
RAMIFICATION THEORY. NOTES

MANOJ KUMMINI

Outline

These are notes from a course during Aug–Nov 2018 on the ramification theory of noe-
therian local rings, following [AB59] and the various di�erents that appear in this context.
These notes begin with a review of commutative algebra ([Eis95], [Mat80], [Mat89])Then
comes a discussion of Kähler di�erentials ([Eis95], [Kun86], [Mat80], [Mat89]). The results
of [AB59] and some topics on di�erents ([Ber61], [SS74]) are discussed next.

Notation

By a ring, we mean, unless something is mentioned explicitly to the contrary, commu-
tative rings with identity. Ring homomorphisms are assumed to take the multiplicative
identity to the multiplicative identity.

ModR: the category of all R-modules, for a ring R.
R,S: rings.

1. Examples

1.1. Background. Let R −→ S be a ring homomorphism. For a prime ideal p of R, we
are interested in studying when pS is not a prime ideal of S. We do not define ramification
in this section, but look at two examples that illustrate the question.

1.2. Example: Gaussian integers. R = Z, S = Z[ı]. Let p ∈ Z be a prime number. We
look at the ideal pS. See [Art91, Section 11.5] for details.
(1) p = 2: In S, we can write 2 = (1 + ı)(1 − ı) = −ı(1 + ı)2, so (2)S = ((1 + ı)S)2. Use

the euclidean norm a + ıb 7→ a2 + b2 for a, b ∈ Z to see that S is a PID and that 1 + ı is
irreducible and, hence, prime. Therefore we say that 2 rami�es in S. Precise definition
will come later.
(2) p = 5. In R, 5 = 22 + 12, so in S, 5 = (2 + ı)(2 − ı). Can check that (2 + ı) and (2 − ı)

are irreducible in S, so they are prime elements. They are not multiples of each other by
units in S, so we say that 5 splits into distinct primes in S. Same argument can be given
for all prime numbers p that can be expressed as a sum of two squares in R; it is known
that such p are exactly those congruent to 1 mod 4.
(3) p = 3. Suppose that 3 = (a + ıb)(c + ıd). Looking at the norms, we see that
(a2 + b2)(c2 + d2) = 9, so (a2 + b2) = 1,3 or 9. There do no exists integers a, b such that
(a2 + b2) = 3. If (a2 + b2) = 1, (a + ıb) is a unit in S. If (a2 + b2) = 9, (c + ıd) is a unit in S.
Hence 3 is irreducible and hence prime in S.
The following proposition is proved in [Art91, Section 11.5].

1.2.1. Proposition. Let p be a prime number. Then p is prime in S or p = ππ for a pair of
complex conjugate primes in S.
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Proof. Since p is not a unit in S, it has a prime divisor π := a+ ıb. Then π = a− ıb divides
p = p, so a2 + b2 divides p2. Since a + ıb is not a unit in S, a2 + b2 > 1, so a2 + b2 = p, in
which case p = ππ, or a2 + b2 = p2, in which case p = uπ for some unit u ∈ S (look at the
euclidean norm), and, hence, p is a prime element in S. �

1.2.2. Observation. Note that Q(ı) ' Q(x)/(x2 + 1) and that Z[ı] ' Z[x]/(x2 + 1). The
discriminant of x2 + 1 is −4. The only prime number that divides it is 2; it is the only
prime that ramifies in Z[ı]. We will later see that this is not a coincidence. �

1.3. Example: Branched coverings of curves. Let R = C[t] and S = C[t, x]/((x −
f1(t))(x − f2(t))(x − f3(t))), where the fi(t) belong to R. This gives a map Spec S −→
Spec R ' C1. Take a prime ideal (t −α) of R. S/(t −α)S ' C[t, x]/((x− f1(α))(x− f2(α))(x−
f3(α)), t − α) ' C[x]/((x − f1(α))(x − f2(α))(x − f3(α))), so if fi(α) = f j(α) for some i , j,
the prime ideal (t − α) ramifies in S. If the three fi(α) are distinct, there are three distinct
points of Spec S that map to the point α ∈ C1. Again, ramification happens over the prime
ideals (t − α) containing the discriminant ( f1(t) − f2(t))( f1(t) − f3(t))( f2(t) − f3(t)).

1.4. Example: blow-up. Let R = C[x, y, z]/(x2 + y3 + z5) and m = (x, y, z)R. Let S =
R ⊕ m ⊕ m2 ⊕ · · · , thought of as a graded R-algebra. Note that if p ∈ Spec R, p , m,
then (R r p)−1S ' Rp[t]. Hence f : Proj S −→ Spec R is a morphism with the following
property: over Spec Rr {m}, it is an isomorphism, since Proj A[t] ' Spec A for every ring
A. To understand what happens over {m}, we look at an a�ne covering of Proj S given
by Spec R[ yx ,

z
x ], Spec R[ xy ,

z
y ] and Spec R[ xz ,

y
z ]. Write A = R[ xy ,

z
y ]. Note that

C[x, y, z, x1, z1]
(y2(x21 + y + y3z51), x − yx1, z − yz1)

'
C[y, x1, z1]

(y2(x21 + y + y3z51))
� A.

By looking at the dimensions and noting that y is a non-zero-divisor in A, we conclude
that A ' C[y, x1, z1]/(x21 + y + y3z51). Then mA = yA = (x21, y)A. Hence there is a unique
minimal prime P over mA, with htP = 1. Further

λAP

(
AP
mAP

)
= 2.

2. Tensor products

In this section, we review, mostly without proofs, some facts about tensor products.
Let M, N and P be R-modules. A function f : M×N −→ P (where M×N is the cartesian

product, i.e., the product in the category of sets) is said to R-bilinear (or, merely bilinear,
if no confusion is likely to arise) if for every x ∈ M, the function N −→ P, y 7→ f (x, y) is
R-linear and for every y ∈ N , the function M −→ P, x 7→ f (x, y) is R-linear.

2.1. De�nition. Let M,N be R-modules. Let F be the free R-module with basis M × N
and Q the submodule generated by all the elements of F of the form

(x + x′, y) − (x, y) − (x′, y),

(x, y + y′) − (x, y) − (x, y′)
(r x, y) − (x,ry)

where x, x′ are in M, y, y′ are in N and r is in R. The tensor product of M and N , denoted
by M ⊗R N , is the R-module F/Q. The image of (x, y) ∈ M × N under the map M × N ↪→
F −→ M ⊗R N is denoted x ⊗R y.
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We observe that the elements of M ⊗R N of the form x ⊗R y generate M ⊗R N as an
R-module. The map M × N −→ M ⊗R N is R-bilinear.

2.2. Proposition. Let M , N and P be R-modules. Then every R-linear map M ⊗R N −→ P
induces an R-bilinear map M × N −→ P. Conversely, if f : M × N −→ P an R-bilinear map,
then there exists a unique R-linear map f̃ : M ⊗R N −→ P such that f̃ (x ⊗R y) = f (x, y).

This proposition implies that

HomR(M ⊗R N,P) ' HomR(N,HomR(M,P))

for all R-modules M, N and P. We rephrase this to say that the functor −⊗R N (from ModR
to ModR) is left-adjoint to the functor HomR(N,−). Using this property, we can prove that
the functor − ⊗R N is right exact.
Let M and N be R-modules, with generating sets {xλ | λ ∈ Λ} and {yi | i ∈ I}

respectively. Then {xλ ⊗R yi | λ ∈ Λ, i ∈ I} is a generating set for M ⊗R N . In particular,
if M and N are finitely generated, so is M ⊗R N .
We now discuss base-change. Let φ : R −→ S be a ring map. For an R-module M,

we write φ∗M = S ⊗R M; for an S-module N , we write and φ∗N for the abelian group N
thought of as an R-module through the map φ (‘restriction of scalars’). If {xλ | λ ∈ Λ} is
a generating set of M as an R-module, then {1 ⊗R xλ | λ ∈ Λ} is a generating set of φ∗M
as an S-module.
Let N be an R-module, and M and P S-modules. Then M ⊗R N has a natural S-module

structure, with S acting on M; HomS(M,P) has an R-module structure through φ. Then
there is a general version of this adjointness; see [Bou98, Chapter II, §4] for a proof (in
an even more general set-up).

2.3. Proposition. HomS(M⊗R N,P) ' HomR(N, φ∗HomS(M,P)). In particular (with M = S)
we have HomS(φ

∗N,P) ' HomR(N, φ∗P).

Let f : R −→ S and g : R −→ T be ring maps. Then the R-module S ⊗R T is a ring in
which multiplication is defined by (s ⊗R t)(s′ ⊗R t′) = ss′ ⊗R tt′ and extended R-linearly.
The maps

g′ : S −→ S ⊗R T, s 7→ s ⊗R 1, and

f ′ : T −→ S ⊗R T, t 7→ 1 ⊗R t

are ring homomorphisms giving a commutative diagram

T
f ′ // S ⊗R T

R
f //

g

OO

S,

g′

OO

of R-algebras. Moreover, if A is an R-algebra such that there are R-algebra maps u : S −→
A and v : T −→ A, then there exists a unique R-algebra map µ : S ⊗R T −→ A such that
u = µg′ and v = µ f ′. This makes S ⊗R T the coproduct of S and T in the category of
R-algebras. Note that this set-up commutes with localization in R.
We can write T = R[{Xλ : λ ∈ Λ}]/a for a set {Xλ : λ ∈ Λ} of variables and an ideal

a ∈ R[{Xλ : λ ∈ Λ}]. Then we get an exact sequence

S ⊗R a −→ S[{Xλ : λ ∈ Λ}] −→ S ⊗R T −→ 0.
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The image of S ⊗R a −→ S[{Xλ : λ ∈ Λ}] is the extension of a under the morphism
R[{Xλ : λ ∈ Λ}] −→ S[{Xλ : λ ∈ Λ}] induced by f .
Taking A = T = S, f = g, u = v = idS, we get a map of

(2.4) µ : S ⊗R S −→ S, s ⊗ s′ 7→ ss′

R-algebras. This map comes up often while studying properties of morphisms.

2.5.Example. Let S = R[X1, . . . ,Xn], where the Xi are variables. Then S⊗RS ' R[X1, . . . ,Xn,Y1, . . . ,Yn]

where theYj are variables, disjoint from the Xi. The kernel of µ is the ideal (X1−Y1, . . . ,Xn−

Yn).

2.6. Remark. Spec(−) is contravariant functor from the category of rings to the category
of schemes. Fix a ring R. Then the restriction of Spec(−) to the full subcategory of R-
algebras is a functor to the category of schemes over Spec R. In fact, using Spec(−), we can
identify the category of schemes over Spec R as the opposite category of the category of
R-algebras. Hence Spec(S⊗R T) is the fibred product Spec S×Spec R Spec T [Har77, Section
II.3].

3. Projective and flat modules

3.1. Proposition. Let P be an R-module. Then the following are equivalent:
(1) The functor HomR(P,−) is exact;
(2) for every surjective morphism α : M −→ N of R-modules, and every R-linear morphism

f : P −→ N , there exists g : P −→ M such that f = αg, or equivalently, the morphism

HomR(P,M) −→ HomR(P,N), φ 7→ αφ

is surjective;
(3) every surjective homomorphism M −→ P splits;
(4) P is a direct summand of a free R-module;

We first note that a functor is exact if and only if it takes short exact sequences to short
exact sequences.

