1	

GRADUATE ALGEBRA II. NOTES

2

MANOJ KUMMINI

OUTLINE 3 (1) Basic ring theory: examples, ideals and modules; centre, algebras; radical; artinian and 4 noetherian rings; review of tensor products. 5 (2) Semisimplicity: Artin-Wedderburn theorem; Jacobson density theorem; 6 (3) Group rings: Schur's lemma. 7 (4) Introduction to representation theory: chiefly finite groups; somethings about reduc-8 tive groups. 9 **References.** 10 (1) N. Bourbaki, Algebra, Ch. I. 11 (2) N. Bourbaki, Algebre, Ch. VIII, Springer, 2012 (the revised edition; in French.) This is 12 our primary reference for semi-simplicity. 13 (3) N. Jacobson, Basic Algebra I and II. 14 (4) S. Lang, Algebra. 15 (5) Appendix "A short digest of non-commutative algebra" in J. A. Dieudonné and J. B. Car-16 rell, Invariant theory, old and new Adv. in Math. 1970. 17 **1. BASIC RING THEORY** 18 For the most part, we will follow Bourbaki, Algebra, Ch. I, using Jacobson and Lang for 19 supporting material and exercises. 20 1.1. **Definition.** A ring is a set R with two operations + (addition) and \cdot (multiplication) such 21 that 22 (1) (R, +) is an abelian group; 23 (2) multiplication is associative and has an identity; 24 (3) multiplication is distributive over addition, i.e., for all $a, b, c \in R$, a(b + c) = ab + ac25 and (a+b)c = ab + bc. 26

²⁷ If the multiplication is commutative, then we say that *R* is a *commutative ring*.

²⁸ 1.2. **Remark.** We denote the additive identity by 0 and the multiplicative identity by 1. We will ²⁹ refer to (R, +) as the *additive group* of *R*.

³⁰ 1.3. **Example.** (1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative rings, with the usual addition and multi-³¹ plication.

(2) Rings of functions: Let *R* be a ring and *X* a set. The set of functions from *X* to *R* form a 32 ring as follows. For functions $f, g: X \longrightarrow R$, set (f + g) to be the function $x \mapsto f(x) + g(x), x \in I$ 33 *X* and *fg* be the function $x \mapsto f(x)g(x)$, $x \in X$. The additive identity is the constant function 34 $x \mapsto 0$ and the multiplicative identity is the constant function $x \mapsto 1$. If *R* is commutative, then 35 this ring is commutative. By imposing conditions on X, on R and on the functions that we 36 are interested in, we get many variants of this construction: For example, if X is a topological 37 space, we can consider the ring of continuous R-valued functions, the ring of continuous C-38 valued functions etc. 39

(3) Endomorphism rings: Let *G* be an abelian group, written additively. Let *R* be the set of group endomorphisms of *G*, made into a ring as follows: for endomorphisms α, β of *G*, set $\alpha + \beta$ to be the function $g \mapsto \alpha(g) + \beta(g)$ and $\alpha\beta$ to be function $g \mapsto \alpha(\beta(g))$. These are endomorphisms of *G*. The additive identity is the zero endomorphism $g \mapsto 0, g \in G$ and the multiplicative identity is the identity map $g \mapsto g, g \in G$. Endomorphism rings are not commutative, in general.

(4) A variant of the previous construction: Let \Bbbk be a field and V a \Bbbk -vector-space. On the set of all \Bbbk -linear endomorphisms of V, define addition and multiplication as earlier, to get a ring. This is usually denoted as $\operatorname{End}_{\Bbbk}(V)$. If $V = \Bbbk^n$, then this ring can be thought of as the set $M_n(\Bbbk)$ of $n \times n$ matrices over \Bbbk , with usual matrix addition and usual matrix multiplication.

(5) In general, if *R* is a ring then the set $M_n(R)$ of $n \times n$ matrices with entries in *R* can be made into a ring with usual matrix addition and usual matrix multiplication.

1.4. **Definition.** Let *R* and *S* be rings. A *ring homomorphism* $f : R \longrightarrow S$ is a function *f* such that f(x+y) = f(x) + f(y), f(xy) = f(x)f(y) and f(1) = 1, for all $x, y \in R$. A ring homomorphism $f : R \longrightarrow S$ is an *isomorphism* if there exists a ring homomorphism $g : S \longrightarrow R$ such that $gf = id_R$ and $fg = id_S$. An *endomorphism* of *R* is a homomorphism $R \longrightarrow R$; an endomorphism is an *automorphism* if it is additionally an isomorphism.

1.5. **Remark.** (1) Since *R* and *S* are abelian groups, the requirement f(x + y) = f(x) + f(y)for all $x, y \in R$ forces *f* to be a map of abelian groups (Exercise 1.18). Hence we may think of a ring homomorphism as a homomorphism of abelian groups *f* satisfying f(xy) = f(x)f(y)and f(1) = 1, for all $x, y \in R$

(2) Most rings that we look at a natural multiplicative identity, and the most natural functions between these rings take the multiplicative identity of one ring to that of another ring; see the examples above. Therefore we require that f(1) = 1 in the definition of ring homomorphisms.

(3) Ring isomorphisms are exactly the bijective ring homomorphisms (Exercise 1.19).

⁶⁶ (4) Let $f : R \longrightarrow S$ and $g : S \longrightarrow T$ be ring homomorphisms. Then the composite $gf : R \longrightarrow T$ is a ring homomorphism (Exercise 1.20).

⁶⁸ 1.6. **Definition.** A *invertible* element of *R* is an element *r* such that there exists *s* such that ⁶⁹ rs = sr = 1. A *nilpotent* element of *R* is an element *r* such that there exists $n \ge 1$ such that ⁷⁰ $r^n = 0$. An *idempotent* element of *R* is an element *r* such that $r^2 = r$.

1.7. **Definition.** Let *R* be a ring, and *X* a subset of *R*. The *centralizer* of *X* is $\{r \in R : rx = xr \text{ for every } x \in X\}$. The *centre* of *R* is the centralizer of *R*.

1.8. Definition. Let *R* be a ring. A *subring* of *R* is a subset *S* that is an abelian subgroup of *R*, is
 closed under multiplication and contains the multiplicative identity.

In other words, the subset *S* is a ring (on its own) and the inclusion map $S \subseteq R$ is a ring morphism. Examples of subrings are:

77 (1) $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C};$

(2) the natural inclusion (as the constant polynomials) of *R* inside R[X].

(3) For every subset X, its centralizer is a subring of R. In particular, the centre of R is a
 commutative subring of R. (Exercise 1.24)

1.9. **Definition.** A *left ideal* (respectively, *right ideal*) of *R* is an abelian subgroup *I* such that for every $r \in R$ and $a \in I$, $ra \in I$ (respectively, $ar \in I$. A *two-sided ideal* is an abelian subgroup that is both a left-ideal and a right-ideal. A *maximal left ideal* (respectively, *maximal right ideal*) is a left ideal that is distinct from *R* and is maximal (by inclusion) among left ideals (respectively, right ideals).

In the following, most of the statements we make about left ideals will hold, *mutatis mutandis*, for right ideals and two-sided ideals also. ⁸⁸ 1.10. **Theorem.** Let *R* be a ring and $I \subsetneq R$ a left ideal. Then there exists a maximal left ideal containing ⁸⁹ *I*.

Proof. Let \mathcal{P} be the collection of all the left ideals distinct from R containing I. It is non-empty since $I \in \mathcal{P}$. If $I_{\lambda}, \lambda \in \Lambda$ is a chain in \mathcal{P} , then $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a left ideal and hence an upper bound for the chain. By Zorn's lemma, \mathcal{P} has a maximal element.

⁹² for the chain. By Zont's lenund, *P* has a maximal element.

⁹³ 1.11. **Discussion.** Let $X \subseteq R$ be a subset. Then the collection of finite sums $\sum r_{\lambda} x_{\lambda}$ where

⁹⁴ $r_{\lambda} \in R$ and $x_{\lambda} \in X$ is a left ideal. Let $I_{\lambda}, \lambda \in \Lambda$ be a family of left ideals. Then the collect of ⁹⁵ finite sums $\sum_{r_{\lambda}a_{\lambda}}$ where $r_{\lambda} \in R$ and $a_{\lambda} \in I_{\lambda}$ form a left ideal, called the *sum* of $I_{\lambda}, \lambda \in \Lambda$ and ⁹⁶ denoted $\sum_{\lambda \in \Lambda} I_{\lambda}$.

⁹⁷ 1.12. **Definition.** Let *R* be a ring and *I* a two-sided *R*-ideal. The *quotient* ring *R*/*I* is the abelian ⁹⁸ group *R*/*I* with multiplication defined by $\bar{rs} = \bar{rs}$, where ($\bar{.}$) denote the coset modulo *I*.

⁹⁹ This definition forces the multiplicative identity of R/I to be $\overline{1}$, and the natural map $R \longrightarrow R/I$ to be a ring homomorphism.

101 TBD: discussion about universal property to be added

102 **Products.**

1.13. **Discussion**. Let $A_{\lambda}, \lambda \in \Lambda$ be sets. The (*cartesian*) product set $\prod_{\lambda \in \Lambda} A_{\lambda}$ is the set $\{(a_{\lambda})_{\lambda \in \Lambda} | a_{\lambda} \in A_{\lambda} \text{ for every } \lambda \in \Lambda\}$. Let us denote it by A. There is a family of functions (called projection maps) $\operatorname{pr}_{\lambda} : A \longrightarrow A_{\lambda}, \lambda \in \Lambda$ satisfying $\operatorname{pr}_{\mu}((a_{\lambda})_{\lambda \in \Lambda}) = a_{\mu}$ for every $\mu \in \Lambda$. This family satisfies the following *universal property*: Given any family $f_{\lambda} : B \longrightarrow A_{\lambda}, \lambda \in \Lambda$ of functions, there is a unique function $f : B \longrightarrow A$ such that $f_{\lambda} = \operatorname{pr}_{\lambda} f$ for every $\lambda \in \Lambda$. (If such a function existed, then $f_{\lambda}(b) = \operatorname{pr}_{\lambda} f(b)$ for every $b \in B$ and every $\lambda \in \Lambda$; now check that $b \mapsto (f_{\lambda}(b))_{\lambda \in \Lambda}$ indeed satisfies this.) \Box

110 1.14. **Discussion.** Let R_{λ} , $\lambda \in \Lambda$ be rings. The product set $\prod_{\lambda \in \Lambda} R_{\lambda}$ can be made into a ring with 111 $(r_{\lambda})_{\lambda \in \Lambda} + (s_{\lambda})_{\lambda \in \Lambda} = (r_{\lambda} + s_{\lambda})_{\lambda \in \Lambda}$ and $(r_{\lambda})_{\lambda \in \Lambda}(s_{\lambda})_{\lambda \in \Lambda} = (r_{\lambda}s_{\lambda})_{\lambda \in \Lambda}$. With these definitions, 112 $(0_{R_{\lambda}})_{\lambda \in R_{\lambda}}$ and $(1_{R_{\lambda}})_{\lambda \in R_{\lambda}}$ are, respectively, the additive and multiplicative identities. Moreover 113 the projection maps pr_{λ} are ring homomorphisms. In fact, this is the unique ring structure 114 on $\prod_{\lambda \in \Lambda} R_{\lambda}$ that ensures that pr_{λ} is a ring homomorphism for every $\lambda \in \Lambda$. Further, let 115 $f_{\lambda}S \longrightarrow R_{\lambda}$ be ring homomorphisms. Then the unique function $f: S \longrightarrow \prod_{\lambda \in \Lambda} R_{\lambda}$ obtained 116 in Discussion 1.13 is a ring homomorphism.

