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OUTLINE

(1) Basic ring theory: examples, ideals and modules; centre, algebras; radical; artinian and
noetherian rings; review of tensor products.

(2) Semisimplicity: Artin-Wedderburn theorem; Jacobson density theorem;

(8) Group rings: Schur’s lemma.

(4) Introduction to representation theory: chiefly finite groups; somethings about reduc-
tive groups.

References.

(1) N. Bourbaki, Algebra, Ch. I.

(2) N. Bourbaki, Algebre, Ch. VIII, Springer, 2012 (the revised edition; in French.) This is
our primary reference for semi-simplicity.

(3) N. Jacobson, Basic Algebra I and II.

(4) S. Lang, Algebra.

(5) Appendix “A short digest of non-commutative algebra” inJ. A. Dieudonné and J. B. Car-
rell, Invariant theory, old and new Adv. in Math. 1970.

1. BASIC RING THEORY . X
section:basic

For the most part, we will follow Bourbaki, Algebra, Ch. I, using Jacobson and Lang for
supporting material and exercises.

1.1. Definition. A ring is a set R with two operations + (addition) and - (multiplication) such
that

(1) (R, +) is an abelian group;

(2) multiplication is associative and has an identity;

(3) multiplication is distributive over addition, i.e., for all a,b,¢ € R, a(b+c¢) = ab + ac
and (a + b)c = ab + bc.

If the multiplication is commutative, then we say that R is a commutative ring.

1.2. Remark. We denote the additive identity by 0 and the multiplicative identity by 1. We will
refer to (R, +) as the additive group of R.

1.3. Example. (1) Z, Q, R and C are commutative rings, with the usual addition and multi-
plication.

(2) Rings of functions: Let R be a ring and X a set. The set of functions from X to R form a
ring as follows. For functions f, g : X — R, set (f + g) to be the function x — f(x) +g(x), x €
X and fg be the function x — f(x)g(x), x € X. The additive identity is the constant function
x — 0 and the multiplicative identity is the constant function x +— 1. If R is commutative, then
this ring is commutative. By imposing conditions on X, on R and on the functions that we
are interested in, we get many variants of this construction: For example, if X is a topological
space, we can consider the ring of continuous R-valued functions, the ring of continuous C-
valued functions etc.
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2 MANOJ] KUMMINI

(3) Endomorphism rings: Let G be an abelian group, written additively. Let R be the set
of group endomorphisms of G, made into a ring as follows: for endomorphisms &, B of G,
set & + 8 to be the function g — a(g) + B(g) and ap to be function ¢ — «(B(g)). These are
endomorphisms of G. The additive identity is the zero endomorphism ¢ — 0, ¢ € G and
the multiplicative identity is is the identity map ¢ — g, ¢ € G. Endomorphism rings are not
commutative, in general.

(4) A variant of the previous construction: Let k be a field and V a k-vector-space. On the
set of all k-linear endomorphisms of V, define addition and multiplication as earlier, to get a
ring. This is usually denoted as Endy (V). If V = k", then this ring can be thought of as the set
M, (k) of matrices, with usual matrix addition and usual matrix multiplication.

(5) In general, if R is a ring then the set M,,(R) of n x n matrices with entries in R can be
made into a ring with usual matrix addition and usual matrix multiplication.

1.4. Definition. Let R be a ring, and X a subset of R. The centralizer of X is {r € R : rx =
xr for every x € X}. The centre of R is the centralizer of R.

1.5. Definition. A invertible element of R is an element r such that there exists s such that
rs = sr = 1. A nilpotent element of R is an element r such that there exists n > 1 such that
" = 0. An idempotent element of R is an element r such that r? = r.

If r is nilpotent, then1 =1 —7" = (1 —r)(14+7r+--- +7""1),s0 1 — r is invertible.

1.6. Definition. Let R and S be rings. A ring homomorphism f : R — S is a function f such
that f(x +y) = f(x)+ f(y), f(xy) = f(x)f(y) and f(1) = 1, for all x,y € R. A ring homo-
morphism f : R — S is an isomorphism if there exists a ring homomorphism g : S — R
such that ¢f = idg and fg = ids. An endomorphism of R is a homomorphism R — R; an
endomorphism is an automorphism if it is additionally an isomorphism.

1.7. Remark. (1) Since R and S are abelian groups, the requirement f(x +y) = f(x) + f(y)
for all x,y € R forces f to be a map of abelian groups. (Hint: apply withy = O and y =
—x.) Hence we may think of a ring homomorphism as a homomorphism of abelian groups f
satisfying f(xy) = f(x)f(y) and f(1) =1, forallx,y € R

(2) Most rings that we look at a natural multiplicative identity, and the most natural func-
tions between these rings take the multiplicative identity of one ring to that of another ring;
see the examples above. Therefore we require that f(1) = 1 in the definition of ring homomor-
phisms.

(3) For a ring homomorphism to be an isomorphism, it is necessary and sufficient that it is
bijective. (Hint: Let f : R — S be a bijective ring homomorphism. Show that the inverse
function f~! : S — R is a ring homomorphism.)

1.8. Definition. Let R be a ring. A subring of R is a subset S that is an abelian subgroup of R, is
closed under multiplication and contains the multiplicative identity.

In other words, the subset S is a ring (on its own) and the inclusion map S C R is a ring
morphism. Examples of subrings are:

1) ZCQCRCC

(2) the natural inclusion (as the constant polynomials) of R inside R[X].

(3) For every subset X, its centralizer is a subring of R. In particular, the centre of R is a
commutative subring of R.

1.9. Definition. A left ideal (respectively, right ideal) of R is an abelian subgroup I such that for
everyr € Rand a € I, ra € I (respectively, ar € I. A two-sided ideal is an abelian subgroup that
is both a left-ideal and a right-ideal. A maximal left ideal (respectively, maximal right ideal) is a
left ideal that is distinct from R and is maximal (by inclusion) among left ideals (respectively,
right ideals).
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In the following, most of the statements we make about left ideals will hold, mutatis mutan-
dis, for right ideals and two-sided ideals also.

1.10. Theorem. Let R be a ring and I C R a left ideal. Then there exists a maximal left ideal containing
L

Proof. Let P be the collection of all the left ideals distinct from R containing I. It is non-empty
since ] € P.If [,A € Ais achainin P, then Uycpl) is a left ideal and hence an upper bound
for the chain. By Zorn’s lemma, P has a maximal element. U

1.11. Discussion. Let X C R be a subset. Then the collection of finite sums Y_r,x), where
ry € Rand x, € X is a left ideal. Let I,,A € A be a family of left ideals. Then the collect of
finite sums }_, , wherery € Rand a, € I, form a left ideal, called the sum of I,A € A and
denoted Y ca In.

1.12. Definition. Let R be aring and I a two-sided R-ideal. The quotient ring R/ is the abelian
group R/I with multiplication defined by 75 = 7's, where (.) denote the coset modulo I.

This definition forces the multiplicative identity of R/ to be 1, and the natural map R —
R/1 to be a ring homomorphism.

1.13. Proposition. Let R, Ry, ..., R, be rings. Then R is isomorphic to [Ti_ R; if and only if there
exist two-sided R-ideals Iy,...,I, such that R; is isomorphic to R/I; for every i and such that the
natural map R — TT'_; R/ I; is an isomorphism.