Proof. (1) ⇐⇒ (2): Assume (1). We have an exact sequence

0 −→ HomR(P,kerα) −→ HomR(P,M) −→ HomR(P,N) −→ 0

from which we conclude (2). Conversely if (2) holds, then HomR(P,−) takes short exact
sequences to short exact sequences, so (1) holds.
(2) =⇒ (3): Apply with P = N and f = idP.
(3) =⇒ (4): There is a free module F with a surjective map F −→ P.
(4) =⇒ (2): Let F be a free module with P as a direct summand. Write F = P ⊕ P′.

Since morphism
HomR(F,M) −→ HomR(F,N)

splits the direct sum

(HomR(P,M) −→ HomR(P,N)) ⊕ (HomR(P′,M) −→ HomR(P′,N))

it su�ces to show that
HomR(F,M) −→ HomR(F,N)

is surjective. Hence we may assume that P is free, with basis {eλ, λ ∈ Λ}. Let xλ be a
pre-image of f (eλ). Define g(eλ) = xλ.

�
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3.2. De�nition. An R-module P is said to be projective if it satisfies the equivalent condi-
tions of the above proposition.

3.3. Proposition. Let P be a �nitely generated R-module. Then P is projective if and only if Pp
is a free Rp-module for every p ∈ Spec R.

Proof. It follows from Proposition 3.1 that an R-module M is projective if and only if Mp

is a projective Rp-module for every p ∈ Spec R. Hence it su�ces to show that a finitely
generated projective module over a local ring is free. Without loss of generality we may
assume that (R,m,k) is a local ring. Let t = rkk P/mP. Hence there exists a split exact
sequence

0 −→ P′ −→ Rt −→ P −→ 0.

We want to show that P′ = 0. This follows from observing that

t = rkk Rt/mRt = rkk P/mP + rkk P′/mP′ = t + rkk P′/mP′. �

Let N be an R-module. The functor HomR(−,N) is not exact. However, if 0 −→ M1 −→

M2 −→ M3 −→ 0 is an exact sequence with M3 projective, it splits, and, therefore, the
sequence

0 −→ HomR(M3,N) −→ HomR(M2,N) −→ HomR(M1,N) −→ 0

is split exact. Every R-module M has a projective resolution, i.e., a complex

P• : · · · −→ P2 −→ P1 −→ P0 −→ 0

that is exact everywhere except at the 0th stage, where the homology is isomorphic to
M . Now any exact sequence 0 −→ M1 −→ M2 −→ M3 −→ 0 of R-modules, we can find
projective resolutions P, P′ and P′′ of M1, M2 and M3 respectively that fit into a double
complex

�� �� ��
0 // Pi+1 //

��

P′i+1
//

��

P′′i+1
//

��

0

0 // Pi //

��

P′i
//

��

P′′i
//

��

0

0 // Pi−1 //

��

P′i−1
//

��

P′′i−1
//

��

0
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Applying HomR(−,N) yields the double complex

0 // HomR(P′′i+1,N)
//

OO

HomR(P′i+1,N)
//

OO

HomR(Pi+1,N) //

OO

0

0 // HomR(P′′i ,N)
//

OO

HomR(P′i ,N)
//

OO

HomR(Pi,N) //

OO

0

0 // HomR(P′′i−1,N)
//

OO

HomR(P′i−1,N)
//

OO

HomR(Pi−1,N) //

OO

0
OO OO OO

in which the rows are (split) exact, by the earlier remark. Now apply the snake lemma to
conclude that there exists an exact sequence

· · · // Hi−1(HomR(P•,N))

// Hi(HomR(P′′• ,N)) // Hi(HomR(P′•,N)) // Hi(HomR(P•,N))

// Hi+1(HomR(P′′• ,N)) // · · ·

We note that H0(HomR(P•,N)) ' HomR(M1,N), and similarly for M2 and M3. Hence this
construction “repairs” the lack of surjectivity at the right end of the exact sequence

0 −→ HomR(M3,N) −→ HomR(M2,N) −→ HomR(M1,N).

We write Exti
R(M1,N) = Hi(HomR(P•,N)), and similarly for M2 and M3. One has to check

that this is independent of the choice of the choice of projective resolutions. We summarise
this discussion by saying that projectives are acyclic for the functor HomR(−,N) and that
the its higher derived functors can be defined using projective resolutions.
We now consider the functor − ⊗R N . Let 0 −→ M1 −→ M2 −→ M3 −→ 0 be an exact

sequence of R-modules. Apply N ⊗R −. We now “repair” the lack of injectivity at the left
end of the exact sequence

N ⊗R M1 −→ N ⊗R M2 −→ N ⊗R M3 −→ 0

in a way similar to the earlier situation. If M3 is projective, then the sequence 0 −→
M1 −→ M2 −→ M3 −→ 0 is split, so

0 −→ N ⊗R M1 −→ N ⊗R M2 −→ N ⊗R M3 −→ 0
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is a (split) exact sequence. By taking projective resolutions, applying the functor and
taking homology, we get, using the snake lemma, an exact sequence

· · · // Hi+1(P′′• ⊗R N)

// Hi(P• ⊗R N) // Hi(P′• ⊗R N) // Hi(P′′• ⊗R N)

// Hi−1(P• ⊗R N) // · · ·

Since −⊗RN is right-exact, we see that H0(P•⊗RN) ' M⊗RN . Hence we have “repaired” the
lack of injectivity at the left end of the exact sequence. We write TorR

i (M1,N) = Hi(P•⊗RN),
and similarly for M2 and M3. One has to check that this is independent of the choice of the
choice of projective resolutions. We summarise this discussion by saying that projectives
are acyclic for the functor (− ⊗R N) and that the its higher derived functors can be defined
using projective resolutions.

3.4. De�nition. An R-module M is said to be �at if M ⊗R − is an exact functor.

Note that M is flat if and only if for every injective R-module map N −→ N′, the map
M ⊗R N −→ M ⊗R N′ is injective. R is flat. For a family Mλ, λ ∈ Λ of R-modules, ⊕λ∈ΛMλ

is flat if and only if Mλ is flat for every λ ∈ Λ. Hence projective modules are flat.

3.5. Proposition. An R-module M is �at if and only if TorR
1 (M,−) = 0.

Proof. Let
0 −→ N −→ N′ −→ N′′ −→ 0

be an exact sequence. Since TorR
1 (M,N′) = 0, we see that

0 −→ M ⊗R N −→ M ⊗R N′ −→ M ⊗R N′′ −→ 0

is exact. Conversely, let N be an R-module and α : P −→ N be a surjective R-module map
with P a projective R-module. Then we have an exact sequence

−→ TorR
1 (M,P) −→ TorR

1 (M,N) −→ M ⊗R (kerα) −→ M ⊗R P −→ M ⊗R N −→ 0

Now TorR
1 (M,P) = 0, since P is projective. By hypothesis the map M⊗R (kerα) −→ M⊗R P

is injective, so TorR
1 (M,N) = 0. �

4. Integral extensions

Let R ⊆ S be an integral extension. Suppose that S is a field. Let r ∈ R. Let s ∈ S be
the inverse of r in S. We then have an equation

sn + r1sn−1 + · · · + rn = 0

with the ri in R. Multiplying by rn−1, we conclude that

s = snrn−1 = −(r1 + · · · + rnrn−1) ∈ R

so R is a field. Conversely suppose that R is a field and that S is a domain. Let s ∈ S.
Consider an integral equation

sn + r1sn−1 + · · · + rn = 0
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over R. Let n be the smallest such integer. Since S is a domain, rn , 0. Then

−
1

rn
(sn−1 + r1sn−2 + · · · + rn−1)

is the inverse of s. Hence S is field.
Let R −→ S be a ring map and p ∈ Spec R. A prime ideal q ∈ Spec S is said to lie over

p if q ∩ R = p.

4.1. Remark. Let p be a prime ideal of R. Write κ(p) = Rp/pRp. Then p corresponds
to the point Spec κ(p) −→ Spec R. The fibre over p is Spec(κ(p) ⊗R S). Let q be a prime
ideal of S. Suppose that q lies over p. Then pS ⊆ q and q is disjoint from the image of
R r p inside S; in other words, q(κ(p) ⊗R S) is a prime ideal of κ(p) ⊗R S. Conversely, if
q(κ(p) ⊗R S) is a prime ideal of κ(p) ⊗R S, then pS ⊆ q, so p ⊆ q ∪ R and q is disjoint from
the image of R r p inside S, so p ⊇ q ∪ R, so q lies over p.

Now let R ⊆ S be any integral extension. Let p be a maximal ideal of Spec R and q ∈
Spec S lie over p. Then the extension R/p −→ S/q is integral, so by the earlier observation
q is a maximal ideal of S. Conversely if p is a prime ideal that is not maximal, then q is
not maximal. Note that Rp −→ (R r p)−1S is integral. Applying the above observation to
this extension, we see that there cannot be any containment relation between two S-ideal
q,q′ lying over p. The same argument shows that every maximal ideal of (R r p)−1S lies
over p. In other words, the map Spec S −→ Spec R is surjective.

4.2. Theorem (Going-up). Let R ⊆ S be an integral extension and p1 ⊆ p2 be prime ideals of
R. Let q1 be a prime ideal of S lying over p1. Then there exists a prime ideal q2 of S lying over p2.

Proof. R/p1 ⊆ S/q1 is an integral extension. There exists a prime ideal of S/q1 lying over
p2/p1; lift it to get q1. �

4.3. Corollary. Let R ⊆ S be an integral extension. Then dim R = dim S. For any S-ideal J,
ht J ≤ ht(J ∩ R).

Proof. For any chain of prime ideals q1 ( q2 ( · · · of S, the prime ideals q1∩R ( q2∩R ( · · ·
of R are distinct, so dim S ≤ dim R. The goind-up theorem implies that dim S ≥ dim R.
Suppose first that J is a prime ideal. Choose a chain q1 ( q2 ( · · · ⊆ J and apply the
above argument. For general J, note that ht J = infq⊇J htq. �

4.4. Theorem (Going-down). Let R ⊆ S be an integral extension, with R a normal domain,
and S a domain. Let p1 ⊆ p2 be prime ideals of R. Let q2 be a prime ideal of S lying over p2.
Then there exists a prime ideal q1 of S that lies over p1.

4.5. Lemma. Let R be a normal domain and K its �eld of fractions. Let L be a normal extension
of K and G = AutK(L). Let S be the integral closure of R in L. Then for all p ∈ Spec R, G acts
transitively on the set of prime ideals of S lying over p.

