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GRADUATE ALGEBRA II. NOTES

MANOQO] KUMMINI

OUTLINE

(1) Basic ring theory: examples, ideals and modules; centre, algebras; radical; artinian and
noetherian rings; review of tensor products.

(2) Semisimplicity: Artin-Wedderburn theorem; Jacobson density theorem;

(3) Group rings: Schur’s lemma.

(4) Introduction to representation theory: chiefly finite groups; somethings about reduc-
tive groups.

References.

(1) N. Bourbaki, Algebra, Ch. I.

(2) N. Bourbaki, Algebre, Ch. VIII, Springer, 2012 (the revised edition; in French.) This is
our primary reference for semi-simplicity.

(3) N. Jacobson, Basic Algebra I and II.

(4) S. Lang, Algebra.

(5) Appendix “A short digest of non-commutative algebra” inJ. A. Dieudonné and J. B. Car-
rell, Invariant theory, old and new Adv. in Math. 1970.

1. BASIC RING THEORY

For the most part, we will follow Bourbaki, Algebra, Ch. I, using Jacobson and Lang for
supporting material and exercises.

1.1. Definition. A ring is a set R with two operations + (addition) and - (multiplication) such
that

(1) (R, +) is an abelian group;

(2) multiplication is associative and has an identity;

(3) multiplication is distributive over addition, i.e., for all a,b,¢ € R, a(b+c¢) = ab + ac
and (a + b)c = ab + bc.

If the multiplication is commutative, then we say that R is a commutative ring.

1.2. Remark. We denote the additive identity by 0 and the multiplicative identity by 1. We will
refer to (R, +) as the additive group of R.

1.3. Example. (1) Z, Q, R and C are commutative rings, with the usual addition and multi-
plication.

(2) Rings of functions: Let R be a ring and X a set. The set of functions from X to R form a
ring as follows. For functions f, g : X — R, set (f + g) to be the function x — f(x) +g(x), x €
X and fg be the function x — f(x)g(x), x € X. The additive identity is the constant function
x — 0 and the multiplicative identity is the constant function x +— 1. If R is commutative, then
this ring is commutative. By imposing conditions on X, on R and on the functions that we
are interested in, we get many variants of this construction: For example, if X is a topological
space, we can consider the ring of continuous R-valued functions, the ring of continuous C-
valued functions etc.
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2 MANOJ] KUMMINI

(3) Endomorphism rings: Let G be an abelian group, written additively. Let R be the set
of group endomorphisms of G, made into a ring as follows: for endomorphisms &, B of G,
set & + 8 to be the function g — a(g) + B(g) and ap to be function ¢ — «(B(g)). These are
endomorphisms of G. The additive identity is the zero endomorphism ¢ — 0, ¢ € G and
the multiplicative identity is is the identity map ¢ — g, ¢ € G. Endomorphism rings are not
commutative, in general.

(4) A variant of the previous construction: Let k be a field and V a k-vector-space. On the
set of all k-linear endomorphisms of V, define addition and multiplication as earlier, to get a
ring. This is usually denoted as Endy (V). If V = k", then this ring can be thought of as the set
M, (k) of n x n matrices over k, with usual matrix addition and usual matrix multiplication.

(5) In general, if R is a ring then the set M,,(R) of n x n matrices with entries in R can be
made into a ring with usual matrix addition and usual matrix multiplication.

1.4. Definition. Let R and S be rings. A ring homomorphism f : R — S is a function f such
that f(x+y) = f(x) + f(y), f(xy) = f(x)f(y) and f(1) =1, for all x,y € R. A ring homo-
morphism f : R — S is an isomorphism if there exists a ring homomorphism g : S — R
such that ¢f = idr and fg = ids. An endomorphism of R is a homomorphism R — R; an
endomorphism is an automorphism if it is additionally an isomorphism.

1.5. Remark. (1) Since R and S are abelian groups, the requirement f(x +y) = f(x) + f(y)
for all x,y € R forces f to be a map of abelian groups (Exercise 1.18). Hence we may think of
a ring homomorphism as a homomorphism of abelian groups f satisfying f(xy) = f(x)f(y)
and f(1) =1, forallx,y € R

(2) Most rings that we look at a natural multiplicative identity, and the most natural func-
tions between these rings take the multiplicative identity of one ring to that of another ring;
see the examples above. Therefore we require that f(1) = 1 in the definition of ring homomor-
phisms.

(3) Ring isomorphisms are exactly the bijective ring homomorphisms (Exercise 1.19).

(4) Let f : R — Sand g : S — T be ring homomorphisms. Then the composite gf :
R — T is a ring homomorphism (Exercise 1.20).

1.6. Definition. A invertible element of R is an element r such that there exists s such that
rs = sr = 1. A nilpotent element of R is an element r such that there exists n > 1 such that
" = 0. An idempotent element of R is an element r such that r? = r.

1.7. Definition. Let R be a ring, and X a subset of R. The centralizer of X is {r € R : rx =
xr for every x € X}. The centre of R is the centralizer of R.

1.8. Definition. Let R be a ring. A subring of R is a subset S that is an abelian subgroup of R, is
closed under multiplication and contains the multiplicative identity.

In other words, the subset S is a ring (on its own) and the inclusion map S C R is a ring
morphism. Examples of subrings are:

1) ZCQCRCC

(2) the natural inclusion (as the constant polynomials) of R inside R[X].

(3) For every subset X, its centralizer is a subring of R. In particular, the centre of R is a
commutative subring of R. (Exercise 1.24)

1.9. Definition. A left ideal (respectively, right ideal) of R is an abelian subgroup I such that for
everyr € Rand a € I, ra € I (respectively, ar € I. A two-sided ideal is an abelian subgroup that
is both a left-ideal and a right-ideal. A maximal left ideal (respectively, maximal right ideal) is a
left ideal that is distinct from R and is maximal (by inclusion) among left ideals (respectively,
right ideals).

In the following, most of the statements we make about left ideals will hold, mutatis mutan-
dis, for right ideals and two-sided ideals also.
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GRADUATE ALGEBRA II. NOTES 3

1.10. Theorem. Let R be a ring and I C R a left ideal. Then there exists a maximal left ideal containing
I

Proof. Let P be the collection of all the left ideals distinct from R containing I. It is non-empty
since I € P.If I),A € Aisa chainin P, then Uycpl) is a left ideal and hence an upper bound
for the chain. By Zorn’s lemma, P has a maximal element. O

1.11. Discussion. Let X C R be a subset. Then the collection of finite sums Y r,x), where
ry» € Rand x) € X is a leftideal. Let I),A € A be a family of left ideals. Then the collect of
finite sums ), , where ry € Rand a) € I, form a left ideal, called the sum of I,,A € A and
denoted ) cp I).

1.12. Definition. Let R be aring and I a two-sided R-ideal. The quotient ring R/ is the abelian
group R/I with multiplication defined by 75 = 7's, where (.) denote the coset modulo I.

This definition forces the multiplicative identity of R/I to be 1, and the natural map R —
R/1I to be a ring homomorphism.
TBD: discussion about universal property to be added

Products.

1.13. Discussion. Let Ay, A € A be sets. The (cartesian) product set [T e Ay is the set {(a))en |
ay € A, forevery A € A}. Let us denote it by A. There is a family of functions (called
projection maps) pry : A — Ay, A € A satisfying pr, ((ax)ren) = ay for every p € A. This
family satisfies the following universal property: Given any family fy : B — Aj), A € A of
functions, there is a unique function f : B — A such that f, = pr, f for every A € A. (If such
a function existed, then f)(b) = pr, f(b) for every b € B and every A € A; now check that
b — (fa(b))rea indeed satisfies this.) O

1.14. Discussion. Let Ry, A € A berings. The productset]],., Ry canbe made into a ring with
(" )aen + (Sa)rea = (ra +52)rea and (ra)rea(Sa)rea = (ras1)rea- With these definitions,
(Or, )aer, and (1g,)rcr, are, respectively, the additive and multiplicative identities. Moreover
the projection maps pr, are ring homomorphisms. In fact, this is the unique ring structure
on [Tyea Ra that ensures that pr, is a ring homomorphism for every A € A. Further, let
fAS — R, be ring homomorphisms. Then the unique function f : S — [],ca Ry obtained
in Discussion 1.13 is a ring homomorphism. U

1.15. Proposition. Let R, Ry, ..., R, be rings. Then R is isomorphic to [Ti_ R; if and only if there
exist two-sided R-ideals I, ..., 1, such that R; is isomorphic to R/I; for every i and such that the
natural map R — [Tiq R/ 1; is an isomorphism.