Proof. ‘If’ is immediate. ‘Only if”: Let ¢ : R — []'_; R;. Write pr; for the projection [T R; —
R;. Define I; := ker(pr; - ¢). Since pr; - ¢ is surjective, we get an isomorphism f; : R/I; — R;.
The proposition now follows from the commutativity of the following diagram:

R 4
|
[Tio R/Li
and the observation that [T}, f; is an isomorphism. O

theorem:productdecompositionofrings

1.14. Theorem. Let R be a ring, S its centre and I, . . ., I, two-sided R-ideals. Then the following are

n
i—1 Ri

equwalent: theorem:productdecompositionofrings:product

(1) The natural map R — Hznzl R’/ﬁéoﬁ?éﬂ’l ﬁ‘yﬂgwégggmpositionofrings:centralidempotents
(2) There exist idempotents ey, ...,e, € S such that eej = 0 forall i # j, Y 1e; = 1 and

I = R(l - ei) theorem:productdecompositionofrings:comaximal

(3) Foralli # ]" Ii + If = Rand m?=1 Ii':h:eOQ‘em:productdecompositionofrings:extendedideals
(4) There exist ideals J1,..., ], of S such that the map S — [1i_1 S/]; is an isomorphism and
I; = R]J; for every i.

Proof. TBD. O

1.15. Definition. A left R-module M is an abelian group M with an R-action R x M — M
satisfying (r +s)m = rm +sm, (sr)m = s(rm) and 1m = m for allv,s € Rand m € M. A
right R-module M is an abelian group M with an R-action M x R — M satisfying m(r +s) =
mr + ms, m(rs) = (mr)s and m1 = m. A homomorphism of R-modules is a map f : M — N that
is a morphism of abelian groups and satisfies R-linearity: f(rx) = r(f(x)) for every r € R and
x € M. The set of R-homomorphisms from M to N is denoted Homg (M, N).

If M is a left (respectively, right) R-module, then, for every r € R, themap h, : M — M,
x — rx (respectively, x — xr) is a morphism of abelian groups called the left homothety (respec-
tively, right homothety) defined by r. Homotheties are not R-homomorphisms in general (since
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4 MANOJ] KUMMINI

hy(sx) need not equal s(h,(x)) unless rs = sr); if r is central, then &, is a R-homomorphism. The
map R — Endz (M) r — h, is a ring homomorphism. Its image in Endz (M) is called the ring
of homotheties (more precisely the ring of R-homotheties)of M and is denoted Rys. Conversely, if
M is an abelian group, then every ring homomorphism R — Endz(M) defines an R-module
structure on M.

The set Homg (M, N) does not have any ‘natural’” R-module structure, even with N = M, for
more-or-less the same reason why homotheties are not R-homomorphisms. Similarly, there is
no ‘natural’ ring map from R — Endg(M). The map r + h, from the centre of R of Endg(M)
is a ring map, since central homotheties are R-homomorphisms.

Hereafter, unless otherwise mentioned, by a module, we mean a left module.

If M), A € Ais a family of R-modules, then the cartesian product [ ], 5 M, has a natural R-
module structure 7(x) ) en = (rx3)rea. Itis also a product in the category of R-modules, i.e.,
if fA : N — M, are R-homomorphisms, then there is a unique R-homomorphism f : N —
[Trea My such that fy = pr, - f where the pr, are the projection maps. Therefore [T cx Ma
is called the product module of the family M,,A € A. The (external) direct sum of the family
My, A € Ais the submodule {y € [Tyca My | pr,(y) = 0 except for finitely many A} and is
denoted ) M). Fix A € A, and consider the family of R-homomorphisms f, : My — M,
i € A, defined by

. idMA, lf‘u = )\;
fu= 0, otherwise.

Therefore there is a map 1) : My, — HHGA M, such that pr, o)y = idy;, and pr, o = 0 for
every y # A. Since 1) is injective, it identifies M, with the submodule {(x,)uean € TTyen My |
xy = 0 forevery p # A}. Moreover Im(1y) C @yep My so 1y (by abuse of notation) will
be thought of as an R-homomorphism M, — @, ca M. Direct sum is a co-product in the
category of R-modules: if fy, : My — N are R-homomorphisms, then there is a unique R-
homomorphism f : @,can My — N such that f = f-1,.

proposition:directsumofsubmodules
1.16. Proposition. Let M be an R-module, and Ny, A € A a family of submodules of M. Then the
following are equivalent:
(1) Xren Nx = @ren Nus
(2) If Yren xa = 0, with x) € N, for every A € A, then x) = 0 for every A € A.
(3) forevery A € A, Nx N Yuea Ny =0.

Proof. TBD O

If X is a set and R a ring, RX (the cartesian product of a family indexed by X, with each
member being R) is both the product ring (when this family is thought of as a family of rings)
and the product R-module (when this family is thought of as a family of R-modules). By
RX), we mean the direct sum of this family of R-modules. For x € X, the image of 1 under
Iy : R — R is denoted by e,. Then every element of R(X) can be uniquely expressed a finite
sum )_,cx "xey. This construction has the following property: if M is an R-module and X C M,
then there exists a unique R-homomorphism R*X) — M with e, + x. An R-module M is said
to be free if there exists a subset X C M such that the R-homomorphism RX) —s M, e, —> x

is an isomorphism.
definition:simplemodules

1.17. Definition. An R-module M is said to be simple if it has no submodules different from M
and 0.

example:simplemodules

1.18. Example. We give some examples of simple modules.
(1) rR simpleif and only if 0 is a maximal left ideal, which holds if and only if R is a division
ring. Indeed, if R is a division ring, then every non-zero element generates the unit ideal, so 0
is a maximal left ideal. Conversely, suppose that 0 is a maximal left ideal (which implies that
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1 #0)and let0 # r € R. Then Rr = R, so there exists 0 # ' € R such that r'r = 1, and,
furthermore, 0 # " € R such that v’ = 1. Hence r’ is left-invertible and right-invertible, so
it is invertible and its inverse is r = r”. Hence r is invertéaktuple : simplemodules: fgoverdivring

(2) Let D be a division ring and M a finitely generated D-module. Then M is free. Write
R = Endp(M). We now argue that M is a simple R-module. More precisely, we show the
following: let 0 # x € M and y € M; then there exists ¢ € R such that ¢(x) = y. To this end,
let f € M* be such that f(x) = 1 and define ¢ € R as the map v — f(v)y.

(3) More examples to come.

1.19. Proposition. Let M be an R-module. An R-submodule N C M is maximal among the proper
R-submodules of M if and only if the quotient M/ N is simple. If My C M is an R-submodule, then
there exists An R-submodule N C M that is maximal among the proper R-submodules of M containing
M;.

