
GRADUATE ALGEBRA II, JAN-APR 2017. PROBLEM SETS

MANOJ KUMMINI

1. SET 1: DUE 2017-JAN-16

(1) Using the distributive property, show the following, for every x, y ∈ R: 0x = x0 = 0;
x(−y) = (−y)x = −(xy); (−x)(−y) = xy.

(2) For x ∈ R, the left homothety λx (respectively, right homothety ρx) is the map R −→ R,
y 7→ xy (respectively, y 7→ yx). Show that these are endomorphisms of the additive group of
R.

(3) Show that |R| = 1 if and only if 0 = 1, in which case R = {0}. This is the zero ring.
(4) Let X be a subset of R. Show that the centralizer of X in R is a subring of R. The centre

of R is a commutative subring.
(5) Show that the endomorphism ring of the additive group Z is isomorphic to the ring Z.
(6) Let X be a subset of R. The left annihilator of X in R is the set {y ∈ R | yx = 0 for every x ∈

X}. Show that it is a left ideal.
(7) Let f : R −→ S be a ring homomorphism. Write π : R −→ R/ ker( f ) and ι : Im( f ) −→

S. Show that there is a ring homomorphism f such that f = ι f π. Show that it is an isomor-
phism.

(8) Say that x ∈ R is left-invertible (respectively, right-invertible) if there exists y ∈ R such
that yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible)
if and only if the right homothety (respectively, left homothety)is surjective. Show that x is
invertible if and only if it is left- and right-invertible. Show that in this case, the inverse of x is
unique, and that this element is also the unique left- and right-inverses.

(9) An integral domain is a commutative ring that is non-zero and that does not have any
zero-divisors. Let R be a commutative ring and I an R-ideal. Show that the following are
equivalent: (a) R/I is an integral domain; (b) For every x, y ∈ R, if xy ∈ I and x 6∈ I, then
y ∈ I; (c) I is the kernel of a ring homomorphism from R to an integral domain. A proper ideal
satisfying these conditions is called a prime ideal. Show that maximal ideals are prime.

(10) An idempotent element in R is an element e such that e2 = e; an idempotent element is
central if it belongs to the centre of R. Show that if R is a commutative ring and e an idempotent
element, then for every prime ideal I of R, e ∈ I or 1− e ∈ I, and that these conditions are
mutually exclusive.

(11) Show that the set of 2× 2 complex matrices of the form[
a b
−b̄ ā

]
(where ¯(·)) denotes complex conjugation) forms a subring of M2(C). This is called the quater-
nion ring. Show that it can also be described as the ring of all R-linear combinations of the
following four matrices:

I2,
[

ı 0
0 −ı

]
,
[

0 1
−1 0

]
and

[
0 ı
ı 0

]
.

Determine its dimension as a R-vector space.
(12) Let q1, . . . , qr be pairwise relatively prime integers. Show that the natural map Z −→

r
∏
i=1

Z/qiZ is surjective and that it induces an isomorphism Z/(q1 · · · qr)Z −→
r

∏
i=1

Z/qiZ.
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(13) Let Ri, 1 ≤ i ≤ n be rings and R = R1 × · · · × Rn. Show that Ri is a quotient ring of R,
for each i.

(14) Let R be a ring and S the ring of 2× 2 matrices over R. Relate the centres of R and of S.
(15) Give an example of ideals I, J, K ⊆ Z such that I J 6= I ∩ J and (I + J)(I +K) 6= (I + JK).
(16) Let R be a ring and I the two-sided ideal generated by {xy− yx | x, y ∈ I}. Show that

every ring map R −→ S with S commutative has I in its kernel. Hence we can think of I as the
smallest two-sided ideal such that R/I is commutative.

2. SET 2: DUE 2017-JAN-30

(1) Let Mi, i ∈ I and Nλ, λ ∈ Λ be two families of R-modules. Show that the map

HomR(
⊕
i∈I

Mi, ∏
λ∈Λ

Nλ) −→ ∏
(i,λ)∈I×Λ

HomR(Mi, Nλ)

given by g 7→ prλ ◦ g ◦ αi is an isomorphism of abelian groups.
(2) Let M and N be two R-modules and suppose that M is the direct sum of submod-

ules M1, . . . , Mm and N the direct sum of submodules N1, . . . , Nn. By the previous exercise,
HomR(M, N) can be identified with ∏ HomR(Mi, Nj). Show that this identification is as fol-
lows: The element (uji) ∈ ∏ HomR(Mi, Nj) (with uji : Mi −→ Nj) is determined by the maps
xi 7→ ∑j uji(xi) for every xi ∈ Mi for every i. (First observe that in order to define a map
M −→ N, it is enough to define it on each of the Mi.) Now suppose that P is another R-
module that is the direct sum of submodules P1, . . . , Pp. Let v : N −→ P be an R-linear map,
with canonical identification with the family (vkj), with vkj : Nj −→ Pk. Show that the com-
posite map v ◦ u : M −→ P corresponds to the family (∑j vkj ◦ uji).