Proof. ‘If’ is immediate. ‘Only if: Let ¢ : R — [/ R;. Write pr; for the projection [T/_; R; —
R;. Define I; := ker(pr; - ¢). Since pr; - ¢ is surjective, we get an isomorphism f; : R/I; — R;.
Write ¢; = f; ! and ¢ = [T/ gi- Note that g is an isomorphism. The composite

n I i

R TIR 25 R 25 R/

i=1
is a ring homomorphism, so it is the natural map R — R/I;. Hence go¢ : R — [T\, R/
is the natural map, and is an isomorphism. O

1.16. Theorem. Let R be a ring, S its centre and I, . . ., I, two-sided R-ideals. Then the following are
equivalent:

(1) The natural map R — [ R/I; is an isomorphism.

(2) There exist idempotents e1,...,e, € S such that e;ej = 0 for all i # j, Y;_1e; = 1 and
Il' = R(l — ei)

(3) Foralli #j, I; + I = Rand ;_1 [; = 0
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4 MANOJ] KUMMINI

(4) There exist ideals J1,...,]Jn of S such that the map S — T[S/ ]; is an isomorphism and
I; = RJ; for every i.

Proof. TBD. 4

EXERCISES

1.17. Using the distributive property, show the following, for every x,y € R: 0x = x0 = 0;
x(=y) = (=y)x = = (xy); (=x)(~y) = xy.

1.18. Let G and H be groups and f : G — H a function such that f(gg’) = f(g)f(g’). Show
that f(¢7!) = (f(g)) ! for every ¢ € G and that f(eg) = ey. (Hint: apply with ¢’ = eg and
g/ — g—l‘)

1.19. Let f : R — S be a ring homomorphism. Show that f is a ring isomorphism if and only

it is bijective. (Hint: Show that if f is bijective, then the inverse function f ' : S — Ris aring
homomorphism.)

1.20. Show that the composite of two ring homomorphisms is a ring homomorphism.
1.21. If r is nilpotent, then 1 — r is invertible.

1.22. For x € R, the left homothety A, (respectively, right homothety p,) is the map R — R,
y — xy (respectively, y — yx). Show that these are endomorphisms of the additive group of
R.

1.23. Show that |R| = 1if and only if 0 = 1, in which case R = {0}. This is the zero ring.

1.24. Let X be a subset of R. Show that the centralizer of X in R is a subring of R. The centre of
R is a commutative subring.

1.25. Show that the endomorphism ring of the additive group Z is isomorphic to the ring Z.

1.26. Let X be a subset of R. The left annihilator of X in R is the set {y € R | yx = 0 for every x €
X}. Show that it is a left ideal.

1.27. Let f : R — Sbearing homomorphism. Write 77 : R — R/ ker(f) and ¢ : Im(f) — S.
Show that there is a ring homomorphism f such that f = (f7r. Show that it is an isomorphism.

1.28. Say that x € R is left-invertible (respectively, right-invertible) if there exists y € R such that
yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible) if and
only if the right homothety (respectively, left homothety)is surjective. Show that x is invertible
if and only if it is left- and right-invertible. Show that in this case, the inverse of x is unique,
and that this element is also the unique left- and right-inverses.

1.29. An integral domain is a commutative ring that is non-zero and that does not have any
zero-divisors. Let R be a commutative ring and I an R-ideal. Show that the following are
equivalent: (1) R/I is an integral domain; (2) For every x,y € R, if xy € I and x ¢ I, then
y € I; (3) I is the kernel of a ring homomorphism from R to an integral domain. A proper ideal
satisfying these conditions is called a prime ideal. Show that maximal ideals are prime.

1.30. An idempotent element in R is an element e such that ¢?> = ¢; an idempotent element is
central if it belongs to the centre of R. Show that if R is a commutative ring and e an idempotent
element, then for every prime ideal ] of R, e € I or 1 —e € I, and that these conditions are
mutually exclusive.

1.31. Show that the set of 2 X 2 complex matrices of the form

s
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(where (-)) denotes complex conjugation) forms a subring of M(C). This is called the quater-
nion ring. Show that it can also be described as the ring of all R-linear combinations of the

following four matrices:
t 0 0 1 0 1
o ) 5 of e [1d]

Determine its dimension as a IR-vector space.

1.32. Let q1,...,4r be pairwise relatively prime integers. Show that the natural map Z —
r r

I1Z/4iZ is surjective and that it induces an isomorphism Z/(q1 - - - 4,)Z — [1 Z/qiZ.

i=1 i=1

1.33. Let R;,1 <i < nberings and R = Ry X - -- X R,. Show that R; is a quotient ring of R, for

each i.

1.34. Let R be a ring and S the ring of 2 x 2 matrices over R. Relate the centres of R and of S.
1.35. Give an example of ideals I, ], K C Z such that I] # INJand (I + J)(I + K) # (I + JK).

1.36. Let R be a ring and I the two-sided ideal generated by {xy — yx | x,y € I}. Show that
every ring map R — S with S commutative has I in its kernel. Hence we can think of I as the
smallest two-sided ideal such that R/I is commutative.

2. MODULES

2.1. Definition. A left R-module M is an abelian group M with an R-action R x M — M
satisfying (r +s)m = rm + sm, (sr)m = s(rm) and 1m = m for allr,s € Rand m € M. A
right R-module M is an abelian group M with an R-action M x R — M satisfying m(r +s) =
mr + ms, m(rs) = (mr)s and m1 = m. A homomorphism of R-modules is a map f : M — N that
is a morphism of abelian groups and satisfies R-linearity: f(rx) = r(f(x)) for every r € R and
x € M. The set of R-homomorphisms from M to N is denoted Homg (M, N).

If M is a left (respectively, right) R-module, then, for every r € R, the map h, : M — M,
x — rx (respectively, x — xr) is a morphism of abelian groups called the left homothety (respec-
tively, right homothety) defined by r. Homotheties are not R-homomorphisms in general (since
h(sx) need not equal s(h,(x)) unless rs = sr); if r is central, then h, is a R-homomorphism. The
map R — Endz(M) r — h, is a ring homomorphism. Its image in Endz (M) is called the ring
of homotheties (more precisely the ring of R-homotheties)of M and is denoted Ry;. Conversely, if
M is an abelian group, then every ring homomorphism R — Endz(M) defines an R-module
structure on M.

The set Homg (M, N) does not have any ‘natural’ R-module structure, even with N = M, for
more-or-less the same reason why homotheties are not R-homomorphisms. Similarly, there is
no ‘natural’ ring map from R — Endg(M). The map r + h, from the centre of R of Endg(M)
is a ring map, since central homotheties are R-homomorphisms.

Hereafter, unless otherwise mentioned, by a module, we mean a left module.

If M), A € Ais a family of R-modules, then the cartesian product [Tycx M, has a natural R-
module structure 7(x) ) en = (rx3)rea. Itis also a product in the category of R-modules, i.e.,
if fA : N — M, are R-homomorphisms, then there is a unique R-homomorphism f : N —
[Trea My such that fy = pr, - f where the pr, are the projection maps. Therefore [T ., Ma
is called the product module of the family Mj,A € A. The (external) direct sum of the family
My, A € Ais the submodule {y € [Tyca Ma | pr)(y) = 0 except for finitely many A} and is
denoted D cp M). Fix A € A, and consider the family of R-homomorphisms f, : My — M,

u € A, defined by
f . idM/\, if U= )\;
7)o, otherwise.
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Therefore there is a map 1) : My — HyeA M, such that pr, o1y = idy;, and pr,on = 0 for
every y # A. Since 1) is injective, it identifies M, with the submodule {(x,)uean € TTuen My |
x, = 0 forevery u # A}. Moreover Im(1y) C @D.cn My so 1y (by abuse of notation) will
be thought of as an R-homomorphism My — @, ca M. Direct sum is a co-product in the
category of R-modules: if f, : My — N are R-homomorphisms, then there is a unique R-
homomorphism f : @, My — N suchthat f, = f-1,.