Proof. We will prove this for �nite G; see [Ser00, III.A, §3] or [Mat89, Theorem 9.3] for
the general case. Let p ∈ Spec R. Let q,q′ be prime ideals of S lying over p. Note that
for every g ∈ G, gq is a prime ideal of S, lying over p. We want to show that there exists
g ∈ G such that gq = q′. By remarks above, it su�ces to show that there exists g ∈ G such
that q′ ⊆ gq. By the prime avoidance lemma, it su�ces to show that q′ ⊆ ∪g∈Ggq. Let
x ∈ q′. Then y :=

∏
g∈G gx ∈ L and is fixed by G. Since L/K is normal, LG/K is a purely

inseparable extension; so there exists q ∈ N such that yq ∈ K . Hence yq ∈ K ∩ S = R
(since R is integrally closed). Moreover yq ∈ q′ ∩ R = p ⊆ q. Therefore there exists g ∈ G
such that gx ∈ q, so x ∈ g−1q. �
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Proof of the going-down theorem. Let K and L, respectively, be the fraction fields of R and S.
L is an algebraic extension of K . Let L′ be a normal extension of K containing L and let
S′ be the integral closure of R in L′. Let q′2 be a prime ideal of S′ lying over q2. Let q′1 be
a prime ideal of S′ lying over p1. By the going-up theorem, there exists a prime S′-ideal q′′2
lying over p2 and containing q′1. Let G = AutK(L′). There exists g ∈ G such that gq′′2 = q

′
2.

Then gq′1 ⊆ q
′
2 and gq′1 ∩ R = p1. Define q1 = gq′1 ∩ S. �

5. Normal domains

A normal domain is a noetherian domain that is integrally closed in its field of fractions.

5.1. Proposition ([Ser00, Chapter III, Part C, §1]). Let R be a noetherian domain. Then R
is normal if and only if the following two conditions are satis�ed:
(1) For every prime R-ideal p of height 1, Rp is a DVR.
(2) For every r , 0 ∈ R and for every p ∈ Ass R/(r), htp = 1.

In many applications, we would like the following to be true: Let R be a noetherian
domain with field of fractions K . Let L/K be an extension of fields, and S the integral
closure of R in L; then the map R −→ S is of finite-type (equivalently, since S is integral
over R, finite, i.e., S is a finitely generated R-module). However, this is not true in general;
we look at two situations where this holds for normal R.

5.2. Proposition. Let R be a normal domain with �eld of fractions K . Let L be a �nite separable
�eld extension of K . Then the integral closure of R in L is a �nitely generated R-module.

For a proof see [Ser00, Chapter III, Part C, §3], [Eis95, Proposition 13.14] or [HS06,
Theorem 3.1.3].

5.3. Proposition. Let k be a �eld, R a domain that is �nitely generated as a k-algebra, K its
�eld of fractions, and L a �nite extension �eld of K . Then the integral closure of R in L is a
�nitely generated R-module.

(See [Ser00, Chapter III, Part D §4] or [Eis95, Corollary 13.13].)

Proof. Step 1: Let A = k[x1, . . . , xn] be a Noether normalization of R. We have

S ⊆ L

R ⊆ K

A ⊆ k(x1, . . . , xn)

If S is finitely generated A-module, then it is a finitely generated R-module. Hence, re-
placing R by A we may assume that R = k[x1, . . . , xn] and K = k(x1, . . . , xn).
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Step 2: Let L′/L be a extension so that L′/k is normal and finite. Let S′ be the integral
closure of S in L′; it is also the integral closure of R in L′. We have

S′ ⊆ L′

S ⊆ L

R ⊆ K

If S′ is a finite generated R-module, then so is S. Hence, without loss of generality, L/K
is normal.
Step 3: Let G = AutK(L). Then LG/K is a purely inseparable extension. Let S1 be the

integral closure of R in LG. We have

S ⊆ L

S1 ⊆ LG

R ⊆ K

L/LG is Galois, so it is separable; note that S is the integral closure of S′ in L. By the
earlier proposition S is a finitely generated S′-module. Hence, if S′ is a finitely generated R-
module, S is a finitely generated R-module. Therefore replacing L by LG, we may assume
that L/K is purely inseparable.
Step 4: Let y1, . . . , ym ∈ L be a generating set for L as a K -algebra. There exists power

q of the characteristic exponent of k such that yq
i ∈ K for every 1 ≤ i ≤ m. Hence for

each 1 ≤ i ≤ m, yq
i is a rational function in k(x1, . . . , xn). Let c1, . . . , cr ∈ k be the set of

coe�ecients of these rational functions. Let k′ = k(c
1
q

1 , · · · c
1
q
m). Then yi ∈ k

′(x
1
q

1 , · · · x
1
q
n ) for

each i, so L ⊆ k′(x
1
q

1 , · · · x
1
q
n ). Let S2 be integral closure of R in k′(x

1
q

1 , · · · x
1
q
n ). Thus we have

S2 ⊆ k′(x
1
q

1 , · · · x
1
q
n )

S ⊆ L

k[x1, . . . , xn] R ⊆ K k(x1, . . . , xn)

If S2 is a finitely generated R-module, then so is S; hence, without loss of generality,

L = k′(x
1
q

1 , · · · x
1
q
n ).

Step 5: Let f ∈ L be integral over R. Then f q ∈ K is integral over R, so f q ∈ R. Hence

f ∈ k′[x
1
q

1 , · · · x
1
q
n ]. Conversely, every element of k′[x

1
q

1 , · · · x
1
q
n ] is integral over R. Hence

S = k′[x
1
q

1 , · · · x
1
q
n ] which is a finitely generated (free) R-module. �
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6. Derivations, Kahler differentials

Primary references for this section are [Mat89, § 25], [Kun86, § 1] and [Eis95, Chap-
ter 16].

6.1. De�nition. Let k be a ring, R a k-algebra and M an R-module. A k-derivation of
R in M (or a derivation of R in M over k) is a k-linear map d : R −→ M such that
d(ab) = ad(b) + bd(a). When k = Z, we refer to such maps as derivations of R in M .
We write Derk(R,M) for the set of k-derivations of R in M and denote DerZ(R,M) by
Der(R,M). When M = R, we write Derk(R) and Der(R).

6.2. Example. Let U ⊆ Rn be an open subset and R the ring of C∞-functions on U. The
partial di�erential operators

∂

∂xi
: R −→ R

are R-derivations of R.

6.3. Example. Let U ⊆ Rn be an open subset and R the ring of C∞-functions on U. Fix
x ∈ U. Let mx = { f ∈ R | f (x) = 0}. It is a maximal ideal of R and R/mx ' R. Through
this, we can think of R as an R-module. The maps

di : R −→ R, f 7→
∂ f
∂xi
(x)

are R-derivations of R in R.

6.4. Example. Let R = k[x1, . . . , xn] a polynomial ring over k in n variables. We can
define derivatives formally by setting

∂

∂xi
(xe1

1 · · · x
en
n ) = ei x

e1
1 · · · x

ei−1
i · · · xen

n ,

and extending it k-linearly to R. Let M = ⊕n
i=1Rdxi, where dx1, . . . ,dxn are symbols. The

map

d : R −→ M, f 7→ (
∂ f
∂xi
)dxi

is a k-derivation of R in M . This is a formal way of defining di�erentials of (polynomial)
functions. Similar arguments can be carried over to k[[x1, . . . , xn]] also.

6.5. Example. Consider the map µ : R ⊗k R −→ R from (2.4). Write I = ker µ. For
every a ∈ R, a ⊗ 1 − 1 ⊗ a ∈ I. One can show that I is the (R ⊗k R)-ideal generated by
{a ⊗ 1− 1⊗ a | a ∈ R}. On R ⊗k R, there are two R-module structures (from the ring maps
a 7→ a ⊗ 1 and a 7→ 1 ⊗ a), and so on I. However, on I/I2, these structures agree, since

(r ⊗ 1 − 1 ⊗ r)(a ⊗ 1 − 1 ⊗ a) ∈ I2.

We can define a k-derivation δ : R −→ I/I2,a 7→ (a ⊗ 1 − 1 ⊗ a) mod I2.

6.6. Example. Let F be the free R-module generated by the set {dr | r ∈ R} and N the
R-submodule generated by

{d(rr′) − rdr′ − r′dr | r,r′ ∈ R} ∪ {d(ar + a′r′) − adr − a′dr′ | r,r′ ∈ R,a,a′ ∈ k}.

Let M = F/N . The map d : R −→ M, r 7→ dr is a k-derivation of R in M . The pair (M,d)
has the following universal property: For every R-module M′ and every d′ ∈ Derk(R,M′),
there exists a unique R-linear map f : M −→ M′ such that d′ = f d. Indeed, there exists a
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unique R-linear map f̃ : F −→ M′, dr 7→ d′r . Since d′ is a k-derivation, N ⊆ ker f̃ . Thus
we get the unique R-linear map f : M −→ M′ such that d′ = f d.

6.7. De�nition. The module M in Example 6.6 is called the module of Kähler di�erentials
of R over k and is denoted ΩR/k. The map d : R −→ ΩR/k is called the universal k-derivation
of R.

6.8. Remark. Let F and N be as in Example 6.6. Let N′ be the R-submodule of R
generated by

{d(rr′) − rdr′ − r′dr | r,r′ ∈ R} ∪ {d(r + r′) − dr − dr′ | r,r′ ∈ R} ∪ {da | a ∈ k}.

Note that, for every a ∈ k, da = d(a · 1 + 0 · 0) − ad1 − 0d0 ∈ N , so N′ ⊆ N . Conversely,
let a,a′ ∈ k and r,r′ ∈ R. Then d(ar + a′r′) − d(ar) − d(a′r′) ∈ N′ and d(ar) − adr =
d(ar)−adr−rda+rda ∈ N′; hence d(ar+a′r′)−adr−a′dr′ = d(ar+a′r′)−d(ar)−d(a′r′)+
d(ar) + d(a′r′) − adr − a′dr′ ∈ N′. Therefore N = N′.

The map M −→ Derk(R,M) is a covariant left-exact functor from R-modules to R-
modules. We have established that Derk(R,−) = HomR(ΩR/k,−). (One says that ΩR/k
represents the functor Derk(R,−).)

6.9. Proposition. Let I = ker (µ : R ⊗k R −→ R) and δ : R −→ I/I2,r 7→ (r ⊗ 1 − 1 ⊗ r)
mod I2. Then for every R-module M and every e ∈ Derk(R,M), there is a unique R-linear map
ẽ : I/I2 −→ M such that e = ẽδ. In particular, there is a unique isomorphism φ : ΩR/k −→ I/I2

such that such that the diagram

M

R

e

OO

d}} δ !!

ΩR/k

e′

EE

φ // I/I2

ẽ

XX

commutes (where e′ is the unique R-linear map ΩR/k −→ M).

Proof. For now, assume the assertion about the existence of the unique map ẽ. Applying
it to the derivation d : R −→ ΩR/k, we get a unique R-linear map ψ : I/I2 −→ ΩR/k such
that d = ψδ. On the other hand, from the universal property of the pair (ΩR/k,d), we get
a map φ : ΩR/k −→ I/I2 such that φd = δ. Hence ψφd = d and φψδ = δ. Since ΩR/k is
generated by {dr | r ∈ R}, we see that ψφ = idΩR/k

. Similarly, since I/I2 is generated by
{δr | r ∈ R}, we see that φψ = idI/I2 . This proves the existence of the unique isomorphism
φ.
Continuing with our assumption of the existence of ẽ, we need to show that e′ = ẽφ. It

su�ces to show that e′dr = ẽφdr for every r ∈ R. This indeed is true: e′dr = er = ẽδr =
ẽφdr .
Now to prove the existence of ẽ. Let N be an R-module Let R n N be the R-module

R ⊕ N with multiplication (r, x)(r′, x′) := (rr,r x′ + r′x). There are two natural k-algebra
maps: i : R −→ R n N,r 7→ (r,0) which is injective and π : R n N −→ R, (r, x) 7→ r, which
is surjective. Now let f ∈ Derk(R,N). The map f̂ : R −→ R n N , r 7→ (r, f (r)) is a map of
k-algebras.
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Let ê : R −→ R n M be the k-algebra map associated to e. The universal property of
R ⊗k R gives a morphism

h : R ⊗k R −→ R n M,r ⊗ r′ 7→ ê(r)i(r′) = (r, er)(r′,0) = (rr′,r′er).