Proof. TBD. O

definition: jhseries
1.20. Definition. A Jordan-Holder series of M is a decreasing filtration M = My 2 My 2 --- D
M; = 0 of submodules such that for every 1 < i <'s, M;_1/M,; is a simple R-module; the
integer s above is the length of the above Jordan-Holder series. Say that an R-module N is of
finite length (or is a finite length module) if N has a Jordan-Holder series.

remark: jhseriessubsquotients
1.21. Remark. Let M = My 2 M; D --- 2 M = 0 be a Jordan-Holder series of M and N a
submodule of M. Then (NN M;_1)/(N N M;) is a submodule of M;_1/M;, so it is either 0 or
simple. Hence by deleting repetitions from among the modules N N M;, we obtain a Jordan-
Holder series of N. Similarly (N + M;_1)/(N + M;) is a quotient of M;_1/M;, so by deleting
repetitions from among the modules (N + M;)/N, we obtain a Jordan-Holder series of M/ N.

proposition: jhserieslength
1.22. Proposition. Let M = Mo D M; 2 --- D My =0and M = Ny D Ny 2 --- D Ny = 0be
two Jordan-Holder series of M. Then s = t and there exists a permutation o of {1,...,s} such that for
every 1 <i <s, Ni_1/Ni = Mg(i_1)/ My(i)-

Proof. Without loss of generality, 1 < s < t. If s = 1, then M is simple, so the assertions are
true. We proceed by induction. Assume that the assertions are true for all R-modules that have
a Jordan-Holder series of length at most s — 1. If M; = Nj, then by induction, the assertions
hold for M; = Nj, so they hold for M. Therefore we may assume that M; # Nj.

Note that Ny ¢ Mj; for, otherwise, we have Ny C M; C M, violating the simplicity of
M/N;. Similarly M; ¢ Nj. Write K = M; N N;. Then M; C M; + Nj, so the simplicity of
M/ M, implies that M; 4+ Ny; hence, M;/K ~ M/Nj is simple. Similarly N;/K ~ M/M; is
simple.

The assertions of the proposition hold for M;, by induction. Let K = Ko 2 Ky 2 --- D K, =
0 be a Jordan-Holder series of K. Then M; D K D K; 2 --- 2 K, = 01is a Jordan-Holder series
of M;. Hence s — 1 = r + 1, and the quotients in this Jordan-Holder series are the same as the
quotients in the series M; 2 - - - 2D M = 0 after a suitable permutation.

Now, N; 2 K2 K; 2 --- 2 K, = 0is a Jordan-Holder series of Nj of lengthr +1 =5 —1,
so, by induction, the assertions hold for N;. Therefore t —1 = s — 1 and the the quotients in

this Jordan-Holder series are the same as the quotients in the series Ny 2 --- 2 N; = 0 after

a suitable permutation. Hence the assertions hold for the two given Jordan-Holder series of

M. O
EXERCISES

exercise:fdalgoveralgclosed

(1) Let k be an algebraically closed field and R a finite-dimensional k-algebra that has no

zero-divisors. Show that k = R. (Hint: Let 0 # r € R. Show that there is a map of k-algebras
k[X] — R, X — r. What about the kernel of this map?)
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exercise:faithful
(2) An R-module M is faithful if its annihilator is 0. Show that M is faithful if and only if the
map R — Ry (the ring of homotheties) is injective.

2. CHANGE OF RINGS

Let M be a right R-module and N a left R-module. The tensor product of M and N, denoted
M ®g N, is the abelian group Z™*N) /B, where B is the subgroup generated by the elements
(x+x"y)— (xvy)— (xy), (x,y+¥y) = (x,y) — (x,¥) and (xr,y) — (x,ry) for all x,x’ € M,
v,y € Nand r € R. The image of (x,y) € ZM*N) under the canonical surjective map
ZWMxN) _ M ®g N is denoted by x ®g y. The set {x @ry | x € M,y € N} generate M ®g N
as an abelian group. There is no natural R-module structure on M ®r N: if we try to define
r(x®@ry) == (xr ®ry) = (x ®r ry), then r(xr' @ry) = r(x ®r r'y) = (x Qg rr'y) one way and
r(xr' ®@ry) = (xr' @rry) = (x ®r #'ry) another way. However, the above calculation implies
that if R is commutative, then there is a natural R-module structure on M ®g N.

Let R and S be rings. An (S, R)-bimodule is an abelian group M that is a left S-module and a
right R-module, such that the two structures are compatible with each other: (sx)r = s(xr) for
everyr € R,s € Sand x € M.

Let M be an (S, R)-bimodule, N a left R-module and P a left S-module. The abelian group
M ®g N has a natural left S-module structure: s(x ®ry) = sx ®gy. This is well-defined
since s(x @r ry) = s(xr ®ry) = (sxr) g y and the element sxr is well-defined. The module
Homg (M, P) has a natural left R-module structure: r¢ := [x — ¢(xr)]. (Check: ((r'r)¢p)(x) =

¢(x(r'r)) = ¢((xr)r) = (rg)(xr') = (r'(r¢))(x); S-linearity: (r¢)(sx) = ¢(sxr) = s((r¢)(x)).)

proposition:homtensoradj

2.1. Proposition. The map
Homg(M ®g N,P) — Homg(N,Homgs(M, P))
§ = [y—=lx—gx®ry)l]

is an isomorphism of abelian groups.

We won’t prove this statement (See Bourbaki for a proof), but make some comments, in-
stead. For fixed g and y, the map x — g(x ®g y) is S-linear, since ¢((sx) ®ry) = g(s(x g
y)) = s(g(x ®ry)). For fixed g, the map y — [x — g(x ®ry)] is R-linear: Write ¢, for
this map; we want to show that ¢o(ry) = r(¢¢(y)) for every r € R and y € N. Now,
Do(ry)(x) = do(x Ox ry) = y(xr Dr ) = do(y) (x1) = (rhg(y)) () for every x € M.

Now suppose, additionally, that R is commutative and that S is an R-algebra with the image
of Rin S lying inside the centre of S. Then Homg(M ®g N, P) has a natural R-module structure:
define rg to be the S-linear map t — g(rt) for t € M ®r N. Hence the map in Proposition 2.1
is a R-homomorphism: ¢.¢(y)(x) = (rg)(x ®ry) = r(g(x ®rY)) = r¢¢(y)(x), and hence an
R-isomorphism.

3. SEMISIMPLICITY

In this section, modules are left modules, unless specified otherwise.
Recall that an R-module is simple if it is non-zero and it has no submodules other than 0
and M.

remark:simpleoverhomotheties
3.1. Remark. Let R be a ring and M an R-module. Then M is simple as an R-module if and
only if it is simple as a module over its ring of homotheties. This follows from noting that the
structure of M as an R-module is defined through the ring map R — Endz(M), so it is the

same as the structure of M as a module over the image of the above ring map.
proposition:schurlemmaone

3.2. Proposition (Schur lemma, version 1). Let R be a ring and M and N R-modules. Let f : M —
N be a non-zero R-morphism. Then:



265
266

267
268

269
270
271

272
273
274
275
276

277

GRADUATE ALGEBRA II, JAN-APR 2016. NOTES 7

(1) If M is simple, f is injective.
(2) If N is simple, f is surjective.
(3) If M and N are simple, f is an isomorphism.

Proof. Since f # 0, ker f C M and 0 # Im f C N. if M is simple, then ker f = 0; if N is simple,
thenIm f = N. U

corollary:schurlemmatwo
3.3. Corollary (Schur lemma, version 2). If M is a simple R-module, then Endg(M) is a division
ring.

Proof. Every non-zero endomorphism of M is an isomorphism, i.e., an invertible element of

EndR(M) O
corollary:EndRfdvsalgclosed

3.4. Corollary. Let k be an algebraically closed field, R a k-algebra, M a simple R-module which is
finite-dimensional as a k-vector space. Then for every ¢ € Endr(M), there exists A € k such that
¢(x) = Ax for every x € M.

Proof. Since Endg(M) C Endg(M) it is a finite-dimensional division ring over k. Now use
Section 1, Exercise 1.