2.2. Proposition. Let M be an R-module, and Ny,A € A a family of submodules of M. Then the
following are equivalent:

(1) Yrea Na = @irea Nu

(2) If Y pen xa = 0, with x) € N for every A € A, then x) = 0 for every A € A.

(3) forevery A € A, NxN Y epn Nx = 0.

Proof. TBD 4

If X is a set and R a ring, RX (the cartesian product of a family indexed by X, with each
member being R) is both the product ring (when this family is thought of as a family of rings)
and the product R-module (when this family is thought of as a family of R-modules). By
R™), we mean the direct sum of this family of R-modules. For x € X, the image of 1 under
Ly : R — RX) is denoted by e,. Then every element of R(*X) can be uniquely expressed a finite
sum )_,cx "xe€y. This construction has the following property: if M is an R-module and X C M,
then there exists a unique R-homomorphism R(X) — M with e, — x. An R-module M is said
to be free if there exists a subset X C M such that the R-homomorphism RX) —s M, e, — x
is an isomorphism.

2.3. Remark. Let M be an R-module. Then Homg (M, —) (respectively, Homg(—, M)) is a co-
variant (respectively, contravariant) left-exact functor from the category of R-modules to the
category of abelian groups.

2.4. Definition. Let M be a right R-module and N a left R-module. The tensor product of M
and N, denoted M ®g N, is the abelian group ZM*N) /B, where B is the subgroup generated
by the elements (x +x',y) — (x,y) — (x",y), (x, y+v') — (x,y) — (x, ') and (xr,y) — (x,ry) for
allx,x’ € M,y,y’ € Nand r € R. The image of (x,y) € Z.MxN) ynder the canonical surjective
map ZM*N) 5 M ®g N is denoted by x ®g y.

The set {x ®ry | x € M,y € N} generate M ®g N as an abelian group. There is no natural
R-module structure on M ®g N: if we try to define r(x ®r y) := (x¥r @ry) = (x Qr ry), then
r(xr' @ry) = r(x @r r'y) = (x @g rr'y) one way and r(xr’ @ry) = (xr' @rry) = (x Qg 1'ry)
another way. However, the above calculation implies that if R is commutative, then there is a
natural R-module structure on M ®g N.

2.5. Remark (Universal property of tensor products). See Bourbaki, Chapter II, Section 3.1,
Proposition 1. See Proposition 3.1 for a restatement.

2.6. Remark. Let M be a right R-module and N a left R-module. Then — ®r N (respectively,
M ®r —) is a right-exact covariant functor from the category of right R-modules (respectively,
left) to the category of abelian groups.

EXERCISES

(1) Let k be an algebraically closed field and R a finite-dimensional k-algebra that has no
zero-divisors. Show that k = R. (Hint: Let 0 # r € R. Show that there is a map of k-algebras
k[X] — R, X + r. What about the kernel of this map?)

(2) An R-module M is faithful if its annihilator is 0. Show that M is faithful if and only if the
map R — Ry (the ring of homotheties) is injective.
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3. CHANGE OF RINGS

Let R and S be rings. An (S, R)-bimodule is an abelian group M that is a left S-module and a
right R-module, such that the two structures are compatible with each other: (sx)r = s(xr) for
everyr € R,s € Sand x € M.

Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The abelian group
M ®g N has a natural left S-module structure: s(x ®ry) = sx ®gy. This is well-defined
since s(x @r ry) = s(xr ®ry) = (sxr) g y and the element sxr is well-defined. The module
Homg (M, P) has a natural left R-module structure: r¢ := [x — ¢(xr)]. (Check: ((r'r)¢p)(x) =

¢(x(r'r)) = ¢((xr')r) = (rg)(xr') = (' (r¢))(x); S-linearity: (r¢)(sx) = ¢(sxr) = s((r)(x)).)

The following is a restatement of the universal property of tensor products (Remark 2.5).

3.1. Proposition. Let M (respectively, N) be a right (respectively, left) R-module and P an abelian
group. Then the function
Homz (M ®g N,P) -2 Homgz(N,Homgz (M, P))
g = ly=lr—glxery)]]
is an injective map of abelian groups, with Im ® = Homg (N, Homz (M, P)). In particular the above
map gives an isomorphism between Homz (M &g N, P) and Hompg (N, Homz (M, P)).

Proof. 1t is easy to check that ® is a map of abelian groups. Suppose that g is in the kernel.
Then g(x ®ry) =0forallx € Mandy € N, so g = 0. To prove the assertion about the image,
note, first, that Homyz (M, P) is indeed a left R-module. Let § € Homz(M ®g N,P),y € N
and r € R. We want to show that ®(g)(ry) = r(®(g)(y)). Let x € M; then ®(g)(ry)(x) =

glx@ry) = glar@y) = @(g)(y)(xr) = (r(P(g)(y)))(x). Hence &(g)(ry) = r(P(g)(y)),
proving that In® C Homg(N,Homz(M, P)). Conversely let ¢ : N — Homz(M, P) be R-

linear. Letx € Mandy € N. Then® : M x N — P, (x,y) — ¢(y)(x) is Z-bilinear, and
satisfies ®(xr,y) = ¢(y)(xr) = ¢(ry)(x) = P(x,ry) for every r € R. By the universal property
of tensor products (Remark 2.5), there exists g : M ®g N — P such that ¢(y)(x) = g(x ®@y),
ie., ¢ = P(g). Hence In ® O Homg(N,Homz(M, P)). O

3.2. Proposition. Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The isomor-
phism of Proposition 3.1 restricts to an isomorphism

Homg(M ®g N,P) — Homg(N,Homgs(M, P))
g = ly=lr—glxory)]]
of abelian groups.
Proof. Consider the isomorphism
Homz(M ®g N, P) 2, Hompg (N, Homyz (M, P))
g = = lxmglxery)l]
from Proposition 3.1. It suffices to show that
Im @ g50m, (MeN,p) = Homg (N, Homg (M, P)).
Let ¢ € Homgs(M ®g N, P) and y € N. Then, for every x € Mands € S,
D()(y)(sx) = g(sx@y) = g(s(x@y)) = s(g(x @y)) = s((P(g)(y))(x));

hence ®(g)(y) is S-linear. Conversely, let ¢ : N — Homg (M, P) be an R-linear map. We want
to show that ¢ := ®~1(¢) is S-linear. Lets € S, x € Mand y € N. Then

gs(x®y)) =g(sx@y) = ¢(y)(sx) = s(p(y)(x)) =s(g(x@Y)),

so, indeed, g is S-linear. O
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Now suppose, additionally, that R is commutative and that S is an R-algebra with the image
of Rin S lying inside the centre of S. Then Homg(M ®g N, P) has a natural R-module structure:
define rg to be the S-linear map t — g(rt) for t € M ®g N. Hence the map in Proposition 3.2 is
a R-homomorphism: ®(rg)(y)(x) = (rg)(x ®ry) = r(g(x ®ry)) = r®(g)(y)(x), and hence
an R-isomorphism.

3.3. Definition. Let p : R — S be a ring morphism, M a left R-module and N a left S-module.
The left S-module S ®g M (treating S as a right R-module through s - r = sp(r)) is denoted

p*M. The composite R 4 'S — Endz(N) makes N into a left R-module (i.e., 7 -y = p(r)y);
this R-module is denoted as p.N.

