2	MANOJ KUMMINI							
3	Outline							
4	(1) Basic ring theory: examples, ideals and modules; centre, algebras; radical; artinian and							
5	noetherian rings; review of tensor products.							
6								
7	(3) Group rings: Schur's lemma.(4) Introduction to representation theory: chiefly finite groups; somethings about reduc-							
8 9	tive groups.							
10	References.							
11	(1) N. Bourbaki, Algebra, Ch. I.							
12								
13	our primary reference for semi-simplicity.							
14 15	(3) N. Jacobson, Basic Algebra I and II.(4) S. Lang, Algebra.							
15	(5) Appendix "A short digest of non-commutative algebra" in J. A. Dieudonné and J. B. Car-							
17	rell, Invariant theory, old and new Adv. in Math. 1970.							
18	1. BASIC RING THEORY section:basic							
19 20	For the most part, we will follow Bourbaki, <i>Algebra</i> , Ch. I, using Jacobson and Lang for							
21 22	1.1. Definition. A <i>ring</i> is a set <i>R</i> with two operations $+$ (<i>addition</i>) and \cdot (<i>multiplication</i>) such that							
23	(1) $(R, +)$ is an abelian group;							
24	(2) multiplication is associative and has an identity;							
25	(3) multiplication is distributive over addition, i.e., for all $a, b, c \in R$, $a(b + c) = ab + ac$							
26	and $(a+b)c = ab + bc$.							
27	If the multiplication is commutative, then we say that <i>R</i> is a <i>commutative ring</i> .							
28 29	1.2. Remark. We denote the additive identity by 0 and the multiplicative identity by 1. We will refer to $(R, +)$ as the <i>additive group</i> of <i>R</i> .							
30	1.3. Example. (1) \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative rings, with the usual addition and multi-							
31 32	(2) Rings of functions: Let <i>R</i> be a ring and <i>X</i> a set. The set of functions from <i>X</i> to <i>R</i> form a							
J2	$(\underline{\omega})$ imigo of infections. Det is be a fing and if a bet, the bet of infections from A to A form a							

GRADUATE ALGEBRA II, JAN-APR 2016. NOTES

1

³² (2) Kings of functions: Let *K* be a ring and *X* a set. The set of functions from *X* to *K* form a ³³ ring as follows. For functions $f, g: X \longrightarrow R$, set (f+g) to be the function $x \mapsto f(x) + g(x), x \in$ ³⁴ *X* and *fg* be the function $x \mapsto f(x)g(x), x \in X$. The additive identity is the constant function ³⁵ $x \mapsto 0$ and the multiplicative identity is the constant function $x \mapsto 1$. If *R* is commutative, then ³⁶ this ring is commutative. By imposing conditions on *X*, on *R* and on the functions that we ³⁷ are interested in, we get many variants of this construction: For example, if *X* is a topological

space, we can consider the ring of continuous R-valued functions, the ring of continuous C valued functions etc.

(3) Endomorphism rings: Let *G* be an abelian group, written additively. Let *R* be the set of group endomorphisms of *G*, made into a ring as follows: for endomorphisms α, β of *G*, set $\alpha + \beta$ to be the function $g \mapsto \alpha(g) + \beta(g)$ and $\alpha\beta$ to be function $g \mapsto \alpha(\beta(g))$. These are endomorphisms of *G*. The additive identity is the zero endomorphism $g \mapsto 0, g \in G$ and the multiplicative identity is the identity map $g \mapsto g, g \in G$. Endomorphism rings are not commutative, in general.

(4) A variant of the previous construction: Let \Bbbk be a field and V a \Bbbk -vector-space. On the set of all \Bbbk -linear endomorphisms of V, define addition and multiplication as earlier, to get a ring. This is usually denoted as $\operatorname{End}_{\Bbbk}(V)$. If $V = \Bbbk^n$, then this ring can be thought of as the set $M_n(\Bbbk)$ of matrices, with usual matrix addition and usual matrix multiplication.

(5) In general, if *R* is a ring then the set $M_n(R)$ of $n \times n$ matrices with entries in *R* can be made into a ring with usual matrix addition and usual matrix multiplication.

⁵² 1.4. **Definition.** Let *R* be a ring, and *X* a subset of *R*. The *centralizer* of *X* is $\{r \in R : rx = xr \text{ for every } x \in X\}$. The *centre* of *R* is the centralizer of *R*.

⁵⁴ 1.5. **Definition.** A *invertible* element of *R* is an element *r* such that there exists *s* such that ⁵⁵ rs = sr = 1. A *nilpotent* element of *R* is an element *r* such that there exists $n \ge 1$ such that ⁵⁶ $r^n = 0$. An *idempotent* element of *R* is an element *r* such that $r^2 = r$.