Here is another proof. Let A be an eigen-value of ¢ considered as a k-endomorphism of M.
The maps Aidys and ¢ — Aidpr are R-morphisms. Since A is an eigen-value, ker(¢ — Aidp) # 0,
so, since M is a simple R-module, ¢ = Aid . O

3.5. Corollary. With notation as in Corollary 3.4, if additionally R is commutative, then dimy M = 1.

Proof. Let r € R. Then the homothety x +— rx is a R-morphism. Hence there exists A € k such
that 7x = Ax for every x € M. Therefore the ring Rj; of homotheties coincides with the image
of k in Endz(M). Hence M is simple over k. O

proposition:sumofsimplesubmodules
3.6. Proposition. Let M be an R-module that is the sum of a family Sy, A € A of simple submodules,
and N a submodule of M. Then there exists Ay C A such that M = N © @ cp, Sa-

Proof. Without loss of generality N # M. Let P be the set of subsets A’ C A such that the sum
N + Y acar Sa is a direct sum. It is non-empty, there exists A € A such that S, € N, and, for
such A, SN N = 0,50 Sp + N = Sy @ N. Order P by inclusion. Let A;,i € 7 be a chain in
P. Then by Proposition 1.16 U;cz/A; € P, so by Zorn’s lemma, P has a maximal element A;.
Set N' = N + Y5, Sa- Now forevery A € AN Ay, AyU{A} € P,s0 S, NN’ # 0 (again by
Proposition 1.16) which implies that S, C N’. Hence M = N'. O

corollary:charnofsemisimplemodules

3.7. Corollary. Let M be an R-module. Then the following, gz equ{uak¥tnot semisimplemodules : sum
(1) A4is‘lSunlQfafh"ﬂh/QfShnph3Subnﬂ”hdeéorollary:charnofsemisimplemodules:directsum

(2) A4isthedh?Ctsun1Qfajhnﬁh/QfShnp@%ﬁ%aﬁ%Egdéﬁarnofsemisimplemodules:directsummand
(3) Every submodule of M is a direct summand of M.
We first need a lemma: o ) .
lemma:everysubmodulesplitsimplieshassimples
3.8. Lemma. If every submodule of M is a direct summand of M then every non-zero submodule of M
has a simple submodule.

Proof. Let N be a non-zero submodule of M and 0 # x € N. Write Rx ~ R/I for some
left R-ideal I # R. Let m be a maximal left R-ideal containing I. We claim that mx C Rx.
Assume that claim: Then we have mx C Rx C M. Since mx is a direct summand of M, it is
a direct summand of Rx. Hence Rx contains a submodule isomorphic to the simple module
R/m. Now to prove the claim, assume, by way of contraction, that mx = Rx. Then there exist
ai,...,a4; € mand rq,...,7: € R such that Zle ria;x = x. Hence 1 — Zle ria; € I C m, so
1 € m, a contraction. O
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Proof of Corollary 3.7. (1) = (2): Apply Proposition 3.6 with N = 0. (2) = (1): Immediate.
(1) = (3): Apply Proposition 3.6. (3) = (1): Let M’ be the sum of simple submodules of
M. Write M = M' & M". If M" is non-zero, then it has a simple submodule by Lemma 3.8,
which contradicts the fact that M' " M” = 0. Hence M = M. O

3.9. Definition. An R-module M is said to be semisimple of it satisfies the (equivalent) condi-
tions of Corollary 3.7.

remark:semisimplemodules
3.10. Remark. Let M be a SemlSImple R-module. remark:semisimplemodules:subsquotients

(1) Let Sy, A € A be a family of simple submodules of M such that M =} -5 Si. Let N be
a submodule of M. Then there exists Ay C A such that M = N @& )¢, Sa- (Proposition 3.6.)
Write N = @), Sa- The composite map N’ < M — M/N is an isomorphism, and the
images of 5),A € A1 in M/N are simple submodules of M/N; hence M/N is semisimple.
Applying the above argument to N’, we see that N ~ M/ N'/igsemisimplero) enodules: simple

(2) M is simple if and only if Endg (M) is a division ring. ‘Only if’ follows from the Schur
lemma (Corollary 3.3). Conversely, if M is not simple, then it has a simple direct summand N;

the projection to N followed by the inclusion N — M gives a non-invertible endomorphism
of M.

3.11. Definition. Let E be a ring and B a subset of E. The commutant of B (in E) is the subring
{e € E | eb = be forevery b € B} of E. The bicommutant of B is the commutant of the
commutant of B.

3.12. Remark. Let E and B be as in the definition above. Write B’ and B” for the commutant
and the bicommutant, respectively, of B in E.

(1) B C B” and B’ equals its bicommutant. Proof: TBD.

(2) If Bis a subring of E, then B N B = {e € B | eb = be for every b € B} is the centre of B.
Therefore B” N B is the centre of B'. Additionally, if b € B” N B, then for every c € B”, cb = bc,
so B” N B is the centre of B” also. In particular, B’ and B” have the same centre.

(3) If B is a commutative subring of E (not necessarily central in E) then B C B’. Hence
B" C B/, and, therefore, B” is the centre of B’.

3.13. Definition. Let M be an R-module. The commutant and the bicommutant of M are the
commutant and the bicommutant of the ring Ry of homotheties in Endz (M), respectively.

3.14. Remark. The commutant of M is Endg(M). To see this, note that if h, € Ry, is the
homothety x +— rx and f € Endz(M), then the condition i, f = fh, is another way of stating
that for every x € M, rf(x) = (h.f)(x) = (fh,)(x) = f(rx). Hence the bicommutant of M is

Endg,g. (an (M).
R(M)
proposition:bicommutantproperties

3.15. Proposition. Let R be a ring and M an R-megdule, Weite, R sfos-thehicoprandant &f Mirectsum
(1) Let I bea set. The bicommutant of the R-module M!) is the ring of homotheties of the R"-module
MO, proposition:bicommutantproperties:semisimple
(2) Suppose that M is semisimple. Then for every x € M and every s € R”, there exists r € R such
that sx = rx. In particular, every R-submodule of M is also an R”-submodule.

Proof. (1): TBD

(2): Let x € M. Then Rx is an R-direct summand of M. Let ¢ € Endr(M) be the projection
endomorphism with image Rx. Lets € R”. Then s¢ = ¢s (as elements of Endz(M)). Hence
for every y € Rx, sy = s¢p(y) = ¢(sy), so sy € Rx. O

theorem:density
3.16. Theorem (Jacobson density theorem). Let R be a ring and M a semisimple R-module. Write
R” for the bicommutant of M. Let s € Endz(M). Then s € R" if and only if for every finite subset
X C M, there exists r € R such that sx = rx for every x € X.
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Proof. ‘If”: Let ¢ € Endg(M) and x € M. Letr € R be such that sx = rx and s¢(x) = r¢(x)
(apply the hypothesis to X = {x, ¢(x)}). Thensp(x) = r¢(x) = ¢(rx) = ¢(sx). Hence s¢ = ¢s
(as elements of Endz(M)) for every ¢ € Endr(M), i.e., s € R”.