3.4. Proposition. Let p : R — S be a ring morphism, M a left R-module and N a left S-module.
Then there is an isomorphism

Homg(p*M, N) — Hompg (M, p.N)

Proof. This follows from Proposition 3.2, after observing that Homg(S, N) = N as S-modules
and that Hompg (M, N) is really Homg (M, p.N). O

4. SEMISIMPLICITY
In this section, modules are left modules, unless specified otherwise.

4.1. Definition. An R-module M is said to be simple if it has no submodules different from M
and 0.

4.2. Example. We give some examples of simple modules.

(1) rR simpleif and only if 0 is a maximal left ideal, which holds if and only if R is a division
ring. Indeed, if R is a division ring, then every non-zero element generates the unit ideal, so 0
is a maximal left ideal. Conversely, suppose that 0 is a maximal left ideal (which implies that
1 # 0)and let 0 # r € R. Then Rr = R, so there exists 0 # ' € R such that ¥'r = 1, and,
furthermore, 0 # " € R such that v’ = 1. Hence r’ is left-invertible and right-invertible, so
it is invertible and its inverse is r = r”. Hence r is invertible.

(2) Let D be a division ring and M a finitely generated D-module. Then M is free. Write
R = Endp(M). We now argue that M is a simple R-module. More precisely, we show the
following: let 0 # x € M and y € M; then there exists ¢ € R such that ¢(x) = y. To this end,
let f € M* be such that f(x) = 1 and define ¢ € R as the map v — f(v)y.

(3) More examples to come.

4.3. Proposition. Let M be an R-module. An R-submodule N C M is maximal among the proper
R-submodules of M if and only if the quotient M/ N is simple. If My C M is an R-submodule, then
there exists An R-submodule N C M that is maximal among the proper R-submodules of M containing
M;.

Proof. TBD. g

4.4. Definition. A Jordan-Holder series of M is a decreasing filtration M = My 2 M; 2 --- D
M; = 0 of submodules such that for every 1 < i <'s, M;_1/M,; is a simple R-module; the
integer s above is the length of the above Jordan-Holder series. Say that an R-module N is of
finite length (or is a finite length module) if N has a Jordan-Holder series.

45. Remark. Let M = My 2 M; 2 --- 2 M; = 0 be a Jordan-Holder series of M and N a
submodule of M. Then (NN M;_1)/(N N M;) is a submodule of M;_1/M;, so it is either 0 or
simple. Hence by deleting repetitions from among the modules N N M;, we obtain a Jordan-
Holder series of N. Similarly (N + M;_1)/(N + M;) is a quotient of M;_1/M;, so by deleting
repetitions from among the modules (N + M;)/N, we obtain a Jordan-Holder series of M/N.
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4.6. Proposition. Let M = My 2 My D - D Mg =0and M = Ny D Ny 2 --- 2 Ny =0be
two Jordan-Holder series of M. Then s = t and there exists a permutation o of {1,...,s} such that for
every 1 <i <s, Ni_1/Ni = My(i_1)/ My(i)-

Proof. Without loss of generality, 1 < s < t. If s = 1, then M is simple, so the assertions are
true. We proceed by induction. Assume that the assertions are true for all R-modules that have
a Jordan-Holder series of length at most s — 1. If M; = Nj, then by induction, the assertions
hold for M; = Nj, so they hold for M. Therefore we may assume that M; # Nj.

Note that Ny ¢ M;; for, otherwise, we have Ny C M; C M, violating the simplicity of
M/N;. Similarly M; ¢ Nj. Write K = M; N N;. Then M; C M; + Nj, so the simplicity of
M/ M, implies that M; 4+ Ny; hence, M;/K ~ M/N; is simple. Similarly N;/K ~ M/M; is
simple.

The assertions of the proposition hold for M;, by induction. Let K =Ko 2 Ky 2 --- D K, =
0 be a Jordan-Holder series of K. Then M; 2 K 2 K; 2 --- 2 K, = 01is a Jordan-Holder series
of M;. Hence s — 1 = r + 1, and the quotients in this Jordan-Holder series are the same as the
quotients in the series M; 2 - - - 2D M; = 0 after a suitable permutation.

Now, N; 2 K2 K; 2 --- 2 K, = 0is a Jordan-Holder series of Nj of lengthr +1 =5 —1,
so, by induction, the assertions hold for N;. Therefore t —1 = s — 1 and the the quotients in

this Jordan-Holder series are the same as the quotients in the series Ny 2 --- D N; = 0 after
a suitable permutation. Hence the assertions hold for the two given Jordan-Holder series of
M. O

4.7. Remark. Let R be a ring and M an R-module. Then M is simple as an R-module if and
only if it is simple as a module over its ring of homotheties. This follows from noting that the
structure of M as an R-module is defined through the ring map R — Endz(M), so it is the
same as the structure of M as a module over the image of the above ring map.

4.8. Proposition (Schur lemma, version 1). Let R be a ring and M and N R-modules. Let f : M —
N be a non-zero R-morphism. Then:

(1) If M is simple, f is injective.

(2) If N is simple, f is surjective.

(3) If M and N are simple, f is an isomorphism.

Proof. Since f # 0, ker f C Mand 0 # Im f C N. if M is simple, then ker f = 0; if N is simple,
thenIm f = N. O

4.9. Corollary (Schur lemma, version 2). If M is a simple R-module, then Endg (M) is a division
ring.

Proof. Every non-zero endomorphism of M is an isomorphism, i.e., an invertible element of
EndR(M) O

4.10. Corollary. Let k be an algebraically closed field, R a k-algebra, M a simple R-module which is
finite-dimensional as a k-vector space. Then for every ¢ € Endr(M), there exists A € k such that
¢(x) = Ax for every x € M.

Proof. Since Endg(M) C Endg(M) it is a finite-dimensional division ring over k. Now use
Section 1, Exercise 1.

Here is another proof. Let A be an eigen-value of ¢ considered as a k-endomorphism of M.
The maps Aidy and ¢ — Aidys are R-morphisms. Since A is an eigen-value, ker(¢ — Aidys) # 0,
so, since M is a simple R-module, ¢ = Aid . O
4.11. Corollary. With notation as in Corollary 4.10, if additionally R is commutative, then dimy M =
1.

Proof. Let r € R. Then the homothety x +— rx is a R-morphism. Hence there exists A € k such
that rx = Ax for every x € M. Therefore the ring Ry of homotheties coincides with the image
of k in Endz(M). Hence M is simple over k. O
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4.12. Proposition. Let M be an R-module that is the sum of a family Sy, A € A of simple submodules,
and N a submodule of M. Then there exists Ay C A such that M = N @® @ en, Sa-

Proof. Without loss of generality N # M. Let P be the set of subsets A’ C A such that the sum
N + Y pcar Sa is a direct sum. It is non-empty, there exists A € A such that S, ¢ N, and, for
such A, S NN = 0,50 Sy + N = 5, & N. Order P by inclusion. Let A;,i € Z be a chain in
P. Then by Proposition 2.2 U;c7A; € P, so by Zorn’s lemma, P has a maximal element A;.
Set N' = N 4 ¥ ) ca, Sa- Now for every A € AN Ay, AyU{A} € P,s0 Sy NN’ # 0 (again by
Proposition 2.2) which implies that Sy C N’. Hence M = N'. O

4.13. Corollary. Let M be an R-module. Then the following are equivalent:
(1) M is a sum of a family of simple submodules.
(2) M is the direct sum of a family of simple submodules.
(3) Every submodule of M is a direct summand of M.

We first need a lemma:

4.14. Lemma. If every submodule of M is a direct summand of M then every non-zero submodule of
M has a simple submodule.

Proof. Let N be a non-zero submodule of M and 0 # x € N. Write Rx >~ R/I for some
left R-ideal I # R. Let m be a maximal left R-ideal containing I. We claim that mx C Rx.
Assume that claim: Then we have mx C Rx C M. Since mx is a direct summand of M, it is
a direct summand of Rx. Hence Rx contains a submodule isomorphic to the simple module
R/m. Now to prove the claim, assume, by way of contraction, that mx = Rx. Then there exist
ai,...,a; € mand rq,...,7: € R such that Zle ria;x = x. Hence 1 — Zle ria; € I C m, so
1 € m, a contraction. O

Proof of Corollary 4.13. (1) = (2): Apply Proposition 4.12 with N = 0. (2) = (1): Immedi-
ate. (1) = (3): Apply Proposition 4.12. (3) = (1): Let M’ be the sum of simple submodules
of M. Write M = M’ & M". If M" is non-zero, then it has a simple submodule by Lemma 4.14,
which contradicts the fact that M’ N M” = 0. Hence M = M'. O

4.15. Definition. An R-module M is said to be semisimple of it satisfies the (equivalent) condi-
tions of Corollary 4.13.