Note that h(r ⊗ 1 − 1 ⊗ r) = (0, er), so h(I2) = 0. Hence ê induces an R-linear mapping
ẽ : I/I2 −→ M, ẽ(r ⊗ 1 − 1 ⊗ r) = er . This is unique since I is generated by {r ⊗ 1 − 1 ⊗ r |
r ∈ R}. �

For the next two results, we follow the proof in [Eis95, Chapter 16].

6.10. Theorem (First fundamental exact sequence). Let k −→ R −→ S be ring maps. Then
there exists an exact sequence

S ⊗R ΩR/k −→ ΩS/k −→ ΩS/R −→ 0

of S-modules, where the maps are given by s ⊗ dR/kr 7→ sdS/kr (thinking of r as its image in S)
and dS/ks 7→ dS/Rs.

Proof. It follows from Remark 6.8 that the map

ΩS/k −→ ΩS/R, dS/ks 7→ dS/Rs

is surjective and that its kernel is generated by {dS/kr | r ∈ R}. This is precisely the image
of the map

S ⊗R ΩR/k −→ ΩS/k s ⊗ dR/kr 7→ sdS/kr . �

6.11. Theorem (Second fundamental exact sequence). Let R be a k-algebra and I an ideal
of R. Write S = R/I . Then there exists an exact sequence

I/I2 −→ S ⊗R ΩR/k −→ ΩS/k −→ 0

of S-modules, where the maps are r mod I2 7→ 1 ⊗R dR/kr and s ⊗ dR/kr 7→ sdS/kr (thinking
of r as its image in S).

The map S ⊗R ΩR/k −→ ΩS/k is the same from the first fundamental exact sequence.
It is surjective, since ΩS/R = 0 as S ⊗R S −→ S is an isomorphism. The content of this
theorem is that its kernel is given by I/I2.

Proof. The map S ⊗R ΩR/k −→ ΩS/k, s ⊗ dR/kr 7→ sdS/kr is the same as the map

ΩR/k

IΩR/k
−→ ΩS/k,

which is induced from the map ΩR/k −→ ΩS/k, dR/kr 7→ dS/kr . Consider the map⊕
r∈R

RdR/kr −→
⊕
r∈S

SdS/kr, dR/kr 7→ dS/kr

where by r, we mean the image of r in S. The kernel of this map is(⊕
r∈R

IdR/kr

)
+ R{dR/kr | r ∈ I}.

Hence, the kernel of the map ΩR/k −→ ΩS/k, dR/kr 7→ dS/kr is IΩR/k + R{dR/kr | r ∈ I}.
This shows that the kernel of S ⊗R ΩR/k −→ ΩS/k, s ⊗ dR/kr 7→ sdS/kr is generated by
{1 ⊗ dR/kr | r ∈ I}. Hence it su�ces to justify why the map

I/I2 −→ S ⊗R ΩR/k, r mod I2 7→ 1 ⊗R dR/kr
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is S-linear. Let a ∈ R and r ∈ I. Then 1 ⊗ adR/kr + 1 ⊗ rdR/ka = a(1 ⊗ dR/kr) + 0 ⊗ dR/ka,
so a(r mod I2) 7→ a(1 ⊗ dR/kr). �

6.12. Example. Let R = k[x1, . . . , xn] be a polynomial ring in the variables x1, . . . , xn and
I ⊆ R an R-ideal, generated by { f1, . . . , fm}. Write S = R/I. Then S ⊗R ΩR/k = ⊕

n
i=1Sdxi

is a free S-module of rank n. The image of I/I2 −→ S ⊗R ΩR/k is the submodule {1 ⊗∑n
i=1

∂ f
∂xi

dxi | f ∈ I}. which is generated (as an S-module) by {1⊗
∑n

i=1
∂ fj
∂xi

dxi | 1 ≤ j ≤ m}.
Let

J :=


∂ f1
∂x1

∂ f2
∂x1

· · ·
∂ fm
∂x1

∂ f1
∂x2

∂ f2
∂x2

· · ·
∂ fm
∂x2

...
...

. . .
...

∂ f1
∂xn

∂ f2
∂xn

· · ·
∂ fm
∂xn


be the jacobian matrix of f1, . . . , fm with respect to x1, . . . , xn. Let ⊕m

j=1Sξ j be a free module
with basis ξ1, . . . , ξm and let ⊕m

j=1Sξ j −→ I/I2 be the surjective map with ξ j 7→ fi mod I2.
Thinking of J as a matrix over S, we have the following diagram:⊕m

j=1 Sξ j

��

J

%%
I/I2 // ⊕n

i=1Sdxi // ΩS/k −→ 0

in which the horizontal part is exact and the triangle commutes.

6.13. Proposition. Let k be a �eld and L/k an algebraic �eld extension. Let K ⊆ L be the
sub�eld of elements that are seperable over k. Then for all L-modules M and for all k-derivations
d : L −→ M , K ⊆ ker d. In particular if L/k is seperable, then every k-derivation of L is trivial.

Proof. Let a ∈ K . Let xn + a1xn−1 + · · · + an ∈ k[x] be the minimal polynomial of a over k.
Then

0 = d(0) = (nan + (n − 1)a1an−2 + · · · + an−1)da = f ′(a)da.
Since a is seperable over k, f ′(a) , 0, so da = 0. �

6.14. Corollary. With notation as in Proposition 6.13, ΩK/k = 0 and ΩL/k = ΩL/K .

Proof. It follows immediately from Proposition 6.13 that ΩK/k = 0. The other assertion
follows from the first fundamental exact sequence (Theorem 6.10). �

7. Auslander-Buchsbaum paper, §2

In this section, R is an k-algebra, and we will denote by Re the k-algebra R ⊗k R with
the structure map a 7→ a ⊗ 1. Write µ for the k-algebra map Re −→ R,r ⊗ r′ 7→ rr′, I for
ker µ and a = AnnRe(I).
For a prime ideal p of a ring k, we denote kp/pkp by κ(p).

7.1. De�nition. Let k be a field. Then R is said to be separable if it is a finite-dimensional
k-algebra that is a product of separable field extensions of k.

7.2. De�nition. A prime ideal q of R is unrami�ed if, with p = q ∩ k, pSq = qSq and κ(q) is
a (finite) seperable field extension of κ(p). We say that the map k −→ R is unrami�ed (or
R/k is unrami�ed, or, merely, R is unrami�ed, if no confusion is likely to occur) if every
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prime ideal of R is unramified and over every prime k-ideal, only finitely many prime
R-ideals lie over.

The goal of this section is to understand the proof of the following theorem.

7.3. Theorem ([AB59, Theorem 2.5]). Suppose that R is a noetherian ring and that I is a
�nitely generated ideal of Re. Then the following are equivalent:
(1) R is a projective Re-module;
(2) the map k −→ R is unrami�ed;
(3) every maximal ideal of R is unrami�ed;
(4) Derk(R,M) = 0 for every �nitely generated R-module M .

7.4. Example. Suppose R/k is an algebraic extension of fields. Then for the statements
in Theorem 7.3(2) and (3) to hold, it is necessary and su�cient that R/k is a separable
extension. By Proposition 6.13, the statement of Theorem 7.3(4) holds. Conversely, sup-
pose that Derk(R,N) = 0 for every finitely generated R-module M . Since ΩR/k is a free
R-module, this means that ΩR/k = 0. We want to conclude that R/k is separable. We will
do this assuming that R/k is a �nite extension, although it is not necessary to make this re-
striction. By way of contradiction, assume that R/k is not separable. Then char k = p > 0.
Enlarging k by adjoining the elements of R that are separable over k, we may assume that
R/k is purely inseparable and that R , k. Adjoining {rp | r ∈ R}, we may assume that
Rp ⊆ k and that R , k. By induction rkk R, we may assume that R = k[x]/(xp − r) for
some r ∈ k. Then

ΩR/k ' (R ⊗k[x] Ωk[x]/k)/R · (d(xp − r)) = R ⊗k[x] Ωk[x]/k , 0.

To see the statement of Theorem 7.3(1), again assume that R/k is a finite separable
extension. Write R = k(r) and f (x) ∈ k[x] for the minimal polynomial of r over k.
Note that f (x) = (x − r)g(x) ∈ R[x] for some g(x) ∈ R[x] such that g(r) , 0. Hence
(x − r,g(x))R[x] = R[x], so Re ' R[x]/ f (x) ' R[x]/(x − r) × R[x]/g(x). Therefore R is a
direct summand of Re as an Re-module.

7.5. Lemma. Then the following are equivalent:
(1) R is a projective Re-module;

(2) the exact sequence 0 −→ I −→ Re µ
−→ R −→ 0 splits;

(3) there exists an element z ∈ Re such that z(x ⊗ 1) = z(1 ⊗ x) for every x ∈ R and µ(z) = 1.
(4) µ(a) = R.

Proof. (1) ⇐⇒ (2): Immediate.
(2) =⇒ (3): Let f : R −→ Re be an Re-linear map splitting µ. Define z := f (1). The

Re-linear structure of R is through µ, so z(x ⊗ 1) = f (1 · µ(x ⊗ 1)) = f (x) = f (1 · µ(1⊗ x)) =
z(1 ⊗ x). Note that µ(z) = 1.
(3) =⇒ (4): z ∈ a and 1 = µ(z) ∈ µ(a).
(4) =⇒ (2): Let z ∈ a be such that µ(z) = 1. Define f : R −→ Re, r 7→ (r⊗1)z. It is easy

to see that f is additive. Let r1⊗r2 ∈ Re. Then f ((r1⊗r2)r) = (r1s2s⊗1)z = (r1⊗r2)(r ⊗1)z
since (r1s2s ⊗ 1) − (r1 ⊗ r2)(r ⊗ 1) = (r1 ⊗ 1)(r ⊗ 1)(r2 ⊗ 1 − 1 ⊗ r2) ∈ I and zI = 0. Hence f
is an Re-linear splitting of µ. �

7.6. Lemma. Suppose that k is a �eld. Then R is a separable k-algebra if and only if it is a
�nite-dimensional k-algebra and for every extension L of k, L ⊗k R is semisimple.

