C}}^{\bullet}(\phi(r_1),\ldots,\phi(r_n))\otimes_S M;$$

this proves the asserted isomorphism of homology.

(2) This follows from noting that localization is an exact functor.

C.10. **Definition**. Let (R, \mathfrak{m}) be a noetherian local ring and M a finitely generated R-module. M is said to be *Cohen-Macaulay* if depth $M = \dim M$; R is said to be a *Cohen-Macaulay* ring if it is a Cohen-Macaulay module over itself. A noetherian ring is said to be *Cohen-Macaulay* if all its local rings at maximal ideals are Cohen-Macaulay.

C.11. Proposition. Every two-dimensional local normal domain is Cohen-Macaulay.

Proof. Let (R, \mathfrak{m}) be a two-dimensional local normal domain. Let $0 \neq r \in \mathfrak{m}$. Then $\operatorname{ht} \mathfrak{p} = 1$ for every $\mathfrak{p} \in \operatorname{Ass} R/(r)$, so, by the prime avoidance lemma, $\mathfrak{m} \notin \bigcup_{\mathfrak{p} \in \operatorname{Ass} R/(r)} \mathfrak{p}$. Hence there exists $r' \in \mathfrak{m}$ that is a non-zero-divisor on R/(r). Therefore r, r' is an R-regular sequence.

C.12. **Proposition**. Let (R, m) be a two-dimensional noetherian local domain and S its integral closure in a finite separable extension field of its fraction field. Then S is a Cohen-Macaulay *R*-module.

Proof. We need to show that depth_m(S) = 2; since dim S = 2, it suffices to show that depth_m(S) \geq 2. Let $\mathfrak{n}_1, \ldots, \mathfrak{n}_s$ be the maximal ideals of S. Since S is integral over R, we see that ht $\mathfrak{n}_i = 2$ for every i and that $\sqrt{\mathfrak{m}S} = \mathfrak{n}_1 \cap \cdots \cap \mathfrak{n}_s$. Hence it suffices to show that

 $\mathrm{H}^{i}_{\mathfrak{n}_{1}\cap\cdots\cap\mathfrak{n}_{s}}(S)=0$

for i = 0, 1, for which it suffices to show that

 $\mathrm{H}^{i}_{\mathfrak{n}_{1}\cap\cdots\cap\mathfrak{n}_{s}}(S)_{\mathfrak{n}_{i}}=0$

for i = 0, 1 and j = 1, ..., s. This is indeed true since

$$\mathrm{H}^{\iota}_{\mathfrak{n}_{1}\cap\cdots\cap\mathfrak{n}_{s}}(S)_{\mathfrak{n}_{j}}=\mathrm{H}^{\iota}_{\mathfrak{n}_{i}S_{\mathfrak{n}_{i}}}(S_{\mathfrak{n}_{j}})$$

for every *i* and *j* and S_{n_i} is a two-dimensional Cohen-Macaulay ring for every *j*.

C.13. **Theorem** (Auslander-Buchsbaum formula). Let (R, \mathfrak{m}) be a noetherian local ring and M a finitely generated R-module of finite projective dimension. Then

$$\operatorname{pd}_R(M) + \operatorname{depth} M = \operatorname{depth} R.$$

C.14. **Definition**. A noetherian local ring (R, \mathfrak{m}) is said to be a *regular local ring* if dim $R = \operatorname{rk}_{R/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2)$.

C.15. **Proposition**. Let (R, m) be a d-dimensional regular local ring and r_1, \ldots, r_d be a minimal generating set for m. Then r_1, \ldots, r_d is an R-regular sequence. In particular, every regular local ring is Cohen-Macaulay.

Proof. The key point is that regular local rings are domains; see [Eis95, 10.14]. We induct on dimension to prove the proposition, assuming the above fact. The proposition is true when *d* = 1. Let *d* > 1 be an integer and assume that the assertion holds for all regular local rings of dimension ≤ *d* − 1. Since *R* is a domain, *r*₁ is a non-zero-divisor on *R*. Write $R' = R/(r_1)$ and $\mathfrak{m}' = \mathfrak{m}R'$. Then $R'/\mathfrak{m}' \simeq R/\mathfrak{m}$ and $\operatorname{rk}_{R/\mathfrak{m}}(\mathfrak{m}/\mathfrak{m}^2) = \operatorname{rk}_{R'/\mathfrak{m}'}(\mathfrak{m}'/\mathfrak{m}'^2) + 1$. If $d' := \dim R' < d - 1$, then there would exist $r'_1, \ldots, r'_{d'} \in \mathfrak{m}'$ such that $\sqrt{(r'_1, \ldots, r'_{d'})R'} = \mathfrak{m}'$. Lifting them to *R*, we would get *d'* elements, which along with r_1 form an \mathfrak{m} -primary ideal, implying that dim R < d, a contradiction. Hence $d' = d - 1 = \operatorname{rk}_{R'/\mathfrak{m}'}(\mathfrak{m}'/\mathfrak{m}'^2)$, so *R'* is a regular local ring. By induction, *R'* is Cohen-Macaulay, so r_1, \ldots, r_d is an *R*-regular sequence.

