GRADUATE ALGEBRA II, JAN-APR 2017. PROBLEM SETS

MANOJ KUMMINI

1. Set 1: Due 2017-Jan-16

(1) Using the distributive property, show the following, for every $x, y \in R$: 0x = x0 = 0; x(-y) = (-y)x = -(xy); (-x)(-y) = xy.

(2) For $x \in R$, the *left homothety* λ_x (respectively, *right homothety* ρ_x) is the map $R \longrightarrow R$, $y \mapsto xy$ (respectively, $y \mapsto yx$). Show that these are endomorphisms of the additive group of R.

(3) Show that |R| = 1 if and only if 0 = 1, in which case $R = \{0\}$. This is the zero ring.

(4) Let *X* be a subset of *R*. Show that the centralizer of *X* in *R* is a subring of *R*. The centre of *R* is a commutative subring.

(5) Show that the endomorphism ring of the additive group \mathbb{Z} is isomorphic to the ring \mathbb{Z} .

(6) Let *X* be a subset of *R*. The *left annihilator* of *X* in *R* is the set $\{y \in R \mid yx = 0 \text{ for every } x \in X\}$. Show that it is a left ideal.

(7) Let $f : R \longrightarrow S$ be a ring homomorphism. Write $\pi : R \longrightarrow R / \ker(f)$ and $\iota : \operatorname{Im}(f) \longrightarrow S$. Show that there is a ring homomorphism \overline{f} such that $f = \iota \overline{f} \pi$. Show that it is an isomorphism.

(8) Say that $x \in R$ is *left-invertible* (respectively, *right-invertible*) if there exists $y \in R$ such that yx = 1 (respectively, xy = 1). Show that x is left-invertible (respectively, right-invertible) if and only if the right homothety (respectively, left homothety) is surjective. Show that x is invertible if and only if it is left- and right-invertible. Show that in this case, the inverse of x is unique, and that this element is also the unique left- and right-inverses.

(9) An *integral domain* is a commutative ring that is non-zero and that does not have any zero-divisors. Let *R* be a commutative ring and *I* an *R*-ideal. Show that the following are equivalent: (a) R/I is an integral domain; (b) For every $x, y \in R$, if $xy \in I$ and $x \notin I$, then $y \in I$; (c) *I* is the kernel of a ring homomorphism from *R* to an integral domain. A proper ideal satisfying these conditions is called a *prime ideal*. Show that maximal ideals are prime.

(10) An *idempotent* element in *R* is an element *e* such that $e^2 = e$; an idempotent element is *central* if it belongs to the centre of *R*. Show that if *R* is a commutative ring and *e* an idempotent element, then for every prime ideal *I* of *R*, $e \in I$ or $1 - e \in I$, and that these conditions are mutually exclusive.

(11) Show that the set of 2×2 complex matrices of the form

$$\begin{bmatrix} a & b \\ -\bar{b} & \bar{a} \end{bmatrix}$$

(where (\cdot)) denotes complex conjugation) forms a subring of $M_2(\mathbb{C})$. This is called the *quaternion ring*. Show that it can also be described as the ring of all \mathbb{R} -linear combinations of the following four matrices:

$$I_{2}$$
, $\begin{bmatrix} \iota & 0\\ 0 & -\iota \end{bmatrix}$, $\begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & \iota\\ \iota & 0 \end{bmatrix}$.

Determine its dimension as a **R**-vector space.

(12) Let q_1, \ldots, q_r be pairwise relatively prime integers. Show that the natural map $\mathbb{Z} \longrightarrow \prod_{i=1}^r \mathbb{Z}/q_i\mathbb{Z}$ is surjective and that it induces an isomorphism $\mathbb{Z}/(q_1 \cdots q_r)\mathbb{Z} \longrightarrow \prod_{i=1}^r \mathbb{Z}/q_i\mathbb{Z}$.

MANOJ KUMMINI

(13) Let R_i , $1 \le i \le n$ be rings and $R = R_1 \times \cdots \times R_n$. Show that R_i is a quotient ring of R, for each i.

(14) Let *R* be a ring and *S* the ring of 2×2 matrices over *R*. Relate the centres of *R* and of *S*.

(15) Give an example of ideals $I, J, K \subseteq \mathbb{Z}$ such that $IJ \neq I \cap J$ and $(I + J)(I + K) \neq (I + JK)$.

