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1. BASIC RING THEORY18

For the most part, we will follow Bourbaki, Algebra, Ch. I, using Jacobson and Lang for19

supporting material and exercises.20

1.1. Definition. A ring is a set R with two operations + (addition) and · (multiplication) such21

that22

(1) (R,+) is an abelian group;23

(2) multiplication is associative and has an identity;24

(3) multiplication is distributive over addition, i.e., for all a, b, c ∈ R, a(b + c) = ab + ac25

and (a + b)c = ab + bc.26

If the multiplication is commutative, then we say that R is a commutative ring.27

1.2. Remark. We denote the additive identity by 0 and the multiplicative identity by 1. We will28

refer to (R,+) as the additive group of R.29

1.3. Example. (1) Z, Q, R and C are commutative rings, with the usual addition and multi-30

plication.31

(2) Rings of functions: Let R be a ring and X a set. The set of functions from X to R form a32

ring as follows. For functions f , g : X −→ R, set ( f + g) to be the function x 7→ f (x)+ g(x), x ∈33

X and f g be the function x 7→ f (x)g(x), x ∈ X. The additive identity is the constant function34

x 7→ 0 and the multiplicative identity is the constant function x 7→ 1. If R is commutative, then35

this ring is commutative. By imposing conditions on X, on R and on the functions that we36

are interested in, we get many variants of this construction: For example, if X is a topological37

space, we can consider the ring of continuous R-valued functions, the ring of continuous C-38

valued functions etc.39
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2 MANOJ KUMMINI

(3) Endomorphism rings: Let G be an abelian group, written additively. Let R be the set40

of group endomorphisms of G, made into a ring as follows: for endomorphisms α, β of G,41

set α + β to be the function g 7→ α(g) + β(g) and αβ to be function g 7→ α(β(g)). These are42

endomorphisms of G. The additive identity is the zero endomorphism g 7→ 0, g ∈ G and43

the multiplicative identity is is the identity map g 7→ g, g ∈ G. Endomorphism rings are not44

commutative, in general.45

(4) A variant of the previous construction: Let k be a field and V a k-vector-space. On the46

set of all k-linear endomorphisms of V, define addition and multiplication as earlier, to get a47

ring. This is usually denoted as Endk(V). If V = kn, then this ring can be thought of as the set48

Mn(k) of n× n matrices over k, with usual matrix addition and usual matrix multiplication.49

(5) In general, if R is a ring then the set Mn(R) of n× n matrices with entries in R can be50

made into a ring with usual matrix addition and usual matrix multiplication.51

1.4. Definition. Let R and S be rings. A ring homomorphism f : R −→ S is a function f such52

that f (x + y) = f (x) + f (y), f (xy) = f (x) f (y) and f (1) = 1, for all x, y ∈ R. A ring homo-53

morphism f : R −→ S is an isomorphism if there exists a ring homomorphism g : S −→ R54

such that g f = idR and f g = idS. An endomorphism of R is a homomorphism R −→ R; an55

endomorphism is an automorphism if it is additionally an isomorphism.56

1.5. Remark. (1) Since R and S are abelian groups, the requirement f (x + y) = f (x) + f (y)57

for all x, y ∈ R forces f to be a map of abelian groups (Exercise 1.18). Hence we may think of58

a ring homomorphism as a homomorphism of abelian groups f satisfying f (xy) = f (x) f (y)59

and f (1) = 1, for all x, y ∈ R60

(2) Most rings that we look at a natural multiplicative identity, and the most natural func-61

tions between these rings take the multiplicative identity of one ring to that of another ring;62

see the examples above. Therefore we require that f (1) = 1 in the definition of ring homomor-63

phisms.64

(3) Ring isomorphisms are exactly the bijective ring homomorphisms (Exercise 1.19).65

(4) Let f : R −→ S and g : S −→ T be ring homomorphisms. Then the composite g f :66

R −→ T is a ring homomorphism (Exercise 1.20).67

1.6. Definition. A invertible element of R is an element r such that there exists s such that68

rs = sr = 1. A nilpotent element of R is an element r such that there exists n ≥ 1 such that69

rn = 0. An idempotent element of R is an element r such that r2 = r.70

1.7. Definition. Let R be a ring, and X a subset of R. The centralizer of X is {r ∈ R : rx =71

xr for every x ∈ X}. The centre of R is the centralizer of R.72

1.8. Definition. Let R be a ring. A subring of R is a subset S that is an abelian subgroup of R, is73

closed under multiplication and contains the multiplicative identity.74

In other words, the subset S is a ring (on its own) and the inclusion map S ⊆ R is a ring75

morphism. Examples of subrings are:76

(1) Z ⊆ Q ⊆ R ⊆ C;77

(2) the natural inclusion (as the constant polynomials) of R inside R[X].78

(3) For every subset X, its centralizer is a subring of R. In particular, the centre of R is a79

commutative subring of R. (Exercise 1.24)80

1.9. Definition. A left ideal (respectively, right ideal) of R is an abelian subgroup I such that for81

every r ∈ R and a ∈ I, ra ∈ I (respectively, ar ∈ I. A two-sided ideal is an abelian subgroup that82

is both a left-ideal and a right-ideal. A maximal left ideal (respectively, maximal right ideal) is a83

left ideal that is distinct from R and is maximal (by inclusion) among left ideals (respectively,84

right ideals).85

In the following, most of the statements we make about left ideals will hold, mutatis mutan-86

dis, for right ideals and two-sided ideals also.87
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1.10. Theorem. Let R be a ring and I ( R a left ideal. Then there exists a maximal left ideal containing88

I.89

Proof. Let P be the collection of all the left ideals distinct from R containing I. It is non-empty90

since I ∈ P . If Iλ, λ ∈ Λ is a chain in P , then ∪λ∈Λ Iλ is a left ideal and hence an upper bound91

for the chain. By Zorn’s lemma, P has a maximal element. �92

1.11. Discussion. Let X ⊆ R be a subset. Then the collection of finite sums ∑ rλxλ where93

rλ ∈ R and xλ ∈ X is a left ideal. Let Iλ, λ ∈ Λ be a family of left ideals. Then the collect of94

finite sums ∑rλaλ
where rλ ∈ R and aλ ∈ Iλ form a left ideal, called the sum of Iλ, λ ∈ Λ and95

denoted ∑λ∈Λ Iλ.96

1.12. Definition. Let R be a ring and I a two-sided R-ideal. The quotient ring R/I is the abelian97

group R/I with multiplication defined by r̄s̄ = r̄s, where ¯(.) denote the coset modulo I.98

This definition forces the multiplicative identity of R/I to be 1̄, and the natural map R −→99

R/I to be a ring homomorphism.100

TBD: discussion about universal property to be added101

Products.102

1.13. Discussion. Let Aλ, λ ∈ Λ be sets. The (cartesian) product set ∏λ∈Λ Aλ is the set {(aλ)λ∈Λ |103

aλ ∈ Aλ for every λ ∈ Λ}. Let us denote it by A. There is a family of functions (called104

projection maps) prλ : A −→ Aλ, λ ∈ Λ satisfying prµ((aλ)λ∈Λ) = aµ for every µ ∈ Λ. This105

family satisfies the following universal property: Given any family fλ : B −→ Aλ, λ ∈ Λ of106

functions, there is a unique function f : B −→ A such that fλ = prλ f for every λ ∈ Λ. (If such107

a function existed, then fλ(b) = prλ f (b) for every b ∈ B and every λ ∈ Λ; now check that108

b 7→ ( fλ(b))λ∈Λ indeed satisfies this.) �109

1.14. Discussion. Let Rλ, λ ∈ Λ be rings. The product set ∏λ∈Λ Rλ can be made into a ring with110

(rλ)λ∈Λ + (sλ)λ∈Λ = (rλ + sλ)λ∈Λ and (rλ)λ∈Λ(sλ)λ∈Λ = (rλsλ)λ∈Λ. With these definitions,111

(0Rλ
)λ∈Rλ

and (1Rλ
)λ∈Rλ

are, respectively, the additive and multiplicative identities. Moreover112

the projection maps prλ are ring homomorphisms. In fact, this is the unique ring structure113

on ∏λ∈Λ Rλ that ensures that prλ is a ring homomorphism for every λ ∈ Λ. Further, let114

fλS −→ Rλ be ring homomorphisms. Then the unique function f : S −→ ∏λ∈Λ Rλ obtained115

in Discussion 1.13 is a ring homomorphism. �116

1.15. Proposition. Let R, R1, . . . , Rn be rings. Then R is isomorphic to ∏n
i=1 Ri if and only if there117

exist two-sided R-ideals I1, . . . , In such that Ri is isomorphic to R/Ii for every i and such that the118

natural map R −→ ∏n
i=1 R/Ii is an isomorphism.119

Proof. ‘If’ is immediate. ‘Only if’: Let φ : R −→ ∏n
i=1 Ri. Write pri for the projection ∏n

i=1 Ri −→120

Ri. Define Ii := ker(pri · φ). Since pri · φ is surjective, we get an isomorphism fi : R/Ii −→ Ri.121