4.16. Remark. Let M be a semisimple R-module.

(1) Let Sy, A € A be a family of simple submodules of M such that M =} -5 Si. Let N be
a submodule of M. Then there exists A; C A such that M = N @ @, cn, Si- (Proposition 4.12.)
Write N = @), Sa- The composite map N’ < M — M/N is an isomorphism, and the
images of 5),A € A1 in M/N are simple submodules of M/N; hence M/N is semisimple.
Applying the above argument to N’, we see that N ~ M /N’ is semisimple.

(2) M is simple if and only if Endg(M) is a division ring. ‘Only if” follows from the Schur
lemma (Corollary 4.9). Conversely, if M is not simple, then it has a simple direct summand N;
the projection to N followed by the inclusion N — M gives a non-invertible endomorphism
of M.

4.17. Definition. Let E be a ring and B a subset of E. The commutant of B (in E) is the subring
{e € E | eb = be forevery b € B} of E. The bicommutant of B is the commutant of the
commutant of B.

4.18. Remark. Let E and B be as in the definition above. Write B’ and B” for the commutant
and the bicommutant, respectively, of B in E.

(1) B C B” and B’ equals its bicommutant. Proof: TBD.

(2) If B is a subring of E, then B N B = {e € B | eb = be for every b € B} is the centre of B.
Therefore B” N B is the centre of B'. Additionally, if b € B” N B, then for every ¢ € B”, cb = bc,
so B” N B is the centre of B” also. In particular, B’ and B” have the same centre.
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(3) If B is a commutative subring of E (not necessarily central in E) then B C B’. Hence
& y
B" C B/, and, therefore, B” is the centre of B'.

4.19. Definition. Let M be an R-module. The commutant and the bicommutant of M are the
commutant and the bicommutant of the ring Rjs of homotheties in Endz (M), respectively.

4.20. Remark. The commutant of M is Endg(M). To see this, note that if i, € Ry is the
homothety x — rx and f € Endz(M), then the condition i, f = fh, is another way of stating
that for every x € M, rf(x) = (h.f)(x) = (fh,)(x) = f(rx). Hence the bicommutant of M is

Endgng, (v (M).

4.21. Proposition. Let R be a ring and M an R-module. Write R” for the bicommutant of M.

(1) Let I be a set. The bicommutant of the R-module M") is the ring of homotheties of the R"-module
M0,

(2) Suppose that M is semisimple. Then for every x € M and every s € R”, there exists r € R such
that sx = rx. In particular, every R-submodule of M is also an R"-submodule.

Proof. (1): TBD

(2): Let x € M. Then Rx is an R-direct summand of M. Let ¢ € Endr(M) be the projection
endomorphism with image Rx. Lets € R”. Then s¢ = ¢s (as elements of Endz(M)). Hence
for every y € Rx, sy = s¢p(y) = ¢(sy), so sy € Rx. O

4.22. Theorem (Jacobson density theorem). Let R be a ring and M a semisimple R-module. Write
R" for the bicommutant of M. Let s € Endz(M). Then s € R" if and only if for every finite subset
X C M, there exists r € R such that sx = rx for every x € X.

Proof. ‘If": Let ¢ € Endgr(M) and x € M. Let r € R be such that sx = rx and s¢(x) = r¢(x)
(apply the hypothesis to X = {x, $(x)}). Thens¢(x) = r¢(x) = ¢(rx) = ¢(sx). Hence s¢p = ¢s
(as elements of Endz(M)) for every ¢ € Endg(M), i.e., s € R".

‘Only if": Let X = {xy,...,x,}, n > 1. Write x = (xy,...,x,) € M". Consider the
R"-homothety (y1,...,¥n) — (Sy1,...,Syn) of M. By Proposition 4.21(1) there exists an el-
ement § of the bicommutant of the R-module M" such that $((y1,...,Yn)) = (SY1,---,5Yn)-
Note that M" is a semisimple R-module. By Proposition 4.21(2) there exists r € R such that
(sx1,...,8%y) =8x =rx = (rxq,...,rxy),1e., sx = rx for every x € X. O

4.23. Definition. Let S be a simple R-module and M an R-module. Say that M is isotypic of type
Sif M ~ SU) for some set I. Say that M is isotypic if there exists a simple R-module T such that
M is isotypic of type T.

4.24. Remark. Every isotypic R-module is semisimple. If M), A € A is a family of R-modules
with M, isotypic of type S (where S is a simple R-module), for every A € A, then @, M)
is isotypic of type S. If S is a simple R-module, I a set and M a submodule of S (D, then M is
isotypic of type S: for, if M’ is a submodule of S()) with M+ M’ = S(I) and M N M’ = 0, then
M~ S/M ~ S forsome I; C I (Proposition 4.12).

4.25. Definition. R is said to be a semisimple ring if rR is a semisimple R-module. R is said
to be a simple ring if it is a semisimple ring and there is a unique simple R-module up to
isomorphism.

4.26. Remark. Let R be a ring.

(1) Suppose that R is semisimple. Then it has finitely many simple modules, up to isomor-
phism. For, write gR as the (direct) sum of a family Sy, A € A of R-modules. Let T be a simple
R-module. Let 0 # x € T. The R-morphism map kR — T, 1 — x is surjective. There-
fore there exists y € A such that T ~ S, (Remark 4.16(1)). Hence each simple R-module is
isomorphic to a submodule of grR. Let S;,i € 7 be all the distinct simple R-modules, up to
isomorphism. Write gR ~ @;.7 M; where, for every i € Z, M, is a direct sum of copies of S;.
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Since gR is a finitely-generated R-module, Z must be a finite set and for each i € Z, M; must
be a direct sum of finitely many copies of S;.

(2) Suppose that R is semisimple. Then every R-module is semisimple, since every R-
module is a quotient of xR for some I, which is semisimple.

(3) If R is a simple ring, then, for some set I, gR ~ S where S the unique (up to isomor-
phism) simple R-module; hence gR is isotypic. Conversely, if gR is isotypic of type S, then
(a) rR is semisimple; (b) if T is a simple R-module, then T =~ S (as in Remark 4.26(1), using
Remark 4.16(1)). Hence R is a simple ring.

4.27. Proposition. Let R be a simple ring. Then:
(1) The only two-sided ideals of R are 0 and R.
(2) Every simple module over R is faithful.

Proof. (1): Let I be any simple left R-ideal. If | is any other simple left ideal then it is iso-
morphic to | (as a left R-module). Both I and | are direct summands of gR. Thus we get an
R-endomorphism of R as the composite kR — [ ~ | — rR. Every endomorphism f of gR
is given by multiplication by f(1) on the right. Thus we see that for every simple left ideal J,
there exists a; € R such that the map I — |, x — xaj is an isomorphism. Since R is a direct
sum of simple left ideals, IR = R. Hence the only non-zero two-sided ideal is R.

(2): The annihilator of any non-zero left R-module is a two-sided proper ideal of R. Now
use (1). O

4.28. Proposition. Let D be division ring and M a finitely generated D-module. Write R = Endp (M).
Then R is a simple ring, M a simple and faithful R-module and D ~ Endg(M).

Proof. Write R = Endp(M). That M is simple over R was established in Example 4.2(2). Since
R C Endz(M), the map R — Ry is an isomorphism, so M is a faithful R-module.