(16) Let *R* be a ring and *I* the two-sided ideal generated by $\{xy - yx \mid x, y \in I\}$. Show that every ring map $R \longrightarrow S$ with *S* commutative has *I* in its kernel. Hence we can think of *I* as the smallest two-sided ideal such that R/I is commutative.

2. Set 2: Due 2017-Jan-30

(1) Let M_i , $i \in \mathcal{I}$ and N_{λ} , $\lambda \in \Lambda$ be two families of *R*-modules. Show that the map

$$\operatorname{Hom}_{R}(\bigoplus_{i\in\mathcal{I}}M_{i},\prod_{\lambda\in\Lambda}N_{\lambda})\longrightarrow\prod_{(i,\lambda)\in\mathcal{I}\times\Lambda}\operatorname{Hom}_{R}(M_{i},N_{\lambda})$$

given by $g \mapsto \operatorname{pr}_{\lambda} \circ g \circ \alpha_i$ is an isomorphism of abelian groups.

(2) Let M and N be two R-modules and suppose that M is the direct sum of submodules M_1, \ldots, M_m and N the direct sum of submodules N_1, \ldots, N_n . By the previous exercise, $\operatorname{Hom}_R(M, N)$ can be identified with $\prod \operatorname{Hom}_R(M_i, N_j)$. Show that this identification is as follows: The element $(u_{ji}) \in \prod \operatorname{Hom}_R(M_i, N_j)$ (with $u_{ji} : M_i \longrightarrow N_j$) is determined by the maps $x_i \mapsto \sum_j u_{ji}(x_i)$ for every $x_i \in M_i$ for every i. (First observe that in order to define a map $M \longrightarrow N$, it is enough to define it on each of the M_i .) Now suppose that P is another R-module that is the direct sum of submodules P_1, \ldots, P_p . Let $v : N \longrightarrow P$ be an R-linear map, with canonical identification with the family (v_{kj}) , with $v_{kj} : N_j \longrightarrow P_k$. Show that the composite map $v \circ u : M \longrightarrow P$ corresponds to the family $(\sum_j v_{kj} \circ u_{ji})$.

(3) Let $M = M_1 \oplus M_2$. Show that the restriction to M_1 of the canonical surjective map $M \longrightarrow M/M_2$ is an isomorphism.

(4) Let M_1 be a submodule of M. We say that M_1 is a *direct summand* (or, sometimes, just *summand*) if there is a submodule M_2 of M such that M is the direct sum of M_1 and M_2 .

(a) Show that the submodule M_2 in the definition above need not be unique. However, any two are isomorphic to each other.

(b) For a submodule M_1 of M to be a direct summand, it is necessary and sufficient that there exists a projection $\phi \in \text{End}_R(M)$ such that $M_1 = \phi(M)$ which holds if and only if there exists a projection $\phi \in \text{End}_R(M)$ such that $M_1 = \ker \phi$.

(5) Let $0 \longrightarrow M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Then the following are equivalent:

(a) The submodule $f(M_1)$ of M_2 is a direct summand.

(b) There exists an *R*-linear map $\alpha : M_2 \longrightarrow M_1$ such that $\alpha f = id_{M_1}$.

(c) There exists an *R*-linear map $\beta : M_3 \longrightarrow M_2$ such that $g\beta = id_{M_3}$.

If these conditions hold, then the map $(f + \beta) : M_1 \oplus M_3 \longrightarrow M_2$ is an isomorphism. (We say that the above exact sequence is a *split* sequence if these conditions hold.)

3. Set 3: Due 2017-Feb-13

(1) Say that a module *M* is *free* if there is a subset *T* of *M* such that the natural map $R^{(T)} \rightarrow M$ is an isomorphism; such a subset is called a *basis* of *M*.

(2) Let *M* be a free *R*-module with basis $x_t, t \in T$. Let *N* be an *R*-module, and $y_t, t \in T$ elements of *N*. Then there exists a unique *R*-map $M \longrightarrow N$ such that $x_t \mapsto y_t$ for every $t \in T$.

(3) Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules with M_3 free. Show that it is a split sequence.

(4) An *R*-module is *simple* if it is non-zero and has no submodules different from 0 and itself. Show that if *R* is commutative, then the simple modules are exactly R/m where m is a two-sided maximal ideal.

(5) Let $\rho : R \longrightarrow S$ be a ring map. Let $M_i, i \in \mathcal{I}$ be *S*-modules. Then $\rho_*(\bigoplus_{i \in \mathcal{I}} M_i) = \bigoplus_{i \in \mathcal{I}} \rho_* M_i$ and $\rho_*(\prod_{i \in \mathcal{I}} M_i) = \prod_{i \in \mathcal{I}} \rho_* M_i$.