C.16. **Proposition**. Let R be a regular local ring. Then for every finitely generated R-module M, $pd_R(M) \leq \dim R$.

Proof. Let $d = \dim R$ and r_1, \ldots, r_d be a minimal generating set for the maximal ideal \mathfrak{m} of R. Write $\Bbbk = R/\mathfrak{m}$. It follows from Proposition C.4 that the Koszul complex $K_{\bullet} :=$

 $K_{\bullet}(r_1, \ldots, r_d)$ is a free resolution of \Bbbk , so $pd_R(\Bbbk) \leq d$. (In fact, Since $Im(K_i \longrightarrow K_{i-1}) \subseteq mK_{i-1}$, it is a minimal free resolution of \Bbbk , so $pd_R(\Bbbk) = d$.) Therefore, by (B.2),

$$\operatorname{pd}_{R}(M) = \sup\{i \mid \operatorname{Tor}_{i}^{R}(M, \Bbbk) \neq 0\} \leq d.$$

C.17. **Proposition**. Let R be a two-dimensional regular domain and S its integral closure in a finite separable extension field of its fraction field. Then S is a projective R-module.

Proof. Since we want to show that $S_{\mathfrak{m}}$ is a free $R_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of R, we may localize R at a maximal ideal and assume that (R,\mathfrak{m}) is a two-dimensional regular local ring. Note that S is a finitely generated R-module. By Proposition C.12, S is a two-dimensional Cohen-Macaulay R-module. Hence depth_{\mathfrak{m}} S = 2. Since R a two-dimensional Cohen-Macaulay ring (Proposition C.15), depth R = 2. Hence $pd_R(S) = 0$, i.e., S is free.

References

- [AB59] M. Auslander and D. A. Buchsbaum. On ramification theory in noetherian rings. *Amer. J. Math.*, 81:749–765, 1959. 1, 15, 17, 18, 19
- [Art91] M. Artin. Algebra. Prentice Hall, Inc., Englewood Cliffs, NJ, 1991. 1
- [Ben93] D. J. Benson. Polynomial invariants of finite groups, volume 190 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1993. 18
- [Ber61] R. Berger. über verschiedene Differentenbegriffe. S.-B. Heidelberger Akad. Wiss. Math.-Nat. Kl., 1960/61:1-44, 1960/1961. 1
- [Bou98] N. Bourbaki. Algebra I. Chapters 1-3. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998. Translated from the French, Reprint of the 1989 English translation [MR0979982 (90d:00002)]. 3
- [Bou12] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitre et anneaux semi-simples. Springer, Berlin, 2012. Second revised edition of the 1958 edition [MR0098114]. 24
- [CE99] H. Cartan and S. Eilenberg. *Homological algebra*. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum, Reprint of the 1956 original. 24
- [Eis95] D. Eisenbud. Commutative algebra, with a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. 1, 9, 11, 13, 17, 18, 20, 26, 29
- [Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 4
- [HS06] C. Huneke and I. Swanson. Integral closure of ideals, rings, and modules, volume 336 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2006. 9
- [ILL+07] S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, and U. Walther. Twentyfour hours of local cohomology, volume 87 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. 28
- [Kun86] E. Kunz. Kähler differentials. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1986. 1, 11
- [Mat80] H. Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980. 1
- [Mat89] H. Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid. 1, 8, 11
- [Ser00] J.-P. Serre. *Local algebra*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2000. Translated from the French by CheeWhye Chin and revised by the author. 8, 9
- [SS74] G. Scheja and U. Storch. Lokale Verzweigungstheorie. Institut des Mathématiques, Université de Fribourg, Fribourg, 1974. 1

RAMIFICATION THEORY. NOTES

CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA Email address: mkummini@cmi.ac.in