(3) Let M = M1 ⊕ M2. Show that the restriction to M1 of the canonical surjective map
M −→ M/M2 is an isomorphism.

(4) Let M1 be a submodule of M. We say that M1 is a direct summand (or, sometimes, just
summand) if there is a submodule M2 of M such that M is the direct sum of M1 and M2.

(a) Show that the submodule M2 in the definition above need not be unique. However, any
two are isomorphic to each other.

(b) For a submodule M1 of M to be a direct summand, it is necessary and sufficient that
there exists a projection φ ∈ EndR(M) such that M1 = φ(M) which holds if and only if there
exists a projection φ ∈ EndR(M) such that M1 = ker φ.

(5) Let 0 −→ M1
f−→ M2

g−→ M3 −→ 0 be an exact sequence of R-modules. Then the
following are equivalent:

(a) The submodule f (M1) of M2 is a direct summand.
(b) There exists an R-linear map α : M2 −→ M1 such that α f = idM1 .
(c) There exists an R-linear map β : M3 −→ M2 such that gβ = idM3 .

If these conditions hold, then the map ( f + β) : M1 ⊕M3 −→ M2 is an isomorphism. (We say
that the above exact sequence is a split sequence if these conditions hold.)

3. SET 3: DUE 2017-FEB-13

(1) Say that a module M is free if there is a subset T of M such that the natural map R(T) −→
M is an isomorphism; such a subset is called a basis of M.

(2) Let M be a free R-module with basis xt, t ∈ T. Let N be an R-module, and yt, t ∈ T
elements of N. Then there exists a unique R-map M −→ N such that xt 7→ yt for every t ∈ T.

(3) Let 0 −→ M1 −→ M2 −→ M3 −→ 0 be an exact sequence of R-modules with M3 free.
Show that it is a split sequence.

(4) An R-module is simple if it is non-zero and has no submodules different from 0 and
itself. Show that if R is commutative, then the simple modules are exactly R/m where m is a
two-sided maximal ideal.
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(5) Let ρ : R −→ S be a ring map. Let Mi, i ∈ I be S-modules. Then ρ∗(
⊕

i∈I Mi) =⊕
i∈I ρ∗Mi and ρ∗(∏i∈I Mi) = ∏i∈I ρ∗Mi.
(6) An R-module M is projective if the functor HomR(M,−) is exact, i.e., takes exact se-

quences to exact sequences. Show that M is projective if and only if it takes short exact se-
quences to short exact sequences, or equivalently, if and only if it takes surjective R-maps to
surjective R-maps. Show that free modules are projective.

(7) Show that M is projective if and only if it is a direct summand of a free module. (Hint:
Apply HomR(M,−) to a surjective map F −→ M with F free.)

4. SET 4: DUE 2017-MAR-15

(1) Let I be a two-sided R-ideal and J a left R-ideal. Show that (a) the image of R/I ⊗R J
in R/I (for the natural map R/I ⊗R (J ↪→ R)) is the left R/I-ideal J(R/I) which is I + J/I;
(b) R/I ⊗R R/J is the left R- and R/I-module R/I + J. (c) In particular, if I + J = R (as left
ideals), then R/I ⊗R R/J = 0.

(2) CAUTION: Let M and N be left R-modules. There is no canonical R-module struc-
ture (left or right) on HomR(M, N). In some sense the underlying issue is that, for R-linear
f : M −→ N and r ∈ R, the map M −→ N, x 7→ f (rx) = r f (x) is not necessarily R-linear. It is,
if r is central. However if S is another ring, and M is an (R, S)-bimodule, then the definition
(s · f ) := [x 7→ f (xs)] makes HomR(M, N) into a left S-module. Note (a) that the two mod-
ule structures on M need to be compatible with each other; (b) that there need not be a ring
morphism R −→ S or S −→ R for this to make sense.