Write S = Endgr(M) the bicommutant of M. We have maps D — Dy C S (where Dy,
denotes the ring of homotheties). Since D is a division ring, the map D — D)y is an iso-
morphism. Let s € S. We want to show that there exists a € D such that s = h,, the
homothety x — rx. Fix x € M. Note that M is a semisimple D-module. By the density
theorem (Theorem 4.22) (in fact, Proposition 4.21(2) is enough) there exists a € D such that
sx = hyx. Lety € M; there exists ¢ € R such that ¢(x) = y; see Example 4.2(2). Then
sy =s(p(x)) = ¢(sx) = ¢(hax) = hap(x) = hay. This is true for every y € M, so s = h,.

Define a map kR — M" by ¢ — (¢(x;)). This is a map of left R-modules. If $(x;) = 0 for
every i, then for every y = ) a;x; (with a; € D for every i) ¢p(y) = Y p(aix;) = Y ;a;i¢p(x;) =0,
so ¢ = 0, since M is a faithful R-module. Hence gR is an R-submodule of M", which is isotypic.
Hence R is simple by Remarks 4.24 and 4.26(3).

4.29. Theorem (Wedderburn). Let R be a ring. Then R is simple if and only if it is isomorphic to
M, (D) for some division ring D and a positive integer n.

Proof. “If” is a corollary of Proposition 4.28. Conversely, suppose that R is simple. Let S be the
unique (up to isomorphism) simple R-module and D = Endg(S). Note that the commutant
of S (as an R-module) is D. The bicommutant of S (as an R-module) is Endp(S), so we have
a natural ring map R — Rg C Endp(S). The map R — Rg is an isomorphism since S is a
faithful R-module (Proposition 4.27(2)).

Let vy,...,v, be a basis of S as a D-module. Let ¢ € Endp(S). By the density theorem
(Theorem 4.22) there exists r € R such that ¢(v;) = rv; for every 1 <i < n. Hence ¢(¥_; d;v;) =
Yi(dir)v; = Y;(rd;)v; = r(¥;d;v;) for every collection dy, ...,d, € D. Hence the map R —
Rs C Endp(S) is surjective, and an isomorphism. O

4.30. Lemma. Let ¢ : R — R’ be an isomorphism of rings. Let I be a left R-ideal. Then

(1) I' := ¢(I) is a left R'-ideal and the induced map ¢|; : I — I is an isomorphism of R-modules,
where R acts on I' through ¢.
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(2) The ring map ® : Endz(I) — Endz(I'), f — ¢|10 f o ¢|; ! is an isomorphism. Moreover,
for every r € R, ®(h;) = hg(,y (where h, denotes the homethety x — rx of I).

(3) Write S and S’ for the commutants of I and I' respectively. Then ®(S) = S'; this gives a ring
isomorphism ®|g : S — S'.

Proof. (1): Since I’ is an abelian group, it suffices to show that for every ¥ € R and x € I,
r'x’ € I'. This indeed is true since r'x’ = ¢(¢~1(+')p~1(x')). To show that ¢|; : [ — I"is
an isomorphism of R-modules, it suffices to check that it is also an R-morphism, since it is an
isomorphism of abelian groups; this is immediate.

(2): Ttis straightforward to check that the ring map Endz(I') — Endz(I), g+ ¢|; ogo s
is the inverse of ®. Lety € I’ and r € R. We want to show that (¢|; o i, o ¢|; 1) (y) = () (¥)-
This follows immediately from the definitions.

(3): ‘C”: Lets € S, € R and y € I'; we want to show that ®(s)(h,(y)) = hy ( ( )(y))
Write ' — ¢(r) and y = (x). Then ®(s) (hy (y)) — @(s(f, (x))) and h (&(5) () =
Since s € S, we have that hr(s(x)) = s(h,(x))

‘D% Lets’ € §'. Write s’ = ®(s) with s € Endz(I). We need to show thats € S. Let
r € Rand x € I[; we want to show that s(h.(x)) = h.(s(x)). This follows from noting that

hr(s

¢(s(hr(x))) = 8" (hy(r) (@(x))) = hy(r)(s'(¢(x))) = Pl (5(x)). 0

4.31. Proposition. Let D1 and D, be division rings and nq and ny positive integers. Then My, (Dy) ~
My, (Dy) if and only if Dy ~ Dj and nq = n,.

Proof. 'If” is immediate. Conversely, first, by looking at Jordan-Holder sequences, we conclude
that n; = ny which we call n. Let ¢ : M,(D1) — M,(Dz) be an isomorphism. Apply
Lemma 4.30 with R = M, (D;) and R’ = M, (D,) and I any simple left ideal of M, (D;). Then,
in the notation of that Lemma, I ~ D} (as M, (D;)-modules), I' ~ D} (as M,(D,)-modules)
S ~ Dj and S’ ~ D; (as rings, in both the cases). O

4.32. Theorem (Wedderburn). Let R be a semisimple ring and RR = @j", I; the isotypic decompo-
sition of rR (into left R-ideals). Write 1 = ey + - - - + ey, with e; € I; for every i. Then:

(1) Foreach1 <i <m, I; is a two-sided R-ideal.

(2) Foreach1 < i < m, I; is a simple ring with the operations induced from R and with e; as the
multiplicative identity.

(3) R =TT1", I as rings.

4.33. Lemma. Let R be a ring, I a simple left R-ideal and M a simple R-module. If I is not isomorphic
to M, then IM = 0.

Proof. IM is a submodule of M, so IM = 0 or IM = M. If IM = M, then there exists x € M
such that Ix # 0, so Ix = M. Hence the map I — M, r — rx is an R-isomorphism. 0

Proof of Theorem 4.32. (1): Note that for j # i, [;]; = 0 by Lemma 4.33. Hence I; C ;R = [;]; C
Ii, SO Il‘R = IiIi = Il', i.e., Il' is a two-sided ideal.

(2): We already checked that I; is closed under the multiplication induced from R. For every
rel,r=r(er+---+ey) =re.

(3): For 1 < i < n, write J; = @1<j<m [;; The natural projection map R — [; is a ring

1
homomorphism, with kernel J;. Thergore it suffices to show that the natural map R —
[T~1 R/]; is an isomorphism, for which we will use Theorem 1.16. Letr € R. Write r =
Y1, withr; € I; for every i. Then re; = rie; = 7’1‘(2}1:1 €j)(27:1 ej)r; = ejr;, S0 ¢; is a central
idempotent for every i. Since I;I; = 0 for every i # ], e;e; = O for every i # j. Note that
I; = Re; and that J; = R(1 — ¢;). Hence by Theorem 1.16 the natural map R — /" R/]; is
an isomorphism. U

4.34. Corollary. Let R be a ring. Then R is semisimple if and only if it is of the form [T/_; My, (D;) for
some division rings D1, ..., D, and positive integers ny, ..., ny.
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Proof. ‘Only if’: Use Theorems 4.32 and 4.29. ‘If": see Exercise below. O

EXERCISES

(1) Let R and S be rings and M and N a semisimple R-module and a semisimple S-module
respectively. Show that M & N is a semisimple (R x S)-module.

(2) Let R be a ring and M a semisimple R-module. Let N be a simple R-module. Let M’ be
a submodule of M. Then the following are equivalent:

(a) M’ is the largest isotypic submodule of M of type N, i.e.,, M’ is isotypic of type N and if
N’ is a simple submodule of M isomorphic to N, then N’ C M'.

(b) M’ is the (direct) sum of all the simple submodules of M that are isomorphic to N.

(c) M' = Homg (N, M).
Let N, A € Abeall the distinct (up to isomorphism) simple R-modules. Then M = @, 5 Homg(N,, M).
This is called the isotypic decomposition of M.

5. INTRODUCTION TO REPRESENTATION THEORY

Throughout this section k denotes a commutative ring. A k-algebra is a ring R with a ring
homomorphism k — R (often understood from the context and not stated explicitly) whose
image is inside the centre of R. (That is, for us, a k-algebra is unital and associative.) If k is
field, then a k-algebra R is said to be finite-dimensional if dimy R is finite. (Note that the ring
map k —> R makes R into a k-vector-space.)