117 1.15. **Proposition.** Let R, R_1, \ldots, R_n be rings. Then R is isomorphic to $\prod_{i=1}^n R_i$ if and only if there 118 exist two-sided R-ideals I_1, \ldots, I_n such that R_i is isomorphic to R/I_i for every i and such that the 119 natural map $R \longrightarrow \prod_{i=1}^n R/I_i$ is an isomorphism.

Proof. 'If' is immediate. 'Only if': Let $\phi : R \longrightarrow \prod_{i=1}^{n} R_i$. Write pr_i for the projection $\prod_{i=1}^{n} R_i \longrightarrow R_i$. Define $I_i := \operatorname{ker}(\operatorname{pr}_i \cdot \phi)$. Since $\operatorname{pr}_i \cdot \phi$ is surjective, we get an isomorphism $f_i : R/I_i \longrightarrow R_i$. Write $g_i = f_i^{-1}$ and $g = \prod_{i=1}^{n} g_i$. Note that g is an isomorphism. The composite

$$R \xrightarrow{\phi} \prod_{i=1}^{n} R_i \xrightarrow{\operatorname{pr}_i} R_i \xrightarrow{g_i} R/I_i$$

is a ring homomorphism, so it is the natural map $R \longrightarrow R/I_i$. Hence $g \circ \phi : R \longrightarrow \prod_{i=1}^n R/I_i$ is the natural map, and is an isomorphism.

125 1.16. **Theorem.** Let *R* be a ring, *S* its centre and I_1, \ldots, I_n two-sided *R*-ideals. Then the following are 126 equivalent:

127 (1) The natural map $R \longrightarrow \prod_{i=1}^{n} R / I_i$ is an isomorphism.

(2) There exist idempotents $e_1, \ldots, e_n \in S$ such that $e_i e_j = 0$ for all $i \neq j$, $\sum_{i=1}^n e_i = 1$ and I_{29} $I_i = R(1 - e_i)$

130 (3) For all $i \neq j$, $I_i + I_j = R$ and $\bigcap_{i=1}^n I_i = 0$

(4) There exist ideals J_1, \ldots, J_n of S such that the map $S \longrightarrow \prod_{i=1}^n S/J_i$ is an isomorphism and $I_{i} = RJ_i$ for every i.

133 Proof. TBD.

134

EXERCISES

- 135 1.17. Using the distributive property, show the following, for every $x, y \in R$: 0x = x0 = 0; 136 x(-y) = (-y)x = -(xy); (-x)(-y) = xy.
- 137 1.18. Let *G* and *H* be groups and $f : G \longrightarrow H$ a function such that f(gg') = f(g)f(g'). Show 138 that $f(g^{-1}) = (f(g))^{-1}$ for every $g \in G$ and that $f(e_G) = e_H$. (Hint: apply with $g' = e_G$ and 139 $g' = g^{-1}$.)
- 140 1.19. Let $f : R \longrightarrow S$ be a ring homomorphism. Show that f is a ring isomorphism if and only 141 it is bijective. (Hint: Show that if f is bijective, then the inverse *function* $f^{-1} : S \longrightarrow R$ is a ring 142 homomorphism.)
- 143 1.20. Show that the composite of two ring homomorphisms is a ring homomorphism.
- 144 1.21. If *r* is nilpotent, then 1 r is invertible.
- 145 1.22. For $x \in R$, the left homothety λ_x (respectively, right homothety ρ_x) is the map $R \longrightarrow R$,
- ¹⁴⁶ $y \mapsto xy$ (respectively, $y \mapsto yx$). Show that these are endomorphisms of the additive group of ¹⁴⁷ R.
- 148 1.23. Show that |R| = 1 if and only if 0 = 1, in which case $R = \{0\}$. This is the zero ring.
- 149 1.24. Let *X* be a subset of *R*. Show that the centralizer of *X* in *R* is a subring of *R*. The centre of R is a commutative subring.
- 151 1.25. Show that the endomorphism ring of the additive group \mathbb{Z} is isomorphic to the ring \mathbb{Z} .
- 152 1.26. Let *X* be a subset of *R*. The *left annihilator* of *X* in *R* is the set $\{y \in R \mid yx = 0 \text{ for every } x \in X\}$. Show that it is a left ideal.
- 154 1.27. Let $f : R \longrightarrow S$ be a ring homomorphism. Write $\pi : R \longrightarrow R / \ker(f)$ and $\iota : \operatorname{Im}(f) \longrightarrow S$. 155 Show that there is a ring homomorphism \overline{f} such that $f = \iota \overline{f} \pi$. Show that it is an isomorphism.
- 1.28. Say that $x \in R$ is *left-invertible* (respectively, *right-invertible*) if there exists $y \in R$ such that 1.57 yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible) if and 1.58 only if the right homothety (respectively, left homothety) is surjective. Show that x is invertible 1.59 if and only if it is left- and right-invertible. Show that in this case, the inverse of x is unique, 1.60 and that this element is also the unique left- and right-inverses.
- 161 1.29. An *integral domain* is a commutative ring that is non-zero and that does not have any 162 zero-divisors. Let *R* be a commutative ring and *I* an *R*-ideal. Show that the following are 163 equivalent: (1) R/I is an integral domain; (2) For every $x, y \in R$, if $xy \in I$ and $x \notin I$, then 164 $y \in I$; (3) *I* is the kernel of a ring homomorphism from *R* to an integral domain. A proper ideal 165 satisfying these conditions is called a *prime ideal*. Show that maximal ideals are prime.
- 1.30. An *idempotent* element in *R* is an element *e* such that $e^2 = e$; an idempotent element is 1.30. An *idempotent* element in *R* is an element *e* such that $e^2 = e$; an idempotent element is 1.30. An *idempotent* element in *R* is a commutative ring and *e* an idempotent 1.30. Element, then for every prime ideal *I* of *R*, $e \in I$ or $1 - e \in I$, and that these conditions are 1.30. Multiply exclusive.
- 170 1.31. Show that the set of 2×2 complex matrices of the form

$$\begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix}$$

4

173 following four matrices:

184

$$I_{2}, \begin{bmatrix} \iota & 0\\ 0 & -\iota \end{bmatrix}, \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 0 & \iota\\ \iota & 0 \end{bmatrix}$.

- ¹⁷⁴ Determine its dimension as a **R**-vector space.
- 175 1.32. Let q_1, \ldots, q_r be pairwise relatively prime integers. Show that the natural map $\mathbb{Z} \longrightarrow$
- ¹⁷⁶ $\prod_{i=1}^{r} \mathbb{Z}/q_i\mathbb{Z}$ is surjective and that it induces an isomorphism $\mathbb{Z}/(q_1 \cdots q_r)\mathbb{Z} \longrightarrow \prod_{i=1}^{r} \mathbb{Z}/q_i\mathbb{Z}$.
- 177 1.33. Let R_i , $1 \le i \le n$ be rings and $R = R_1 \times \cdots \times R_n$. Show that R_i is a quotient ring of R, for 178 each i.
- 179 1.34. Let *R* be a ring and *S* the ring of 2×2 matrices over *R*. Relate the centres of *R* and of *S*.
- 180 1.35. Give an example of ideals $I, J, K \subseteq \mathbb{Z}$ such that $IJ \neq I \cap J$ and $(I + J)(I + K) \neq (I + JK)$.
- 181 1.36. Let *R* be a ring and *I* the two-sided ideal generated by $\{xy yx \mid x, y \in I\}$. Show that
- every ring map $R \longrightarrow S$ with *S* commutative has *I* in its kernel. Hence we can think of *I* as the smallest two-sided ideal such that R/I is commutative.

2. MODULES

2.1. **Definition.** A *left R*-module *M* is an abelian group *M* with an *R*-action $R \times M \longrightarrow M$ satisfying (r + s)m = rm + sm, (sr)m = s(rm) and 1m = m for all $r, s \in R$ and $m \in M$. A *right R*-module *M* is an abelian group *M* with an *R*-action $M \times R \longrightarrow M$ satisfying m(r + s) =mr + ms, m(rs) = (mr)s and m1 = m. A *homomorphism of R*-modules is a map $f : M \longrightarrow N$ that is a morphism of abelian groups and satisfies *R*-linearity: f(rx) = r(f(x)) for every $r \in R$ and $x \in M$. The set of *R*-homomorphisms from *M* to *N* is denoted $\text{Hom}_R(M, N)$.

If *M* is a left (respectively, right) *R*-module, then, for every $r \in R$, the map $h_r : M \longrightarrow M$, 191 $x \mapsto rx$ (respectively, $x \mapsto xr$) is a morphism of abelian groups called the *left homothety* (respec-192 tively, right homothety) defined by r. Homotheties are not R-homomorphisms in general (since 193 $h_r(sx)$ need not equal $s(h_r(x))$ unless rs = sr; if r is central, then h_r is a R-homomorphism. The 194 map $R \longrightarrow \operatorname{End}_{\mathbb{Z}}(M)$ $r \mapsto h_r$ is a ring homomorphism. Its image in $\operatorname{End}_{\mathbb{Z}}(M)$ is called the *ring* 195 of homotheties (more precisely the ring of R-homotheties) of M and is denoted R_M . Conversely, if 196 *M* is an abelian group, then every ring homomorphism $R \longrightarrow \text{End}_{\mathbb{Z}}(M)$ defines an *R*-module 197 structure on M. 198

The set $\text{Hom}_R(M, N)$ does not have any 'natural' *R*-module structure, even with N = M, for more-or-less the same reason why homotheties are not *R*-homomorphisms. Similarly, there is no 'natural' ring map from $R \longrightarrow \text{End}_R(M)$. The map $r \mapsto h_r$ from the centre of *R* of $\text{End}_R(M)$ is a ring map, since central homotheties are *R*-homomorphisms.

Hereafter, unless otherwise mentioned, by a *module*, we mean a left module.

If M_{λ} , $\lambda \in \Lambda$ is a family of *R*-modules, then the cartesian product $\prod_{\lambda \in \Lambda} M_{\lambda}$ has a natural *R*module structure $r(x_{\lambda})_{\lambda \in \Lambda} = (rx_{\lambda})_{\lambda \in \Lambda}$. It is also a product in the category of *R*-modules, i.e., if $f_{\lambda} : N \longrightarrow M_{\lambda}$ are *R*-homomorphisms, then there is a unique *R*-homomorphism $f : N \longrightarrow$ $\prod_{\lambda \in \Lambda} M_{\lambda}$ such that $f_{\lambda} = \operatorname{pr}_{\lambda} \cdot f$ where the $\operatorname{pr}_{\lambda}$ are the projection maps. Therefore $\prod_{\lambda \in \Lambda} M_{\lambda}$ is called *the product module* of the family $M_{\lambda}, \lambda \in \Lambda$. The *(external) direct sum* of the family $M_{\lambda}, \lambda \in \Lambda$ is the submodule $\{y \in \prod_{\lambda \in \Lambda} M_{\lambda} \mid \operatorname{pr}_{\lambda}(y) = 0 \text{ except for finitely many } \lambda\}$ and is denoted $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$. Fix $\lambda \in \Lambda$, and consider the family of *R*-homomorphisms $f_{\mu} : M_{\lambda} \longrightarrow M_{\mu}$, $\mu \in \Lambda$, defined by

$$f_{\mu} = \begin{cases} \mathrm{id}_{M_{\lambda}}, & \mathrm{if } \mu = \lambda; \\ 0, & \mathrm{otherwise}. \end{cases}$$

Therefore there is a map $\iota_{\lambda} : M_{\lambda} \longrightarrow \prod_{\mu \in \Lambda} M_{\mu}$ such that $\operatorname{pr}_{\lambda} \circ \iota_{\lambda} = \operatorname{id}_{M_{\lambda}}$ and $\operatorname{pr}_{\mu} \circ \iota_{\lambda} = 0$ for every $\mu \neq \lambda$. Since ι_{λ} is injective, it identifies M_{λ} with the submodule $\{(x_{\mu})_{\mu \in \Lambda} \in \prod_{\mu \in \Lambda} M_{\mu} \mid x_{\mu} = 0$ for every $\mu \neq \lambda$. Moreover $\operatorname{Im}(\iota_{\lambda}) \subseteq \bigoplus_{\mu \in \Lambda} M_{\mu}$ so ι_{λ} (by abuse of notation) will be thought of as an *R*-homomorphism $M_{\lambda} \longrightarrow \bigoplus_{\mu \in \Lambda} M_{\mu}$. Direct sum is a co-product in the category of *R*-modules: if $f_{\lambda} : M_{\lambda} \longrightarrow N$ are *R*-homomorphisms, then there is a unique *R*homomorphism $f : \bigoplus_{\lambda \in \Lambda} M_{\lambda} \longrightarrow N$ such that $f_{\lambda} = f \cdot \iota_{\lambda}$.

