GRADUATE ALGEBRA II, JAN-APR 2018. PROBLEM SETS

MANOJ KUMMINI

1. SET 1: DUE 2018-JAN-16

- 1.1. Using the distributive property, show the following, for every $x, y \in R$: 0x = x0 = 0; x(-y) = (-y)x = -(xy); (-x)(-y) = xy.
- 1.2. For $x \in R$, the *left homothety* λ_x (respectively, *right homothety* ρ_x) is the map $R \longrightarrow R$, $y \mapsto xy$ (respectively, $y \mapsto yx$). Show that these are endomorphisms of the additive group of R
- 1.3. Show that |R| = 1 if and only if 0 = 1, in which case $R = \{0\}$. This is the zero ring.
- 1.4. Let *X* be a subset of *R*. Show that the centralizer of *X* in *R* is a subring of *R*. The centre of *R* is a commutative subring.
- 1.5. Show that the endomorphism ring of the additive group \mathbb{Z} is isomorphic to the ring \mathbb{Z} .
- 1.6. Let *X* be a subset of *R*. The *left annihilator* of *X* in *R* is the set $\{y \in R \mid yx = 0 \text{ for every } x \in X\}$. Show that it is a left ideal.
- 1.7. Let $f: R \longrightarrow S$ be a ring homomorphism. Write $\pi: R \longrightarrow R / \ker(f)$ and $\iota: \operatorname{Im}(f) \longrightarrow S$. Show that there is a ring homomorphism \overline{f} such that $f = \iota \overline{f} \pi$. Show that \overline{f} is an isomorphism.
- 1.8. Say that $x \in R$ is *left-invertible* (respectively, *right-invertible*) if there exists $y \in R$ such that yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible) if and only if the right homothety (respectively, left homothety) is surjective. Show that x is invertible if and only if it is left- and right-invertible. Show that in this case, the inverse of x is unique, and that this element is also the unique left- and right-inverses.
- 1.9. An *integral domain* is a commutative ring that is non-zero and that does not have any zero-divisors. Let R be a commutative ring and I an R-ideal. Show that the following are equivalent: (a) R/I is an integral domain; (b) For every $x, y \in R$, if $xy \in I$ and $x \notin I$, then $y \in I$; (c) I is the kernel of a ring homomorphism from R to an integral domain. A proper ideal satisfying these conditions is called a *prime ideal*. Show that maximal ideals are prime.
- 1.10. An *idempotent* element in R is an element e such that $e^2 = e$; an idempotent element is *central* if it belongs to the centre of R. Show that if R is a commutative ring and e an idempotent element, then for every prime ideal I of R, $e \in I$ or $1 e \in I$, and that these conditions are mutually exclusive.
- 1.11. Show that the set of 2×2 complex matrices of the form

$$\begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix}$$

(where $(\bar{\cdot})$) denotes complex conjugation) forms a subring of $M_2(\mathbb{C})$. This is called the *quaternion ring*. Show that it can also be described as the ring of all \mathbb{R} -linear combinations of the following four matrices:

$$I_2$$
, $\begin{bmatrix} \iota & 0 \\ 0 & -\iota \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & \iota \\ \iota & 0 \end{bmatrix}$.

Determine its dimension as a R-vector space.

- 1.12. Let q_1, \ldots, q_r be pairwise relatively prime integers. Show that the natural map $\mathbb{Z} \longrightarrow \prod_{i=1}^r \mathbb{Z}/q_i\mathbb{Z}$ is surjective and that it induces an isomorphism $\mathbb{Z}/(q_1 \cdots q_r)\mathbb{Z} \longrightarrow \prod_{i=1}^r \mathbb{Z}/q_i\mathbb{Z}$.
- 1.13. Let R_i , $1 \le i \le n$ be rings and $R = R_1 \times \cdots \times R_n$. Show that R_i is a quotient ring of R, for each i.
- 1.14. Let *R* be a ring and *S* the ring of 2×2 matrices over *R*. Relate the centres of *R* and of *S*.
- 1.15. Give an example of ideals I, J, $K \subseteq \mathbb{Z}$ such that $IJ \neq I \cap J$ and $(I+J)(I+K) \neq (I+JK)$.
- 1.16. Let R be a ring and I the two-sided ideal generated by $\{xy yx \mid x, y \in I\}$. Show that every ring map $R \longrightarrow S$ with S commutative has I in its kernel. Hence we can think of I as the smallest two-sided ideal such that R/I is commutative.