5.1. Discussion. Let G be a group. We make the free k-module k(©) intoa k-algebra as follows.
Let eg, ¢ € G denote the standard basis for k(S). Then set eglp = €gp; NOW extend it to k(©) by
setting (Y1 aieg,) (X{21 bjen;) = L jaibjeg,- This gives a ring with identity element e;. The
map k — k(©), a — ae; is a ring homomorphism; its image is inside the centre of k(©). Thus

we get a k-algebra structure on k(©); we denote it by k[G]. We will write 1 for the element
e1. O

5.2. Remark. Let G be a group. k[G]| is commutative if and only if ege;, = eje, forall g,h € G
which holds if and only if G is an abelian group. For a positive integer r, k[Z"] = k[x1, x| 1 x,, Xy L xn, x; ']
and k[Z /7] ~ k[x]/(x" —1). If k is a field, then k[G] is a finite-dimensional k-algebra if and

only if G is a finite group.

5.3. Definition. Let G be a group and M a k-module. A (linear) representation of G on M is a
group homomorphism p : G — Auty (M), the group of invertible k-endomorphisms of M.
We denote this representation by (M, p); if the map p is understood from the context, we omit
it from the notation and say that M is a representation of G. Moreover, when no confusion is
likely to occur, we will write g for the automorphism p(g) : M — M.

5.4. Example. In these examples assume that M is free k-module of rank n with basis {v1, ..., v }.
However, no generality is lost if one further assumes that k is a field.

(1) Identify Auty (M) with GL, (k) (the group of invertible n x n matrices over k) using the
given basis. The cyclic group Z/n acts on {vy,...,v,} by cyclically permuting its elements.
This gives a representation of Z /n on M which is given by the group homomorphism Z/n —
GL (k)

00 --- 01
10 --- 00

15101 -~ 00




608
609
610

644

645

646
647

648
649

GRADUATE ALGEBRA II. NOTES 15

(2) More generally, every subgroup of the permutation group S, has a permutation represen-
tation on M by 0 : v; — v,(;). The image of o in GLy (k) is the permutation matrix A, associated

to o, which is given by
1, ifi=oc(j);
Ar)ii =
( U)l’] {0, otherwise.

(3) Even more generally, if X is a set on which G acts on the left (as permutations), then we
get a permutation representation of G on the free module kX) by ¢ : e, €q(x)- An important
example of this is the reqular representation of G: G acts on itself by left multiplication; this
extends to a representation of G on k[G] satisfying g : e, ~— egp.

5.5. Discussion. Let G be a group, and M, N representations of G. A homomorphism of G-
representations (or a G-homomorphism) ¢ : M — N is is a k-homomorphism ¢ : M — N
satisfying ¢(gx) = g(¢(x)) for every x € M and ¢ € G. Thus we can talk of the cate-
gory of G-representations. We say that N is a G-subrepresentation of M if it is k-submodule
of M and the inclusion map is a G-homomorphism; in this case, for every g € G, the k-
automorphism ¢ of M induces a k-automorphism of the quotient k-module M/N, so M/N
has a natural G-representation structure such that the quotiet map M — M/N is a G-
homomorphism. Therefore the kernel, the image and the cokernel of a G-homomorphism are
G-representations. Moreover if M), A € A is a family of G-representations, then the k-module
@.ca M) has a natural G-action, and is the direct sum in the category of G-representations.
Similarly, the k-module []ycx M, has a natural G-action, and is the product in the category of
G-representations. u

5.6. Discussion. Let p : G — Autg(M) be a representation of G on M. This extends to a
homomorphism of k-algebras p : k[G] — Endy (M) determined (uniquely) by p(ey) = p(g).
Conversely, if 0 : k|G] — Endyg (M) is a homomorphism of k-algebras, then we get a group
homomorphism ¢’ : G — Auty(M), by 0’(g) = o(e;), since the elements e, are invert-

ible in k[G]. The operations are inverses of each other: (p)’ = p and (¢/) = ¢. Hence
defining a G-representation on a k-module M is equivalent to defining a k[G]-module struc-
ture on M (compatible with the given k-module structure). For G-representations M and
N, a k-homomorphism ¢ : M — N is a G-homomorphism) precisely when it is a k[G]-
homomorphism. Therefore the categories of G-representations and of k|[G]-modules is equiva-
lent. The notions defined in Discussion 5.5 match the corresponding notions for k|G]-modules.
Therefore we will interchangeably use ‘G-representations’ and ‘k[G]-modules’ (and some-
times, merely, ‘G-modules’). O

5.7. Theorem. Let G be a finite group with |G| invertible in k. Let M be a k[G]-module, and N a
k[G]-submodule of M that is a direct summand of M as a k-module. Then N is a direct summand as a
k[G]-module.

Proof. Let p € Endg (M) be a projection with image N. Define a k-endomorphism g : M — M
by
1 _
SRaTal Y. gp(g'x).
‘ ‘ geG

The image of g is N and, for every x € N, gq(x) = x. Hence M = N & (kerq) as k-modules.
Moreover, 4(gx) = & Liec hp(h7'8%) = g1ty Lnec & hp(h7'gx) = g1i Lnec hp(h'x) =
2q(x) for every ¢ € G, so (kerq) is a k|G]-module. Hence N is a direct summand of M as a
k[G]-module. O

5.8. Corollary (Maschke). Let k be a field and G a finite group with |G| invertible in k. Then k[G] is
a semisimple ring.
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Proof. For every k[G]-module M and k[G]-submodule N of M, N is a direct summand of M
as a k-module. By Theorem 5.7, N is a direct summand of M as a k[G]-module; now apply
Corollary 4.34. O

5.9. Remark. The assertion of the Corollary 5.8 fails if |G| is not invertible in k. Consider the
element e = Y, g € k[G]. Forevery ¢ € G, ge = € = €g,s0 €* = |Gle = 0 and € € Kk[G]g,
the left ideal generated by g. Hence the left module k[G|e is not a direct summand of the left
module k[G]. In particular k[G] is not a semisimple ring.

5.10. Corollary. Let G be a finite group with |G| invertible in k. An exact sequence of k[G|-modules
is split if and only if it is split as an exact sequence of k-modules.

Proof. ‘If” is immediate. ‘Only if": Let 0 — M; L> M; — M3 — 0 be an exact sequence
of k[G]-modules. If it is split as a sequence of k-modules, then Im(f) is a direct summand of
M, as a k-module, so by Theorem 5.7, it is a direct summand also as a k[G]-module, i.e., the
sequence is split as a sequence of of k[G]-modules. O

5.11. Corollary. Let G be a finite group with |G| invertible in k. A k|[G]-module is projective if and
only if it is projective as a k-module. In particular, if k is a field, then every k[G]-module is projective.

Proof. Let M be a k[G]-module and F a free k[G]-module with a surjective k[G|-morphism
¢ : F — M. If M is projective as a k[G]-module, then ¢ is split as a k[G]-morphism, and, a
fortiori, as a k-morphism. Hence M is a projective k-module. Conversely, if M is a projective a
k-module, then ¢ is split as a k-morphism. By Theorem 5.7, ker ¢ is a direct summand of F as
a k[G]-module, so ¢ is split as a k[G]|-morphism. Hence M is a projective k[G]-module. O

5.12. Discussion (Frobenius reciprocity). Let H be a subgroup of G, and denote the inclusion
map k[H] — k[G] by p. The functor p, (from the category of k[G]-modules to the category
of k[H]-modules, treating a a k[G]-module as k[H]-module through restriction of scalars) is
called the restriction functor and is denoted Res%. The functor p*(—) = k[G] Q[ — (from
k[H]-modules to the category of k[G]|-modules, treating k[G] as a right k[H]-module) is called
the induction functor and is denoted Ind$;; for a k[G]-module M, Ind¥;(M) is called the repre-
sentation of G induced from M. Hom-® adjunction (Proposition 3.2) gives

Homy, ;1) (M, Resf; N) = Homy,(g)(Indf; M, N)
for every H-module M and G-module M. 0

5.13. Setup. For the remainder of this section, let k be a field and G a finite group with |G|
invertible in k. Let

k[G] = 111@-

be the decomposition as the product of simple rings R;. Let 1 < i < c. Write ¢; for the identity
element of R;. Let M; be a simple R;-module and D; = Endg, (M;). Write d; = dimy M;. Denote
the simple characters (defined below) by x1, ..., Xc.
5.14. Definition. Let p : G — Auty (M) be representation. The character of p, denoted x,, is
the function G — k, ¢ — Trace(p(g)). Its k-linear extension to k[G] will also be denoted by
Xp- A simple (or irreducible) character of G is the character of a simple G-module.