218 2.2. **Proposition.** Let *M* be an *R*-module, and $N_{\lambda}, \lambda \in \Lambda$ a family of submodules of *M*. Then the 219 following are equivalent:

- 220 (1) $\sum_{\lambda \in \Lambda} N_{\lambda} = \bigoplus_{\lambda \in \Lambda} N_{\lambda};$
- (2) If $\sum_{\lambda \in \Lambda} x_{\lambda} = 0$, with $x_{\lambda} \in N_{\lambda}$ for every $\lambda \in \Lambda$, then $x_{\lambda} = 0$ for every $\lambda \in \Lambda$.
- (3) for every $\lambda \in \Lambda$, $N_{\lambda} \cap \sum_{\mu \in \Lambda} N_{\lambda} = 0$.

223 Proof. TBD

If X is a set and R a ring, R^X (the cartesian product of a family indexed by X, with each 224 member being *R*) is both the product ring (when this family is thought of as a family of rings) 225 and the product R-module (when this family is thought of as a family of R-modules). By 226 $R^{(X)}$, we mean the direct sum of this family of *R*-modules. For $x \in X$, the image of 1 under 227 $\iota_x : R \longrightarrow R^{(X)}$ is denoted by e_x . Then every element of $R^{(X)}$ can be uniquely expressed a finite sum $\sum_{x \in X} r_x e_x$. This construction has the following property: if M is an R-module and $X \subseteq M$, 228 229 then there exists a unique *R*-homomorphism $R^{(X)} \longrightarrow M$ with $e_x \mapsto x$. An *R*-module *M* is said 230 to be *free* if there exists a subset $X \subseteq M$ such that the *R*-homomorphism $R^{(X)} \longrightarrow M$, $e_x \longrightarrow x$ 231 is an isomorphism. 232

233 2.3. **Remark.** Let *M* be an *R*-module. Then $\text{Hom}_R(M, -)$ (*respectively*, $\text{Hom}_R(-, M)$) is a covariant (*respectively*, contravariant) left-exact functor from the category of *R*-modules to the category of abelian groups.

236 2.4. **Definition.** Let *M* be a right *R*-module and *N* a left *R*-module. The *tensor product* of *M* 237 and *N*, denoted $M \otimes_R N$, is the abelian group $\mathbb{Z}^{(M \times N)} / B$, where *B* is the subgroup generated 238 by the elements (x + x', y) - (x, y) - (x', y), (x, y + y') - (x, y) - (x, y') and (xr, y) - (x, ry) for 239 all $x, x' \in M, y, y' \in N$ and $r \in R$. The image of $(x, y) \in \mathbb{Z}^{(M \times N)}$ under the canonical surjective 240 map $\mathbb{Z}^{(M \times N)} \longrightarrow M \otimes_R N$ is denoted by $x \otimes_R y$.

The set { $x \otimes_R y \mid x \in M, y \in N$ } generate $M \otimes_R N$ as an abelian group. There is no natural *R*-module structure on $M \otimes_R N$: if we try to define $r(x \otimes_R y) := (xr \otimes_R y) = (x \otimes_R ry)$, then $r(xr' \otimes_R y) = r(x \otimes_R r'y) = (x \otimes_R rr'y)$ one way and $r(xr' \otimes_R y) = (xr' \otimes_R ry) = (x \otimes_R r'ry)$ another way. However, the above calculation implies that if *R* is commutative, then there is a natural *R*-module structure on $M \otimes_R N$.

246 2.5. Remark (Universal property of tensor products). See Bourbaki, Chapter II, Section 3.1,
247 Proposition 1. See Proposition 3.1 for a restatement.

248 2.6. **Remark.** Let *M* be a right *R*-module and *N* a left *R*-module. Then $-\otimes_R N$ (*respectively*, 249 $M \otimes_R -$) is a right-exact covariant functor from the category of right *R*-modules (*respectively*, 250 left) to the category of abelian groups.

251

EXERCISES

- (1) Let \Bbbk be an algebraically closed field and R a finite-dimensional \Bbbk -algebra that has no zero-divisors. Show that $\Bbbk = R$. (Hint: Let $0 \neq r \in R$. Show that there is a map of \Bbbk -algebras $\Bbbk[X] \longrightarrow R, X \mapsto r$. What about the kernel of this map?)
- (2) An *R*-module *M* is *faithful* if its annihilator is 0. Show that *M* is faithful if and only if the map $R \longrightarrow R_M$ (the ring of homotheties) is injective.

3. CHANGE OF RINGS

Let *R* and *S* be rings. An (S, R)-*bimodule* is an abelian group *M* that is a left *S*-module and a right *R*-module, such that the two structures are compatible with each other: (sx)r = s(xr) for every $r \in R$, $s \in S$ and $x \in M$.

Let *M* be an (S, R)-bimodule, *N* a left *R*-module and *P* a left *S*-module. The abelian group $M \otimes_R N$ has a natural left *S*-module structure: $s(x \otimes_R y) = sx \otimes_R y$. This is well-defined since $s(x \otimes_R ry) = s(xr \otimes_R y) = (sxr) \otimes_R y$ and the element sxr is well-defined. The module Hom_{*S*}(*M*, *P*) has a natural left *R*-module structure: $r\phi := [x \mapsto \phi(xr)]$. (Check: $((r'r)\phi)(x) = \phi(x(r'r)) = \phi((xr')r) = (r\phi)(xr') = (r'(r\phi))(x)$; *S*-linearity: $(r\phi)(sx) = \phi(sxr) = s((r\phi)(x))$.) The following is a restatement of the universal property of tensor products (Remark 2.5).

²⁶⁷ 3.1. **Proposition.** *Let M* (respectively, N) be a right (respectively, left) *R-module and P an abelian* ²⁶⁸ *group. Then the function*

$$\operatorname{Hom}_{\mathbb{Z}}(M \otimes_{R} N, P) \xrightarrow{\Phi} \operatorname{Hom}_{\mathbb{Z}}(N, \operatorname{Hom}_{\mathbb{Z}}(M, P))$$
$$g \mapsto [y \mapsto [x \mapsto g(x \otimes_{R} y)]]$$

is an injective map of abelian groups, with $\operatorname{Im} \Phi = \operatorname{Hom}_R(N, \operatorname{Hom}_{\mathbb{Z}}(M, P))$. In particular the above map gives an isomorphism between $\operatorname{Hom}_{\mathbb{Z}}(M \otimes_R N, P)$ and $\operatorname{Hom}_R(N, \operatorname{Hom}_{\mathbb{Z}}(M, P))$.

Proof. It is easy to check that Φ is a map of abelian groups. Suppose that g is in the kernel. 271 Then $g(x \otimes_R y) = 0$ for all $x \in M$ and $y \in N$, so g = 0. To prove the assertion about the image, 272 note, first, that $\operatorname{Hom}_{\mathbb{Z}}(M, P)$ is indeed a left *R*-module. Let $g \in \operatorname{Hom}_{\mathbb{Z}}(M \otimes_R N, P)$, $y \in N$ 273 and $r \in R$. We want to show that $\Phi(g)(ry) = r(\Phi(g)(y))$. Let $x \in M$; then $\Phi(g)(ry)(x) =$ 274 $g(x \otimes ry) = g(xr \otimes y) = \Phi(g)(y)(xr) = (r(\Phi(g)(y)))(x)$. Hence $\Phi(g)(ry) = r(\Phi(g)(y))$, 275 proving that Im $\Phi \subset \operatorname{Hom}_{\mathbb{Z}}(M, P)$. Conversely let $\phi : N \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(M, P)$ be *R*-276 linear. Let $x \in M$ and $y \in N$. Then $\Phi: M \times N \longrightarrow P$, $(x, y) \mapsto \phi(y)(x)$ is \mathbb{Z} -bilinear, and 277 satisfies $\Phi(xr, y) = \phi(y)(xr) = \phi(ry)(x) = \Phi(x, ry)$ for every $r \in R$. By the universal property 278 of tensor products (Remark 2.5), there exists $g: M \otimes_R N \longrightarrow P$ such that $\phi(y)(x) = g(x \otimes y)$, 279 i.e., $\phi = \Phi(g)$. Hence Im $\Phi \supseteq \operatorname{Hom}_{\mathbb{R}}(N, \operatorname{Hom}_{\mathbb{Z}}(M, P))$. \square 280

3.2. **Proposition.** Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The isomorphism *phism of Proposition 3.1 restricts to an isomorphism*

$$\operatorname{Hom}_{S}(M \otimes_{R} N, P) \longrightarrow \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(M, P)) g \mapsto [y \mapsto [x \mapsto g(x \otimes_{R} y)]]$$

283 of abelian groups.

284 Proof. Consider the isomorphism

$$\begin{array}{rcl} \operatorname{Hom}_{\mathbb{Z}}(M \otimes_{R} N, P) & \stackrel{\Phi}{\longrightarrow} & \operatorname{Hom}_{R}(N, \operatorname{Hom}_{\mathbb{Z}}(M, P)) \\ g & \mapsto & [y \mapsto [x \mapsto g(x \otimes_{R} y)]] \end{array}$$

²⁸⁵ from Proposition 3.1. It suffices to show that

 $\operatorname{Im} \Phi|_{\operatorname{Hom}_{S}(M \otimes_{R} N, P)} = \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(M, P)).$

Let $g \in \text{Hom}_S(M \otimes_R N, P)$ and $y \in N$. Then, for every $x \in M$ and $s \in S$,

$$\Phi(g)(y)(sx) = g(sx \otimes y) = g(s(x \otimes y)) = s(g(x \otimes y)) = s((\Phi(g)(y))(x));$$

hence $\Phi(g)(y)$ is *S*-linear. Conversely, let $\phi : N \longrightarrow \text{Hom}_S(M, P)$ be an *R*-linear map. We want to show that $g := \Phi^{-1}(\phi)$ is *S*-linear. Let $s \in S$, $x \in M$ and $y \in N$. Then

$$g(s(x \otimes y)) = g(sx \otimes y) = \phi(y)(sx) = s(\phi(y)(x)) = s(g(x \otimes y)),$$

so, indeed, g is S-linear.

Now suppose, additionally, that *R* is commutative and that *S* is an *R*-algebra with the image of *R* in *S* lying inside the centre of *S*. Then Hom_{*S*}($M \otimes_R N$, *P*) has a natural *R*-module structure: define *rg* to be the *S*-linear map $t \mapsto g(rt)$ for $t \in M \otimes_R N$. Hence the map in Proposition 3.2 is a *R*-homomorphism: $\Phi(rg)(y)(x) = (rg)(x \otimes_R y) = r(g(x \otimes_R y)) = r\Phi(g)(y)(x)$, and hence an *R*-isomorphism.