Proof. If: Since R is a finite-dimensional semisimple k, we can write R =
∏n

i=1 Ri for some
positive integer n and finite extensions Ri of k. We need to show that Ri is separable for
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each i. If Rj is not separable for some j, Rj ⊗k Rj is not semisimple, so Rj ⊗k R, which
contains Rj ⊗k Rj as a factor, is not semisimple.
Only if: R is a finite-dimensional k-algebra, by definition. Write R =

∏n
i=1 Ri for some

positive integer n and finite separable extensions Ri of k. It su�ces to show that L ⊗k Ri
is semisimple for every i, so we may assume that R is a finite separable field extension of
k. Write R = k[x]/( f (x)) for a separable polynomial f (x) ∈ k[x]. Since f (x) factors as a
product of separable polynomials in L[x], none of which share any zero in any extension
field of L, L ⊗k R ' L[x]/( f (x)) is a product of fields, and hence semisimple. �

7.7. Lemma. If R is Re-projective, then for every k-algebra L, the L-algebra (L⊗k R) is (L⊗k R)e-
projective.

Proof. Write R′ = L ⊗k R, Write µ′ for the natural map (R′ ⊗L R′) −→ R′ and φ for the
map R′ ⊗L R′ −→ L ⊗k Re, ((b1 ⊗k r1) ⊗L (b2 ⊗k r2)) 7→ (b1b2 ⊗k (r1 ⊗k r2)). Note that φ
is an isomorphism and that µ′ = (1 ⊗ µ) ◦ φ. Let f be a splitting of µ. Then the map
φ−1 ◦ (1 ⊗ f ) is a splitting of µ′. Now apply Lemma 7.5. �

7.8. Lemma. Suppose that k is a �eld and that R is a projective Re-module. Then rkk R < ∞.

Proof. Let {ri}i∈Λ be an k-basis of R. Then {ri ⊗ r j}i,j∈Λ is a basis of Re. Let z ∈ Re be as
in Lemma 7.5(3). Write z =

∑
i j ai jri ⊗ r j . Let r′i :=

∑
j∈Λ ai jr j . Let Λ1 = {i ∈ Λ | r′i , 0};

it is a finite set. Note that
∑

i∈Λ1
rir′i = µ(z) = 1 and that for every x ∈ R,

∑
i∈Λ1

ri x ⊗ r′i =
z(x ⊗ 1) = z(1 ⊗ x) =

∑
i∈Λ1

ri ⊗ r′i x. Let R′ :=
∑

i∈Λ1
kr′i ⊆ R.

Claim R′ is an R-ideal. (To be proved.)
Hence r jr′i ∈ R′ for every i ∈ Λ1 and j ∈ Λ. In particular 1 =

∑
i∈Λ1

rir′i ∈ R′, so R′ = R.
Hence R is a finitely generated k-module. �

7.9. Proposition. Suppose that k is a �eld. Then R is a projective Re-module if and only if R is
a separable k-algebra.

Proof. In view of Lemma 7.8 and the definition of separability, we may assume that rkk R <
∞ before proving both the implications. Now suppose that R is Re-projective. Then, by
Lemma 7.7, L ⊗k R is (L ⊗k R)e-projective for every k-algebra L. Hence by Corollary A.13,
(L ⊗k R) is semisimple. By Lemma 7.6, R is a separable k-algebra.
Conversely assume that R is a separable k-algebra. Assume, for now, that R is a finite

separable field extension of k. Write R = k[x]/( f (x)), with f (x) separable over k, so
Re ' S := k[x, y]/( f (x), f (y)). The map µ is S −→ k[x]/( f (x)), x 7→ x, y 7→ x. Note that as
an element of k[x, y]/( f (x)), f (y) splits as (y − x)g(y), where, because of the separability
of f (y), (y − x,g(y)) = k[x, y]/( f (x)). Hence there exist e1 ∈ g(y)S and e2 ∈ (y − x)S such
that e21 = e1, e22 = e2, e1e2 = 0, e1 + e2 = 1 and

Se1 ' k[x, y]/( f (x), y − x), Se2 ' k[x, y]/( f (x),g(y)), and S ' Se1 × Se2

Note that µ(e1) = 1 and µ(e2) = 0. The S-linear map R −→ S, 1 7→ e1 is an S-linear
splitting of µ.
Now suppose that R =

∏t
i=1 Ri where the Ri are finite separable field extensions of k.

Write Ri = Rei for a set of orthogonal idempotents e1, . . . , et (i.e.,
∑t

i=1 ei = 1; e2i = ei for
all i; eie j = 0 for i , j). Then µ(ei ⊗ e j) = eie j = 0. Hence

µ

((
t∑

i=1

riei

)
⊗

(
t∑

j=1

r′je j

))
=

t∑
i=1

µ
(
riei ⊗ r′i ei

)
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Write µi =
(
Re

i

)
−→ Ri. There exist an

(
Re

i

)
-linear splitting fi of µi. Hence the map

∏t
i=1 fi

is a Re-linear splitting of µ. �

7.10. Lemma. If R is a projective Re-module, then R/k is unrami�ed.

Proof. Note that R/k is unramified if and only if R ⊗k κ(p) is a separable κ(p)-algebra
for every p ∈ k. Hence, by Proposition 7.9, it su�ces to show that if R is Re-projective,
then A := R ⊗k κ(p) is a projective module over Ae := (R ⊗k κ(p)) ⊗κ(p) (R ⊗k κ(p)). Write
µ′ : Ae −→ A.
Let f : R −→ Re be an Re-linear splitting of µ. Then the induced map is an Ae-linear

splitting of µ′. �

7.11. Lemma. Assume that R is a noetherian ring, such that every maximal ideal of R is un-
rami�ed. Then Derk(R,M) = 0 for every �nitely generated R-module M .

Proof. Let D ∈ Derk(R,M). Let q be a maximal ideal of R and p = q ∩ k. Write Dq for the
induced kp-derivation Rq −→ Mq.
Note that pRq = qRq. Note that Dq(pRq) ⊆ pMq = qMq. Hence we get a κ(p)-derivation

Dq : Rq/qRq −→ Mq/qMq, which is zero since Rq/qRq is a separable extension of κ(p).
Hence Im Dq ⊆ qMq. Iterating we get Im Dq ⊆ ∩iqi Mq = 0, so Dq = 0. Since this is true for
every maximal ideal, D = 0. �

Proof of Theorem 7.3. (1) =⇒ (2): Follows from Lemma 7.10. (2) =⇒ (3): immediate.
(3) =⇒ (4): Follows from Lemma 7.11. (4) =⇒ (1): Since I/I2 is a finitely generated
R-module and Derk(R,−) = HomR(I/I2,−), we see that HomR(I/I2, I/I2) = 0, so I = I2.
By the determinant trick (see, e.g., [Eis95, Corollary 4.8]) we see that there exists r0 ∈ I
such that rr0 = r for every r ∈ I. Define g : Re −→ I,1 7→ r0. For every r ∈ I,
g(r) = rg(1) = rr0 = r, so the inclusion I −→ Re is split. �

7.12. De�nition. The Noether di�erent (homological di�erent in [AB59]) DN (R/k) of R/k is
the R-ideal µ(a).

7.13. Theorem. Suppose that R is a noetherian ring and that I is a �nitely generated ideal of
Re. For every prime ideal q of R, q is unrami�ed if and only if DN (R/k) 1 q.

7.14. Lemma. With notation as in Theorem 7.13, let U be a multiplicatively closed set in k and
V a multiplicatively closed set of R containing the image of U. Then

V−1DN (R/k) = DN (V−1R/k) = DN (V−1R/U−1k).

Proof. Write I = ker (R ⊗k R −→ R). Then

(V ⊗k V)−1I = ker
(
V−1R ⊗k V−1R −→ V−1R

)
= ker

(
V−1R ⊗U−1k V−1R −→ V−1R

)
.

Since I is finitely generated, Ann(V−1R⊗kV−1R)((V ⊗k V)−1I) = V−1R AnnR⊗kR(I). Hence the
lemma follows. �

Proof of Theorem 7.13. Every maximal ideal of Rq is unramified over k. By Theorem 7.3
and Lemma 7.5, DN (Rq/k) = Rq. By Lemma 7.14, DN (R/k) 1 q. Converse follows in a
similar fashion. �

7.15. Proposition. Let R = k[X1, . . . ,Xn]/a. Write xi for the image of Xi in R. Then

DN (R/k) = { f (x1, . . . , xn) | f (X1, . . . ,Xn)(Xi − xi) ∈ aR[X1, . . . ,Xn] for every i}.
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Proof. Let I = ker (µ : R ⊗k R −→ R). The exact sequence

0 −→ a −→ k[X1, . . . ,Xn] −→ R −→ 0

gives an exact sequence surjective map

0 −→ aR[X1, . . . ,Xn] −→ R[X1, . . . ,Xn]
ρ
−→ R ⊗k R −→ 0

using the isomorphism R[X1, . . . ,Xn] −→ R ⊗k k[X1, . . . ,Xn] which takes r Xe1
1 · · · X

en
n to

r ⊗ Xe1
1 · · · X

en
n . The composite µρ is given by the substitution Xi 7→ xi. Hence {ρ(Xi − xi) |

1 ≤ i ≤ n} generate I as an (R ⊗k R)-ideal. Hence AnnR⊗kR(I) = ρ(aR[X1, . . . ,Xn] :
(X1 − x1, . . . ,Xn − xn)). Apply µ to conclude the result. �

A morphism k −→ R is said to be essentially of �nite-type (or that R is an essentially
finite-type k-algebra) if R is a localization of a finite type k-algebra. We now restrict to
such morphisms of noetherian rings.

7.16. Theorem. Let k be a noetherian ring and R an essentially �nite-type k-algebra. For every
prime ideal q of R, q is unrami�ed if and only if (ΩR/k)q = 0.

Proof. Note that ΩR/k)q = ΩRq/k [Eis95, 16.9]. Also note that q is unramified if and only
if the unique maximal ideal of Rq is unramified. Replacing R by Rq, we may assume that
(R,q) is a noetherian local ring that is an essentially finite-type k-algebra and show that
the unique maximal ideal of R is unramified if and only if ΩR/k = 0. Note that R ⊗k R is
noetherian. Hence, by Theorem 7.3, the unique maximal ideal of R is unramified if and
only if Derk(R,M) = 0 for every finitely generated R-module M . Hence we need to show
that Derk(R,M) = HomR(ΩR/k,M) = 0 for every finitely generated R-module M if and only
if ΩR/k = 0. One direction is immediate; for the other direction use M = ΩR/k, since ΩR/k
is a finitely generated R-module (cf. Example 6.12 and localization). (Note that every
nonzero module has a nonzero identity map.) �

8. Auslander-Buchsbaum paper, §3

Throughout this section, R is a normal domain, K its field of fractions, L a finite
separable extension field of K, and S the integral closure of R in L.

8.1. De�nition. The complementary module (or inverse Dedekind di�erent) of the extension
S/R is

D−1D (S/R) := {x ∈ L | TraceL/K(xS) ⊆ R}.
The Dedekind di�erent of S/R is

DD(S/R) := {x ∈ L | xD−1D (S/R) ⊆ S}.

The Dedekind di�erent is called di�erent in [AB59]. Since TraceL/K(S) ⊆ R, it is imme-
diate that D−1D (S/R) is an S-submodule of L containing S. Hence DD(S/R) is an S-ideal.

8.2. Discussion ([Ben93, Section 3.10]). An S-module M is said to be re�exive if the
natural map M −→ HomS(HomS(M,S),S), x 7→ [ f 7→ f (x)] is an isomorphism. D−1D (S/R)
is a reflexive S-module. Let M ⊆ L be an S-module. Let s, s′, t, t′ ∈ S, all non-zero, be such
that s

t ,
s′
t ′ ∈ M . Let φ ∈ HomS(M,S). It is not di�cult to check that, as elements of L,

φ
( s

t

)
s
t
=
φ

(
s′
t ′

)
s′
t ′

.
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Call this element αφ. The map φ 7→ αφ gives an S-linear isomorphism

HomS(M,S) −→ {x ∈ L | xM ⊆ S}.