2.1. Let M_i , $i \in \mathcal{I}$ and N_{λ} , $\lambda \in \Lambda$ be two families of R-modules. Show that the map

$$\operatorname{Hom}_R(\bigoplus_{i\in\mathcal{I}}M_i,\prod_{\lambda\in\Lambda}N_\lambda)\longrightarrow\prod_{(i,\lambda)\in\mathcal{I}\times\Lambda}\operatorname{Hom}_R(M_i,N_\lambda)$$

given by $g \mapsto \operatorname{pr}_{\lambda} \circ g \circ \alpha_i$ is an isomorphism of abelian groups.

- 2.2. Let M and N be two R-modules and suppose that M is the direct sum of submodules M_1,\ldots,M_m and N the direct sum of submodules N_1,\ldots,N_n . By the previous exercise, $\operatorname{Hom}_R(M,N)$ can be identified with $\prod \operatorname{Hom}_R(M_i,N_j)$. Show that this identification is as follows: The element $(u_{ji}) \in \prod \operatorname{Hom}_R(M_i,N_j)$ (with $u_{ji}:M_i \longrightarrow N_j$) is determined by the maps $x_i \mapsto \sum_j u_{ji}(x_i)$ for every $x_i \in M_i$ for every i. (First observe that in order to define a map $M \longrightarrow N$, it is enough to define it on each of the M_i .) Now suppose that P is another R-module that is the direct sum of submodules P_1,\ldots,P_p . Let $v:N \longrightarrow P$ be an R-linear map, with canonical identification with the family (v_{kj}) , with $v_{kj}:N_j \longrightarrow P_k$. Show that the composite map $v \circ u:M \longrightarrow P$ corresponds to the family $(\sum_j v_{kj} \circ u_{ji})$.
- 2.3. Let $M = M_1 \oplus M_2$. Show that the restriction to M_1 of the canonical surjective map $M \longrightarrow M/M_2$ is an isomorphism.
- 2.4. Let M_1 be a submodule of M. We say that M_1 is a *direct summand* (or, sometimes, just *summand*) if there is a submodule M_2 of M such that M is the direct sum of M_1 and M_2 .
- (a) Show that the submodule M_2 in the definition above need not be unique. However, any two are isomorphic to each other.
- (b) For a submodule M_1 of M to be a direct summand, it is necessary and sufficient that there exists a projection $\phi \in \operatorname{End}_R(M)$ such that $M_1 = \phi(M)$ which holds if and only if there exists a projection $\phi \in \operatorname{End}_R(M)$ such that $M_1 = \ker \phi$.
- 2.5. Let $0 \longrightarrow M_1 \stackrel{f}{\longrightarrow} M_2 \stackrel{g}{\longrightarrow} M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Then the following are equivalent:
 - (a) The submodule $f(M_1)$ of M_2 is a direct summand.
 - (b) There exists an *R*-linear map $\alpha: M_2 \longrightarrow M_1$ such that $\alpha f = \mathrm{id}_{M_1}$.
 - (c) There exists an R-linear map $\beta: M_3 \longrightarrow M_2$ such that $g\beta = \mathrm{id}_{M_3}$.

If these conditions hold, then the map $(f + \beta) : M_1 \oplus M_3 \longrightarrow M_2$ is an isomorphism. (We say that the above exact sequence is a *split* sequence if these conditions hold.)

3.1. Say that a module M is *free* if there is a subset T of M such that the natural map $R^{(T)} \longrightarrow M$ is an isomorphism; such a subset is called a *basis* of M.