3.3. **Definition.** Let $\rho : R \longrightarrow S$ be a ring morphism, M a left R-module and N a left S-module. The left S-module $S \otimes_R M$ (treating S as a right R-module through $s \cdot r = s\rho(r)$) is denoted ρ^*M . The composite $R \xrightarrow{\rho} S \longrightarrow \operatorname{End}_{\mathbb{Z}}(N)$ makes N into a left R-module (i.e., $r \cdot y = \rho(r)y$); this R-module is denoted as ρ_*N .

299 3.4. **Proposition.** Let $\rho : R \longrightarrow S$ be a ring morphism, M a left R-module and N a left S-module. 300 Then there is an isomorphism

$$\operatorname{Hom}_{S}(\rho^{*}M, N) \longrightarrow \operatorname{Hom}_{R}(M, \rho_{*}N)$$

Proof. This follows from Proposition 3.2, after observing that $\text{Hom}_S(S, N) = N$ as S-modules and that $\text{Hom}_R(M, N)$ is really $\text{Hom}_R(M, \rho_* N)$.

303

4. Semisimplicity

³⁰⁴ In this section, modules are left modules, unless specified otherwise.

4.1. **Definition.** An *R*-module *M* is said to be *simple* if it has no submodules different from *M* and 0.

307 4.2. Example. We give some examples of simple modules.

(1) $_{R}R$ simple if and only if 0 is a maximal left ideal, which holds if and only if R is a division ring. Indeed, if R is a division ring, then every non-zero element generates the unit ideal, so 0 is a maximal left ideal. Conversely, suppose that 0 is a maximal left ideal (which implies that $1 \neq 0$) and let $0 \neq r \in R$. Then Rr = R, so there exists $0 \neq r' \in R$ such that r'r = 1, and, furthermore, $0 \neq r'' \in R$ such that r''r' = 1. Hence r' is left-invertible and right-invertible, so it is invertible and its inverse is r = r''. Hence r is invertible.

(2) Let *D* be a division ring and *M* a finitely generated *D*-module. Then *M* is free. Write $R = \text{End}_D(M)$. We now argue that *M* is a simple *R*-module. More precisely, we show the following: let $0 \neq x \in M$ and $y \in M$; then there exists $\phi \in R$ such that $\phi(x) = y$. To this end, let $f \in M^*$ be such that f(x) = 1 and define $\phi \in R$ as the map $v \mapsto f(v)y$.

318 (3) More examples to come.

4.3. **Proposition.** Let *M* be an *R*-module. An *R*-submodule $N \subsetneq M$ is maximal among the proper *R*-submodules of *M* if and only if the quotient *M*/*N* is simple. If $M_1 \subsetneq M$ is an *R*-submodule, then there exists An *R*-submodule $N \subsetneq M$ that is maximal among the proper *R*-submodules of *M* containing M_1 .

323 Proof. TBD.

 \square

4.4. **Definition.** A *Jordan-Hölder series* of *M* is a decreasing filtration $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq$ $M_s = 0$ of submodules such that for every $1 \le i \le s$, M_{i-1}/M_i is a simple *R*-module; the integer *s* above is the *length* of the above Jordan-Hölder series. Say that an *R*-module *N* is *of finite length* (or is a *finite length* module) if *N* has a Jordan-Hölder series.

4.5. **Remark.** Let $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_s = 0$ be a Jordan-Hölder series of M and N a submodule of M. Then $(N \cap M_{i-1})/(N \cap M_i)$ is a submodule of M_{i-1}/M_i , so it is either 0 or simple. Hence by deleting repetitions from among the modules $N \cap M_i$, we obtain a Jordan-Hölder series of N. Similarly $(N + M_{i-1})/(N + M_i)$ is a quotient of M_{i-1}/M_i , so by deleting repetitions from among the modules $(N + M_i)/N$, we obtain a Jordan-Hölder series of M/N.

4.6. **Proposition.** Let $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_s = 0$ and $M = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_t = 0$ be two Jordan-Hölder series of M. Then s = t and there exists a permutation σ of $\{1, \ldots, s\}$ such that for every $1 \le i \le s$, $N_{i-1}/N_i = M_{\sigma(i-1)}/M_{\sigma(i)}$.

Proof. Without loss of generality, $1 \le s \le t$. If s = 1, then M is simple, so the assertions are true. We proceed by induction. Assume that the assertions are true for all R-modules that have a Jordan-Hölder series of length at most s - 1. If $M_1 = N_1$, then by induction, the assertions hold for $M_1 = N_1$, so they hold for M. Therefore we may assume that $M_1 \ne N_1$.

Note that $N_1 \not\subset M_1$; for, otherwise, we have $N_1 \subsetneq M_1 \subsetneq M$, violating the simplicity of M/N_1 . Similarly $M_1 \not\subset N_1$. Write $K = M_1 \cap N_1$. Then $M_1 \subsetneq M_1 + N_1$, so the simplicity of M/M_1 implies that $M_1 + N_1$; hence, $M_1/K \simeq M/N_1$ is simple. Similarly $N_1/K \simeq M/M_1$ is simple.

The assertions of the proposition hold for M_1 , by induction. Let $K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_r =$ 0 be a Jordan-Hölder series of K. Then $M_1 \supseteq K \supseteq K_1 \supseteq \cdots \supseteq K_r = 0$ is a Jordan-Hölder series of M_1 . Hence s - 1 = r + 1, and the quotients in this Jordan-Hölder series are the same as the quotients in the series $M_1 \supseteq \cdots \supseteq M_s = 0$ after a suitable permutation.

Now, $N_1 \supseteq K \supseteq K_1 \supseteq \cdots \supseteq K_r = 0$ is a Jordan-Hölder series of N_1 of length r + 1 = s - 1, so, by induction, the assertions hold for N_1 . Therefore t - 1 = s - 1 and the the quotients in this Jordan-Hölder series are the same as the quotients in the series $N_1 \supseteq \cdots \supseteq N_t = 0$ after a suitable permutation. Hence the assertions hold for the two given Jordan-Hölder series of M.

4.7. **Remark.** Let *R* be a ring and *M* an *R*-module. Then *M* is simple as an *R*-module if and only if it is simple as a module over its ring of homotheties. This follows from noting that the structure of *M* as an *R*-module is defined through the ring map $R \longrightarrow \text{End}_{\mathbb{Z}}(M)$, so it is the same as the structure of *M* as a module over the image of the above ring map.

4.8. **Proposition** (Schur lemma, version 1). *Let R be a ring and M and N R-modules. Let* $f : M \rightarrow$ *N be a non-zero R-morphism. Then:*

- 359 (1) If M is simple, f is injective.
- (2) If N is simple, f is surjective.
- ³⁶¹ (3) If M and N are simple, f is an isomorphism.

Proof. Since $f \neq 0$, ker $f \subsetneq M$ and $0 \neq \text{Im } f \subseteq N$. if M is simple, then ker f = 0; if N is simple, then Im f = N.

- 4.9. **Corollary** (Schur lemma, version 2). If *M* is a simple *R*-module, then $\text{End}_R(M)$ is a division *ring*.
- Proof. Every non-zero endomorphism of M is an isomorphism, i.e., an invertible element of End_R(M).
- 4.10. **Corollary.** Let \Bbbk be an algebraically closed field, R a \Bbbk -algebra, M a simple R-module which is finite-dimensional as a \Bbbk -vector space. Then for every $\phi \in \operatorname{End}_R(M)$, there exists $\lambda \in \Bbbk$ such that $\phi(x) = \lambda x$ for every $x \in M$.

³⁷¹ *Proof.* Since $\operatorname{End}_{\mathbb{R}}(M) \subseteq \operatorname{End}_{\mathbb{k}}(M)$ it is a finite-dimensional division ring over \mathbb{k} . Now use ³⁷² Section 1, Exercise 1.

Here is another proof. Let λ be an eigen-value of ϕ considered as a k-endomorphism of *M*.

The maps λid_M and $\phi - \lambda id_M$ are *R*-morphisms. Since λ is an eigen-value, ker($\phi - \lambda id_M$) $\neq 0$, so, since *M* is a simple *R*-module, $\phi = \lambda id_M$.

4.11. **Corollary.** With notation as in Corollary 4.10, if additionally R is commutative, then $\dim_{\mathbb{k}} M = 1$.

- *Proof.* Let $r \in R$. Then the homothety $x \mapsto rx$ is a *R*-morphism. Hence there exists $\lambda \in k$ such
- that $rx = \lambda x$ for every $x \in M$. Therefore the ring R_M of homotheties coincides with the image of k in End_Z(M). Hence M is simple over k.

- **4.12. Proposition.** Let M be an R-module that is the sum of a family S_{λ} , $\lambda \in \Lambda$ of simple submodules, 381 and N a submodule of M. Then there exists $\Lambda_1 \subseteq \Lambda$ such that $M = N \oplus \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. 382
- *Proof.* Without loss of generality $N \neq M$. Let \mathcal{P} be the set of subsets $\Lambda' \subseteq \Lambda$ such that the sum 383
- $N + \sum_{\lambda \in \Lambda'} S_{\lambda}$ is a direct sum. It is non-empty, there exists $\lambda \in \Lambda$ such that $S_{\lambda} \not\subseteq N$, and, for 384
- such λ , $S_{\lambda} \cap N = 0$, so $S_{\lambda} + N = S_{\lambda} \oplus N$. Order \mathcal{P} by inclusion. Let $\Lambda_i, i \in \mathcal{I}$ be a chain in 385
- \mathcal{P} . Then by Proposition 2.2 $\cup_{i \in \mathcal{I}} \Lambda_i \in \mathcal{P}$, so by Zorn's lemma, \mathcal{P} has a maximal element Λ_1 . 386
- Set $N' = N + \sum_{\lambda \in \Lambda_1} S_{\lambda}$. Now for every $\lambda \in \Lambda \setminus \Lambda_1$, $\Lambda_1 \cup \{\lambda\} \notin \mathcal{P}$, so $S_{\lambda} \cap N' \neq 0$ (again by 387
- Proposition 2.2) which implies that $S_{\lambda} \subseteq N'$. Hence M = N'. 388
- 4.13. **Corollary.** Let M be an R-module. Then the following are equivalent: 389
- (1) *M* is a sum of a family of simple submodules. 390
- (2) M is the direct sum of a family of simple submodules. 391
- (3) Every submodule of M is a direct summand of M. 392
- We first need a lemma: 393
- 4.14. Lemma. If every submodule of M is a direct summand of M then every non-zero submodule of 394 *M* has a simple submodule. 395
- *Proof.* Let N be a non-zero submodule of M and $0 \neq x \in N$. Write $Rx \simeq R/I$ for some 396 left *R*-ideal $I \neq R$. Let m be a maximal left *R*-ideal containing *I*. We claim that $\mathfrak{m} x \subsetneq Rx$. 397 Assume that claim: Then we have $\mathfrak{m} x \subsetneq R x \subseteq M$. Since $\mathfrak{m} x$ is a direct summand of M, it is 398 a direct summand of Rx. Hence Rx contains a submodule isomorphic to the simple module 399 R/\mathfrak{m} . Now to prove the claim, assume, by way of contraction, that $\mathfrak{m}x = Rx$. Then there exist 400 $a_1,\ldots,a_t \in \mathfrak{m}$ and $r_1,\ldots,r_t \in R$ such that $\sum_{i=1}^t r_i a_i x = x$. Hence $1 - \sum_{i=1}^t r_i a_i \in I \subseteq \mathfrak{m}$, so 401 $1 \in \mathfrak{m}$, a contraction. \square 402
- *Proof of Corollary* 4.13. (1) \implies (2): Apply Proposition 4.12 with N = 0. (2) \implies (1): Immedi-403 ate. (1) \implies (3): Apply Proposition 4.12. (3) \implies (1): Let M' be the sum of simple submodules 404 of *M*. Write $M = M' \oplus M''$. If M'' is non-zero, then it has a simple submodule by Lemma 4.14, 405 which contradicts the fact that $M' \cap M'' = 0$. Hence M = M'. 406
- 4.15. **Definition.** An *R*-module *M* is said to be *semisimple* of it satisfies the (equivalent) condi-407 tions of Corollary 4.13. 408
- 4.16. **Remark.** Let *M* be a semisimple *R*-module. 409
- (1) Let S_{λ} , $\lambda \in \Lambda$ be a family of simple submodules of M such that $M = \sum_{\lambda \in \Lambda} S_{\lambda}$. Let N be 410 a submodule of *M*. Then there exists $\Lambda_1 \subseteq \Lambda$ such that $M = N \oplus \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. (Proposition 4.12.) 411 Write $N' = \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. The composite map $N' \hookrightarrow M \twoheadrightarrow M/N$ is an isomorphism, and the 412 images of $S_{\lambda}, \lambda \in \Lambda_1$ in M/N are simple submodules of M/N; hence M/N is semisimple. 413 Applying the above argument to N', we see that $N \simeq M/N'$ is semisimple. 414
- (2) *M* is simple if and only if $End_R(M)$ is a division ring. 'Only if' follows from the Schur 415 lemma (Corollary 4.9). Conversely, if *M* is not simple, then it has a simple direct summand *N*; 416 the projection to N followed by the inclusion $N \longrightarrow M$ gives a non-invertible endomorphism 417 of M. 418