‘Only if: Let X = {x1,...,x,}, n > 1. Write x = (x1,...,x,) € M". Consider the
R"-homothety (y1,...,¥n) — (sy1,...,5yn) of M. By Proposition 3.15(1) there exists an el-
ement § of the bicommutant of the R-module M" such that 5((y1,...,yn)) = (SYy1,--,SYn)-
Note that M" is a semisimple R-module. By Proposition 3.15(2) there exists r € R such that
(sx1,...,8%y) =8x =rx = (rxy,...,rxy),1e., sx = rx for every x € X. O

definition:isotypic
3.17. Definition. Let S be a simple R-module and M an R-module. Say that M is isotypic of type
Sif M ~ SU) for some set I. Say that M is isotypic if there exists a simple R-module T such that
M is isotypic of type T.

remark:isotypic
3.18. Remark. Every isotypic R-module is semisimple. If My, A € A is a family of R-modules
with M, isotypic of type S (where S is a simple R-module), for every A € A, then @, M)
is isotypic of type S. If S is a simple R-module, I a set and M a submodule of S), then M is
isotypic of type S: for, if M’ is a submodule of S(!) with M+ M’ = S() and M N M’ = 0, then
M ~ S/M' ~ Sh) for some I; C I (Proposition 3.6).

3.19. Definition. R is said to be a semisimple ring if grR is a semisimple R-module. R is said
to be a simple ring if it is a semisimple ring and there is a unique simple R-module up to
isomorphism.
remark:semisimpleandsimplerings
3.20. Remark. Let R be a ring. remark:semisimpleandsimplerings:finitelymany
(1) Suppose that R is semisimple. Then it has finitely many simple modules, up to isomor-
phism. For, write gR as the (direct) sum of a family Sy, A € A of R-modules. Let T be a simple
R-module. Let 0 # x € T. The R-morphism map kR — T, 1 — x is surjective. There-
fore there exists y € A such that T ~ S, (Remark 3.10(1)). Hence each simple R-module is
isomorphic to a submodule of grR. Let S;,i € 7 be all the distinct simple R-modules, up to
isomorphism. Write gR ~ ;.7 M; where, for every i € Z, M, is a direct sum of copies of S;.
Since gR is a finitely-generated R-module, Z must be a finite set and for each i € Z, M; must

be a direct sum of ﬁnitely many copies Oi‘é{ﬁark: semisimpleandsimplerings:modulessemisimple
(2) Suppose that R is semisimple. Then every R-module is semisimple, since every R-

module is a qUOtient of RR(I) for some I, W@&ﬁsbﬂsm%}ﬁpféﬁnds implerings:simpleisisotypic
(3) If R is a simple ring, then, for some set I, R ~ S where S the unique (up to isomor-
phism) simple R-module; hence gR is isotypic. Conversely, if gR is isotypic of type S, then
(a) rR is semisimple; (b) if T is a simple R-module, then T ~ S (as in Remark 3.20(1), using
Remark 3.10(1)). Hence R is a simple ring.
proposition:simplering
3.21. Proposition. Let R be a simple ring. Then: proposition:simplering:twosidedideal
(1) The only two-sided ideals of R are 0 and R.

(2) Every simple module over R is faithful.

proposition:simplering:simplefaithful

Proof. (1): Let I be any simple left R-ideal. If | is any other simple left ideal then it is iso-
morphic to | (as a left R-module). Both I and | are direct summands of gR. Thus we get an
R-endomorphism of gR as the composite RR — [ ~ | < rR. Every endomorphism f of gR
is given by multiplication by f(1) on the right. Thus we see that for every simple left ideal J,
there exists a; € R such that the map I — ], x = xa; is an isomorphism. Since R is a direct
sum of simple left ideals, IR = R. Hence the only non-zero two-sided ideal is R.

(2): The annihilator of any non-zero left R-module is a two-sided proper ideal of R. Now
use (1). O
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proposition:endfree
3.22. Proposition. Let D be division ring and M a finitely generated D-module. Write R = Endp (M).
Then R is a simple ring, M a simple and faithful R-module and D ~ Endg(M).

Proof. Write R = Endp(M). That M is simple over R was established in Example 1.18(2). Since
R C Endz(M), the map R — Ry is an isomorphism, so M is a faithful R-module.

Write S = Endgr(M) the bicommutant of M. We have maps D — Dy C S (where Dy,
denotes the ring of homotheties). Since D is a division ring, the map D — D) is an iso-
morphism. Let s € S. We want to show that there exists a € D such that s = h,, the
homothety x — rx. Fix x € M. Note that M is a semisimple D-module. By the density
theorem (Theorem 3.16) (in fact, Proposition 3.15(2) is enough) there exists a € D such that
sx = hy,x. Lety € M; there exists ¢ € R such that ¢(x) = y; see Example 1.18(2). Then
sy =s(p(x)) = p(sx) = ¢(hax) = hap(x) = hgy. This is true for every y € M, so s = h,.

Define a map RR — M" by ¢ — (¢(x;)). This is a map of left R-modules. If ¢(x;) = 0 for
every i, then for every y = Y a;x; (with a; € D for every i) ¢(y) = ¥ p(a;x;) = Y aip(x;) =0,
so ¢ = 0, since M is a faithful R-module. Hence g R is an R-submodule of M", which is isotypic.
Hence R is simple by Remarks 3.18 and 3.20(3).

theorem:wedderburnsimple
3.23. Theorem (Wedderburn). Let R be a ring. Then R is simple if and only if it is isomorphic to
M, (D) for some division ring D and a positive integer n.

Proof. “If” is a corollary of Proposition 3.22. Conversely, suppose that R is simple. Let S be the
unique (up to isomorphism) simple R-module and D = Endg(S). Note that the commutant
of S (as an R-module) is D. The bicommutant of S (as an R-module) is Endp(S), so we have
a natural ring map R — Rg C Endp(S). The map R — Rg is an isomorphism since S is a
faithful R-module (Proposition 3.21(2)).

Let v1,...,v, be a basis of S as a D-module. Let ¢ € Endp(S). By the density theorem
(Theorem 3.16) there exists r € R such that ¢(v;) = rv; for every 1 <i < n. Hence ¢(Y; d;v;) =
Y i(dir)v; = Y;(rd;)v; = r(¥;d;v;) for every collection dy, ...,d, € D. Hence the map R —

Rg C Endp(S) is surjective, and an isomorphism. O
lemma:ringisomandcommutants

3.24. Lemma. Let ¢ : R — R’ be an isomorphism of yines. Let [ be a left R-ideal

ringisoma commu 7123 imageofideal

(1) I' := ¢(I) isaleft R'-ideal and the induced map ¢|; : I — 1’ is an isomorphism of R-modules,

where R acts on I’through<p. 1emma:ringisomandcommutants:endoverints
(2) The ring map @ : Endz (I ) — Endz(I'), f = ¢lio fog| Visan isomorphism. Moreover,
f oreveryr € R, Q)(h,,) (Where hy %%Trln%gsrg @gg}ﬁosngl%grllecfgo%nmﬁ gl%ct%f 1Somofcommutants

(3) Write S and S’ for the commutants of I and I’ respectively. Then ®(S) = S'; this gives a ring
isomorphism ®|g : S — S'.

Proof. (1): Since I’ is an abelian group, it suffices to show that for every ¥ € R’ and x € I,
r'x’ € I'. This indeed is true since r'x’ = ¢(¢~1(+')p~1(x')). To show that ¢|; : [ — I is
an isomorphism of R-modules, it suffices to check that it is also an R-morphism, since it is an
isomorphism of abelian groups; this is immediate.

(2): Ttis straightforward to check that the ring map Endz(I') — Endz(I), g — ¢|; ogo s
is the inverse of ®. Lety € I’ and r € R. We want to show that (¢|; o b, o ¢|; 1) (y) = () (¥)-
This follows immediately from the definitions.