Write gi = f−1
i and g = ∏n

i=1 gi. Note that g is an isomorphism. The composite122

R
φ−→

n

∏
i=1

Ri
pri−→ Ri

gi−→ R/Ii

is a ring homomorphism, so it is the natural map R −→ R/Ii. Hence g ◦ φ : R −→ ∏n
i=1 R/Ii123

is the natural map, and is an isomorphism. �124

1.16. Theorem. Let R be a ring, S its centre and I1, . . . , In two-sided R-ideals. Then the following are125

equivalent:126

(1) The natural map R −→ ∏n
i=1 R/Ii is an isomorphism.127

(2) There exist idempotents e1, . . . , en ∈ S such that eiej = 0 for all i 6= j, ∑n
i=1 ei = 1 and128

Ii = R(1− ei)129

(3) For all i 6= j, Ii + Ij = R and
⋂n

i=1 Ii = 0130
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(4) There exist ideals J1, . . . , Jn of S such that the map S −→ ∏n
i=1 S/Ji is an isomorphism and131

Ii = RJi for every i.132

Proof. TBD. �133

EXERCISES134

1.17. Using the distributive property, show the following, for every x, y ∈ R: 0x = x0 = 0;135

x(−y) = (−y)x = −(xy); (−x)(−y) = xy.136

1.18. Let G and H be groups and f : G −→ H a function such that f (gg′) = f (g) f (g′). Show137

that f (g−1) = ( f (g))−1 for every g ∈ G and that f (eG) = eH. (Hint: apply with g′ = eG and138

g′ = g−1.)139

1.19. Let f : R −→ S be a ring homomorphism. Show that f is a ring isomorphism if and only140

it is bijective. (Hint: Show that if f is bijective, then the inverse function f−1 : S −→ R is a ring141

homomorphism.)142

1.20. Show that the composite of two ring homomorphisms is a ring homomorphism.143

1.21. If r is nilpotent, then 1− r is invertible.144

1.22. For x ∈ R, the left homothety λx (respectively, right homothety ρx) is the map R −→ R,145

y 7→ xy (respectively, y 7→ yx). Show that these are endomorphisms of the additive group of146

R.147

1.23. Show that |R| = 1 if and only if 0 = 1, in which case R = {0}. This is the zero ring.148

1.24. Let X be a subset of R. Show that the centralizer of X in R is a subring of R. The centre of149

R is a commutative subring.150

1.25. Show that the endomorphism ring of the additive group Z is isomorphic to the ring Z.151

1.26. Let X be a subset of R. The left annihilator of X in R is the set {y ∈ R | yx = 0 for every x ∈152

X}. Show that it is a left ideal.153

1.27. Let f : R −→ S be a ring homomorphism. Write π : R −→ R/ ker( f ) and ι : Im( f ) −→ S.154

Show that there is a ring homomorphism f such that f = ι f π. Show that it is an isomorphism.155

1.28. Say that x ∈ R is left-invertible (respectively, right-invertible) if there exists y ∈ R such that156

yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible) if and157

only if the right homothety (respectively, left homothety)is surjective. Show that x is invertible158

if and only if it is left- and right-invertible. Show that in this case, the inverse of x is unique,159

and that this element is also the unique left- and right-inverses.160

1.29. An integral domain is a commutative ring that is non-zero and that does not have any161

zero-divisors. Let R be a commutative ring and I an R-ideal. Show that the following are162

equivalent: (1) R/I is an integral domain; (2) For every x, y ∈ R, if xy ∈ I and x 6∈ I, then163

y ∈ I; (3) I is the kernel of a ring homomorphism from R to an integral domain. A proper ideal164

satisfying these conditions is called a prime ideal. Show that maximal ideals are prime.165

1.30. An idempotent element in R is an element e such that e2 = e; an idempotent element is166

central if it belongs to the centre of R. Show that if R is a commutative ring and e an idempotent167

element, then for every prime ideal I of R, e ∈ I or 1− e ∈ I, and that these conditions are168

mutually exclusive.169

1.31. Show that the set of 2× 2 complex matrices of the form170 [
a b
−b̄ ā

]
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(where ¯(·)) denotes complex conjugation) forms a subring of M2(C). This is called the quater-171

nion ring. Show that it can also be described as the ring of all R-linear combinations of the172

following four matrices:173

I2,
[

ı 0
0 −ı

]
,
[

0 1
−1 0

]
and

[
0 ı
ı 0

]
.

Determine its dimension as a R-vector space.174

1.32. Let q1, . . . , qr be pairwise relatively prime integers. Show that the natural map Z −→175

r
∏
i=1

Z/qiZ is surjective and that it induces an isomorphism Z/(q1 · · · qr)Z −→
r

∏
i=1

Z/qiZ.176

1.33. Let Ri, 1 ≤ i ≤ n be rings and R = R1 × · · · × Rn. Show that Ri is a quotient ring of R, for177

each i.178

1.34. Let R be a ring and S the ring of 2× 2 matrices over R. Relate the centres of R and of S.179

1.35. Give an example of ideals I, J, K ⊆ Z such that I J 6= I ∩ J and (I + J)(I + K) 6= (I + JK).180

1.36. Let R be a ring and I the two-sided ideal generated by {xy− yx | x, y ∈ I}. Show that181

every ring map R −→ S with S commutative has I in its kernel. Hence we can think of I as the182

smallest two-sided ideal such that R/I is commutative.183

2. MODULES184

2.1. Definition. A left R-module M is an abelian group M with an R-action R × M −→ M185

satisfying (r + s)m = rm + sm, (sr)m = s(rm) and 1m = m for all r, s ∈ R and m ∈ M. A186

right R-module M is an abelian group M with an R-action M× R −→ M satisfying m(r + s) =187

mr + ms, m(rs) = (mr)s and m1 = m. A homomorphism of R-modules is a map f : M −→ N that188

is a morphism of abelian groups and satisfies R-linearity: f (rx) = r( f (x)) for every r ∈ R and189

x ∈ M. The set of R-homomorphisms from M to N is denoted HomR(M, N).190

If M is a left (respectively, right) R-module, then, for every r ∈ R, the map hr : M −→ M,191

x 7→ rx (respectively, x 7→ xr) is a morphism of abelian groups called the left homothety (respec-192

tively, right homothety) defined by r. Homotheties are not R-homomorphisms in general (since193

hr(sx) need not equal s(hr(x)) unless rs = sr); if r is central, then hr is a R-homomorphism. The194

map R −→ EndZ(M) r 7→ hr is a ring homomorphism. Its image in EndZ(M) is called the ring195

of homotheties (more precisely the ring of R-homotheties)of M and is denoted RM. Conversely, if196

M is an abelian group, then every ring homomorphism R −→ EndZ(M) defines an R-module197

structure on M.198

The set HomR(M, N) does not have any ‘natural’ R-module structure, even with N = M, for199

more-or-less the same reason why homotheties are not R-homomorphisms. Similarly, there is200

no ‘natural’ ring map from R −→ EndR(M). The map r 7→ hr from the centre of R of EndR(M)201

is a ring map, since central homotheties are R-homomorphisms.202

Hereafter, unless otherwise mentioned, by a module, we mean a left module.203

If Mλ, λ ∈ Λ is a family of R-modules, then the cartesian product ∏λ∈Λ Mλ has a natural R-204

module structure r(xλ)λ∈Λ = (rxλ)λ∈Λ. It is also a product in the category of R-modules, i.e.,205

if fλ : N −→ Mλ are R-homomorphisms, then there is a unique R-homomorphism f : N −→206

∏λ∈Λ Mλ such that fλ = prλ · f where the prλ are the projection maps. Therefore ∏λ∈Λ Mλ207

is called the product module of the family Mλ, λ ∈ Λ. The (external) direct sum of the family208

Mλ, λ ∈ Λ is the submodule {y ∈ ∏λ∈Λ Mλ | prλ(y) = 0 except for finitely many λ} and is209

denoted
⊕

λ∈Λ Mλ. Fix λ ∈ Λ, and consider the family of R-homomorphisms fµ : Mλ −→ Mµ,210

µ ∈ Λ, defined by211

fµ =

{
idMλ

, if µ = λ;
0, otherwise.
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Therefore there is a map ιλ : Mλ −→ ∏µ∈Λ Mµ such that prλ ◦ ιλ = idMλ
and prµ ◦ ιλ = 0 for212

every µ 6= λ. Since ιλ is injective, it identifies Mλ with the submodule {(xµ)µ∈Λ ∈ ∏µ∈Λ Mµ |213

xµ = 0 for every µ 6= λ}. Moreover Im(ιλ) ⊆
⊕

µ∈Λ Mµ so ιλ (by abuse of notation) will214

be thought of as an R-homomorphism Mλ −→
⊕

µ∈Λ Mµ. Direct sum is a co-product in the215

category of R-modules: if fλ : Mλ −→ N are R-homomorphisms, then there is a unique R-216

homomorphism f :
⊕

λ∈Λ Mλ −→ N such that fλ = f · ιλ.217

2.2. Proposition. Let M be an R-module, and Nλ, λ ∈ Λ a family of submodules of M. Then the218

following are equivalent:219

(1) ∑λ∈Λ Nλ =
⊕

λ∈Λ Nλ;220

(2) If ∑λ∈Λ xλ = 0, with xλ ∈ Nλ for every λ ∈ Λ, then xλ = 0 for every λ ∈ Λ.221