4.17. **Definition.** Let *E* be a ring and *B* a subset of *E*. The *commutant* of *B* (in *E*) is the subring 419 $\{e \in E \mid eb = be \text{ for every } b \in B\}$ of E. The *bicommutant* of B is the commutant of the 420 commutant of B. 421

- 4.18. **Remark.** Let *E* and *B* be as in the definition above. Write *B'* and *B''* for the commutant 422 and the bicommutant, respectively, of *B* in *E*. 423
- (1) $B \subseteq B''$ and B' equals its bicommutant. Proof: TBD. 424
- (2) If *B* is a subring of *E*, then $B' \cap B = \{e \in B \mid eb = be \text{ for every } b \in B\}$ is the centre of *B*. 425 Therefore $B'' \cap B$ is the centre of B'. Additionally, if $b \in B'' \cap B$, then for every $c \in B''$, cb = bc, 426 so $B'' \cap B$ is the centre of B'' also. In particular, B' and B'' have the same centre. 427

- (3) If *B* is a commutative subring of *E* (not necessarily central in *E*) then $B \subseteq B'$. Hence $B'' \subseteq B'$, and, therefore, B'' is the centre of B'.
- 430 4.19. **Definition.** Let *M* be an *R*-module. The *commutant* and the *bicommutant* of *M* are the 431 commutant and the bicommutant of the ring R_M of homotheties in $\text{End}_{\mathbb{Z}}(M)$, respectively.
- 432 4.20. **Remark.** The commutant of M is $\text{End}_R(M)$. To see this, note that if $h_r \in R_M$ is the 433 homothety $x \mapsto rx$ and $f \in \text{End}_{\mathbb{Z}}(M)$, then the condition $h_r f = fh_r$ is another way of stating 434 that for every $x \in M$, $rf(x) = (h_r f)(x) = (fh_r)(x) = f(rx)$. Hence the bicommutant of M is 435 $\text{End}_{\text{End}_R(M)}(M)$.
- 436 4.21. **Proposition.** Let R be a ring and M an R-module. Write R'' for the bicommutant of M.
- (1) Let I be a set. The bicommutant of the R-module $M^{(I)}$ is the ring of homotheties of the R"-module $M^{(I)}$.
- (2) Suppose that M is semisimple. Then for every $x \in M$ and every $s \in R''$, there exists $r \in R$ such that sx = rx. In particular, every R-submodule of M is also an R''-submodule.
- 441 *Proof.* (1): TBD
- (2): Let $x \in M$. Then Rx is an R-direct summand of M. Let $\phi \in \text{End}_R(M)$ be the projection endomorphism with image Rx. Let $s \in R''$. Then $s\phi = \phi s$ (as elements of $\text{End}_{\mathbb{Z}}(M)$). Hence for every $y \in Rx$, $sy = s\phi(y) = \phi(sy)$, so $sy \in Rx$.
- 445 4.22. **Theorem** (Jacobson density theorem). Let *R* be a ring and *M* a semisimple *R*-module. Write 446 *R*" for the bicommutant of *M*. Let $s \in \text{End}_{\mathbb{Z}}(M)$. Then $s \in R$ " if and only if for every finite subset 447 $X \subseteq M$, there exists $r \in R$ such that sx = rx for every $x \in X$.
- ⁴⁴⁸ *Proof.* 'If': Let $\phi \in \text{End}_R(M)$ and $x \in M$. Let $r \in R$ be such that sx = rx and $s\phi(x) = r\phi(x)$ ⁴⁴⁹ (apply the hypothesis to $X = \{x, \phi(x)\}$). Then $s\phi(x) = r\phi(x) = \phi(rx) = \phi(sx)$. Hence $s\phi = \phi s$ ⁴⁵⁰ (as elements of $\text{End}_{\mathbb{Z}}(M)$) for every $\phi \in \text{End}_R(M)$, i.e., $s \in R''$.
- ⁴⁵¹ 'Only if': Let $X = \{x_1, \ldots, x_n\}, n \ge 1$. Write $x = (x_1, \ldots, x_n) \in M^n$. Consider the ⁴⁵² R''-homothety $(y_1, \ldots, y_n) \mapsto (sy_1, \ldots, sy_n)$ of M. By Proposition 4.21(1) there exists an el-⁴⁵³ ement \tilde{s} of the bicommutant of the R-module M^n such that $\tilde{s}((y_1, \ldots, y_n)) = (sy_1, \ldots, sy_n)$. ⁴⁵⁴ Note that M^n is a semisimple R-module. By Proposition 4.21(2) there exists $r \in R$ such that ⁴⁵⁵ $(sx_1, \ldots, sx_n) = \tilde{s}x = rx = (rx_1, \ldots, rx_n)$, i.e., sx = rx for every $x \in X$.
- 456 4.23. **Definition.** Let *S* be a simple *R*-module and *M* an *R*-module. Say that *M* is *isotypic of type* 457 *S* if $M \simeq S^{(I)}$ for some set *I*. Say that *M* is *isotypic* if there exists a simple *R*-module *T* such that 458 *M* is isotypic of type *T*.
- 459 4.24. **Remark.** Every isotypic *R*-module is semisimple. If M_{λ} , $\lambda \in \Lambda$ is a family of *R*-modules 460 with M_{λ} isotypic of type *S* (where *S* is a simple *R*-module), for every $\lambda \in \Lambda$, then $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ 461 is isotypic of type *S*. If *S* is a simple *R*-module, *I* a set and *M* a submodule of $S^{(I)}$, then *M* is 462 isotypic of type *S*: for, if *M'* is a submodule of $S^{(I)}$ with $M + M' = S^{(I)}$ and $M \cap M' = 0$, then 463 $M \simeq S/M' \simeq S^{(I_1)}$ for some $I_1 \subseteq I$ (Proposition 4.12).
- 464 4.25. **Definition.** *R* is said to be a *semisimple ring* if $_RR$ is a semisimple *R*-module. *R* is said 465 to be a *simple ring* if it is a semisimple ring and there is a unique simple *R*-module up to 466 isomorphism.
- 467 4.26. **Remark.** Let *R* be a ring.

(1) Suppose that *R* is semisimple. Then it has finitely many simple modules, up to isomorphism. For, write $_RR$ as the (direct) sum of a family S_{λ} , $\lambda \in \Lambda$ of *R*-modules. Let *T* be a simple *R*-module. Let $0 \neq x \in T$. The *R*-morphism map $_RR \longrightarrow T$, $1 \mapsto x$ is surjective. Therefore there exists $\mu \in \Lambda$ such that $T \simeq S_{\mu}$ (Remark 4.16(1)). Hence each simple *R*-module is isomorphic to a submodule of $_RR$. Let S_i , $i \in \mathcal{I}$ be all the distinct simple *R*-modules, up to isomorphism. Write $_RR \simeq \bigoplus_{i \in \mathcal{I}} M_i$ where, for every $i \in \mathcal{I}$, M_i is a direct sum of copies of S_i .

- Since $_RR$ is a finitely-generated *R*-module, \mathcal{I} must be a finite set and for each $i \in \mathcal{I}$, M_i must be a direct sum of finitely many copies of S_i .
- (2) Suppose that *R* is semisimple. Then every *R*-module is semisimple, since every *R*-module is a quotient of $_R R^{(I)}$ for some *I*, which is semisimple.
- (3) If *R* is a simple ring, then, for some set I, $_RR \simeq S^{(I)}$ where *S* the unique (up to isomorphism) simple *R*-module; hence $_RR$ is isotypic. Conversely, if $_RR$ is isotypic of type *S*, then (a) $_RR$ is semisimple; (b) if *T* is a simple *R*-module, then $T \simeq S$ (as in Remark 4.26(1), using Remark 4.16(1)). Hence *R* is a simple ring.
- 482 4.27. **Proposition.** Let *R* be a simple ring. Then:
- (1) The only two-sided ideals of R are 0 and R. (1)
- 484 (2) Every simple module over R is faithful.

Proof. (1): Let *I* be any simple left *R*-ideal. If *J* is any other simple left ideal then it is isomorphic to *J* (as a left *R*-module). Both *I* and *J* are direct summands of $_RR$. Thus we get an *R*-endomorphism of $_RR$ as the composite $_RR \rightarrow I \simeq J \hookrightarrow _RR$. Every endomorphism *f* of $_RR$ is given by multiplication by f(1) on the right. Thus we see that for every simple left ideal *J*, there exists $\alpha_J \in R$ such that the map $I \rightarrow J$, $x \mapsto x\alpha_J$ is an isomorphism. Since *R* is a direct sum of simple left ideals, IR = R. Hence the only non-zero two-sided ideal is *R*.