(3): ‘C": Lets € S, € R’ and y € I'; we want to show that ®(s)(h.(y)) = hy(P(s)(y)).
Writer’ = ¢(r) and y = ¢(x). Then ®(s)(hy (y)) = ¢(s(hr(x))) and by (P(s)(y)) = ¢ (hr(s(x))).
Since s € S, we have that hr(s(x)) = s(hy(x))

‘D Lets’ € §'. Write s’ = ®(s) with s € Endz(I). We need to show thats € S. Let
r € Rand x € I[; we want to show that s(h.(x)) = h,(s(x)). This follows from noting that

¢(s(hr(x))) = 8" (hy(r) (@(x))) = hy(r) (' (¢(x))) = ¢ (s (s(x)))- 0
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a39  3.25. Proposition. Let Dy and D, be division rings and nq and ny positive integers. Then My, (D;) ~
440 My, (Dy) if and only if D1 ~ D, and nq = ny.

a41  Proof. ‘I’ is immediate. Conversely, first, by looking at Jordan-Holder sequences, we conclude
a2 that ny = np which we call n. Let ¢ : M, (D;) — M, (D;) be an isomorphism. Apply
a3 Lemma 3.24 with R = M, (D7) and R" = M,,(D;) and I any simple left ideal of M,,(D;). Then,
sa4 in the notation of that Lemma, I ~ DY (as M,(D;)-modules), I’ ~ D} (as M, (D;)-modules)
a5 S~ Djand S’ ~ D, (as rings, in both the cases). 0

theorem:wedderburnsemisimple

a6 3.26. Theorem (Wedderburn). Let R be a semisimple ring and xR = @}", I; the isotypic decompo-
aa7  sition of gR (into left R-ideals). Write 1 = e1 + - - - %o flfifsda ko QF£Y8HH 41 di8: twosidedideal

448 (1) Foreach1 <i < m, I; is a two-sided R-ideal. theorem:wedderburnsemisimple:simplering
449 (2) Foreach1 < i < m, I; is a simple ring with the operations induced from R and with e; as the
aso - multiplicative identity. theorem:wedderburnsemisimple:product

451 (3) R =TT1", I as rings.

lemma:productofsimpleleftidealandsimplemodule
as2  3.27. Lemma. Let R be a ring, I a simple left R-ideal and M a simple R-module. If I is not isomorphic
453 to M, then IM = 0.

asa  Proof. IM is a submodule of M, so IM = 0 or IM = M. If IM = M, then there exists x € M
as5  such that Ix # 0, so Ix = M. Hence the map I — M, r — rx is an R-isomorphism. 0

ase  Proof of Theorem 3.26. (1): Note that for j # i, [;I; = 0 by Lemma 3.27. Hence I; C ;R = L;I; C
457 I, s0 [R = I;I; = I, i.e., I; is a two-sided ideal.

458 (2): We already checked that I; is closed under the multiplication induced from R. For every
a9 reL,r=r(eg+ - +en) =re.

460 (3): For 1 < i < n, write J; = @1<j<m [;; The natural projection map R — [; is a ring

1

461 homomorphism, with kernel J;. Thergféore it suffices to show that the natural map R —
a2 []i~; R/]; is an isomorphism, for which we will use Theorem 1.14. Let r € R. Write r =
463 Y 11, withr; € I; for every i. Then re; = rie; = Vi(27:1 e]')(z;;l ej)r; = e;ri, s ¢; is a central
s64 idempotent for every i. Since [;I; = 0 for every i # j, eje; = 0 for every i # j. Note that
s65 I} = Re; and that J; = R(1 — ¢;). Hence by Theorem 1.14 the natural map R — [/"; R/]J; is
466 an isomorphism. O

corollary:characterisationsemisimplerings
467 3.28. Corollary. Let R be a ring. Then R is semisimple if and only if it is of the form [T}, M, (D;) for
468 some division rings D1, ..., Dy, and positive integers ny, ..., Hy.

469 Proof. ‘Only if: Use Theorems 3.26 and 3.23. ‘If": see Exercise below. O

470 EXERCISES . ..
exercise:productofsemisimplemodules

471 (1) Let R and S be rings and M and N a semisimple R-module and a semisimple S-module

472 respectively. Show that M @ N is a semisimple (R x S)-modulgercise: isotypicdecomposition

473 (2) Let R be a ring and M a semisimple R-module. Let N be a simple R-module. Let M’ be

a4 a submodule of M. Then the following are equivalent:

475 (a) M’ is the largest isotypic submodule of M of type N, i.e., M’ is isotypic of type N and if

476 N’ is a simple submodule of M isomorphic to N, then N’ C M'.

477 (b) M’ is the (direct) sum of all the simple submodules of M that are isomorphic to N.

478 (c) M' = Homg(N, M).

419 Let Ny, A € Abe all the distinct (up to isomorphism) simple R-modules. Then M = @, Homg(N,, M).
as0 This is called the isotypic decomposition of M.
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4. INTRODUCTION TO REPRESENTATION THEORY

Throughout this section k denotes a commutative ring. A k-algebra is a ring R with a ring
homomorphism k — R (often understood from the context and not stated explicitly) whose
image is inside the centre of R. (That is, for us, a k-algebra is unital and associative.) If k is
field, then a k-algebra R is said to be finite-dimensional if dimy R is finite. (Note that the ring
map k —> R makes R into a k-vector-space.)

4.1. Discussion. Let G be a group. We make the free k-module k(®) into a k-algebra as follows.
Let eg, ¢ € G denote the standard basis for k(©). Then set egep = eg; now extend it to k(©) by
setting (YiLq aieg,) (X{2q bjen;) = Lijaibjeg;- This gives a ring with identity element e;. The
map k — k(©), a1+ ae; isa ring homomorphism; its image is inside the centre of k(©). Thus

we get a k-algebra structure on k(©); we denote it by k[G]. We will write 1 for the element
e1. |

4.2. Remark. Let G be a group. k[G] is commutative if and only if e;e;, = ejeq forall g, h € G

which holds if and only if G is an abelian group. For a positive integer r, k[Z"] = k[x1, x| 1 x,, Xy 1.

and k[Z/r] ~ k[x]/(x" —1). If k is a field, then k[G] is a finite-dimensional k-algebra if and
only if G is a finite group.

4.3. Definition. Let G be a group and M a k-module. A (linear) representation of G on M is a
group homomorphism p : G — Auty(M), the group of invertible k-endomorphisms of M.
We denote this representation by (M, p); if the map p is understood from the context, we omit
it from the notation and say that M is a representation of G. Moreover, when no confusion is
likely to occur, we will write g for the automorphism p(g) : M — M.

4.4. Example. In these examples assume that M is free k-module of rank n with basis {v1, ..., v, }.

However, no generality is lost if one further assumes that k is a field.

(1) Identify Auty (M) with GL, (k) (the group of invertible n x n matrices over k) using the
given basis. The cyclic group Z/n acts on {v1,...,v,} by cyclically permuting its elements.
This gives a representation of Z /n on M which is given by the group homomorphism Z/n —
GL (k)

00 0 1
10 0 0
T |01 0 0
00 - 10

(2) More generally, every subgroup of the permutation group S, has a permutation represen-
tation on M by 0 : v; = v,(;). The image of o in GLy (k) is the permutation matrix A, associated

to o, which is given by
1, ifi=o(j);
Ay)ii =
( U)l’] {0, otherwise.