(3) for every λ ∈ Λ, Nλ ∩∑µ∈Λ Nλ = 0.222

Proof. TBD �223

If X is a set and R a ring, RX (the cartesian product of a family indexed by X, with each224

member being R) is both the product ring (when this family is thought of as a family of rings)225

and the product R-module (when this family is thought of as a family of R-modules). By226

R(X), we mean the direct sum of this family of R-modules. For x ∈ X, the image of 1 under227

ιx : R −→ R(X) is denoted by ex. Then every element of R(X) can be uniquely expressed a finite228

sum ∑x∈X rxex. This construction has the following property: if M is an R-module and X ⊆ M,229

then there exists a unique R-homomorphism R(X) −→ M with ex 7→ x. An R-module M is said230

to be free if there exists a subset X ⊆ M such that the R-homomorphism R(X) −→ M, ex −→ x231

is an isomorphism.232

2.3. Remark. Let M be an R-module. Then HomR(M,−) (respectively, HomR(−, M)) is a co-233

variant (respectively, contravariant) left-exact functor from the category of R-modules to the234

category of abelian groups.235

2.4. Definition. Let M be a right R-module and N a left R-module. The tensor product of M236

and N, denoted M⊗R N, is the abelian group Z(M×N)/B, where B is the subgroup generated237

by the elements (x + x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′) and (xr, y)− (x, ry) for238

all x, x′ ∈ M, y, y′ ∈ N and r ∈ R. The image of (x, y) ∈ Z(M×N) under the canonical surjective239

map Z(M×N) −→ M⊗R N is denoted by x⊗R y.240

The set {x⊗R y | x ∈ M, y ∈ N} generate M⊗R N as an abelian group. There is no natural241

R-module structure on M⊗R N: if we try to define r(x⊗R y) := (xr⊗R y) = (x⊗R ry), then242

r(xr′ ⊗R y) = r(x⊗R r′y) = (x⊗R rr′y) one way and r(xr′ ⊗R y) = (xr′ ⊗R ry) = (x⊗R r′ry)243

another way. However, the above calculation implies that if R is commutative, then there is a244

natural R-module structure on M⊗R N.245

2.5. Remark (Universal property of tensor products). See Bourbaki, Chapter II, Section 3.1,246

Proposition 1. See Proposition 3.1 for a restatement.247

2.6. Remark. Let M be a right R-module and N a left R-module. Then − ⊗R N (respectively,248

M⊗R −) is a right-exact covariant functor from the category of right R-modules (respectively,249

left) to the category of abelian groups.250

EXERCISES251

(1) Let k be an algebraically closed field and R a finite-dimensional k-algebra that has no252

zero-divisors. Show that k = R. (Hint: Let 0 6= r ∈ R. Show that there is a map of k-algebras253

k[X] −→ R, X 7→ r. What about the kernel of this map?)254

(2) An R-module M is faithful if its annihilator is 0. Show that M is faithful if and only if the255

map R −→ RM (the ring of homotheties) is injective.256
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3. CHANGE OF RINGS257

Let R and S be rings. An (S, R)-bimodule is an abelian group M that is a left S-module and a258

right R-module, such that the two structures are compatible with each other: (sx)r = s(xr) for259

every r ∈ R, s ∈ S and x ∈ M.260

Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The abelian group261

M ⊗R N has a natural left S-module structure: s(x ⊗R y) = sx ⊗R y. This is well-defined262

since s(x ⊗R ry) = s(xr ⊗R y) = (sxr)⊗R y and the element sxr is well-defined. The module263

HomS(M, P) has a natural left R-module structure: rφ := [x 7→ φ(xr)]. (Check: ((r′r)φ)(x) =264

φ(x(r′r)) = φ((xr′)r) = (rφ)(xr′) = (r′(rφ))(x); S-linearity: (rφ)(sx) = φ(sxr) = s((rφ)(x)).)265

The following is a restatement of the universal property of tensor products (Remark 2.5).266

3.1. Proposition. Let M (respectively, N) be a right (respectively, left) R-module and P an abelian267

group. Then the function268

HomZ(M⊗R N, P) Φ−→ HomZ(N, HomZ(M, P))
g 7→ [y 7→ [x 7→ g(x⊗R y)]]

is an injective map of abelian groups, with Im Φ = HomR(N, HomZ(M, P)). In particular the above269

map gives an isomorphism between HomZ(M⊗R N, P) and HomR(N, HomZ(M, P)).270

Proof. It is easy to check that Φ is a map of abelian groups. Suppose that g is in the kernel.271

Then g(x⊗R y) = 0 for all x ∈ M and y ∈ N, so g = 0. To prove the assertion about the image,272

note, first, that HomZ(M, P) is indeed a left R-module. Let g ∈ HomZ(M ⊗R N, P), y ∈ N273

and r ∈ R. We want to show that Φ(g)(ry) = r(Φ(g)(y)). Let x ∈ M; then Φ(g)(ry)(x) =274

g(x ⊗ ry) = g(xr ⊗ y) = Φ(g)(y)(xr) = (r(Φ(g)(y)))(x). Hence Φ(g)(ry) = r(Φ(g)(y)),275

proving that Im Φ ⊆ HomR(N, HomZ(M, P)). Conversely let φ : N −→ HomZ(M, P) be R-276

linear. Let x ∈ M and y ∈ N. Then Φ : M × N −→ P, (x, y) 7→ φ(y)(x) is Z-bilinear, and277

satisfies Φ(xr, y) = φ(y)(xr) = φ(ry)(x) = Φ(x, ry) for every r ∈ R. By the universal property278

of tensor products (Remark 2.5), there exists g : M⊗R N −→ P such that φ(y)(x) = g(x⊗ y),279

i.e., φ = Φ(g). Hence Im Φ ⊇ HomR(N, HomZ(M, P)). �280

3.2. Proposition. Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The isomor-281

phism of Proposition 3.1 restricts to an isomorphism282

HomS(M⊗R N, P) −→ HomR(N, HomS(M, P))
g 7→ [y 7→ [x 7→ g(x⊗R y)]]

of abelian groups.283

Proof. Consider the isomorphism284

HomZ(M⊗R N, P) Φ−→ HomR(N, HomZ(M, P))
g 7→ [y 7→ [x 7→ g(x⊗R y)]]

from Proposition 3.1. It suffices to show that285

Im Φ|HomS(M⊗R N,P) = HomR(N, HomS(M, P)).

Let g ∈ HomS(M⊗R N, P) and y ∈ N. Then, for every x ∈ M and s ∈ S,286

Φ(g)(y)(sx) = g(sx⊗ y) = g(s(x⊗ y)) = s(g(x⊗ y)) = s((Φ(g)(y))(x));

hence Φ(g)(y) is S-linear. Conversely, let φ : N −→ HomS(M, P) be an R-linear map. We want287

to show that g := Φ−1(φ) is S-linear. Let s ∈ S, x ∈ M and y ∈ N. Then288

g(s(x⊗ y)) = g(sx⊗ y) = φ(y)(sx) = s(φ(y)(x)) = s(g(x⊗ y)),

so, indeed, g is S-linear. �289
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Now suppose, additionally, that R is commutative and that S is an R-algebra with the image290

of R in S lying inside the centre of S. Then HomS(M⊗R N, P) has a natural R-module structure:291

define rg to be the S-linear map t 7→ g(rt) for t ∈ M⊗R N. Hence the map in Proposition 3.2 is292

a R-homomorphism: Φ(rg)(y)(x) = (rg)(x ⊗R y) = r(g(x ⊗R y)) = rΦ(g)(y)(x), and hence293

an R-isomorphism.294

3.3. Definition. Let ρ : R −→ S be a ring morphism, M a left R-module and N a left S-module.295

The left S-module S ⊗R M (treating S as a right R-module through s · r = sρ(r)) is denoted296

ρ∗M. The composite R
ρ−→ S −→ EndZ(N) makes N into a left R-module (i.e., r · y = ρ(r)y);297

this R-module is denoted as ρ∗N.298

3.4. Proposition. Let ρ : R −→ S be a ring morphism, M a left R-module and N a left S-module.299

Then there is an isomorphism300

HomS(ρ
∗M, N) −→ HomR(M, ρ∗N)