- (2): The annihilator of any non-zero left *R*-module is a two-sided proper ideal of *R*. Now use (1). \Box
- 493 **4.28. Proposition.** Let *D* be division ring and *M* a finitely generated *D*-module. Write $R = \text{End}_D(M)$. 494 Then *R* is a simple ring, *M* a simple and faithful *R*-module and $D \simeq \text{End}_R(M)$.
- Proof. Write $R = \text{End}_D(M)$. That M is simple over R was established in Example 4.2(2). Since $R \subseteq \text{End}_{\mathbb{Z}}(M)$, the map $R \longrightarrow R_M$ is an isomorphism, so M is a faithful R-module.
- Write $S = \text{End}_R(M)$ the bicommutant of M. We have maps $D \longrightarrow D_M \subseteq S$ (where D_M denotes the ring of homotheties). Since D is a division ring, the map $D \longrightarrow D_M$ is an isomorphism. Let $s \in S$. We want to show that there exists $a \in D$ such that $s = h_a$, the homothety $x \mapsto rx$. Fix $x \in M$. Note that M is a semisimple D-module. By the density theorem (Theorem 4.22) (in fact, Proposition 4.21(2) is enough) there exists $a \in D$ such that $sx = h_ax$. Let $y \in M$; there exists $\phi \in R$ such that $\phi(x) = y$; see Example 4.2(2). Then $sy = s(\phi(x)) = \phi(sx) = \phi(h_ax) = h_a\phi(x) = h_ay$. This is true for every $y \in M$, so $s = h_a$.
- Define a map $_{R}R \longrightarrow M^{n}$ by $\phi \mapsto (\phi(x_{i}))$. This is a map of left *R*-modules. If $\phi(x_{i}) = 0$ for every *i*, then for every $y = \sum_{i} a_{i}x_{i}$ (with $a_{i} \in D$ for every *i*) $\phi(y) = \sum_{i} \phi(a_{i}x_{i}) = \sum_{i} a_{i}\phi(x_{i}) = 0$, so $\phi = 0$, since *M* is a faithful *R*-module. Hence $_{R}R$ is an *R*-submodule of M^{n} , which is isotypic. Hence *R* is simple by Remarks 4.24 and 4.26(3).
- ⁵⁰⁸ 4.29. **Theorem** (Wedderburn). Let *R* be a ring. Then *R* is simple if and only if it is isomorphic to ⁵⁰⁹ $M_n(D)$ for some division ring *D* and a positive integer *n*.
- *Proof.* 'If' is a corollary of Proposition 4.28. Conversely, suppose that *R* is simple. Let *S* be the unique (up to isomorphism) simple *R*-module and $D = \text{End}_R(S)$. Note that the commutant of *S* (as an *R*-module) is *D*. The bicommutant of *S* (as an *R*-module) is $\text{End}_D(S)$, so we have a natural ring map $R \longrightarrow R_S \subseteq \text{End}_D(S)$. The map $R \longrightarrow R_S$ is an isomorphism since *S* is a faithful *R*-module (Proposition 4.27(2)).
- Let v_1, \ldots, v_n be a basis of *S* as a *D*-module. Let $\phi \in \text{End}_D(S)$. By the density theorem (Theorem 4.22) there exists $r \in R$ such that $\phi(v_i) = rv_i$ for every $1 \le i \le n$. Hence $\phi(\sum_i d_i v_i) = \sum_i (d_i r)v_i = \sum_i (rd_i)v_i = r(\sum_i d_i v_i)$ for every collection $d_1, \ldots, d_n \in D$. Hence the map $R \longrightarrow R_S \subseteq \text{End}_D(S)$ is surjective, and an isomorphism.
- 519 4.30. Lemma. Let $\phi : R \longrightarrow R'$ be an isomorphism of rings. Let I be a left R-ideal. Then
- (1) $I' := \phi(I)$ is a left *R'*-ideal and the induced map $\phi|_I : I \longrightarrow I'$ is an isomorphism of *R*-modules, where *R* acts on *I'* through ϕ .

GRADUATE ALGEBRA II. NOTES

(2) The ring map $\Phi : \operatorname{End}_{\mathbb{Z}}(I) \longrightarrow \operatorname{End}_{\mathbb{Z}}(I'), f \mapsto \phi|_{I} \circ f \circ \phi|_{I}^{-1}$ is an isomorphism. Moreover, 522 for every $r \in R$, $\Phi(h_r) = h_{\phi(r)}$ (where h_r denotes the homethety $x \mapsto rx$ of I). 523

(3) Write S and S' for the commutants of I and I' respectively. Then $\Phi(S) = S'$; this gives a ring 524 isomorphism $\Phi|_S : S \longrightarrow S'$. 525

Proof. (1): Since I' is an abelian group, it suffices to show that for every $r' \in R'$ and $x \in I'$, 526 $r'x' \in I'$. This indeed is true since $r'x' = \phi(\phi^{-1}(r')\phi^{-1}(x'))$. To show that $\phi|_I : I \longrightarrow I'$ is 527 an isomorphism of *R*-modules, it suffices to check that it is also an *R*-morphism, since it is an 528 isomorphism of abelian groups; this is immediate. 529

(2): It is straightforward to check that the ring map $\operatorname{End}_{\mathbb{Z}}(I') \longrightarrow \operatorname{End}_{\mathbb{Z}}(I), g \mapsto \phi|_{I}^{-1} \circ g \circ \phi|_{I}$ 530 is the inverse of Φ . Let $y \in I'$ and $r \in R$. We want to show that $(\phi|_I \circ h_r \circ \phi|_I^{-1})(y) = h_{\phi(r)}(y)$. 531 This follows immediately from the definitions. 532

(3): ' \subseteq ': Let $s \in S$, $r' \in R'$ and $y \in I'$; we want to show that $\Phi(s)(h_{r'}(y)) = h_{r'}(\Phi(s)(y))$. 533 Write $r' = \phi(r)$ and $y = \phi(x)$. Then $\Phi(s)(h_{r'}(y)) = \phi(s(h_r(x)))$ and $h_{r'}(\Phi(s)(y)) = \phi(h_r(s(x)))$. 534 Since $s \in S$, we have that $h_r(s(x)) = s(h_r(x))$. 535

 $'\supseteq'$: Let $s' \in S'$. Write $s' = \Phi(s)$ with $s \in \operatorname{End}_{\mathbb{Z}}(I)$. We need to show that $s \in S$. Let 536 $r \in R$ and $x \in I$; we want to show that $s(h_r(x)) = h_r(s(x))$. This follows from noting that 537 $\phi(s(h_r(x))) = s'(h_{\phi(r)}(\phi(x))) = h_{\phi(r)}(s'(\phi(x))) = \phi(h_r(s(x))).$ \square 538

4.31. **Proposition.** Let D_1 and D_2 be division rings and n_1 and n_2 positive integers. Then $M_{n_1}(D_1) \simeq$ 539 $M_{n_2}(D_2)$ if and only if $D_1 \simeq D_2$ and $n_1 = n_2$. 540

Proof. 'If' is immediate. Conversely, first, by looking at Jordan-Hölder sequences, we conclude 541

that $n_1 = n_2$ which we call *n*. Let $\phi : M_n(D_1) \longrightarrow M_n(D_2)$ be an isomorphism. Apply 542

Lemma 4.30 with $R = M_n(D_1)$ and $R' = M_n(D_2)$ and I any simple left ideal of $M_n(D_1)$. Then, 543

in the notation of that Lemma, $I \simeq D_1^n$ (as $M_n(D_1)$ -modules), $I' \simeq D_2^n$ (as $M_n(D_2)$ -modules) 544 $S \simeq D_1$ and $S' \simeq D_2$ (as rings, in both the cases). 545

4.32. **Theorem** (Wedderburn). Let R be a semisimple ring and $_{R}R = \bigoplus_{i=1}^{m} I_{i}$ the isotypic decompo-546

sition of _RR (into left R-ideals). Write $1 = e_1 + \cdots + e_m$ with $e_i \in I_i$ for every *i*. Then: 547

(1) For each $1 \le i \le m$, I_i is a two-sided R-ideal. 548

(2) For each $1 \le i \le m$, I_i is a simple ring with the operations induced from R and with e_i as the 549 multiplicative identity. 550

(3) $R = \prod_{i=1}^{m} I_i$ as rings. 551

4.33. Lemma. Let R be a ring, I a simple left R-ideal and M a simple R-module. If I is not isomorphic 552 to M, then IM = 0. 553

Proof. IM is a submodule of *M*, so IM = 0 or IM = M. If IM = M, then there exists $x \in M$ 554

such that $Ix \neq 0$, so Ix = M. Hence the map $I \longrightarrow M$, $r \mapsto rx$ is an *R*-isomorphism. 555

Proof of Theorem 4.32. (1): Note that for $j \neq i$, $I_i I_j = 0$ by Lemma 4.33. Hence $I_i \subseteq I_i R = I_i I_i \subseteq$ 556 I_i , so $I_i R = I_i I_i = I_i$, i.e., I_i is a two-sided ideal. 557

(2): We already checked that I_i is closed under the multiplication induced from R. For every 558 $r \in I_i, r = r(e_1 + \cdots + e_m) = re_i.$ 559

(3): For $1 \leq i \leq n$, write $J_i = \bigoplus_{1 \leq j \leq m} I_i$; The natural projection map $R \longrightarrow I_i$ is a ring 560

- homomorphism, with kernel J_i . Therefore it suffices to show that the natural map $R \rightarrow I$ 561 $\prod_{i=1}^{m} R/J_i$ is an isomorphism, for which we will use Theorem 1.16. Let $r \in R$. Write r =562 $\sum_{i=1}^{n} r_i$, with $r_i \in I_i$ for every *i*. Then $re_i = r_i e_i = r_i (\sum_{j=1}^{n} e_j) (\sum_{j=1}^{n} e_j) r_i = e_i r_i$, so e_i is a central 563 idempotent for every *i*. Since $I_iI_j = 0$ for every $i \neq j$, $e_ie_j = 0$ for every $i \neq j$. Note that 564
- $I_i = Re_i$ and that $J_i = R(1 e_i)$. Hence by Theorem 1.16 the natural map $R \longrightarrow \prod_{i=1}^m R/J_i$ is 565 an isomorphism. 566

4.34. **Corollary.** Let R be a ring. Then R is semisimple if and only if it is of the form $\prod_{i=1}^{m} M_{n_i}(D_i)$ for 567 some division rings D_1, \ldots, D_n and positive integers n_1, \ldots, n_m . 568

 \square

⁵⁶⁹ *Proof.* 'Only if': Use Theorems 4.32 and 4.29. 'If': see Exercise below.

570

EXERCISES

- (1) Let *R* and *S* be rings and *M* and *N* a semisimple *R*-module and a semisimple *S*-module strain respectively. Show that $M \oplus N$ is a semisimple $(R \times S)$ -module.
- (2) Let *R* be a ring and *M* a semisimple *R*-module. Let *N* be a simple *R*-module. Let M' be a submodule of *M*. Then the following are equivalent:
- (a) M' is the largest isotypic submodule of M of type N, i.e., M' is isotypic of type N and if N' is a simple submodule of M isomorphic to N, then $N' \subseteq M'$.
- (b) M' is the (direct) sum of all the simple submodules of M that are isomorphic to N.
- 578 (c) $M' = \operatorname{Hom}_R(N, M)$.

Let N_{λ} , $\lambda \in \Lambda$ be all the distinct (up to isomorphism) simple *R*-modules. Then $M = \bigoplus_{\lambda \in \Lambda} \operatorname{Hom}_{R}(N_{\lambda}, M)$. This is called the *isotypic decomposition* of *M*.

581

5. INTRODUCTION TO REPRESENTATION THEORY

Throughout this section \Bbbk denotes a commutative ring. A \Bbbk -algebra is a ring R with a ring homomorphism $\Bbbk \longrightarrow R$ (often understood from the context and not stated explicitly) whose image is inside the centre of R. (That is, for us, a \Bbbk -algebra is unital and associative.) If \Bbbk is field, then a \Bbbk -algebra R is said to be *finite-dimensional* if dim_{\Bbbk} R is finite. (Note that the ring map $\Bbbk \longrightarrow R$ makes R into a \Bbbk -vector-space.)

587 5.1. **Discussion.** Let *G* be a group. We make the free k-module $\Bbbk^{(G)}$ into a k-algebra as follows. 588 Let $e_g, g \in G$ denote the standard basis for $\Bbbk^{(G)}$. Then set $e_g e_h = e_{gh}$; now extend it to $\Bbbk^{(G)}$ by 589 setting $(\sum_{i=1}^{n} a_i e_{g_i})(\sum_{j=1}^{m} b_j e_{h_j}) = \sum_{i,j} a_i b_j e_{g_i h_j}$. This gives a ring with identity element e_1 . The 590 map $\Bbbk \longrightarrow \Bbbk^{(G)}$, $a \mapsto ae_1$ is a ring homomorphism; its image is inside the centre of $\Bbbk^{(G)}$. Thus 591 we get a k-algebra structure on $\Bbbk^{(G)}$; we denote it by $\Bbbk[G]$. We will write 1 for the element 592 e_1 .