(6) An *R*-module *M* is *projective* if the functor $\text{Hom}_R(M, -)$ is exact, i.e., takes exact sequences to exact sequences. Show that *M* is projective if and only if it takes short exact sequences to short exact sequences, or *equivalently*, if and only if it takes surjective *R*-maps to surjective *R*-maps. Show that free modules are projective.

(7) Show that *M* is projective if and only if it is a direct summand of a free module. (Hint: Apply Hom_{*R*}(*M*, –) to a surjective map $F \longrightarrow M$ with *F* free.)

4. Set 4: Due 2017-Mar-15

(1) Let *I* be a two-sided *R*-ideal and *J* a left *R*-ideal. Show that (a) the image of $R/I \otimes_R J$ in R/I (for the natural map $R/I \otimes_R (J \hookrightarrow R)$) is the left R/I-ideal J(R/I) which is I + J/I; (b) $R/I \otimes_R R/J$ is the left *R*- and R/I-module R/I + J. (c) In particular, if I + J = R (as left ideals), then $R/I \otimes_R R/J = 0$.

(2) CAUTION: Let *M* and *N* be left *R*-modules. There is no canonical *R*-module structure (left or right) on $\text{Hom}_R(M, N)$. In some sense the underlying issue is that, for *R*-linear $f : M \longrightarrow N$ and $r \in R$, the map $M \longrightarrow N, x \mapsto f(rx) = rf(x)$ is not necessarily *R*-linear. It is, if *r* is central. However if *S* is another ring, and *M* is an (*R*, *S*)-bimodule, then the definition $(s \cdot f) := [x \mapsto f(xs)]$ makes $\text{Hom}_R(M, N)$ into a *left S*-module. Note (a) that the two module structures on *M* need to be compatible with each other; (b) that there need not be a ring morphism $R \longrightarrow S$ or $S \longrightarrow R$ for this to make sense.

(3) Adjoint functors: Let C and D be two categories and $F : C \longrightarrow D$ and $G : D \longrightarrow D$ be functors. Say that F is the *left adjoint* to G (and similarly that G is the *right adjoint* to F) if $\text{Hom}_{\mathcal{D}}(FA, B) = \text{Hom}_{\mathcal{C}}(A, GB)$ for every object $A \in C$ and $B \in D$. For every $A \in C$, putting B = FA, we get, corresponding to id_{FA} , a morphism $A \longrightarrow GFA$; this gives a natural transformation $\text{id}_{\mathcal{C}} \longrightarrow GF$. Similarly we get a natural transformation $FG \longrightarrow \text{id}_{\mathcal{D}}$. For a ring morphism $\rho : R \longrightarrow S$, the constructions ρ_* and ρ^* are functors, and ρ_* is right-adjoint to ρ^* . See (Bourbaki *Algebra* Chapter II, §5, No. 1, Remark 4) for the definition of a right adjoint of ρ_* . The *R*-linear map $\phi_M : M \longrightarrow \rho_*(\rho^*(M))$ is an instance of the natural transformation $\text{id}_{\mathcal{C}} \longrightarrow GF$. Similarly we get a map $\psi_N : \rho^*(\rho_*(N))$ for *S*-modules *N* as an instance of the natural transformation $FG \longrightarrow \text{id}_{\mathcal{D}}$. Now, (Bourbaki *Algebra* Chapter II, §5, No. 2, Proposition 5) can be thought of as an instance of the following property of adjoint functors: $FA \longrightarrow$ $FGFA \longrightarrow FA$ is id_{FA} and $GB \longrightarrow GFGB \longrightarrow GB$ is id_{GB} . (You label the arrows!)

(4) Let $M \subseteq N \subseteq P$ be *R*-modules, each being a submodule of the next. Suppose that *N* is a direct summand of *P*. Then *N*/*M* is a direct summand of *P*/*M* and, if further *M* is a direct summand of *N*, then it is a direct summand of *P*. Now suppose that *M* is a direct summand of *P*; then it is a direct summand of *N*, and if additionally, *N*/*M* is a direct summand of *P*. Then *N* is direct summand of *P*.

(5) Let *M* and *N* be left *R*-modules and let $M^* := \text{Hom}_R(M, _RR)$, endowed with the canonical right *R*-module structure. There is a natural map $\tau_{M,N} : M^* \otimes_R N \longrightarrow \text{Hom}_R(M, N)$, $f \otimes y \mapsto [x \mapsto f(x)y]$. Show that this is neither injective nor surjective in general by using the following example: $R = \mathbb{Z}/(4)$, I = 2R, M = N = R/I.