Proof. This follows from Proposition 3.2, after observing that HomS(S, N) = N as S-modules301

and that HomR(M, N) is really HomR(M, ρ∗N). �302

4. SEMISIMPLICITY303

In this section, modules are left modules, unless specified otherwise.304

4.1. Definition. An R-module M is said to be simple if it has no submodules different from M305

and 0.306

4.2. Example. We give some examples of simple modules.307

(1) RR simple if and only if 0 is a maximal left ideal, which holds if and only if R is a division308

ring. Indeed, if R is a division ring, then every non-zero element generates the unit ideal, so 0309

is a maximal left ideal. Conversely, suppose that 0 is a maximal left ideal (which implies that310

1 6= 0) and let 0 6= r ∈ R. Then Rr = R, so there exists 0 6= r′ ∈ R such that r′r = 1, and,311

furthermore, 0 6= r′′ ∈ R such that r′′r′ = 1. Hence r′ is left-invertible and right-invertible, so312

it is invertible and its inverse is r = r′′. Hence r is invertible.313

(2) Let D be a division ring and M a finitely generated D-module. Then M is free. Write314

R = EndD(M). We now argue that M is a simple R-module. More precisely, we show the315

following: let 0 6= x ∈ M and y ∈ M; then there exists φ ∈ R such that φ(x) = y. To this end,316

let f ∈ M∗ be such that f (x) = 1 and define φ ∈ R as the map v 7→ f (v)y.317

(3) More examples to come.318

4.3. Proposition. Let M be an R-module. An R-submodule N ( M is maximal among the proper319

R-submodules of M if and only if the quotient M/N is simple. If M1 ( M is an R-submodule, then320

there exists An R-submodule N ( M that is maximal among the proper R-submodules of M containing321

M1.322

Proof. TBD. �323

4.4. Definition. A Jordan-Hölder series of M is a decreasing filtration M = M0 ) M1 ) · · · )324

Ms = 0 of submodules such that for every 1 ≤ i ≤ s, Mi−1/Mi is a simple R-module; the325

integer s above is the length of the above Jordan-Hölder series. Say that an R-module N is of326

finite length (or is a finite length module) if N has a Jordan-Hölder series.327

4.5. Remark. Let M = M0 ) M1 ) · · · ) Ms = 0 be a Jordan-Hölder series of M and N a328

submodule of M. Then (N ∩Mi−1)/(N ∩Mi) is a submodule of Mi−1/Mi, so it is either 0 or329

simple. Hence by deleting repetitions from among the modules N ∩Mi, we obtain a Jordan-330

Hölder series of N. Similarly (N + Mi−1)/(N + Mi) is a quotient of Mi−1/Mi, so by deleting331

repetitions from among the modules (N + Mi)/N, we obtain a Jordan-Hölder series of M/N.332
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4.6. Proposition. Let M = M0 ) M1 ) · · · ) Ms = 0 and M = N0 ) N1 ) · · · ) Nt = 0 be333

two Jordan-Hölder series of M. Then s = t and there exists a permutation σ of {1, . . . , s} such that for334

every 1 ≤ i ≤ s, Ni−1/Ni = Mσ(i−1)/Mσ(i).335

Proof. Without loss of generality, 1 ≤ s ≤ t. If s = 1, then M is simple, so the assertions are336

true. We proceed by induction. Assume that the assertions are true for all R-modules that have337

a Jordan-Hölder series of length at most s− 1. If M1 = N1, then by induction, the assertions338

hold for M1 = N1, so they hold for M. Therefore we may assume that M1 6= N1.339

Note that N1 6⊂ M1; for, otherwise, we have N1 ( M1 ( M, violating the simplicity of340

M/N1. Similarly M1 6⊂ N1. Write K = M1 ∩ N1. Then M1 ( M1 + N1, so the simplicity of341

M/M1 implies that M1 + N1; hence, M1/K ' M/N1 is simple. Similarly N1/K ' M/M1 is342

simple.343

The assertions of the proposition hold for M1, by induction. Let K = K0 ) K1 ) · · · ) Kr =344

0 be a Jordan-Hölder series of K. Then M1 ) K ) K1 ) · · · ) Kr = 0 is a Jordan-Hölder series345

of M1. Hence s− 1 = r + 1, and the quotients in this Jordan-Hölder series are the same as the346

quotients in the series M1 ) · · · ) Ms = 0 after a suitable permutation.347

Now, N1 ) K ) K1 ) · · · ) Kr = 0 is a Jordan-Hölder series of N1 of length r + 1 = s− 1,348

so, by induction, the assertions hold for N1. Therefore t− 1 = s− 1 and the the quotients in349

this Jordan-Hölder series are the same as the quotients in the series N1 ) · · · ) Nt = 0 after350

a suitable permutation. Hence the assertions hold for the two given Jordan-Hölder series of351

M. �352

4.7. Remark. Let R be a ring and M an R-module. Then M is simple as an R-module if and353

only if it is simple as a module over its ring of homotheties. This follows from noting that the354

structure of M as an R-module is defined through the ring map R −→ EndZ(M), so it is the355

same as the structure of M as a module over the image of the above ring map.356

4.8. Proposition (Schur lemma, version 1). Let R be a ring and M and N R-modules. Let f : M −→357

N be a non-zero R-morphism. Then:358

(1) If M is simple, f is injective.359

(2) If N is simple, f is surjective.360

(3) If M and N are simple, f is an isomorphism.361

Proof. Since f 6= 0, ker f ( M and 0 6= Im f ⊆ N. if M is simple, then ker f = 0; if N is simple,362

then Im f = N. �363

4.9. Corollary (Schur lemma, version 2). If M is a simple R-module, then EndR(M) is a division364

ring.365

Proof. Every non-zero endomorphism of M is an isomorphism, i.e., an invertible element of366

EndR(M). �367

4.10. Corollary. Let k be an algebraically closed field, R a k-algebra, M a simple R-module which is368

finite-dimensional as a k-vector space. Then for every φ ∈ EndR(M), there exists λ ∈ k such that369

φ(x) = λx for every x ∈ M.370

Proof. Since EndR(M) ⊆ Endk(M) it is a finite-dimensional division ring over k. Now use371

Section 1, Exercise 1.372

Here is another proof. Let λ be an eigen-value of φ considered as a k-endomorphism of M.373

The maps λidM and φ− λidM are R-morphisms. Since λ is an eigen-value, ker(φ− λidM) 6= 0,374

so, since M is a simple R-module, φ = λidM. �375

4.11. Corollary. With notation as in Corollary 4.10, if additionally R is commutative, then dimk M =376

1.377

Proof. Let r ∈ R. Then the homothety x 7→ rx is a R-morphism. Hence there exists λ ∈ k such378

that rx = λx for every x ∈ M. Therefore the ring RM of homotheties coincides with the image379

of k in EndZ(M). Hence M is simple over k. �380
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4.12. Proposition. Let M be an R-module that is the sum of a family Sλ, λ ∈ Λ of simple submodules,381

and N a submodule of M. Then there exists Λ1 ⊆ Λ such that M = N ⊕⊕λ∈Λ1
Sλ.382

Proof. Without loss of generality N 6= M. Let P be the set of subsets Λ′ ⊆ Λ such that the sum383

N + ∑λ∈Λ′ Sλ is a direct sum. It is non-empty, there exists λ ∈ Λ such that Sλ 6⊆ N, and, for384

such λ, Sλ ∩ N = 0, so Sλ + N = Sλ ⊕ N. Order P by inclusion. Let Λi, i ∈ I be a chain in385

P . Then by Proposition 2.2 ∪i∈IΛi ∈ P , so by Zorn’s lemma, P has a maximal element Λ1.386

Set N′ = N + ∑λ∈Λ1
Sλ. Now for every λ ∈ Λ r Λ1, Λ1 ∪ {λ} 6∈ P , so Sλ ∩ N′ 6= 0 (again by387

Proposition 2.2) which implies that Sλ ⊆ N′. Hence M = N′. �388

4.13. Corollary. Let M be an R-module. Then the following are equivalent:389

(1) M is a sum of a family of simple submodules.390

(2) M is the direct sum of a family of simple submodules.391

(3) Every submodule of M is a direct summand of M.392

We first need a lemma:393

4.14. Lemma. If every submodule of M is a direct summand of M then every non-zero submodule of394

M has a simple submodule.395

Proof. Let N be a non-zero submodule of M and 0 6= x ∈ N. Write Rx ' R/I for some396

left R-ideal I 6= R. Let m be a maximal left R-ideal containing I. We claim that mx ( Rx.397

Assume that claim: Then we have mx ( Rx ⊆ M. Since mx is a direct summand of M, it is398

a direct summand of Rx. Hence Rx contains a submodule isomorphic to the simple module399