593 5.2. **Remark.** Let *G* be a group. $\Bbbk[G]$ is commutative if and only if $e_g e_h = e_h e_g$ for all $g, h \in G$ 594 which holds if and only if *G* is an abelian group. For a positive integer $r, \Bbbk[\mathbb{Z}^r] = \Bbbk[x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}]$ 595 and $\Bbbk[\mathbb{Z}/r] \simeq \Bbbk[x]/(x^r - 1)$. If \Bbbk is a field, then $\Bbbk[G]$ is a finite-dimensional \Bbbk -algebra if and 596 only if *G* is a finite group.

597 5.3. **Definition.** Let *G* be a group and *M* a k-module. A (*linear*) *representation* of *G* on *M* is a 598 group homomorphism $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$, the group of invertible k-endomorphisms of *M*. 599 We denote this representation by (M, ρ) ; if the map ρ is understood from the context, we omit 600 it from the notation and say that *M* is a representation of *G*. Moreover, when no confusion is 601 likely to occur, we will write *g* for the automorphism $\rho(g) : M \longrightarrow M$.

5.4. **Example.** In these examples assume that *M* is free \Bbbk -module of rank *n* with basis $\{v_1, \ldots, v_n\}$. However, no generality is lost if one further assumes that \Bbbk is a field.

(1) Identify $\operatorname{Aut}_{\Bbbk}(M)$ with $\operatorname{GL}_n(\Bbbk)$ (the group of invertible $n \times n$ matrices over \Bbbk) using the given basis. The cyclic group \mathbb{Z}/n acts on $\{v_1, \ldots, v_n\}$ by cyclically permuting its elements. This gives a representation of \mathbb{Z}/n on M which is given by the group homomorphism $\mathbb{Z}/n \longrightarrow$ $\operatorname{GL}_n(\Bbbk)$

$$\overline{1} \mapsto \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

(2) More generally, every subgroup of the permutation group S_n has a *permutation representation* on M by $\sigma : v_i \mapsto v_{\sigma(i)}$. The image of σ in $GL_n(\Bbbk)$ is the *permutation matrix* A_σ associated to σ , which is given by

$$(A_{\sigma})_{i,j} = \begin{cases} 1, & \text{if } i = \sigma(j); \\ 0, & \text{otherwise.} \end{cases}$$

(3) Even more generally, if X is a set on which G acts on the left (as permutations), then we get a permutation representation of G on the free module $\mathbb{k}^{(X)}$ by $g : e_x \mapsto e_{g(x)}$. An important example of this is the *regular representation* of G: G acts on itself by left multiplication; this extends to a representation of G on $\mathbb{k}[G]$ satisfying $g : e_h \mapsto e_{gh}$.

5.5. Discussion. Let G be a group, and M, N representations of G. A homomorphism of G-615 representations (or a G-homomorphism) $\phi: M \longrightarrow N$ is a k-homomorphism $\phi: M \longrightarrow N$ 616 satisfying $\phi(gx) = g(\phi(x))$ for every $x \in M$ and $g \in G$. Thus we can talk of the *cate*-617 gory of G-representations. We say that N is a G-subrepresentation of M if it is k-submodule 618 of *M* and the inclusion map is a *G*-homomorphism; in this case, for every $g \in G$, the k-619 automorphism g of M induces a k-automorphism of the quotient k-module M/N, so M/N620 has a natural G-representation structure such that the quotiet map $M \longrightarrow M/N$ is a G-621 homomorphism. Therefore the kernel, the image and the cokernel of a *G*-homomorphism are 622 *G*-representations. Moreover if M_{λ} , $\lambda \in \Lambda$ is a family of *G*-representations, then the k-module 623 $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ has a natural *G*-action, and is the direct sum in the category of *G*-representations. 624 Similarly, the k-module $\prod_{\lambda \in \Lambda} M_{\lambda}$ has a natural *G*-action, and is the product in the category of 625 G-representations. \square 626

5.6. **Discussion.** Let $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$ be a representation of *G* on *M*. This extends to a 627 homomorphism of k-algebras $\overline{\rho}$: $\Bbbk[G] \longrightarrow \operatorname{End}_{\Bbbk}(M)$ determined (uniquely) by $\overline{\rho}(e_g) = \rho(g)$. 628 Conversely, if $\sigma : \Bbbk[G] \longrightarrow \operatorname{End}_{\Bbbk}(M)$ is a homomorphism of \Bbbk -algebras, then we get a group 629 homomorphism $\sigma' : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$, by $\sigma'(g) = \sigma(e_g)$, since the elements e_g are invert-630 ible in $\Bbbk[G]$. The operations are inverses of each other: $(\overline{\rho})' = \rho$ and $(\sigma') = \sigma$. Hence 631 defining a *G*-representation on a \Bbbk -module *M* is equivalent to defining a $\Bbbk[G]$ -module struc-632 ture on M (compatible with the given k-module structure). For G-representations M and 633 N, a k-homomorphism $\phi: M \longrightarrow N$ is a G-homomorphism) precisely when it is a $\Bbbk[G]$ -634 homomorphism. Therefore the categories of G-representations and of $\Bbbk[G]$ -modules is equiva-635 lent. The notions defined in Discussion 5.5 match the corresponding notions for $\Bbbk[G]$ -modules. 636 Therefore we will interchangeably use 'G-representations' and ' $\Bbbk[G]$ -modules' (and some-637 times, merely, 'G-modules'). 638

639 5.7. **Theorem.** Let G be a finite group with |G| invertible in k. Let M be a $\Bbbk[G]$ -module, and N a 640 $\Bbbk[G]$ -submodule of M that is a direct summand of M as a k-module. Then N is a direct summand as a 641 $\Bbbk[G]$ -module.

Proof. Let $p \in \text{End}_{\Bbbk}(M)$ be a projection with image N. Define a \Bbbk -endomorphism $q : M \longrightarrow M$ by

$$x \mapsto \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}x).$$

The image of q is N and, for every $x \in N$, q(x) = x. Hence $M = N \oplus (\ker q)$ as k-modules. Moreover, $q(gx) = \frac{1}{|G|} \sum_{h \in G} hp(h^{-1}gx) = g\frac{1}{|G|} \sum_{h \in G} g^{-1}hp(h^{-1}gx) = g\frac{1}{|G|} \sum_{h \in G} hp(h^{-1}x) =$ gq(x) for every $g \in G$, so $(\ker q)$ is a $\Bbbk[G]$ -module. Hence N is a direct summand of M as a $\kappa[G]$ -module.

5.8. **Corollary** (Maschke). Let \Bbbk be a field and G a finite group with |G| invertible in \Bbbk . Then $\Bbbk[G]$ is a semisimple ring.

- ⁶⁵⁰ *Proof.* For every $\Bbbk[G]$ -module M and $\Bbbk[G]$ -submodule N of M, N is a direct summand of M
- as a k-module. By Theorem 5.7, N is a direct summand of M as a k[G]-module; now apply Corollary 4.34.
- 5.9. **Remark.** The assertion of the Corollary 5.8 fails if |G| is not invertible in k. Consider the element $\epsilon = \sum_{g \in G} g \in k[G]$. For every $g \in G$, $g\epsilon = \epsilon = \epsilon g$, so $\epsilon^2 = |G|\epsilon = 0$ and $\epsilon \in k[G]g$, the left ideal generated by g. Hence the left module $k[G]\epsilon$ is not a direct summand of the left module k[G]. In particular k[G] is not a semisimple ring.
- ⁶⁵⁷ 5.10. **Corollary.** Let *G* be a finite group with |G| invertible in \mathbb{k} . An exact sequence of $\mathbb{k}[G]$ -modules ⁶⁵⁸ is split if and only if it is split as an exact sequence of \mathbb{k} -modules.
- *Proof.* 'If' is immediate. 'Only if': Let $0 \to M_1 \xrightarrow{f} M_2 \to M_3 \to 0$ be an exact sequence of $\Bbbk[G]$ -modules. If it is split as a sequence of \Bbbk -modules, then $\operatorname{Im}(f)$ is a direct summand of M_2 as a \Bbbk -module, so by Theorem 5.7, it is a direct summand also as a $\Bbbk[G]$ -module, i.e., the sequence is split as a sequence of of $\Bbbk[G]$ -modules.
- ⁶⁶³ 5.11. **Corollary.** Let G be a finite group with |G| invertible in \Bbbk . A $\Bbbk[G]$ -module is projective if and ⁶⁶⁴ only if it is projective as a \Bbbk -module. In particular, if \Bbbk is a field, then every $\Bbbk[G]$ -module is projective.
- *Proof.* Let *M* be a $\Bbbk[G]$ -module and *F* a free $\Bbbk[G]$ -module with a surjective $\Bbbk[G]$ -morphism *φ* : *F* \longrightarrow *M*. If *M* is projective as a $\Bbbk[G]$ -module, then *φ* is split as a $\Bbbk[G]$ -morphism, and, *a fortiori*, as a \Bbbk -morphism. Hence *M* is a projective \Bbbk -module. Conversely, if *M* is a projective a \Bbbk -module, then *φ* is split as a \Bbbk -morphism. By Theorem 5.7, ker *φ* is a direct summand of *F* as a $\Bbbk[G]$ -module, so *φ* is split as a $\Bbbk[G]$ -morphism. Hence *M* is a projective $\Bbbk[G]$ -module.
- a $\mathbb{k}[G]$ -module, so ϕ is split as a $\mathbb{k}[G]$ -morphism. Hence M is a projective $\mathbb{k}[G]$ -module.
- 5.12. **Discussion** (Frobenius reciprocity). Let *H* be a subgroup of *G*, and denote the inclusion map $\Bbbk[H] \longrightarrow \Bbbk[G]$ by ρ . The functor ρ_* (from the category of $\Bbbk[G]$ -modules to the category of $\Bbbk[H]$ -modules, treating a a $\Bbbk[G]$ -module as $\Bbbk[H]$ -module through restriction of scalars) is called the *restriction functor* and is denoted Res^{*G*}_{*H*}. The functor $\rho^*(-) = \Bbbk[G] \otimes_{\Bbbk[H]} -$ (from $\Bbbk[H]$ -modules to the category of $\Bbbk[G]$ -modules, treating $\Bbbk[G]$ as a right $\Bbbk[H]$ -module) is called the *induction functor* and is denoted Ind^{*G*}_{*H*}; for a $\Bbbk[G]$ -module *M*, Ind^{*G*}_{*H*}(*M*) is called the representation of *G* induced from *M*. Hom- \otimes adjunction (Proposition 3.2) gives

$$\operatorname{Hom}_{\Bbbk[H]}(M,\operatorname{Res}_{H}^{G}N) = \operatorname{Hom}_{\Bbbk[G]}(\operatorname{Ind}_{H}^{G}M,N)$$

- 677 for every *H*-module *M* and *G*-module *M*.
- 5.13. **Setup.** For the remainder of this section, let k be a field and *G* a finite group with |G|invertible in k. Let

$$\Bbbk[G] = \prod_{i=1}^{c} R_i$$

be the decomposition as the product of simple rings R_i . Let $1 \le i \le c$. Write e_i for the identity element of R_i . Let M_i be a simple R_i -module and $D_i = \text{End}_{R_i}(M_i)$. Write $d_i = \dim_{\mathbb{K}} M_i$. Denote the simple characters (defined below) by χ_1, \ldots, χ_c .