Note that the number of simple characters equals the number c of the factors in the decom-
position of k[G] as a product of simple rings in Setup 5.13, since every simple k|[G]-module is
a simple module over R; for some j.

5.15. Lemma. Foralll1 <i,j<c,
d;, ifi=7;
x;(e) :{ i ifi=j

0, otherwise.
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690 Proof. Note that M; is a summand of R; for every j. Thus ¢; : M; — M, is the identity map of
691 M, if j = i and the zero map otherwise. Therefore
; di, ifi=j;
(&) = Trace(M; = M;) = { ¥ ’ O
Xj (e:) race( J J ) {O, otherwise.

602 5.16. Proposition. Let e denote the character of the regular representation. Then Xreg(1) = |G|
603 and forevery g € G, g # 1, Xreg(g) = 0.

694 Proof. For any finite-dimensional representation p of G on M, x,(1) = dimy M s0 )reg(1) =
695 |G|. On the other hand, for every ¢ # 1, ¢ permutes the natural basis of k[G] given by G
s06 without fixed points, so, with respect to this basis, the matrix of g is a permutation matrix with
607 zeros on the diagonal. Hence for every ¢ € G, & # 1, Xreg(g) = 0. 0

698 5.17. Definition. The prime subring of k is the image of the map Z — k.

699 5.18. Proposition. Let x1,..., x. be the distinct simple characters of G. Let p : G — Auty (M) be
700 a representation. Then there exist ny, ..., n. in the prime subring of k such that x, = ¥_f_ n;x;. Now
701 suppose that chark = 0. Then the n; are uniquely determined non-negative integers, and, moreover, if
702 0’ is a representation such that x, = x, then p and o’ are isomorphic to each other.

703 Proof. Since M is a finite-dimensional k-vector-space, there exist non-negative integers n, ..., 11,
C C C !/
704 such that M = @ M, as k[G]-modules. Note that if ¢ : @ M — P Ml@ni is a k[G]-
i=1 i=1 i=1

705 isomorphism, then for each i, Im(¢| M@ni) C M?n" ,and ¢| yon i an isomorphism, from which,
706 after comparing ranks over k, it follows that n; = n]. Therefore the integers ; (in the decom-
707 position of M) are unique. Denoting the images of the integers n; in k again by n;, we see
708 that x, = Yi_;n;x;. Now suppose that chark = 0. Since the map Z — k is injective, the
700 uniqueness is preserved in the expression x, = Yi_; n;x;. Further, if xy = xp, = Yi_q mixi,

C /
710 where p: G — Autg(M) and p' : G — Auty(M’), then M ~ M’ ~ @lMl@n". O
1=

711 5.19. Remark. We see tht the set of characters of G is a k-vector-space, spanned by the simple
712 characters yx;. If the dimensions d; (over k) of the simple k[G]|-modules M; are invertible in k
713 (e.g., if chark = 0), then the x; form a basis. To see this, suppose that ) ; a;x; = 0, with a; € k.
714 Then 0 = (X a;x;)(ej) = ajx;(ej) = wjdj, so a; = 0. O

715 5.20. Notation. For ¢ € G, denote its conjugacy class {hgh™! | h € G} by Cq. Let C C G be
716 a set of representatives for the conjugacy classes of G, i.e., G = |l Cg. For g € G, write

77 Sg = Ypec, h- |
718 5.21. Proposition. Let a € k[G]. Then the following are equivalent:
719 (1) aisa central element of k[G|;

720  (2) ag = ga for every g € G (thought of as a subset of k[G]);
721 (3) ais a k-linear combination of {sq | ¢ € C}.

722 Proof. (1) implies (2): Immediate.

»3  (2)implies (3): Writea = Y ;e arT. Then Y e 4T = a = ga8 ' Yreg r8TS ' = Lreg g1, T-
724 Since G is a k-basis of k[G], we see that for every T € G, a; = a, for every 0 € Cx.

725 (3) implies (1): For every h € G, hsgh_1 = 8¢, S0 S¢ is a central element for every g € C. [

726 5.22. Corollary. {sq | ¢ € C} is a k-basis for the centre of k[G].

721 Proof. This follows from Proposition 5.21, after noting that {s, | ¢ € C} is linearly independent
728 over k. O
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720 5.23. Remark. A function f : G — k is said to be a class function if f(ghg™!) = f(h) for every
730 ¢, h € G, or equivalently, f(ghg™') = f(h) for every g,h € G. Characters are class functions,
731 since for two matrices A and B, Trace(AB) = Trace(BA).

732 5.24. Theorem. Suppose that k is algebraically closed. Let

C
=J]R
i=1

733 be a decomposition as the product of simple rings R;. Then:
734 (1) G has exactly c conjugacy classes.
135 (2) {sq | g€ C}and{ey,..., e} arebases for the centre of k[G].

736 (3) Xreg = Liz1 diXi-
737 4) |G| =Xy dlz'

738 Proof. Each R; is a simple finite-dimensional k-algebra, so R; = Endp,(M;) for a finite-dimensional
739 division ring D; over k and free D;-module M;. Since k is algebraically closed, D; = k. Hence
740 the centre of R; is k; := ke;; thus the centre of k[G] is [];_; k;. This proves (1) and (2). Note

721 that as R-modules, R; = Ml.@di, SO Xreg = )i—1 diXi, proving (3). Hence dimy R; = dl-z, SO
142 |G| = dimy k[G] = Yi_; d? proving (4). O

743 5.25. Observation. Suppose that k is algebraically closed. Let ¢ € Gand 1 < i < c¢. For any
744 a € k[G], e;a € R;. Thus

Xreg Zd]X] lg) diXi(eig) = diXi(g)'
j=1

745 Let ¢ € G be such that it appears in ¢; with a non-zero coefficient. Then by Proposition 5.16

746 Xreg(€ig ') # 0, so d; is non-zero in k. In particular, the x; are linearly independent over k
747 (Remark 5.19).

748 5.26. Proposition. Suppose that k is algebraically closed. Then for every 1 <i <,
‘ — -1
“= |G| L (tmsleig™)) ¢ = ycy gg (ne™)s
749 Proof. The second equality follows from Observation 5.25. To prove the first, write e; = ) < a;h.
750 Then Xreg(eigil) =Y hec ahxreg(hgil) = Elg‘G‘. 0
751 5.27. Notation. Let Xi(G) denote the set of characters of G and Zi (G) the centre of k[G]. [
752 5.28. Proposition. Suppose that k is algebraically closed. Then the pairing
Xk(G) x Zx(G) — k, (x,a) — x(a)
753 is non-degenerate. In particular, Xy (G) and Zy(G) are dual to each other under this pairing.

754 Proof. Let x =) ; a;x; # 0. Pick i such that «; # 0; then (use Lemma 5.15 and Observation 5.25)
755 x(e;) = a;xi(e;) = ajd; # 0. Now leta # 0 € Zi(G). Write a = Y ; Bie; (Theorem 5.24(2)). Pick

756 i such that B; # 0; then x;(a) = x;(Bi(e;)) = Bid; # 0. O
757 5.29. Proposition. Suppose that k is algebraically closed. Then we have a bilinear map
(,): Xk(G) x Xx(G) — k, (x, G Y x(9)
‘ ’ geG

758 The x; form an orthonormal basis for Xy (G) with respect to this pairing, i.e.,

Xi X)) = {1’ ¥i=j

0, otherwise.
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