R/m. Now to prove the claim, assume, by way of contraction, that mx = Rx. Then there exist400

a1, . . . , at ∈ m and r1, . . . , rt ∈ R such that ∑t
i=1 riaix = x. Hence 1− ∑t

i=1 riai ∈ I ⊆ m, so401

1 ∈ m, a contraction. �402

Proof of Corollary 4.13. (1) =⇒ (2): Apply Proposition 4.12 with N = 0. (2) =⇒ (1): Immedi-403

ate. (1) =⇒ (3): Apply Proposition 4.12. (3) =⇒ (1): Let M′ be the sum of simple submodules404

of M. Write M = M′ ⊕M′′. If M′′ is non-zero, then it has a simple submodule by Lemma 4.14,405

which contradicts the fact that M′ ∩M′′ = 0. Hence M = M′. �406

4.15. Definition. An R-module M is said to be semisimple of it satisfies the (equivalent) condi-407

tions of Corollary 4.13.408

4.16. Remark. Let M be a semisimple R-module.409

(1) Let Sλ, λ ∈ Λ be a family of simple submodules of M such that M = ∑λ∈Λ Sλ. Let N be410

a submodule of M. Then there exists Λ1 ⊆ Λ such that M = N⊕⊕λ∈Λ1
Sλ. (Proposition 4.12.)411

Write N′ =
⊕

λ∈Λ1
Sλ. The composite map N′ ↪→ M � M/N is an isomorphism, and the412

images of Sλ, λ ∈ Λ1 in M/N are simple submodules of M/N; hence M/N is semisimple.413

Applying the above argument to N′, we see that N ' M/N′ is semisimple.414

(2) M is simple if and only if EndR(M) is a division ring. ‘Only if’ follows from the Schur415

lemma (Corollary 4.9). Conversely, if M is not simple, then it has a simple direct summand N;416

the projection to N followed by the inclusion N −→ M gives a non-invertible endomorphism417

of M.418

4.17. Definition. Let E be a ring and B a subset of E. The commutant of B (in E) is the subring419

{e ∈ E | eb = be for every b ∈ B} of E. The bicommutant of B is the commutant of the420

commutant of B.421

4.18. Remark. Let E and B be as in the definition above. Write B′ and B′′ for the commutant422

and the bicommutant, respectively, of B in E.423

(1) B ⊆ B′′ and B′ equals its bicommutant. Proof: TBD.424

(2) If B is a subring of E, then B′ ∩ B = {e ∈ B | eb = be for every b ∈ B} is the centre of B.425

Therefore B′′ ∩ B is the centre of B′. Additionally, if b ∈ B′′ ∩ B, then for every c ∈ B′′, cb = bc,426

so B′′ ∩ B is the centre of B′′ also. In particular, B′ and B′′ have the same centre.427
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(3) If B is a commutative subring of E (not necessarily central in E) then B ⊆ B′. Hence428

B′′ ⊆ B′, and, therefore, B′′ is the centre of B′.429

4.19. Definition. Let M be an R-module. The commutant and the bicommutant of M are the430

commutant and the bicommutant of the ring RM of homotheties in EndZ(M), respectively.431

4.20. Remark. The commutant of M is EndR(M). To see this, note that if hr ∈ RM is the432

homothety x 7→ rx and f ∈ EndZ(M), then the condition hr f = f hr is another way of stating433

that for every x ∈ M, r f (x) = (hr f )(x) = ( f hr)(x) = f (rx). Hence the bicommutant of M is434

EndEndR(M)(M).435

4.21. Proposition. Let R be a ring and M an R-module. Write R′′ for the bicommutant of M.436

(1) Let I be a set. The bicommutant of the R-module M(I) is the ring of homotheties of the R′′-module437

M(I).438

(2) Suppose that M is semisimple. Then for every x ∈ M and every s ∈ R′′, there exists r ∈ R such439

that sx = rx. In particular, every R-submodule of M is also an R′′-submodule.440

Proof. (1): TBD441

(2): Let x ∈ M. Then Rx is an R-direct summand of M. Let φ ∈ EndR(M) be the projection442

endomorphism with image Rx. Let s ∈ R′′. Then sφ = φs (as elements of EndZ(M)). Hence443

for every y ∈ Rx, sy = sφ(y) = φ(sy), so sy ∈ Rx. �444

4.22. Theorem (Jacobson density theorem). Let R be a ring and M a semisimple R-module. Write445

R′′ for the bicommutant of M. Let s ∈ EndZ(M). Then s ∈ R′′ if and only if for every finite subset446

X ⊆ M, there exists r ∈ R such that sx = rx for every x ∈ X.447

Proof. ‘If’: Let φ ∈ EndR(M) and x ∈ M. Let r ∈ R be such that sx = rx and sφ(x) = rφ(x)448

(apply the hypothesis to X = {x, φ(x)}). Then sφ(x) = rφ(x) = φ(rx) = φ(sx). Hence sφ = φs449

(as elements of EndZ(M)) for every φ ∈ EndR(M), i.e., s ∈ R′′.450

‘Only if’: Let X = {x1, . . . , xn}, n ≥ 1. Write x = (x1, . . . , xn) ∈ Mn. Consider the451

R′′-homothety (y1, . . . , yn) 7→ (sy1, . . . , syn) of M. By Proposition 4.21(1) there exists an el-452

ement s̃ of the bicommutant of the R-module Mn such that s̃((y1, . . . , yn)) = (sy1, . . . , syn).453

Note that Mn is a semisimple R-module. By Proposition 4.21(2) there exists r ∈ R such that454

(sx1, . . . , sxn) = s̃x = rx = (rx1, . . . , rxn), i.e., sx = rx for every x ∈ X. �455

4.23. Definition. Let S be a simple R-module and M an R-module. Say that M is isotypic of type456

S if M ' S(I) for some set I. Say that M is isotypic if there exists a simple R-module T such that457

M is isotypic of type T.458

4.24. Remark. Every isotypic R-module is semisimple. If Mλ, λ ∈ Λ is a family of R-modules459

with Mλ isotypic of type S (where S is a simple R-module), for every λ ∈ Λ, then
⊕

λ∈Λ Mλ460

is isotypic of type S. If S is a simple R-module, I a set and M a submodule of S(I), then M is461

isotypic of type S: for, if M′ is a submodule of S(I) with M + M′ = S(I) and M ∩M′ = 0, then462

M ' S/M′ ' S(I1) for some I1 ⊆ I (Proposition 4.12).463

4.25. Definition. R is said to be a semisimple ring if RR is a semisimple R-module. R is said464

to be a simple ring if it is a semisimple ring and there is a unique simple R-module up to465

isomorphism.466

4.26. Remark. Let R be a ring.467

(1) Suppose that R is semisimple. Then it has finitely many simple modules, up to isomor-468

phism. For, write RR as the (direct) sum of a family Sλ, λ ∈ Λ of R-modules. Let T be a simple469

R-module. Let 0 6= x ∈ T. The R-morphism map RR −→ T, 1 7→ x is surjective. There-470

fore there exists µ ∈ Λ such that T ' Sµ (Remark 4.16(1)). Hence each simple R-module is471

isomorphic to a submodule of RR. Let Si, i ∈ I be all the distinct simple R-modules, up to472

isomorphism. Write RR ' ⊕
i∈I Mi where, for every i ∈ I , Mi is a direct sum of copies of Si.473
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Since RR is a finitely-generated R-module, I must be a finite set and for each i ∈ I , Mi must474

be a direct sum of finitely many copies of Si.475

(2) Suppose that R is semisimple. Then every R-module is semisimple, since every R-476

module is a quotient of RR(I) for some I, which is semisimple.477

(3) If R is a simple ring, then, for some set I, RR ' S(I) where S the unique (up to isomor-478

phism) simple R-module; hence RR is isotypic. Conversely, if RR is isotypic of type S, then479

(a) RR is semisimple; (b) if T is a simple R-module, then T ' S (as in Remark 4.26(1), using480

Remark 4.16(1)). Hence R is a simple ring.481

4.27. Proposition. Let R be a simple ring. Then:482

(1) The only two-sided ideals of R are 0 and R.483

(2) Every simple module over R is faithful.484

Proof. (1): Let I be any simple left R-ideal. If J is any other simple left ideal then it is iso-485

morphic to J (as a left R-module). Both I and J are direct summands of RR. Thus we get an486

R-endomorphism of RR as the composite RR � I ' J ↪→ RR. Every endomorphism f of RR487

is given by multiplication by f (1) on the right. Thus we see that for every simple left ideal J,488

there exists αJ ∈ R such that the map I −→ J, x 7→ xαJ is an isomorphism. Since R is a direct489

sum of simple left ideals, IR = R. Hence the only non-zero two-sided ideal is R.490

(2): The annihilator of any non-zero left R-module is a two-sided proper ideal of R. Now491

use (1). �492

4.28. Proposition. Let D be division ring and M a finitely generated D-module. Write R = EndD(M).493

Then R is a simple ring, M a simple and faithful R-module and D ' EndR(M).494

Proof. Write R = EndD(M). That M is simple over R was established in Example 4.2(2). Since495