(3) Adjoint functors: Let C and D be two categories and F : C −→ D and G : D −→ D
be functors. Say that F is the left adjoint to G (and similarly that G is the right adjoint to F)
if HomD(FA, B) = HomC(A, GB) for every object A ∈ C and B ∈ D. For every A ∈ C,
putting B = FA, we get, corresponding to idFA, a morphism A −→ GFA; this gives a natural
transformation idC −→ GF. Similary we get a natural transformation FG −→ idD. For a ring
morphism ρ : R −→ S, the constructions ρ∗ and ρ∗ are functors, and ρ∗ is right-adjoint to
ρ∗. See (Bourbaki Algebra Chapter II, §5, No. 1, Remark 4) for the definition of a right adjoint
of ρ∗. The R-linear map φM : M −→ ρ∗(ρ∗(M)) is an instance of the natural transformation
idC −→ GF. Similarly we get a map ψN : ρ∗(ρ∗(N)) for S-modules N as an instance of the
natural transformation FG −→ idD. Now, (Bourbaki Algebra Chapter II, §5, No. 2, Proposition
5) can be thought of as an instance of the following property of adjoint functors: FA −→
FGFA −→ FA is idFA and GB −→ GFGB −→ GB is idGB. (You label the arrows!)

(4) Let M ⊆ N ⊆ P be R-modules, each being a submodule of the next. Suppose that N is
a direct summand of P. Then N/M is a direct summand of P/M and, if further M is a direct
summand of N, then it is a direct summand of P. Now suppose that M is a direct summand
of P; then it is a direct summand of N, and if additionally, N/M is a direct summand of P/M,
then N is direct summand of P.

(5) Let M and N be left R-modules and let M∗ := HomR(M, RR), endowed with the canon-
ical right R-module structure. There is a natural map τM,N : M∗ ⊗R N −→ HomR(M, N),
f ⊗ y 7→ [x 7→ f (x)y]. Show that this is neither injective nor surjective in general by using the
following example: R = Z/(4), I = 2R, M = N = R/I.

(6) If S is an R-algebra and M and N S-modules, then the natural map HomS(M, N) −→
HomR(M, N) is injective.

(7) Let M be an R-module. Let C be the centre of R; then there is a natural map C −→
EndR(M) (but not necessarily R −→ EndR(M)) and the C-module structure (induced from
the R-module structure) is also induced from the EndR(M)-module structure on M. Hence
EndEndR(M)(M) ⊆ EndC(M). Now suppose that k is a field and M a finite-dimensional k-
vector-space. Let R = Endk(M). Then every R-endomorphism of M is given by multiplication
by an element of k.

(8) Let R be a division ring and M an R-module. Show that M is free.
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(9) Let E be a ring and B a subset of E. Write B′ and B′′ for its commutant and bicommutant
respectively. Show that B ⊆ B′′ and that B′ equals its bicommutant. Suppose that B is a
commutative subring of E. Then B is a central subring of B′ and B′′ is the centre of B′.

(10) Let M be an R-module and N a subset of M. The annihilator of N is the set {r ∈ R |
rx = 0 for every x ∈ N}, denoted by Ann(N). Show that Ann(N) is a left ideal of R. If N is a
submodule of N, then Ann(N) is a two-sided ideal of R.

(11) Let D be a division ring, M a free D-module of rank n and R = EndD(M). Since R is
simple and M is the unique simple R-module (up to isomorphism), RR has a filtration by left
R-ideals such that the quotients are isomorphic to M. Find one such filtration.

5. SET 5: DUE 2017-MAR-30 FINAL VERSION

(1) Let k be a commutative ring, R a k-algebra (so, by definition, the image of k in R is a
central subring of R), and M an R-module. Then the ring of homotheties RM, the commutant,
and the bicommutant of M are subrings of Endk(M).

(2) Prove the Burnside Theorem: Let k be an algebraically closed field and R a k-algebra.
Let M be a simple R-module that is finite-dimensional as a k-vector-space. Then the natural
map R −→ Endk(M) is surjective. (Hint: Endk(M) is the bicommutant of M. Now apply the
density theorem to a k-basis B of M.)

(3) Let R be a semisimple ring. Show that every R-module is projective.
(4) Let f : G −→ k be a function. Then the following are equivalent:
(a) f (gh) = f (hg) for every g, h ∈ G;
(b) f (ghg−1) = f (h) for every g, h ∈ G.

A function f : G −→ k is said to be a class function if it satisfies the equivalent conditions above.
(5) Show that {sg | g ∈ C} is linearly independent over k.

6. EXTRA PROBLEMS

(1) Let G be a finite group and H a subgroup of G. Let M be a k[H]-module that is finitely
generated as a k-module. For r ∈ G/H, write Mr for an isomorphic (as a k[H]-module) copy
of M. Make ⊕

r∈G/H

Mr

into a k[G]-module by
g ((xr)r∈G/H) := (xg−1r)r∈G/H.

(I.e., y ∈ Mr = M goes to y ∈ Mgr = M.) Show that this k[G]-module is isomorphic to
the induced module IndG

H(M). (Show this for M = k[G] and show that the induced module
k[G]⊗k[H] M fits the description above.)
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