Hence DD(S/R) = HomS(D−1D (S/R),S), so it too is a reflexive S-module.
�

8.3. Proposition. Let A be a normal domain with dim A ≥ 2. Let 0 , J , A be an A-ideal
that is re�exive as an A-module. Then htp = 1 for every p ∈ Ass(A/J).

Proof. Write (−)∗ = HomA(−, A). We first argue that ht J = 1. For otherwise, the exact
sequence

0 −→ J −→ A −→ A/J −→ 0

gives an isomorphism J∗∗ −→ A∗∗ since

Ext0A(A/J, A) = Ext1A(A/J, A) = 0.

Hence J is principal, which contradicts the hypothesis that ht J > 1.
Let J = ∩t

i=1ai be an irredundant primary decomposition. Let us assume that there
exists i such that ht ai > 1, and obtain a contradiction.

J1 =
⋂
1≤i≤t
ht ai=1

ai and J2 =
⋂
1≤i≤t
ht ai>1

ai .

Since ht AnnA((J1 + J2)/J2) ≥ ht J2 ≥ 2, we obtain, as ealier,

Ext0A((J1 + J2)/J2, A) = Ext1A((J1 + J2)/J2, A) = 0,

so the natural map J∗1 −→ J∗ is an isomorphism. We have an exact sequence

0 −→ A∗ −→ J∗ −→ Ext1A(A/J, A) −→ 0,

from which, applying (−)∗ again, we get an injective map J∗∗ −→ A∗∗. Under the natural
identification A∗∗ = A, J∗∗ = J, and J∗∗1 is an ideal containing J1. Hence

J ⊆ J1 ⊆ J∗∗1 = J∗∗ = J

which implies that ht ai = 1 for every i, a contradiction. �

We say that J has pure height one to express the conclusion of the above proposition.
Note that if, in the above proposition, dim A = 1, then A is a Dedekind domain, and
therefore every non-zero proper ideal is of pure height one.

8.4. Corollary. DD(S/R) = S or it is an ideal of pure height one.

8.5. Theorem ([AB59, Proposition 3.3]). DN (S/R) ⊆ DD(S/R). If S is a projective R-module,
then equality holds.

Proof. TBD. �

8.6. Corollary. The following are equivalent:
(1) DD(S/R) = S;
(2) For every q ∈ Spec S with htq = 1, q is unrami�ed.
If, additionally, S is a projective R-module, the above conditions are equivalent to:
(3) S is unrami�ed.
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Proof. (1) =⇒ (2): Let q ∈ Spec S with htq = 1 and p = q ∩ R. Then DN ((Rrp)−1S/Rp) =
(R r p)−1DN (S/R) and DD((R r p)−1S/Rp) = (R r p)−1DD(S/R). Since Rp is a DVR and
(R r p)−1S is finitely generated, it is free over Rp, so by DN ((R r p)−1S/Rp) = DD((R r
p)−1S/Rp) = (R r p)−1S; therefore (R r p)−1S/Rp is unramified.

(2) =⇒ (1): By Theorem 7.13, ht DN (S/R) ≥ 2, so by Theorem 8.5 and Corollary 8.4,
DD(S/R) = S.
Now assume that S is a projective R-module and that DD(S/R) = S. Then DN (S/R) = S

(Theorem 8.5), and, therefore, S is unramified (Theorem 7.13). �

8.7. Theorem. Let R be a two-dimensional regular domain and S its integral closure in a �nite
separable extension of its fraction �eld. Then S is unrami�ed if and only if for every q ∈ Spec S
with htq = 1, q is unrami�ed.

Proof. Use Proposition C.17 (to see that S is a projective R-module) and Corollary 8.6. �

9. Kähler different

We begin with a discussion of Fitting ideals [Eis95, Chapter 20]. Let R be a ring and
φ : F −→ G a map of free R-modules of finite rank. Fix bases for F and G and express
φ by a matrix A. For an integer t, It(φ) is the R-ideal generated by the t × t minors of A.
This is independent of the choice of the bases. If t ≤ 0, It(φ) = R.

9.1.Lemma. Let M be a R-module, and let F
φ
−→ G −→ M −→ 0 and F′

φ′

−→ G′ −→ M −→ 0
be two presentations of M , with F,F′,G,G′ free modules of �nite rank. Let n = rkR G and
n′ = rkR G′. Then

In−t(φ) = In′−t(φ
′)

for every t ∈ N.

Proof. Two ideals are equal if and only if they are equal at all localizations of R at prime
ideals. Hence we may assume that R is local with maximal ideal m. Choose bases for F
and G and express φ as an n × m matrix A. If any entry in A is a unit, then by suitable
row and column operations, we may assume that

A =
[

1 01×(m−1)
0(n−1)×1 B(n−1)×(m−1)

]
.

Since In−t(A) = In−1−t(B) and M ' coker B, we may replace F (respectively G) by a free
module of rank one less than that of F (respectively G). Repeating this we may assume
that Im φ ⊆ mG, i.e, φ is minimal. Repeating this for φ′, we may assume that φ′ is minimal.
Note that in this case, n = n′ = rkR/m(M/mM). Hence it su�ces to show that if φ and
φ′ are two minimal presentations of M, then I j(φ) = I j(φ

′) for every j. This follows from
noting that there are isomorphisms α : F −→ F′ and β : G −→ G′ such that the following
diagram commutes:

F
φ //

α
��

G //

β
��

M // 0

F′
φ′ // G′ // M // 0

�

9.2.De�nition. Let M be an R-module with a finite free presentation F
φ
−→ G −→ M −→

0. Write n = rkR G. For t ∈ N, the tth Fitting ideal Fittt(M) of M is In−t(φ).
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9.3. Lemma. Let M be a �nitely presented R-module and S an R-algebra. Then for every t ∈ N,
Fittt(S ⊗R M) = Fittt(M)S.

Proof. Follows from noting that φ : F −→ G is a finite R-free presentation of M, then 1⊗ φ
is a finite S-free presentation of S ⊗R M . �

9.4. Proposition. Let M be a �nitely presented R-module. Then
(1) Fitt0(M) ⊆ Ann(M);
(2) For every j ≥ 1, Ann(M)Fitt j(M) ⊆ Fitt j−1(M). In particular, if M can be generated by

n elements, then (Ann(M))n ⊆ Fitt0(M).

Proof. TBD. �

9.5. Proposition. Let M be a �nitely presented R-module. Then Supp(M) = {p ∈ Spec R | p ⊇
Fitt0(M)}.

Proof. Let
φ
−→ G −→ M −→ 0 be a finite free presentation of M . Let p ∈ Spec R. Then

Mp = 0 if and only if the map φ ⊗ Rp : Fp −→ Gp is surjective, which holds if and only if
some rkR G× rkR G minor of φ⊗ Rp is a unit in Rp, which holds if and only Fitt0(Mp) = Rp
(as an Rp-module) which happens if and only of Fitt0(M) * p. �

9.6. De�nition. Let k be a noetherian ring and R an essentially finite-type k-algebra. The
Kähler di�erent DK(R/k) is Fitt0(ΩR/k).

9.7. Theorem. Let k be a noetherian ring and R an essentially �nite-type k-algebra. For every
prime ideal q of R, q is unrami�ed if and only if DK(R/k) * q.

Proof. Follows from Theorem 7.16. �

9.8. Theorem. Let k be a noetherian ring and R an essentially �nite-type k-algebra. Then

DK(R/k) ⊆ DN (R/k) ⊆ AnnR(ΩR/k).

Proof. Write I = ker (µ : R ⊗k R −→ R). Then DN (R/k) = µ(AnnR⊗kR(I)) (Definition 7.12)
and ΩR/k ' I/I2 (Proposition 6.9). Hence DN (R/k) ⊆ AnnR(ΩR/k).
Write R = U−1S for a finite-type k-algebra S and a multiplicatively closed system U ⊆ S.

Since DK(R/k) = U−1DK(S/k), DN (R/k) = U−1DN (S/k) and Ann(ΩR/k) = U−1 Ann(ΩS/k),
we may replace R by S and assume that R = k[X1, . . . ,Xn]/a. Write xi for the image of Xi
in R. Abbreviate X1, . . . ,Xn by X and x1, . . . , xn by x. Then, by Proposition 7.15,

DN (R/k) = { f (x) | f (X) ∈ R[X] and f (X)(Xi − xi) ∈ aR[X] for every i}.

Write π for the natural map k[X] −→ R; let ρ and µ : R ⊗k R be as in the proof of
Proposition 7.15. Since DK(R/k) is generated (as an R-ideal) by{

π
(
det

( [
∂ fj
∂Xi

]
n×n

))
| f1, . . . , fn ∈ a

}
,

it su�ces to show that
det

( [
∂ fj
∂Xi

]
n×n

)
· (Xk − xk) ∈ aR[X]

for every f1, . . . , fn ∈ a and 1 ≤ k ≤ n. Let f1, . . . , fn ∈ a. Note that aR[X] ⊆ ker(µρ) =
(X1 − x1, . . . ,Xn − xn), so there exist hi j ∈ R[X] such that

fi =
n∑

j=1

hi j(X j − x j)
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for every 1 ≤ i ≤ n. Write
H =

[
hi j

]
n×n

By Cramer’s rule,

adj(H)


f1
...
fn

 = (det H)

X1 − x1

...
Xn − xn


so

(det H)(Xk − xk) ∈ ( f1, . . . , fn)R[X] ⊆ aR[X]

for every 1 ≤ k ≤ n. We conclude the proof by observing that

µρ(H) = µρ
(
det

( [
∂ fj
∂Xi

]
n×n

))
. �

9.9. Corollary. Suppose R is a localization of k[X1, . . . ,Xn]/a. Then

(DN (R/k))n ⊆
(
AnnR(ΩR/k)

)n
⊆ DK(R/k) ⊆ DN (R/k) ⊆ AnnR(ΩR/k).

Proof. Since ΩR/k is a quotient of a free module of rank n (cf. Example 6.12),(
AnnR(ΩR/k)

)n
⊆ DK(R/k)

by Proposition 9.4. �

9.10.Example. Let S = C[x, y]where x, y are variables and R = C[x2, xy, y2]. We will show
that DK(S/R) = (x, y)2. It then follows from Theorem 9.8, Theorem 8.5 and Corollary 8.4
that (x, y)2 ⊆ DN (S/R) ⊆ (x, y) and that DD(S/R) = S.
Let L = C(x, y) and K = C(x2, yx ) denote their respective fields of fractions. The exten-

sion L/K is Galois, with Galois group Z/2Z = {1, σ} acting C-linearly on L by σx = −x
and σy = −y. Hence TraceL/K f = f + σ f for every
Note that

S '
R[U,V]

(U2 − x2,UV − xy,V2 − y2, x2V − xyU, xyV − y2U)
.

Hence

ΩS/R ' coker
(
S5 J
−→ S2

)
where J is the 2 × 5 jacobian matrix[

2x y 0 −xy −y2

0 x 2y x2 xy

]
.