R ⊆ EndZ(M), the map R −→ RM is an isomorphism, so M is a faithful R-module.496

Write S = EndR(M) the bicommutant of M. We have maps D −→ DM ⊆ S (where DM497

denotes the ring of homotheties). Since D is a division ring, the map D −→ DM is an iso-498

morphism. Let s ∈ S. We want to show that there exists a ∈ D such that s = ha, the499

homothety x 7→ rx. Fix x ∈ M. Note that M is a semisimple D-module. By the density500

theorem (Theorem 4.22) (in fact, Proposition 4.21(2) is enough) there exists a ∈ D such that501

sx = hax. Let y ∈ M; there exists φ ∈ R such that φ(x) = y; see Example 4.2(2). Then502

sy = s(φ(x)) = φ(sx) = φ(hax) = haφ(x) = hay. This is true for every y ∈ M, so s = ha.503

Define a map RR −→ Mn by φ 7→ (φ(xi)). This is a map of left R-modules. If φ(xi) = 0 for504

every i, then for every y = ∑i aixi (with ai ∈ D for every i) φ(y) = ∑i φ(aixi) = ∑i aiφ(xi) = 0,505

so φ = 0, since M is a faithful R-module. Hence RR is an R-submodule of Mn, which is isotypic.506

Hence R is simple by Remarks 4.24 and 4.26(3). �507

4.29. Theorem (Wedderburn). Let R be a ring. Then R is simple if and only if it is isomorphic to508

Mn(D) for some division ring D and a positive integer n.509

Proof. ‘If’ is a corollary of Proposition 4.28. Conversely, suppose that R is simple. Let S be the510

unique (up to isomorphism) simple R-module and D = EndR(S). Note that the commutant511

of S (as an R-module) is D. The bicommutant of S (as an R-module) is EndD(S), so we have512

a natural ring map R −→ RS ⊆ EndD(S). The map R −→ RS is an isomorphism since S is a513

faithful R-module (Proposition 4.27(2)).514

Let v1, . . . , vn be a basis of S as a D-module. Let φ ∈ EndD(S). By the density theorem515

(Theorem 4.22) there exists r ∈ R such that φ(vi) = rvi for every 1 ≤ i ≤ n. Hence φ(∑i divi) =516

∑i(dir)vi = ∑i(rdi)vi = r(∑i divi) for every collection d1, . . . , dn ∈ D. Hence the map R −→517

RS ⊆ EndD(S) is surjective, and an isomorphism. �518

4.30. Lemma. Let φ : R −→ R′ be an isomorphism of rings. Let I be a left R-ideal. Then519

(1) I′ := φ(I) is a left R′-ideal and the induced map φ|I : I −→ I′ is an isomorphism of R-modules,520

where R acts on I ′ through φ.521
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(2) The ring map Φ : EndZ(I) −→ EndZ(I′), f 7→ φ|I ◦ f ◦ φ|−1
I is an isomorphism. Moreover,522

for every r ∈ R, Φ(hr) = hφ(r) (where hr denotes the homethety x 7→ rx of I).523

(3) Write S and S′ for the commutants of I and I′ respectively. Then Φ(S) = S′; this gives a ring524

isomorphism Φ|S : S −→ S′.525

Proof. (1): Since I′ is an abelian group, it suffices to show that for every r′ ∈ R′ and x ∈ I′,526

r′x′ ∈ I′. This indeed is true since r′x′ = φ(φ−1(r′)φ−1(x′)). To show that φ|I : I −→ I′ is527

an isomorphism of R-modules, it suffices to check that it is also an R-morphism, since it is an528

isomorphism of abelian groups; this is immediate.529

(2): It is straightforward to check that the ring map EndZ(I′) −→ EndZ(I), g 7→ φ|−1
I ◦ g ◦φ|I530

is the inverse of Φ. Let y ∈ I′ and r ∈ R. We want to show that (φ|I ◦ hr ◦ φ|−1
I )(y) = hφ(r)(y).531

This follows immediately from the definitions.532

(3): ‘⊆’: Let s ∈ S, r′ ∈ R′ and y ∈ I′; we want to show that Φ(s)(hr′(y)) = hr′(Φ(s)(y)).533

Write r′ = φ(r) and y = φ(x). Then Φ(s)(hr′(y)) = φ(s(hr(x))) and hr′(Φ(s)(y)) = φ(hr(s(x))).534

Since s ∈ S, we have that hr(s(x)) = s(hr(x)).535

‘⊇’: Let s′ ∈ S′. Write s′ = Φ(s) with s ∈ EndZ(I). We need to show that s ∈ S. Let536

r ∈ R and x ∈ I; we want to show that s(hr(x)) = hr(s(x)). This follows from noting that537

φ(s(hr(x))) = s′(hφ(r)(φ(x))) = hφ(r)(s′(φ(x))) = φ(hr(s(x))). �538

4.31. Proposition. Let D1 and D2 be division rings and n1 and n2 positive integers. Then Mn1(D1) '539

Mn2(D2) if and only if D1 ' D2 and n1 = n2.540

Proof. ‘If’ is immediate. Conversely, first, by looking at Jordan-Hölder sequences, we conclude541

that n1 = n2 which we call n. Let φ : Mn(D1) −→ Mn(D2) be an isomorphism. Apply542

Lemma 4.30 with R = Mn(D1) and R′ = Mn(D2) and I any simple left ideal of Mn(D1). Then,543

in the notation of that Lemma, I ' Dn
1 (as Mn(D1)-modules), I′ ' Dn

2 (as Mn(D2)-modules)544

S ' D1 and S′ ' D2 (as rings, in both the cases). �545

4.32. Theorem (Wedderburn). Let R be a semisimple ring and RR =
⊕m

i=1 Ii the isotypic decompo-546

sition of RR (into left R-ideals). Write 1 = e1 + · · ·+ em with ei ∈ Ii for every i. Then:547

(1) For each 1 ≤ i ≤ m, Ii is a two-sided R-ideal.548

(2) For each 1 ≤ i ≤ m, Ii is a simple ring with the operations induced from R and with ei as the549

multiplicative identity.550

(3) R = ∏m
i=1 Ii as rings.551

4.33. Lemma. Let R be a ring, I a simple left R-ideal and M a simple R-module. If I is not isomorphic552

to M, then IM = 0.553

Proof. IM is a submodule of M, so IM = 0 or IM = M. If IM = M, then there exists x ∈ M554

such that Ix 6= 0, so Ix = M. Hence the map I −→ M, r 7→ rx is an R-isomorphism. �555

Proof of Theorem 4.32. (1): Note that for j 6= i, Ii Ij = 0 by Lemma 4.33. Hence Ii ⊆ IiR = Ii Ii ⊆556

Ii, so IiR = Ii Ii = Ii, i.e., Ii is a two-sided ideal.557

(2): We already checked that Ii is closed under the multiplication induced from R. For every558

r ∈ Ii, r = r(e1 + · · ·+ em) = rei.559

(3): For 1 ≤ i ≤ n, write Ji =
⊕

1≤j≤m
j 6=i

Ii; The natural projection map R −→ Ii is a ring560

homomorphism, with kernel Ji. Therefore it suffices to show that the natural map R −→561

∏m
i=1 R/Ji is an isomorphism, for which we will use Theorem 1.16. Let r ∈ R. Write r =562

∑n
i=1 ri, with ri ∈ Ii for every i. Then rei = riei = ri(∑n

j=1 ej)(∑n
j=1 ej)ri = eiri, so ei is a central563

idempotent for every i. Since Ii Ij = 0 for every i 6= j, eiej = 0 for every i 6= j. Note that564

Ii = Rei and that Ji = R(1− ei). Hence by Theorem 1.16 the natural map R −→ ∏m
i=1 R/Ji is565

an isomorphism. �566

4.34. Corollary. Let R be a ring. Then R is semisimple if and only if it is of the form ∏m
i=1 Mni(Di) for567

some division rings D1, . . . , Dn and positive integers n1, . . . , nm.568
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Proof. ‘Only if’: Use Theorems 4.32 and 4.29. ‘If’: see Exercise below. �569

EXERCISES570

(1) Let R and S be rings and M and N a semisimple R-module and a semisimple S-module571

respectively. Show that M⊕ N is a semisimple (R× S)-module.572

(2) Let R be a ring and M a semisimple R-module. Let N be a simple R-module. Let M′ be573

a submodule of M. Then the following are equivalent:574

(a) M′ is the largest isotypic submodule of M of type N, i.e., M′ is isotypic of type N and if575

N′ is a simple submodule of M isomorphic to N, then N′ ⊆ M′.576

(b) M′ is the (direct) sum of all the simple submodules of M that are isomorphic to N.577

(c) M′ = HomR(N, M).578

Let Nλ, λ ∈ Λ be all the distinct (up to isomorphism) simple R-modules. Then M =
⊕