(3) Even more generally, if X is a set on which G acts on the left (as permutations), then we
get a permutation representation of G on the free module kX) by ¢ : e, €q(x)- An important
example of this is the reqular representation of G: G acts on itself by left multiplication; this
extends to a representation of G on k|[G] satisfying g : e, + eg.

discussionbox:categoryofreps
4.5. Discussion. Let G be a group, and M, N representations of G. A homomorphism of G-
representations (or a G-homomorphism) ¢ : M — N is is a k-homomorphism ¢ : M — N
satisfying ¢(gx) = g(¢(x)) for every x € M and ¢ € G. Thus we can talk of the cate-
gory of G-representations. We say that N is a G-subrepresentation of M if it is k-submodule

) Xn, Xy,

]
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of M and the inclusion map is a G-homomorphism; in this case, for every ¢ € G, the k-
automorphism ¢ of M induces a k-automorphism of the quotient k-module M/N, so M/N
has a natural G-representation structure such that the quotiet map M — M/N is a G-
homomorphism. Therefore the kernel, the image and the cokernel of a G-homomorphism are
G-representations. Moreover if M), A € A is a family of G-representations, then the k-module
@)ca M) has a natural G-action, and is the direct sum in the category of G-representations.
Similarly, the k-module [, M, has a natural G-action, and is the product in the category of

G-representations.
discussionbox:repsandmodules

4.6. Discussion. Let p : G — Auty(M) be a representation of G on M. This extends to a
homomorphism of k-algebras p : k[G] — Endy (M) determined (uniquely) by p(ey) = p(g).
Conversely, if 0 : k|G] — Endyg (M) is a homomorphism of k-algebras, then we get a group
homomorphism ¢’ : G — Auty(M), by ¢'(g) = c(eg), since the elements e, are invert-

ible in k[G]. The operations are inverses of each other: (p)’ = p and (¢/) = ¢. Hence
defining a G-representation on a k-module M is equivalent to defining a k[G]-module struc-
ture on M (compatible with the given k-module structure). For G-representations M and
N, a k-homomorphism ¢ : M — N is a G-homomorphism) precisely when it is a k[G]-
homomorphism. Therefore the categories of G-representations and of k[G]|-modules is equiva-
lent. The notions defined in Discussion 4.5 match the corresponding notions for k[G]-modules.
Therefore we will interchangeably use ‘G-representations’ and ‘k[G]-modules’ (and some-

times, merely, ‘G-modules’). O
theorem:maschkegeneral

4.7. Theorem. Let G be a finite group with |G| invertible in k. Let M be a k[G|-module, and N a
k[G]|-submodule of M that is a direct summand of M as a k-module. Then N is a direct summand as a
k[G]-module.

Proof. Let p € Endyg (M) be a projection with image N. Define a k-endomorphism g : M — M
by
1 _
G Y gp(glx).
‘ ‘gEG

The image of g is N and, for every x € N, q(x) = x. Hence M = N & (kerq) as k-modules.
Moreover, 4(gx) = ﬁ Liechp(h™gx) = g\lﬁ Yhec8 'hp(h™lgx) = gﬁ Yiechp(h™'x) =
gq(x) for every ¢ € G, so (kerq) is a k|G]-module. Hence N is a direct summand of M as a

k[G]-module.

corollary:maschke
4.8. Corollary (Maschke). Let k be a field and G a finite group with |G| invertible in k. Then k[G] is
a semisimple ring.
Proof. For every k[G]-module M and k[G|-submodule N of M, N is a direct summand of M

as a k-module. By Theorem 4.7, N is a direct summand of M as a k[G]-module; now apply
Corollary 3.28. O

4.9. Remark. The assertion of the Corollary 4.8 fails if |G| is not invertible in k. Consider the
element e = Y. g € k[G]. Forevery ¢ € G, ge = € = €g,s0 €> = |Gle = 0 and € € Kk[G]g,
the left ideal generated by g. Hence the left module k[G|e is not a direct summand of the left
module k[G]. In particular k[G] is not a semisimple ring.

4.10. Corollary. Let G be a finite group with |G| invertible in k. An exact sequence of k[G|-modules
is split if and only if it is split as an exact sequence of k-modules.

Proof. ‘If” is immediate. ‘Only if": Let 0 — M; iR M; — M3 — 0 be an exact sequence
of k[G]-modules. If it is split as a sequence of k-modules, then Im(f) is a direct summand of
M, as a k-module, so by Theorem 4.7, it is a direct summand also as a k[G]-module, i.e., the
sequence is split as a sequence of of k[G]-modules. g
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4.11. Corollary. Let G be a finite group with |G| invertible in k. A k[G|-module is projective if and
only if it is projective as a k-module. In particular, if k is a field, then every k[G|-module is projective.

Proof. Let M be a k[G]-module and F a free k[G]-module with a surjective k|[G]-morphism
¢ : F — M. If M is projective as a k[G]-module, then ¢ is split as a k[G]-morphism, and, a
fortiori, as a k-morphism. Hence M is a projective k-module. Conversely, if M is a projective a
k-module, then ¢ is split as a k-morphism. By Theorem 4.7, ker ¢ is a direct summand of F as
a k[G]-module, so ¢ is split as a k|G]-morphism. Hence M is a projective k[G]|-module. O

discussionbox:inductionrestriction
4.12. Discussion (Frobenius reciprocity). Let H be a subgroup of G, and denote the inclusion
map k[H] — k[G] by p. The functor p, (from the category of k[G]-modules to the category
of k[H]-modules, treating a a k[G]-module as k[H]-module through restriction of scalars) is
called the restriction functor and is denoted Res%. The functor p*(—) = k[G] [y — (from
k[H]-modules to the category of k[G]|-modules, treating k[G]| as a right k[H]-module) is called
the induction functor and is denoted Ind$; for a k[G]-module M, Ind% (M) is called the repre-
sentation of G induced from M. Hom-® adjunction (Proposition 2.1) gives

Homy 4y (M, Resf; N) = Homyg) (Indf; M, N)
for every H-module M and G-module M. ]
setup:groupring
4.13. Setup. For the remainder of this section, let k be a field and G a finite group with |G|
invertible in k. Let

k[G] = IjRi

be the decomposition as the product of simple rings R;. Let 1 < i < c. Write ¢; for the identity
element of R;. Let M, be a simple R;-module and D; = Endg, (M;). Write d; = dimy M;. Denote
the simple characters (defined below) by x1, ..., Xc.

4.14. Definition. Let p : G — Auty (M) be representation. The character of p, denoted x,, is
the function G — k, ¢ — Trace(p(g)). Its k-linear extension to k[G] will also be denoted by
Xp- A simple (or irreducible) character of G is the character of a simple G-module.

Note that the number of simple characters equals the number c of the factors in the decom-
position of k[G] as a product of simple rings in Setup 4.13, since every simple k|[G]-module is

a simple module over R]' for some ;.
lemma:chijei
4.15. Lemma. Foralll1 <i,j <c,

x;es) = {dl" gi=J;

0, otherwise.

Proof. Note that M; is a summand of R; for every j. Thus ¢; : M; — M, is the identity map of
M; if j = i and the zero map otherwise. Therefore
- d;, ifi=j;
(e;) = Trace(M; = M;) = { " ’ O
Xj (c:) ( ] ] ) 0, otherwise.
proposition:chiregzeroororderofG

4.16. Proposition. Let xreg denote the character of the regular representation. Then Xreg(1) = |G|
and for every g € G, & # 1, Xreg(g) = 0.