(6) If *S* is an *R*-algebra and *M* and *N S*-modules, then the natural map $\text{Hom}_S(M, N) \longrightarrow \text{Hom}_R(M, N)$ is injective.

(7) Let *M* be an *R*-module. Let *C* be the centre of *R*; then there is a natural map $C \longrightarrow \text{End}_R(M)$ (but not necessarily $R \longrightarrow \text{End}_R(M)$) and the *C*-module structure (induced from the *R*-module structure) is also induced from the $\text{End}_R(M)$ -module structure on *M*. Hence $\text{End}_{\text{End}_R(M)}(M) \subseteq \text{End}_C(M)$. Now suppose that \Bbbk is a field and *M* a finite-dimensional \Bbbk -vector-space. Let $R = \text{End}_{\Bbbk}(M)$. Then every *R*-endomorphism of *M* is given by multiplication by an element of \Bbbk .

(8) Let *R* be a division ring and *M* an *R*-module. Show that *M* is free.

(9) Let *E* be a ring and *B* a subset of *E*. Write *B'* and *B''* for its commutant and bicommutant respectively. Show that $B \subseteq B''$ and that *B'* equals its bicommutant. Suppose that *B* is a commutative subring of *E*. Then *B* is a central subring of *B'* and *B''* is the centre of *B'*.

(10) Let *M* be an *R*-module and *N* a subset of *M*. The *annihilator* of *N* is the set $\{r \in R \mid rx = 0 \text{ for every } x \in N\}$, denoted by Ann(*N*). Show that Ann(*N*) is a left ideal of *R*. If *N* is a submodule of *N*, then Ann(*N*) is a two-sided ideal of *R*.

(11) Let *D* be a division ring, *M* a free *D*-module of rank *n* and $R = \text{End}_D(M)$. Since *R* is simple and *M* is the unique simple *R*-module (up to isomorphism), $_RR$ has a filtration by left *R*-ideals such that the quotients are isomorphic to *M*. Find one such filtration.

5. Set 5: Due 2017-Mar-30 Final Version

(1) Let \Bbbk be a commutative ring, R a \Bbbk -algebra (so, by definition, the image of \Bbbk in R is a central subring of R), and M an R-module. Then the ring of homotheties R_M , the commutant, and the bicommutant of M are subrings of End $_{\Bbbk}(M)$.

(2) Prove the Burnside Theorem: Let \Bbbk be an algebraically closed field and R a \Bbbk -algebra. Let M be a simple R-module that is finite-dimensional as a \Bbbk -vector-space. Then the natural map $R \longrightarrow \operatorname{End}_{\Bbbk}(M)$ is surjective. (Hint: $\operatorname{End}_{\Bbbk}(M)$ is the bicommutant of M. Now apply the density theorem to a \Bbbk -basis B of M.)

(3) Let *R* be a semisimple ring. Show that every *R*-module is projective.

(4) Let $f : G \longrightarrow \Bbbk$ be a function. Then the following are equivalent:

(a) f(gh) = f(hg) for every $g, h \in G$;

(b) $f(ghg^{-1}) = f(h)$ for every $g, h \in G$.

A function $f : G \longrightarrow \Bbbk$ is said to be a *class function* if it satisfies the equivalent conditions above. (5) Show that $\{s_g \mid g \in C\}$ is linearly independent over \Bbbk .

6. EXTRA PROBLEMS

(1) Let *G* be a finite group and *H* a subgroup of *G*. Let *M* be a $\Bbbk[H]$ -module that is finitely generated as a \Bbbk -module. For $r \in G/H$, write M_r for an isomorphic (as a $\Bbbk[H]$ -module) copy of *M*. Make

$$\bigoplus_{r\in G/H} M$$

into a $\Bbbk[G]$ -module by

$$g((x_r)_{r\in G/H}) := (x_{g^{-1}r})_{r\in G/H}$$

(I.e., $y \in M_r = M$ goes to $y \in M_{gr} = M$.) Show that this $\Bbbk[G]$ -module is isomorphic to the induced module $\operatorname{Ind}_{H}^{G}(M)$. (Show this for $M = \Bbbk[G]$ and show that the induced module $\Bbbk[G] \otimes_{\Bbbk[H]} M$ fits the description above.)

CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA E-mail address: mkummini@cmi.ac.in