λ∈Λ HomR(Nλ, M).579

This is called the isotypic decomposition of M.580

5. INTRODUCTION TO REPRESENTATION THEORY581

Throughout this section k denotes a commutative ring. A k-algebra is a ring R with a ring582

homomorphism k −→ R (often understood from the context and not stated explicitly) whose583

image is inside the centre of R. (That is, for us, a k-algebra is unital and associative.) If k is584

field, then a k-algebra R is said to be finite-dimensional if dimk R is finite. (Note that the ring585

map k −→ R makes R into a k-vector-space.)586

5.1. Discussion. Let G be a group. We make the free k-module k(G) into a k-algebra as follows.587

Let eg, g ∈ G denote the standard basis for k(G). Then set egeh = egh; now extend it to k(G) by588

setting (∑n
i=1 aiegi)(∑

m
j=1 bjehj) = ∑i,j aibjegihj . This gives a ring with identity element e1. The589

map k −→ k(G), a 7→ ae1 is a ring homomorphism; its image is inside the centre of k(G). Thus590

we get a k-algebra structure on k(G); we denote it by k[G]. We will write 1 for the element591

e1. �592

5.2. Remark. Let G be a group. k[G] is commutative if and only if egeh = eheg for all g, h ∈ G593

which holds if and only if G is an abelian group. For a positive integer r, k[Zr] = k[x1, x−1
1 , x2, x−1

2 , . . . , xn, x−1
n ]594

and k[Z/r] ' k[x]/(xr − 1). If k is a field, then k[G] is a finite-dimensional k-algebra if and595

only if G is a finite group.596

5.3. Definition. Let G be a group and M a k-module. A (linear) representation of G on M is a597

group homomorphism ρ : G −→ Autk(M), the group of invertible k-endomorphisms of M.598

We denote this representation by (M, ρ); if the map ρ is understood from the context, we omit599

it from the notation and say that M is a representation of G. Moreover, when no confusion is600

likely to occur, we will write g for the automorphism ρ(g) : M −→ M.601

5.4. Example. In these examples assume that M is free k-module of rank n with basis {v1, . . . , vn}.602

However, no generality is lost if one further assumes that k is a field.603

(1) Identify Autk(M) with GLn(k) (the group of invertible n× n matrices over k) using the604

given basis. The cyclic group Z/n acts on {v1, . . . , vn} by cyclically permuting its elements.605

This gives a representation of Z/n on M which is given by the group homomorphism Z/n −→606

GLn(k)607

1 7→


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0


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(2) More generally, every subgroup of the permutation group Sn has a permutation represen-608

tation on M by σ : vi 7→ vσ(i). The image of σ in GLn(k) is the permutation matrix Aσ associated609

to σ, which is given by610

(Aσ)i,j =

{
1, if i = σ(j);
0, otherwise.

(3) Even more generally, if X is a set on which G acts on the left (as permutations), then we611

get a permutation representation of G on the free module k(X) by g : ex 7→ eg(x). An important612

example of this is the regular representation of G: G acts on itself by left multiplication; this613

extends to a representation of G on k[G] satisfying g : eh 7→ egh.614

5.5. Discussion. Let G be a group, and M, N representations of G. A homomorphism of G-615

representations (or a G-homomorphism) φ : M −→ N is is a k-homomorphism φ : M −→ N616

satisfying φ(gx) = g(φ(x)) for every x ∈ M and g ∈ G. Thus we can talk of the cate-617

gory of G-representations. We say that N is a G-subrepresentation of M if it is k-submodule618

of M and the inclusion map is a G-homomorphism; in this case, for every g ∈ G, the k-619

automorphism g of M induces a k-automorphism of the quotient k-module M/N, so M/N620

has a natural G-representation structure such that the quotiet map M −→ M/N is a G-621

homomorphism. Therefore the kernel, the image and the cokernel of a G-homomorphism are622

G-representations. Moreover if Mλ, λ ∈ Λ is a family of G-representations, then the k-module623 ⊕
λ∈Λ Mλ has a natural G-action, and is the direct sum in the category of G-representations.624

Similarly, the k-module ∏λ∈Λ Mλ has a natural G-action, and is the product in the category of625

G-representations. �626

5.6. Discussion. Let ρ : G −→ Autk(M) be a representation of G on M. This extends to a627

homomorphism of k-algebras ρ : k[G] −→ Endk(M) determined (uniquely) by ρ(eg) = ρ(g).628

Conversely, if σ : k[G] −→ Endk(M) is a homomorphism of k-algebras, then we get a group629

homomorphism σ′ : G −→ Autk(M), by σ′(g) = σ(eg), since the elements eg are invert-630

ible in k[G]. The operations are inverses of each other: (ρ)′ = ρ and (σ′) = σ. Hence631

defining a G-representation on a k-module M is equivalent to defining a k[G]-module struc-632

ture on M (compatible with the given k-module structure). For G-representations M and633

N, a k-homomorphism φ : M −→ N is a G-homomorphism) precisely when it is a k[G]-634

homomorphism. Therefore the categories of G-representations and of k[G]-modules is equiva-635

lent. The notions defined in Discussion 5.5 match the corresponding notions for k[G]-modules.636

Therefore we will interchangeably use ‘G-representations’ and ‘k[G]-modules’ (and some-637

times, merely, ‘G-modules’). �638

5.7. Theorem. Let G be a finite group with |G| invertible in k. Let M be a k[G]-module, and N a639

k[G]-submodule of M that is a direct summand of M as a k-module. Then N is a direct summand as a640

k[G]-module.641

Proof. Let p ∈ Endk(M) be a projection with image N. Define a k-endomorphism q : M −→ M642

by643

x 7→ 1
|G| ∑

g∈G
gp(g−1x).

The image of q is N and, for every x ∈ N, q(x) = x. Hence M = N ⊕ (ker q) as k-modules.644

Moreover, q(gx) = 1
|G| ∑h∈G hp(h−1gx) = g 1

|G| ∑h∈G g−1hp(h−1gx) = g 1
|G| ∑h∈G hp(h−1x) =645

gq(x) for every g ∈ G, so (ker q) is a k[G]-module. Hence N is a direct summand of M as a646

k[G]-module. �647

5.8. Corollary (Maschke). Let k be a field and G a finite group with |G| invertible in k. Then k[G] is648

a semisimple ring.649
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Proof. For every k[G]-module M and k[G]-submodule N of M, N is a direct summand of M650

as a k-module. By Theorem 5.7, N is a direct summand of M as a k[G]-module; now apply651

Corollary 4.34. �652

5.9. Remark. The assertion of the Corollary 5.8 fails if |G| is not invertible in k. Consider the653

element ε = ∑g∈G g ∈ k[G]. For every g ∈ G, gε = ε = εg, so ε2 = |G|ε = 0 and ε ∈ k[G]g,654

the left ideal generated by g. Hence the left module k[G]ε is not a direct summand of the left655

module k[G]. In particular k[G] is not a semisimple ring.656

5.10. Corollary. Let G be a finite group with |G| invertible in k. An exact sequence of k[G]-modules657

is split if and only if it is split as an exact sequence of k-modules.658

Proof. ‘If’ is immediate. ‘Only if’: Let 0 −→ M1
f−→ M2 −→ M3 −→ 0 be an exact sequence659

of k[G]-modules. If it is split as a sequence of k-modules, then Im( f ) is a direct summand of660

M2 as a k-module, so by Theorem 5.7, it is a direct summand also as a k[G]-module, i.e., the661

sequence is split as a sequence of of k[G]-modules. �662

5.11. Corollary. Let G be a finite group with |G| invertible in k. A k[G]-module is projective if and663

only if it is projective as a k-module. In particular, if k is a field, then every k[G]-module is projective.664

Proof. Let M be a k[G]-module and F a free k[G]-module with a surjective k[G]-morphism665

φ : F −→ M. If M is projective as a k[G]-module, then φ is split as a k[G]-morphism, and, a666

fortiori, as a k-morphism. Hence M is a projective k-module. Conversely, if M is a projective a667

k-module, then φ is split as a k-morphism. By Theorem 5.7, ker φ is a direct summand of F as668

a k[G]-module, so φ is split as a k[G]-morphism. Hence M is a projective k[G]-module. �669

5.12. Discussion (Frobenius reciprocity). Let H be a subgroup of G, and denote the inclusion670

map k[H] −→ k[G] by ρ. The functor ρ∗ (from the category of k[G]-modules to the category671

of k[H]-modules, treating a a k[G]-module as k[H]-module through restriction of scalars) is672

called the restriction functor and is denoted ResG
H. The functor ρ∗(−) = k[G] ⊗k[H] − (from673

k[H]-modules to the category of k[G]-modules, treating k[G] as a right k[H]-module) is called674

the induction functor and is denoted IndG
H; for a k[G]-module M, IndG

H(M) is called the repre-675

sentation of G induced from M. Hom-⊗ adjunction (Proposition 3.2) gives676

Homk[H](M, ResG
H N) = Homk[G](IndG

H M, N)

for every H-module M and G-module M. �677

5.13. Setup. For the remainder of this section, let k be a field and G a finite group with |G|678

invertible in k. Let679

k[G] =
c

∏
i=1

Ri

be the decomposition as the product of simple rings Ri. Let 1 ≤ i ≤ c. Write ei for the identity680

element of Ri. Let Mi be a simple Ri-module and Di = EndRi(Mi). Write di = dimk Mi. Denote681

the simple characters (defined below) by χ1, . . . , χc.682

5.14. Definition. Let ρ : G −→ Autk(M) be representation. The character of ρ, denoted χρ, is683

the function G −→ k, g 7→ Trace(ρ(g)). Its k-linear extension to k[G] will also be denoted by684

χρ. A simple (or irreducible) character of G is the character of a simple G-module.685

Note that the number of simple characters equals the number c of the factors in the decom-686

position of k[G] as a product of simple rings in Setup 5.13, since every simple k[G]-module is687

a simple module over Rj for some j.688

5.15. Lemma. For all 1 ≤ i, j ≤ c,689

χj(ei) =

{
di, if i = j;
0, otherwise.