Proof. For any finite-dimensional representation p of G on M, x,(1) = dimy M s0 )reg(1) =
|G|. On the other hand, for every g # 1, ¢ permutes the natural basis of k[G] given by G
without fixed points, so, with respect to this basis, the matrix of g is a permutation matrix with
zeros on the diagonal. Hence for every ¢ € G, g # 1, Xreg(g) = 0. O
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so8  4.17. Definition. The prime subring of k is the image of the map Z — k.

proposition:charactersdeterminerepr
599 4.18. Proposition. Let x1,. .., X. be the distinct simple characters of G. Let p : G — Autx(M) be
600 a representation. Then there exist ny, ..., nc in the prime subring of k such that x, = Y i_; n;x;. Now
so1  suppose that chark = 0. Then the n; are uniquely determined non-negative integers, and, moreover, if
602 (' is a representation such that x, = x, then p and p' are isomorphic to each other.

603 Proof. Since M is a finite-dimensional k-vector-space, there exist non-negative integers 4, . .., 11,
c c c /
s04 such that M = @ M, as k[G]-modules. Note that if ¢ : & M, — @ Mi@n" is a k[G]-
i=1 i=1 i=1

605 isomorphism, then for each i, Im(¢|, =n ) C Ml@n", and ¢/, = is an isomorphism, from which,
606 after comparing ranks over k, it follows that n; = n/. Therefore the integers n; (in the decom-
607 position of M) are unique. Denoting the images of the integers n; in k again by n;, we see
e08 that x, = Y.i_n;x;. Now suppose that chark = 0. Since the map Z — k is injective, the
609 uniqueness is preserved in the expression x, = Y.;_; n;x;. Further, if x; = x, = Yi_; nixi,
c /
610 wherep: G — Auty(M) and p’ : G — Auty(M'), then M ~ M' ~ @ Man". O
=1
remarlzisbox :spaceofcharacters
611 4.19. Remark. We see tht the set of characters of G is a k-vector-space, spanned by the simple
12 characters x;. If the dimensions d; (over k) of the simple k[G]-modules M; are invertible in k

613 (e.g., if chark = 0), then the x; form a basis. To see this, suppose that ) ; a;x; = 0, with a; € k.
614 Then (0 = (Zz oci)(i)(e]-) = oc])(](e]) = Déjd]', SO 06]' =0. Il

615 4.20. Notation. For ¢ € G, denote its conjugacy class {hgh™! | h € G} by Cq. Let C C G be
616 a set of representatives for the conjugacy classes of G, i.e., G = |lge¢ Cq. For ¢ € G, write

617 Sg = Y pec, h- U

proposition:groupring:centre
618 4.21. Proposition. Let a € k[G]. Then the following are eqyigglents i on : groupring: centre: central

619 (1) ais a central element of k[G]; proposition:groupring:centre:commuteswithg

620 (2) ag = ga for every § € G (thought of as a subset Ofk[}g'pléosition:groupring: centre:lincomb
621 (3) ais a k-linear combination of {s¢ | ¢ € C}.

622 Proof. (1) implies (2): Immediate.

623 (2) implies (3): Writea = ¥ ;e a:T. Then Y cca:T = a = gag ' Y 1cc a:87¢ ! = Yreq Ag-1gT.
624 Since G is a k-basis of k[G], we see that for every T € G, a; = a, for every o € Cs.

625 (3) implies (1): For every h € G, hsgif1 = 8¢, 50 8¢ is a central element for every g € C. [

626 4.22. Corollary. {s, | g € C} is a k-basis for the centre of k[G].

627 Proof. This follows from Proposition 4.21, after noting that {s¢ | ¢ € C} is linearly independent
628 over k.

620 4.23. Remark. A function f : G — k is said to be a class function if f(ghg™!) = f(h) for every
630 ¢, € G, or equivalently, f(ghg™') = f(h) for every g,h € G. Characters are class functions,

631 since for two matrices A and B, Trace(AB) = Trace(BA).
theorem: centreofgroupringoveralgclosed

632 4.24. Theorem. Suppose that k is algebraically closed. Let
C
k[G] =]]Ri
i=1

633 be a decomposition as the product OfSiWégfgﬁg%gftMoupringoveralgclosed:numberofclasses

634 (1) G has exaCﬂy ¢ Conj”gacy classes. theorem:centreofgroupringoveralgclosed:bases
635 (2) {sq|g€C}and{ey,..., e} arebases for the centre of k[G].
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theorem:centreofgroupringoveralgclosed:chireg
— y¢ v
636 (3) Areg = Zi:1 dixi- theorem: centreofgroupringoveralgclosed: sumofsquares

37 (4) |G| = x5, 4%

638 Proof. Each R; is a simple finite-dimensional k-algebra, so R; = Endp,(M;) for a finite-dimensional

639 division ring D; over k and free D;-module M,;. Since k is algebraically closed, D; = k. Hence

ss0 the centre of R; is k; := ke;; thus the centre of k[G] is [];_; k;. This proves (1) and (2). Note

641 that as R-modules, R; = M;@df, SO Xreg = Y.i_1dixi, proving (3). Hence dimy R; = dz-z, so

es2 |G| = dimy k[G] = Y§_; d? proving (4). O
observation:chiregeig

643 4.25. Observation. Suppose that k is algebraically closed. Let ¢ € Gand 1 < i < c. For any
644 a € k[G], e;a € R;. Thus

Xreg (e Zd]X] eig) = dixi(eig) = dixi(g)-
j=

645 Let ¢ € G be such that it appears in ¢; with a non-zero coefficient. Then by Proposition 4.16
646 Xreg(€ig ') # 0, so d; is non-zero in k. In particular, the x; are linearly independent over k
647 (Remark 4.19).

648 4.26. Proposition. Suppose that k is algebraically closed. Then for every 1 <i <,
)
€ = Xreg(€i Xi(
e Z( reg\6ig ) ycygé( l )
649 Proof. The second equality follows from Observation 4.25. To prove the first, write e; = ), a;h.
650 Then Xreg(eigil) = YheG ahxreg(hgil) = ng‘G‘. O
651 4.27. Notation. Let X (G) denote the set of characters of G and Zi(G) the centre of k[G]. O
652 4.28. Proposition. Suppose that k is algebraically closed. Then the pairing
Xk(G) x Zx(G) — k, (x,a) — x(a)
653 is non-degenerate. In particular, Xy (G) and Zy(G) are dual to each other under this pairing.

654 Proof. Let x = Y; a;)x; # 0. Pick i such that a; # 0; then (use Lemma 4.15 and Observation 4.25)
655 X(ei) = 061')(1'(31‘) = ocidi 7& 0. Now let a 75 0e Zk(G). Writea = Zi ,Biel- (Theorem 4.24(2)). Pick
656 i such that B; # 0; then x;(a) = xi(Bi(e;)) = Bid; # 0. O

657 4.29. Proposition. Suppose that k is algebraically closed. Then we have a bilinear map
1
() Xu(G) X Xu(G) — b, (1) = 157 L x(9)X'(8):

658 The x; form an orthonormal basis for Xy (G) with respect to this pairing, i.e.,

(Xi xj) = {1’ Fi=j

0, otherwise.

659 CHENNAT MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA
660 E-mail address: mkummini@cmi.ac.in
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