Therefore DK(S/R) = Fitt0(ΩS/R) = I2(J) = (x, y)2.
�

9.11. Example. Continuing the above example, let k = C[x2, y2]. Write k = C[u,w] and
R = k[v]/(v2 − uw). Then ΩR/k ' R/(v), so DK(R/k) = (v), which is a reduced ideal.
Moreover, R is a free k-module, with basis {1, v}. Hence DK(R/k) = DN (R/k) = DD(R/k).
Note that (v) = (u, v) ∩ (v,w), so the ramification locus has two components, one defined
by (u, v) and the other by (v,w). Note that the branch locus (the image of the ramification
locus in Spec k) has two components, one defined by uk = (u, v)R ∩ k and the other by
wk = (v,w)R ∩ k. �
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10. Discriminants

10.1. De�nition. Let R be a ring, y a variable, f (y) =
∑n

i=0 aiy
i, and g(y) =

∑m
i=0 biy

i,
with anbm , 0. The resultant Res( f ,g) of f and g is the element

det



an an−1 · · · a0 0 · · ·

0 an an−1 · · · a0 0
. . .

. . .
. . .

0 · · · 0 an an−1 · · · a0
bm bm−1 · · · b0 0 · · ·

0 bm bm−1 · · · b0 0
. . .

. . .
. . .

0 · · · 0 bm bm−1 · · · b0


(There are m rows of the ais and n rows of the bis.) If f = 0 or g = 0, we set Res( f ,g) = 0.
The discriminant Disc( f ) is Res( f , f ′).

10.2. Proposition. Let R be a UFD. If anbm = 0, then f and g have a non-constant common
divisor in R[y] if and only if Res( f ,g) = 0.

Proof. Claim: f and g have a non-constant common divisor in R[y] if and only if there
exist two non-zero polynomials u, v ∈ R[y] such that
(1) deg u < deg f and deg v < deg g;
(2) v f = ug.

Assume the claim. Write u =
∑n−1

i=0 ciy
i and v =

∑m−1
i=0 diy

i. Write M for the matrix in
Definition 10.1. Expanding the relation v f = ug gives linear equation

M



dm−1
dm−2
...

d0
−cn−1
−cn−2
...

c0


= 0.

This proves the proposition, assuming the claim.
Now to prove the claim, assume that f and g have a non-constant common divisor

h ∈ R[y]. Write f = hu and g = hv. Conversely, assume that there exist u and v satisfying
the conditions above. Since R[y] is a UFD, every irreducible factor of f must divide ug;
since deg u < deg f , some irreducible factor of f must divide g. �

10.3. Theorem. Let R be a Dedekind domain, K its �eld of fractions, L a �nite separable
extension of K , and S the integral closure of R in L. Let δS/R be the R-ideal generated by

{Disc(µα,K) | α ∈ S such that L = K(α)}

where, for β ∈ L, we denote its minimal polynomial over K by µβ,K . Let p ∈ Spec R. If p rami�es
in S then δS/R ⊆ p. The converse is true if we assume that S = R[α] for some α ∈ S.

There is a ‘discriminant ideal’ of R, which characterizes the prime ideals of R that
ramify in S (without assuming that S = R[α] for some α), but we will not define it here.
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Proof. Assume that p ramifies in S. Then pRp ramifies in (Rrp)−1S. As subsets, it is clear
that δS/R ⊆ δ(Rrp)−1S/Rp , so it is enough to show that δ(Rrp)−1S/Rp ⊆ pRp. Hence without loss
of generality, R is local (i.e., a DVR) with maximal ideal p. Then there exists α ∈ S such
that Disc(µα,K)R = δS/R.
Let q ∈ Spec S be such that q ∩ R = p and q is ramified. INCOMPLETE. �

Appendix A. Semisimple rings

In this section, we summarize various results regarding global dimension and semisim-
plicity. The primary reference for this section is [CE99]. In the beginning of this section,
we do not assume that R is necessarily commutative (but is associative and has 1); when
we talk of ideals and modules, we mean left ideals and left modules.

A.1. De�nition. Let R be a ring and M an R-module. It is said to be simple if it is non-
zero and has no submodules di�erent from M and 0. It is said to be semisimple if it is a
direct sum of simple modules. R is said to be a semisimple ring if it is semisimple as an
R-module.

A.2. Proposition ([CE99, I, 4.1]). M is semisimple if and only if every submodule of it is a
direct summand.

A.3. Proposition ([CE99, I, 4.2]). The following are equivalent:
(1) R is semisimple;
(2) every ideal of R is a direct summand of R;
(3) every ideal of R is an injective R-module;
(4) every R-module is semisimple;
(5) every short exact sequence of R-modules is split;
(6) every R-module is injective;
(7) every R-module is projective;

A.4. Theorem (Wedderburn [Bou12, VIII, §7.1, Théorèm 1 and §8.1, Théorèm 1]).
Semisimple ring are precisely those of the form

n∏
i=1

Mdi (Di)

where n > 0 and di, i = 1, . . . ,n are integers and Di, i = 1, . . . ,n are division rings.

A.5. Corollary. Commutative semisimple rings are precisely the �nite products of �elds.

Proof. It is necessary and su�cient that that di = 1 and Di is commutative for every i, in
Theorem A.4. �

A.6. De�nition. We denote the projective dimension of an R-module M by pdR M .

A.7. Theorem ([CE99, VI, 2.6]). Let n ≥ 0 be an integer. The following are equivalent:
(1) pdR M ≤ n for every R-module M ;
(2) Extk

R(M,−) = 0 for every k > n;
(3) Extn+1

R (M,−) = 0.

Proof. The implications (1) =⇒ (2) =⇒ (3) are immediate; we will show that (3) =⇒
(1) assuming that n = 0, which is the only case that we need. Let M an R-module and F a

free R-module with a surjective R-linear map F
f
−→ M . Since Ext1R(M,ker f ) = 0, we see

that f is split, so M is projective. �
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A.8. De�nition. By the (left) global dimension of R, denoted gldim R, we mean the small-
est integer n, if such an integer exists, satisfying the conditions of the above theorem;
otherwise we say that gldim R = ∞.

A.9. Corollary. Let R be a ring. Then R is semisimple if and only if gldim R = 0.

In order to simplify our discussion, we will restrict ourselves to the commutative case
for the rest of this section. Let k be a commutative ring and R a (commutative associative)
k-algebra.

A.10. De�nition. Let M be an R-module. Define

Hn(R,M) = TorRe

n (R,M) and Hn(R,M) = Extn
Re(R,M).

A.11. De�nition. Define k- dim(R) to be the projective dimension of R as an Re-module.

A.12. Proposition. Hn(R,Homk(M,N)) ' Extn
R(M,N) for every pair of R-modules M,N and

for every n ≥ 0.

A.13. Corollary. If R is Re-projective, then R is semisimple.

Proof. By Proposition A.12, Ext1R(−,−) = 0. Now use the implication Theorem A.7 (3) =⇒
(1) (which was proved for n = 0) to conclude that gldim R = 0. Apply Corollary A.9. �

Appendix B. Free resolutions

Let R be a noetherian ring and M a finitely generated R-module. We build a free
resolution of M as follows: Set M0 = M and let F0 be a finitely generated free R-module
with a surjective map ε0 : F0 −→ M0. Let M1 = ker ε0; it is a finitely generated R-
module. Let F1 be a finitely generated free R-module with a surjective map ε1 : F1 −→ M1.
Repeating this process, assume by induction, we have constructed Mi = ker(εi−1 : Fi−1 −→

Mi−1) and a surjective map εi : Fi −→ Mi where Fi is a finitely generated free R-module.
For i ≥ 1, define ∂i : Fi −→ Fi−1 to be the composite of the εi followed by the inclusion
map Mi −→ Fi−1. Then the complex

(F•, ∂•) : · · · −→ F2
∂2
−→ F1

∂1
−→ F0 −→ 0

is a free resolution of M .
Now assume that (R,m,k) is a noetherian local ring. In the construction above, we may

choose, recursively, Fi to be of the smallest possible rank, i.e., with rkR Fi = rkk Mi/mMi.
Applying − ⊗R k to the exact sequence

0 −→ Mi+1 −→ Fi
εi
−→ Mi −→ 0

we get the exact sequence

Mi+1/mMi+1 −→ Fi/mFi
εi⊗1
−→ Mi/mMi −→ 0.

By the choice of Fi, the map εi⊗1 is an isomorphism, so the Im(Mi+1/mMi+1 −→ Fi/mFi) =

0, i.e., Im(Mi+1 −→ Fi) ⊆ mFi. Therefore Im ∂i+1 ⊆ mFi.

B.1.De�nition. Let (R,m) be a noetherian local ring and M a finitely generated R-module.
A free resolution

(F•, ∂•) : · · · −→ F2
∂2
−→ F1

∂1
−→ F0 −→ 0

of M that satisfies Im ∂i+1 ⊆ mFi for every i ≥ 0 is called a minimal free resolution of M .
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Let F• be a minimal free resolution and G• any free resolution of M . Then F• is a direct
summand of G•; see, e.g., [Eis95, Theorem 20.2]. In particular,

pdR(M) = sup{i | Fi , 0}.

Additionally, the maps in the complex

F• ⊗R (R/m)

are zero, so rkR Fi = rkR/m TorR
i (M,R/m). In particular

(B.2) pdR(M) = sup{i | TorR
i (M,R/m) , 0}.

We now look at a specific complex of finitely generated free R-modules that, in some
important cases, becomes a resolution of a quotient of R by an ideal. Let r1, . . . ,rd ∈ R.
Define the Koszul complex

K•(ri) : 0 −→ R
r1
−→ R −→ 0

where the rank-one free modules are place in homological indices 0 and 1. Define

K•(r1, . . . ,rd) := K•(r1) ⊗R · · · ⊗R K•(rd).

Note that there is an exact sequence of complexes

0 −→ R −→ K•(rd) −→ R[−1] −→ 0

where R is thought of as the complex with R at homological index 0 and 0s elsewhere,
and R[−1] is the complex with R at homological index −1 and 0s elsewhere. Identifying
K•(r1, . . . ,rd−1) ⊗R R with K•(r1, . . . ,rd−1), and using the fact that, at each homological
index, the above short exact sequence of complexes is a split exact sequence of R-modules,
we get another exact sequence of complexes,

0 −→ K•(r1, . . . ,rd−1) −→ K•(r1, . . . ,rd) −→ K•(r1, . . . ,rd−1)[−1] −→ 0.

Abbreviate K•(r1, . . . ,rd) by K• and K•(r1, . . . ,rd−1) by K′• for now. Further, note that
Hi(K′•[−1]) ' Hi−1(K′•). Then we have an an exact sequence in homology:

(B.3) −→ Hi(K′•) −→ Hi(K•) −→ Hi−1(K′•)
δ
−→ Hi−1(K′•) −→ Hi−1(K•) −→

It can be seen by diagram-chasing that the connecting morphism δ is given by multi-
plication by rd .

Appendix C. Depth, Auslander-Buchsbaum formula, etc.

Let R be a ring, I an R-ideal and M an R-module.

C.1. De�nition. Define ΓI(M) := {x ∈ M | there exists n ≥ 0 such that Inx = 0}.

The map M 7→ ΓI(M) is a left-exact covariant functor from the category of R-modules
to itself.

C.2. De�nition. Define Hi
I(−) to be the right-derived functors of ΓI(−). Hi

I(M) is called
the ith local cohomology module of M with support in I.

Note that ΓI(M) = Γ√I(M); hence Hi
I(M) = Hi√

I
(M) for all i ≥ 0.