- 3.2. Let M be a free R-module with basis $x_t, t \in T$. Let N be an R-module, and $y_t, t \in T$ elements of N. Then there exists a unique R-map $M \longrightarrow N$ such that $x_t \mapsto y_t$ for every $t \in T$.
- 3.3. Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules with M_3 free. Show that it is a split sequence.
- 3.4. An R-module is *simple* if it is non-zero and has no submodules different from 0 and itself. Show that if R is commutative, then the simple modules are exactly R/\mathfrak{m} where \mathfrak{m} is a two-sided maximal ideal.
- 3.5. Let $\rho: R \longrightarrow S$ be a ring map. Let $M_i, i \in \mathcal{I}$ be S-modules. Then $\rho_*(\bigoplus_{i \in \mathcal{I}} M_i) = \bigoplus_{i \in \mathcal{I}} \rho_* M_i$ and $\rho_*(\prod_{i \in \mathcal{I}} M_i) = \prod_{i \in \mathcal{I}} \rho_* M_i$.
- 3.6. An R-module M is *projective* if the functor $\operatorname{Hom}_R(M,-)$ is exact, i.e., takes exact sequences to exact sequences. Show that M is projective if and only if it takes short exact sequences to short exact sequences, or *equivalently*, if and only if it takes surjective R-maps to surjective R-maps. Show that free modules are projective.
- 3.7. Show that M is projective if and only if it is a direct summand of a free module. (Hint: Apply $\operatorname{Hom}_R(M, -)$ to a surjective map $F \longrightarrow M$ with F free.)
- 3.8. Let *I* be a two-sided *R*-ideal and *J* a left *R*-ideal. Show that
- (a) the image of $R/I \otimes_R J$ in R/I (for the natural map $R/I \otimes_R (J \hookrightarrow R)$) is the left R/I-ideal J(R/I) which is I+J/I;
 - (b) $R/I \otimes_R R/J$ is the left R- and R/I-module R/I + J.
 - (c) In particular, if I + J = R (as left ideals), then $R/I \otimes_R R/J = 0$.
- 3.9. CAUTION: Let M and N be left R-modules. There is no canonical R-module structure (left or right) on $\operatorname{Hom}_R(M,N)$. In some sense the underlying issue is that, for R-linear $f:M\longrightarrow N$ and $r\in R$, the map $M\longrightarrow N, x\mapsto f(rx)=rf(x)$ is not necessarily R-linear. It is, if r is central. However if S is another ring, and M is ${}_RM_S$, then the definition $(s\cdot f):=[x\mapsto f(xs)]$ makes $\operatorname{Hom}_R(M,N)$ into a *left* S-module. Note (a) that the two module structures on M need to be compatible with each other; (b) that there need not be a ring morphism $R\longrightarrow S$ or $S\longrightarrow R$ for this to make sense.
- 3.10. Adjoint functors: Let \mathcal{C} and \mathcal{D} be two categories and $F:\mathcal{C}\longrightarrow\mathcal{D}$ and $G:\mathcal{D}\longrightarrow\mathcal{D}$ be functors. Say that F is the *left adjoint* to G (and similarly that G is the *right adjoint* to F) if $\operatorname{Hom}_{\mathcal{D}}(FA,B)=\operatorname{Hom}_{\mathcal{C}}(A,GB)$ for every object $A\in\mathcal{C}$ and $B\in\mathcal{D}$. For every $A\in\mathcal{C}$, putting B=FA, we get, corresponding to id_{FA} , a morphism $A\longrightarrow GFA$; this gives a natural transformation $\operatorname{id}_{\mathcal{C}}\longrightarrow GF$. Similarly we get a natural transformation $FG\longrightarrow\operatorname{id}_{\mathcal{D}}$. For a ring morphism $\rho:R\longrightarrow S$, the constructions ρ_* and ρ^* are functors, and ρ_* is right-adjoint to ρ^* . See (Bourbaki *Algebra* Chapter II, §5, No. 1, Remark 4) for the definition of a right adjoint of ρ_* . The R-linear map $\phi_M:M\longrightarrow \rho_*(\rho^*(M))$ is an instance of the natural transformation $\operatorname{id}_{\mathcal{C}}\longrightarrow GF$. Similarly we get a map $\psi_N:\rho^*(\rho_*(N))$ for S-modules N as an instance of the natural transformation $FG\longrightarrow\operatorname{id}_{\mathcal{D}}$. Now, (Bourbaki Algebra Chapter II, §5, No. 2, Proposition 5) can be thought of as an instance of the following property of adjoint functors: $FA\longrightarrow FGFA\longrightarrow FA$ is id_{FA} and $GB\longrightarrow GFGB\longrightarrow GB$ is id_{GB} . (You label the arrows!)
- 3.11. Let $M \subseteq N \subseteq P$ be R-modules, each being a submodule of the next. Suppose that N is a direct summand of P. Then N/M is a direct summand of P/M and, if further M is a direct summand of N, then it is a direct summand of P. Now suppose that M is a direct summand of P; then it is a direct summand of N, and if additionally, N/M is a direct summand of P/M, then N is direct summand of P.
- 3.12. Let M and N be left R-modules and let $M^* := \operatorname{Hom}_R(M, {}_RR)$, endowed with the canonical right R-module structure. There is a natural map $\tau_{M,N} : M^* \otimes_R N \longrightarrow \operatorname{Hom}_R(M,N)$,