GRADUATE ALGEBRA II. NOTES 17

Proof. Note that Mj is a summand of Rj for every j. Thus ei : Mj −→ Mj is the identity map of690

Mi if j = i and the zero map otherwise. Therefore691

χj(ei) = Trace(Mj
ei−→ Mj) =

{
di, if i = j;
0, otherwise.

�

5.16. Proposition. Let χreg denote the character of the regular representation. Then χreg(1) = |G|692

and for every g ∈ G, g 6= 1, χreg(g) = 0.693

Proof. For any finite-dimensional representation ρ of G on M, χρ(1) = dimk M so χreg(1) =694

|G|. On the other hand, for every g 6= 1, g permutes the natural basis of k[G] given by G695

without fixed points, so, with respect to this basis, the matrix of g is a permutation matrix with696

zeros on the diagonal. Hence for every g ∈ G, g 6= 1, χreg(g) = 0. �697

5.17. Definition. The prime subring of k is the image of the map Z −→ k.698

5.18. Proposition. Let χ1, . . . , χc be the distinct simple characters of G. Let ρ : G −→ Autk(M) be699

a representation. Then there exist n1, . . . , nc in the prime subring of k such that χρ = ∑c
i=1 niχi. Now700

suppose that chark = 0. Then the ni are uniquely determined non-negative integers, and, moreover, if701

ρ′ is a representation such that χρ′ = χρ then ρ and ρ′ are isomorphic to each other.702

Proof. Since M is a finite-dimensional k-vector-space, there exist non-negative integers n1, . . . , nc703

such that M =
c⊕

i=1
M⊕ni

i as k[G]-modules. Note that if φ :
c⊕

i=1
M⊕ni

i −→
c⊕

i=1
M⊕n′i

i is a k[G]-704

isomorphism, then for each i, Im(φ|M⊕ni
i

) ⊆ M⊕n′i
i , and φ|M⊕ni

i
is an isomorphism, from which,705

after comparing ranks over k, it follows that ni = n′i. Therefore the integers ni (in the decom-706

position of M) are unique. Denoting the images of the integers ni in k again by ni, we see707

that χρ = ∑c
i=1 niχi. Now suppose that chark = 0. Since the map Z −→ k is injective, the708

uniqueness is preserved in the expression χρ = ∑c
i=1 niχi. Further, if χρ′ = χρ = ∑c

i=1 niχi,709

where ρ : G −→ Autk(M) and ρ′ : G −→ Autk(M′), then M ' M′ '
c⊕

i=1
M⊕n′i

i . �710

5.19. Remark. We see tht the set of characters of G is a k-vector-space, spanned by the simple711

characters χi. If the dimensions di (over k) of the simple k[G]-modules Mi are invertible in k712

(e.g., if chark = 0), then the χi form a basis. To see this, suppose that ∑i αiχi = 0, with αi ∈ k.713

Then 0 = (∑i αiχi)(ej) = αjχj(ej) = αjdj, so αj = 0. �714

5.20. Notation. For g ∈ G, denote its conjugacy class {hgh−1 | h ∈ G} by Cg. Let C ⊆ G be715

a set of representatives for the conjugacy classes of G, i.e., G =
⊔

g∈C Cg. For g ∈ G, write716

sg = ∑h∈Cg
h. �717

5.21. Proposition. Let a ∈ k[G]. Then the following are equivalent:718

(1) a is a central element of k[G];719

(2) ag = ga for every g ∈ G (thought of as a subset of k[G]);720

(3) a is a k-linear combination of {sg | g ∈ C}.721

Proof. (1) implies (2): Immediate.722

(2) implies (3): Write a = ∑τ∈G aττ. Then ∑τ∈G aττ = a = gag−1 ∑τ∈G aτgτg−1 = ∑τ∈G ag−1τgτ.723

Since G is a k-basis of k[G], we see that for every τ ∈ G, aτ = aσ for every σ ∈ Cτ.724

(3) implies (1): For every h ∈ G, hsgh−1 = sg, so sg is a central element for every g ∈ C. �725

5.22. Corollary. {sg | g ∈ C} is a k-basis for the centre of k[G].726

Proof. This follows from Proposition 5.21, after noting that {sg | g ∈ C} is linearly independent727

over k. �728
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5.23. Remark. A function f : G −→ k is said to be a class function if f (ghg−1) = f (h) for every729

g, h ∈ G, or equivalently, f (ghg−1) = f (h) for every g, h ∈ G. Characters are class functions,730

since for two matrices A and B, Trace(AB) = Trace(BA).731

5.24. Theorem. Suppose that k is algebraically closed. Let732

k[G] =
c

∏
i=1

Ri

be a decomposition as the product of simple rings Ri. Then:733

(1) G has exactly c conjugacy classes.734

(2) {sg | g ∈ C} and {e1, . . . , ec} are bases for the centre of k[G].735

(3) χreg = ∑c
i=1 diχi.736

(4) |G| = ∑c
i=1 d2

i .737

Proof. Each Ri is a simple finite-dimensional k-algebra, so Ri = EndDi(Mi) for a finite-dimensional738

division ring Di over k and free Di-module Mi. Since k is algebraically closed, Di = k. Hence739

the centre of Ri is ki := kei; thus the centre of k[G] is ∏c
i=1 ki. This proves (1) and (2). Note740

that as R-modules, Ri = M⊕di
i , so χreg = ∑c

i=1 diχi, proving (3). Hence dimk Ri = d2
i , so741

|G| = dimk k[G] = ∑c
i=1 d2

i proving (4). �742

5.25. Observation. Suppose that k is algebraically closed. Let g ∈ G and 1 ≤ i ≤ c. For any743

a ∈ k[G], eia ∈ Ri. Thus744

χreg(eig) =
c

∑
j=1

djχj(eig) = diχi(eig) = diχi(g).

Let g ∈ G be such that it appears in ei with a non-zero coefficient. Then by Proposition 5.16745

χreg(eig−1) 6= 0, so di is non-zero in k. In particular, the χi are linearly independent over k746

(Remark 5.19).747

5.26. Proposition. Suppose that k is algebraically closed. Then for every 1 ≤ i ≤ c,748

ei =
1
|G| ∑

g∈G

(
χreg(eig−1)

)
g =

di

|G| ∑
g∈G

(
χi(g−1)

)
g

Proof. The second equality follows from Observation 5.25. To prove the first, write ei = ∑h∈G aih.749

Then χreg(eig−1) = ∑h∈G ahχreg(hg−1) = ag|G|. �750

5.27. Notation. Let Xk(G) denote the set of characters of G and Zk(G) the centre of k[G]. �751

5.28. Proposition. Suppose that k is algebraically closed. Then the pairing752

Xk(G)× Zk(G) −→ k, (χ, a) 7→ χ(a)

is non-degenerate. In particular, Xk(G) and Zk(G) are dual to each other under this pairing.753

Proof. Let χ = ∑i αiχi 6= 0. Pick i such that αi 6= 0; then (use Lemma 5.15 and Observation 5.25)754

χ(ei) = αiχi(ei) = αidi 6= 0. Now let a 6= 0 ∈ Zk(G). Write a = ∑i βiei (Theorem 5.24(2)). Pick755

i such that βi 6= 0; then χi(a) = χi(βi(ei)) = βidi 6= 0. �756

5.29. Proposition. Suppose that k is algebraically closed. Then we have a bilinear map757

〈 , 〉 : Xk(G)× Xk(G) −→ k, (χ, χ′) 7→ 1
|G| ∑

g∈G
χ(g)χ′(g).

The χi form an orthonormal basis for Xk(G) with respect to this pairing, i.e.,758

〈χi, χj〉 =
{

1, if i = j;
0, otherwise.
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