C.3.De�nition. An M -regular sequence in R is a sequence r1, . . . ,rt ∈ R such that r1 is a non-
zero-divisor on M, and for every 2 ≤ i ≤ t, ri is a non-zero-divisor on M/(r1, . . . ,ri−1)M
and such that (r1, . . . ,rt)M , M . The length of the longest M -regular sequence in I is
denoted depthI(M). If R is local with maximal ideal m, we write depth M = depthm(M).
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C.4. Proposition. Let r1, . . . ,rt be an R-regular sequence. Then the Koszul complex K•(r1, . . . ,rt)

is a free resolution of R/(r1, . . . ,rt).

Proof. Induct on t. If t = 1, then it is immediate from the definition of K•(r1) that
H1(K•(r1)) = AnnR(r1) = 0 and that H0(K•(r1)) = R/(r1). Hence K•(r1) is a free reso-
lution of R/(r1). Now assume that that the proposition holds for r1, . . . ,rt−1, which is an
R-regular sequence. From (B.3), with notation from there, we see that Hi(K•) = 0 for i > 1.

Further, we see that H1(K•) ' ker
(
H0(K′•)

rd
−→ H0(K′•)

)
. Since H0(K′•) ' R/(r1, . . . ,rt−1)

and rt is a non-zero-divisor on R/(r1, . . . ,rt−1), we conclude that H1(K•) = 0. Similarly,

H0(K•) ' coker
(
H0(K′•)

rd
−→ H0(K′•)

)
' R/(r1, . . . ,rt). �

C.5. Proposition. Let R be a noetherian ring and M a �nitely generated R-module. Then
depthI(M) ≤ dim M .

Proof. We prove this by induction on t := depthI(M). If t = 0, the assertion is immediate.
Hence assume that t > 0. Let r1, . . . ,rt ∈ I be an M -regular sequence. Write M′ = M/r1M .
Then r2, . . . ,rt is an M′-regular sequence of maximum length in I, so depth M′ = t − 1.
Hence, by induction, dim M′ ≥ t−1. Note that r1 < p for any p ∈ Supp(M) with dim R/p =
dim M (for any such p is in Ass(M)), so dim M′ < dim M . Hence dim M ≥ t. �

C.6. Proposition. Let R be a noetherian ring and M a �nitely generated R-module. Then

depthI(M) = min{i | Hi
I(M) , 0}.

Proof. We apply induction on t := depthI(M). Write s = min{i | Hi
I(M) , 0}. Suppose

that t = 0. Since R is noetherian, I ⊆ ∪p∈Ass Mp. By the prime avoidance lemma, there
exists p ∈ Ass M such that I ⊆ p. Since there exists 0 , x ∈ M such that AnnR(x) = p, we
see that I x = 0, so H0

I (M) , 0.
Now suppose that t > 0. Since I contains a non-zero-divisor on M, ΓI(M) = 0, so

s > 0. Let r1, . . . ,rt ∈ I be an M -regular sequence. Write M′ = M/r1M . Then r2, . . . ,rt
is an M′-regular sequence of maximum length in I, so depth M′ = t − 1. From the exact
sequence

0 −→ M
r1
−→ M −→ M′ −→ 0

we get

· · · −→ Hi
I(M)

r1
−→ Hi

I(M) −→ Hi
I(M

′) −→ Hi+1
I (M)

r1
−→ Hi+1

I (M) −→ · · · .

(To determine the maps we note that multiplication by r1 on an injective resolution of M
lifts the corresponding map on M; hence the induced map Hi

I(M) −→ Hi
I(M) is, again,

multiplication by r1.) Hence Hi
I(M

′) = 0 for every i ≤ s − 2. Further, note that for
every i, and every x ∈ I, ker(Hi

I(M) −→ Hi
I(M)) , 0 if Hi

I(M) , 0, since Hi
I(M) is a

quotient of a submodule of ΓI(N) for some module N . Hence Hs−1
I (M

′) , 0. By induction,
s − 1 = t − 1. �

C.7. De�nition. Let I = (r1, . . . ,rn). Define

Č
•
(ri) : 0 −→ R −→ Rri −→ 0

where the middle map is the natural (localization) map. This is indexed cohomologically:
Č
0
(ri) = R and Č

1
(ri) = Rri . Define

Č
•
(ri, . . . ,rn) := Č

•
(r1) ⊗R Č

•
(r2) ⊗R · · · Č

•
(rn)
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and for an R-module M, Č
•
(ri, . . . ,rn; M) := Č

•
(ri, . . . ,rn) ⊗R M . These complexes are

called (extended) Čech complexes or stable Koszul complexes.

C.8. Proposition. Let I = (r1, . . . ,rn).

Hi
I(M) ' Hi(Č(r1, . . . ,rn; M)).

Sketch of the proof. Write Ȟ
i
(−) = Hi(Č(r1, . . . ,rn; M)). By a standard argument in homo-

logical algebra involving δ-functors, it su�ces to show the following:
(1) The assertion is true with i = 0 for all R-modules M .
(2) For every injective R-module M and every i , 0, Ȟ

i
(M) = 0.

(3) For every exact sequence 0 −→ M′ −→ M −→ M′′ −→ 0 there are connecting
homomorphisms

Ȟ
i
(M′′) −→ Ȟ

i+1
(M′)

such that for every commutative diagram

0 // M′ //

��

M //

��

M′′ //

��

0

0 // N′ // N // N′′ // 0

with exact rows (i.e., maps of short exact sequences)) there is a commutative diagram

· · · // Ȟ
i−1
(M′′) //

��

Ȟ
i
(M′) //

��

Ȟ
i
(M) //

��

Ȟ
i
(M′′) //

��

Ȟ
i+1
(M′) //

��

· · ·

· · · // Ȟ
i−1
(N′′) // Ȟ

i
(N′) // Ȟ

i
(N) // Ȟ

i
(N′′) // Ȟ

i+1
(N′) // · · ·

with exact rows.
See, e.g., [ILL+07, Chapter 7] for details. �

C.9. Proposition. (1) Let R −→ S be a ring map, M an S-module and I = (r1, . . . ,rn)R.
Then, for every i,

Hi
I(M) = Hi

IS(M).

(2) Let U ⊆ R be a multiplicatively closed set. Then

Hi
U−1I(U

−1M) = U−1 Hi
I(M).

Proof. (1) Write φ for the map R −→ S. Notice that

Č
•
(r1, . . . ,rn; M) ' Č

•
(r1, . . . ,rn) ⊗R S ⊗S M ' Č

•
(φ(r1), . . . , φ(rn)) ⊗S M;

this proves the asserted isomorphism of homology.
(2) This follows from noting that localization is an exact functor.

�

C.10. De�nition. Let (R,m) be a noetherian local ring and M a finitely generated R-
module. M is said to be Cohen-Macaulay if depth M = dim M; R is said to be a Cohen-
Macaulay ring if it is a Cohen-Macaulay module over itself. A noetherian ring is said to
be Cohen-Macaulay if all its local rings at maximal ideals are Cohen-Macaulay.

C.11. Proposition. Every two-dimensional local normal domain is Cohen-Macaulay.
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Proof. Let (R,m) be a two-dimensional local normal domain. Let 0 , r ∈ m. Then htp = 1
for every p ∈ Ass R/(r), so, by the prime avoidance lemma, m 1 ∪p∈Ass R/(r)p. Hence
there exists r′ ∈ m that is a non-zero-divisor on R/(r). Therefore r,r′ is an R-regular
sequence. �

C.12. Proposition. Let (R,m) be a two-dimensional noetherian local domain and S its integral
closure in a �nite separable extension �eld of its fraction �eld. Then S is a Cohen-Macaulay
R-module.

Proof. We need to show that depthm(S) = 2; since dim S = 2, it su�ces to show that
depthm(S) ≥ 2. Let n1, . . . ,ns be the maximal ideals of S. Since S is integral over R, we
see that ht ni = 2 for every i and that

√
mS = n1 ∩ · · · ∩ ns. Hence it su�ces to show that

Hi
n1∩···∩ns

(S) = 0

for i = 0,1, for which it su�ces to show that

Hi
n1∩···∩ns

(S)n j = 0

for i = 0,1 and j = 1, . . . , s. This is indeed true since

Hi
n1∩···∩ns

(S)n j = Hi
n jSn j
(Sn j )

for every i and j and Sn j is a two-dimensional Cohen-Macaulay ring for every j. �

C.13. Theorem (Auslander-Buchsbaum formula). Let (R,m) be a noetherian local ring and
M a �nitely generated R-module of �nite projective dimension. Then

pdR(M) + depth M = depth R.

C.14.De�nition. A noetherian local ring (R,m) is said to be a regular local ring if dim R =
rkR/m(m/m

2).

C.15. Proposition. Let (R,m) be a d-dimensional regular local ring and r1, . . . ,rd be a minimal
generating set for m. Then r1, . . . ,rd is an R-regular sequence. In particular, every regular local
ring is Cohen-Macaulay.

Proof. The key point is that regular local rings are domains; see [Eis95, 10.14]. We induct
on dimension to prove the proposition, assuming the above fact. The proposition is true
when d = 1. Let d > 1 be an integer and assume that the assertion holds for all regular
local rings of dimension ≤ d − 1. Since R is a domain, r1 is a non-zero-divisor on R. Write
R′ = R/(r1) and m′ = mR′. Then R′/m′ ' R/m and rkR/m(m/m

2) = rkR′/m′(m
′/m′2) + 1. If

d′ := dim R′ < d − 1, then there would exist r′1, . . . ,r
′
d ′ ∈ m

′ such that
√
(r′1, . . . ,r

′
d ′)R

′ = m′.

Lifting them to R, we would get d′ elements, which along with r1 form an m-primary
ideal, implying that dim R < d, a contradiction. Hence d′ = d − 1 = rkR′/m′(m

′/m′2), so
R′ is a regular local ring. By induction, R′ is Cohen-Macaulay, so r1, . . . ,rd is an R-regular
sequence. �

C.16. Proposition. Let R be a regular local ring. Then for every �nitely generated R-module M ,
pdR(M) ≤ dim R.

Proof. Let d = dim R and r1, . . . ,rd be a minimal generating set for the maximal ideal m
of R. Write k = R/m. It follows from Proposition C.4 that the Koszul complex K• :=
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K•(r1, . . . ,rd) is a free resolution of k, so pdR(k) ≤ d. (In fact, Since Im(Ki −→ Ki−1) ⊆

mKi−1, it is a minimal free resolution of k, so pdR(k) = d.) Therefore, by (B.2),

pdR(M) = sup{i | TorR
i (M,k) , 0} ≤ d.

�

C.17. Proposition. Let R be a two-dimensional regular domain and S its integral closure in a
�nite separable extension �eld of its fraction �eld. Then S is a projective R-module.

Proof. Since we want to show that Sm is a free Rm-module for every maximal ideal m of
R, we may localize R at a maximal ideal and assume that (R,m) is a two-dimensional
regular local ring. Note that S is a finitely generated R-module. By Proposition C.12, S
is a two-dimensional Cohen-Macaulay R-module. Hence depthm S = 2. Since R a two-
dimensional Cohen-Macaulay ring (Proposition C.15), depth R = 2. Hence pdR(S) = 0,
i.e., S is free. �
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