- $f \otimes y \mapsto [x \mapsto f(x)y]$. Show that this is neither injective nor surjective in general by using the following example: $R = \mathbb{Z}/(4)$, I = 2R, M = N = R/I.
- 3.13. If *S* is an *R*-algebra and *M* and *N S*-modules, then the natural map $\operatorname{Hom}_S(M,N) \longrightarrow \operatorname{Hom}_R(M,N)$ is injective.
- 3.14. Let M be an R-module. Let C be the centre of R; then there is a natural map $C \longrightarrow \operatorname{End}_R(M)$ (but not necessarily $R \longrightarrow \operatorname{End}_R(M)$) and the C-module structure (induced from the R-module structure) is also induced from the $\operatorname{End}_R(M)$ -module structure on M. Hence $\operatorname{End}_{\operatorname{End}_R(M)}(M) \subseteq \operatorname{End}_C(M)$. Now suppose that \Bbbk is a field and M a finite-dimensional \Bbbk -vector-space. Let $R = \operatorname{End}_{\Bbbk}(M)$. Then every R-endomorphism of M is given by multiplication by an element of \Bbbk .
- 3.15. Let *R* be a division ring and *M* an *R*-module. Show that *M* is free.
 - 4. Set 4: Due 2017-Apr-10, Preliminary version
- 4.1. Let E be a ring and B a subset of E. Write B' and B'' for its commutant and bicommutant respectively. Show that $B \subseteq B''$ and that B' equals its bicommutant. Suppose that B is a commutative subring of E. Then B is a central subring of B' and B'' is the centre of B'.
- 4.2. Let M be an R-module and N a subset of M. The *annihilator* of N is the set $\{r \in R \mid rx = 0 \text{ for every } x \in N\}$, denoted by Ann(N). Show that Ann(N) is a left ideal of R. If N is a submodule of N, then Ann(N) is a two-sided ideal of R.
- 4.3. Let R and S be rings and M and N a semisimple R-module and a semisimple S-module respectively. Show that $M \oplus N$ is a semisimple $(R \times S)$ -module.
- 4.4. Let R be a ring and M a semisimple R-module. Let M be a submodule of M. Then the following are equivalent:
- (a) M' is the largest isotypic submodule of M of type N, i.e., M' is isotypic of type N and if N' is a simple submodule of M isomorphic to N, then $N' \subseteq M'$.
 - (b) M' is the (direct) sum of all the simple submodules of M that are isomorphic to N.
 - (c) $M' = \text{Hom}_{R}(N, M)$.

Let N_{λ} , $\lambda \in \Lambda$ be all the distinct (up to isomorphism) simple R-modules. Then $M = \bigoplus_{\lambda \in \Lambda} \operatorname{Hom}_R(N_{\lambda}, M)$. This is called the *isotypic decomposition* of M.

4.5. direct proof of Wedderburn: TBD

CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA *E-mail address*: mkummini@cmi.ac.in