5.14. **Definition.** Let $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$ be representation. The *character* of ρ , denoted χ_{ρ} , is the function $G \longrightarrow \Bbbk$, $g \mapsto \operatorname{Trace}(\rho(g))$. Its \Bbbk -linear extension to $\Bbbk[G]$ will also be denoted by χ_{ρ} . A *simple* (or *irreducible*) character of *G* is the character of a simple *G*-module.

Note that the number of simple characters equals the number *c* of the factors in the decomposition of $\Bbbk[G]$ as a product of simple rings in Setup 5.13, since every simple $\Bbbk[G]$ -module is a simple module over R_j for some *j*.

689 5.15. **Lemma.** For all $1 \le i, j \le c$,

$$\chi_j(e_i) = \begin{cases} d_i, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Note that M_i is a summand of R_i for every *j*. Thus $e_i : M_i \longrightarrow M_i$ is the identity map of 690 M_i if j = i and the zero map otherwise. Therefore 691

$$\chi_j(e_i) = \operatorname{Trace}(M_j \xrightarrow{e_i} M_j) = \begin{cases} d_i, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases} \square$$

5.16. **Proposition.** Let χ_{reg} denote the character of the regular representation. Then $\chi_{\text{reg}}(1) = |G|$ 692 and for every $g \in G$, $g \neq 1$, $\chi_{reg}(g) = 0$. 693

Proof. For any finite-dimensional representation ρ of G on M, $\chi_{\rho}(1) = \dim_{\mathbb{K}} M$ so $\chi_{\text{reg}}(1) =$ 694 |G|. On the other hand, for every $g \neq 1$, g permutes the natural basis of $\Bbbk[G]$ given by G 695 without fixed points, so, with respect to this basis, the matrix of g is a permutation matrix with 696 zeros on the diagonal. Hence for every $g \in G, g \neq 1, \chi_{reg}(g) = 0$. 697

5.17. **Definition.** The *prime subring* of \Bbbk is the image of the map $\mathbb{Z} \longrightarrow \Bbbk$. 698

5.18. **Proposition.** Let χ_1, \ldots, χ_c be the distinct simple characters of G. Let $\rho : G \longrightarrow Aut_{\Bbbk}(M)$ be 699 a representation. Then there exist n_1, \ldots, n_c in the prime subring of k such that $\chi_{\rho} = \sum_{i=1}^c n_i \chi_i$. Now 700 suppose that char $\mathbb{k} = 0$. Then the n_i are uniquely determined non-negative integers, and, moreover, if 701 ρ' is a representation such that $\chi_{\rho'} = \chi_{\rho}$ then ρ and ρ' are isomorphic to each other. 702

Proof. Since *M* is a finite-dimensional \Bbbk -vector-space, there exist non-negative integers n_1, \ldots, n_c 703 such that $M = \bigoplus_{i=1}^{c} M_i^{\oplus n_i}$ as $\Bbbk[G]$ -modules. Note that if $\phi : \bigoplus_{i=1}^{c} M_i^{\oplus n_i} \longrightarrow \bigoplus_{i=1}^{c} M_i^{\oplus n'_i}$ is a $\Bbbk[G]$ -704

isomorphism, then for each *i*, $\operatorname{Im}(\phi|_{M_i^{\oplus n_i}}) \subseteq M_i^{\oplus n_i'}$, and $\phi|_{M_i^{\oplus n_i}}$ is an isomorphism, from which, 705

after comparing ranks over k, it follows that $n_i = n'_i$. Therefore the integers n_i (in the decom-706

position of *M*) are unique. Denoting the images of the integers n_i in k again by n_i , we see 707

that $\chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$. Now suppose that char $\Bbbk = 0$. Since the map $\mathbb{Z} \longrightarrow \Bbbk$ is injective, the 708 709

uniqueness is preserved in the expression $\chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$. Further, if $\chi_{\rho'} = \chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$,

⁷¹⁰ where
$$\rho: G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$$
 and $\rho': G \longrightarrow \operatorname{Aut}_{\Bbbk}(M')$, then $M \simeq M' \simeq \bigoplus_{i=1}^{\infty} M_i^{\otimes n_i}$.

- 5.19. **Remark.** We see that the set of characters of G is a \Bbbk -vector-space, spanned by the simple 711 characters χ_i . If the dimensions d_i (over \Bbbk) of the simple $\Bbbk[G]$ -modules M_i are invertible in \Bbbk 712 (e.g., if char k = 0), then the χ_i form a basis. To see this, suppose that $\sum_i \alpha_i \chi_i = 0$, with $\alpha_i \in k$. 713
- Then $0 = (\sum_i \alpha_i \chi_i)(e_i) = \alpha_i \chi_i(e_i) = \alpha_i d_i$, so $\alpha_i = 0$. 714

5.20. Notation. For $g \in G$, denote its conjugacy class $\{hgh^{-1} \mid h \in G\}$ by C_g . Let $\mathcal{C} \subseteq G$ be 715 a set of representatives for the conjugacy classes of G, i.e., $G = \bigsqcup_{g \in C} C_g$. For $g \in G$, write 716 $s_g = \sum_{h \in C_g} h.$ 717

5.21. **Proposition.** Let $a \in \Bbbk[G]$. Then the following are equivalent: 718

- (1) *a* is a central element of $\Bbbk[G]$; 719
- (2) ag = ga for every $g \in G$ (thought of as a subset of $\Bbbk[G]$); 720
- (3) *a* is a k-linear combination of $\{s_g \mid g \in C\}$. 721
- *Proof.* (1) implies (2): Immediate. 722

(2) implies (3): Write $a = \sum_{\tau \in G} a_{\tau} \tau$. Then $\sum_{\tau \in G} a_{\tau} \tau = a = gag^{-1} \sum_{\tau \in G} a_{\tau}g\tau g^{-1} = \sum_{\tau \in G} a_{g^{-1}\tau g} \tau$. 723 Since *G* is a k-basis of k[G], we see that for every $\tau \in G$, $a_{\tau} = a_{\sigma}$ for every $\sigma \in C_{\tau}$. 724

(3) implies (1): For every $h \in G$, $hs_g h^{-1} = s_g$, so s_g is a central element for every $g \in C$. 725

5.22. Corollary. $\{s_g \mid g \in C\}$ is a k-basis for the centre of k[G]. 726

Proof. This follows from Proposition 5.21, after noting that $\{s_g \mid g \in C\}$ is linearly independent 727 over k. 728

- 5.23. **Remark.** A function $f : G \longrightarrow \Bbbk$ is said to be a *class function* if $f(ghg^{-1}) = f(h)$ for every 729
- $g, h \in G$, or equivalently, $f(ghg^{-1}) = f(h)$ for every $g, h \in G$. Characters are class functions, 730 since for two matrices A and B, Trace(AB) = Trace(BA). 731
- 5.24. **Theorem.** Suppose that \Bbbk is algebraically closed. Let 732

$$\Bbbk[G] = \prod_{i=1}^{c} R_i$$

be a decomposition as the product of simple rings R_i *. Then:* 733

- (1) *G* has exactly *c* conjugacy classes. 734
- (2) $\{s_g \mid g \in C\}$ and $\{e_1, \ldots, e_c\}$ are bases for the centre of $\Bbbk[G]$. 735
- (3) $\chi_{\text{reg}} = \sum_{i=1}^{c} d_i \chi_i.$ (4) $|G| = \sum_{i=1}^{c} d_i^2.$ 736

737

Proof. Each R_i is a simple finite-dimensional k-algebra, so $R_i = \text{End}_{D_i}(M_i)$ for a finite-dimensional 738 division ring D_i over k and free D_i -module M_i . Since k is algebraically closed, $D_i = k$. Hence 739 the centre of R_i is $\mathbb{k}_i := \mathbb{k}e_i$; thus the centre of $\mathbb{k}[G]$ is $\prod_{i=1}^c \mathbb{k}_i$. This proves (1) and (2). Note 740 that as *R*-modules, $R_i = M_i^{\oplus d_i}$, so $\chi_{\text{reg}} = \sum_{i=1}^c d_i \chi_i$, proving (3). Hence $\dim_k R_i = d_i^2$, so 741 $|G| = \dim_{\mathbb{k}} \mathbb{k}[G] = \sum_{i=1}^{c} d_i^2 \text{ proving (4).}$ 742

5.25. **Observation.** Suppose that k is algebraically closed. Let $g \in G$ and $1 \le i \le c$. For any 743 $a \in \Bbbk[G], e_i a \in R_i$. Thus 744

$$\chi_{\mathrm{reg}}(e_ig) = \sum_{j=1}^c d_j \chi_j(e_ig) = d_i \chi_i(e_ig) = d_i \chi_i(g).$$

Let $g \in G$ be such that it appears in e_i with a non-zero coefficient. Then by Proposition 5.16 745 $\chi_{\text{reg}}(e_ig^{-1}) \neq 0$, so d_i is non-zero in k. In particular, the χ_i are linearly independent over k 746 (Remark 5.19). 747

5.26. **Proposition.** Suppose that \Bbbk is algebraically closed. Then for every $1 \le i \le c$, 748

$$e_{i} = \frac{1}{|G|} \sum_{g \in G} \left(\chi_{\text{reg}}(e_{i}g^{-1}) \right) g = \frac{d_{i}}{|G|} \sum_{g \in G} \left(\chi_{i}(g^{-1}) \right) g$$

Proof. The second equality follows from Observation 5.25. To prove the first, write $e_i = \sum_{h \in G} a_i h$. Then $\chi_{\text{reg}}(e_i g^{-1}) = \sum_{h \in G} a_h \chi_{\text{reg}}(h g^{-1}) = a_g |G|$. 749 750

5.27. Notation. Let $X_{\Bbbk}(G)$ denote the set of characters of *G* and $Z_{\Bbbk}(G)$ the centre of $\Bbbk[G]$. 751

5.28. **Proposition.** Suppose that \Bbbk is algebraically closed. Then the pairing 752

$$X_{\Bbbk}(G) \times Z_{\Bbbk}(G) \longrightarrow \Bbbk, (\chi, a) \mapsto \chi(a)$$

- is non-degenerate. In particular, $X_{\Bbbk}(G)$ and $Z_{\Bbbk}(G)$ are dual to each other under this pairing. 753
- *Proof.* Let $\chi = \sum_i \alpha_i \chi_i \neq 0$. Pick *i* such that $\alpha_i \neq 0$; then (use Lemma 5.15 and Observation 5.25) 754

755
$$\chi(e_i) = \alpha_i \chi_i(e_i) = \alpha_i d_i \neq 0$$
. Now let $a \neq 0 \in Z_{\mathbb{k}}(G)$. Write $a = \sum_i \beta_i e_i$ (Theorem 5.24(2)). Pick
756 *i* such that $\beta_i \neq 0$; then $\chi_i(a) = \chi_i(\beta_i(e_i)) = \beta_i d_i \neq 0$.

⁷⁵⁶ *i* such that
$$\beta_i \neq 0$$
; then $\chi_i(a) = \chi_i(\beta_i(e_i)) = \beta_i d_i \neq 0$.

5.29. **Proposition.** Suppose that \mathbb{k} is algebraically closed. Then we have a bilinear map 757

$$\langle , \rangle : X_{\Bbbk}(G) \times X_{\Bbbk}(G) \longrightarrow \Bbbk, (\chi, \chi') \mapsto \frac{1}{|G|} \sum_{g \in G} \chi(g) \chi'(g).$$

The χ_i form an orthonormal basis for $X_{\Bbbk}(G)$ with respect to this pairing, i.e., 758

$$\langle \chi_i, \chi_j \rangle = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

GRADUATE ALGEBRA II. NOTES

759 CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA
 760 E-mail address: mkummini@cmi.ac.in