57 If *r* is nilpotent, then $1 = 1 - r^n = (1 - r)(1 + r + \dots + r^{n-1})$, so 1 - r is invertible.

⁵⁸ 1.6. **Definition.** Let *R* and *S* be rings. A *ring homomorphism* $f : R \longrightarrow S$ is a function *f* such ⁵⁹ that f(x+y) = f(x) + f(y), f(xy) = f(x)f(y) and f(1) = 1, for all $x, y \in R$. A ring homo-⁶⁰ morphism $f : R \longrightarrow S$ is an *isomorphism* if there exists a ring homomorphism $g : S \longrightarrow R$ ⁶¹ such that $gf = id_R$ and $fg = id_S$. An *endomorphism* of *R* is a homomorphism $R \longrightarrow R$; an ⁶² endomorphism is an *automorphism* if it is additionally an isomorphism.

⁶³ 1.7. **Remark.** (1) Since *R* and *S* are abelian groups, the requirement f(x + y) = f(x) + f(y)⁶⁴ for all $x, y \in R$ forces *f* to be a map of abelian groups. (Hint: apply with y = 0 and y =⁶⁵ -x.) Hence we may think of a ring homomorphism as a homomorphism of abelian groups *f* ⁶⁶ satisfying f(xy) = f(x)f(y) and f(1) = 1, for all $x, y \in R$

(2) Most rings that we look at a natural multiplicative identity, and the most natural functions between these rings take the multiplicative identity of one ring to that of another ring; see the examples above. Therefore we require that f(1) = 1 in the definition of ring homomorphisms.

(3) For a ring homomorphism to be an isomorphism, it is necessary and sufficient that it is bijective. (Hint: Let $f : R \longrightarrow S$ be a bijective ring homomorphism. Show that the inverse function $f^{-1} : S \longrightarrow R$ is a ring homomorphism.)

1.8. Definition. Let *R* be a ring. A *subring* of *R* is a subset *S* that is an abelian subgroup of *R*, is
 closed under multiplication and contains the multiplicative identity.

In other words, the subset *S* is a ring (on its own) and the inclusion map $S \subseteq R$ is a ring morphism. Examples of subrings are:

78 (1) $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$;

(2) the natural inclusion (as the constant polynomials) of *R* inside R[X].

(3) For every subset *X*, its centralizer is a subring of *R*. In particular, the centre of *R* is a commutative subring of *R*.

⁸² 1.9. **Definition.** A *left ideal* (respectively, *right ideal*) of *R* is an abelian subgroup *I* such that for ⁸³ every $r \in R$ and $a \in I$, $ra \in I$ (respectively, $ar \in I$. A *two-sided ideal* is an abelian subgroup that ⁸⁴ is both a left-ideal and a right-ideal. A *maximal left ideal* (respectively, *maximal right ideal*) is a ⁸⁵ left ideal that is distinct from *R* and is maximal (by inclusion) among left ideals (respectively, ⁸⁶ right ideals). In the following, most of the statements we make about left ideals will hold, *mutatis mutandis*, for right ideals and two-sided ideals also.

⁸⁹ 1.10. **Theorem.** Let *R* be a ring and $I \subsetneq R$ a left ideal. Then there exists a maximal left ideal containing ⁹⁰ *I*.

Proof. Let \mathcal{P} be the collection of all the left ideals distinct from R containing I. It is non-empty since $I \in \mathcal{P}$. If $I_{\lambda}, \lambda \in \Lambda$ is a chain in \mathcal{P} , then $\bigcup_{\lambda \in \Lambda} I_{\lambda}$ is a left ideal and hence an upper bound for the chain. By Zorn's lemma, \mathcal{P} has a maximal element.

- ⁹⁴ 1.11. **Discussion.** Let $X \subseteq R$ be a subset. Then the collection of finite sums $\sum r_{\lambda} x_{\lambda}$ where
- ⁹⁵ $r_{\lambda} \in R$ and $x_{\lambda} \in X$ is a left ideal. Let $I_{\lambda}, \lambda \in \Lambda$ be a family of left ideals. Then the collect of ⁹⁶ finite sums $\sum_{r_{\lambda}a_{\lambda}}$ where $r_{\lambda} \in R$ and $a_{\lambda} \in I_{\lambda}$ form a left ideal, called the *sum* of $I_{\lambda}, \lambda \in \Lambda$ and ⁹⁷ denoted $\sum_{\lambda \in \Lambda} I_{\lambda}$.
- ⁹⁸ 1.12. **Definition.** Let *R* be a ring and *I* a two-sided *R*-ideal. The *quotient* ring *R*/*I* is the abelian ⁹⁹ group *R*/*I* with multiplication defined by $\bar{rs} = \bar{rs}$, where ($\bar{.}$) denote the coset modulo *I*.

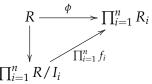
This definition forces the multiplicative identity of R/I to be $\overline{1}$, and the natural map $R \longrightarrow R/I$ to be a ring homomorphism.

102 1.13. **Proposition.** Let R, R_1, \ldots, R_n be rings. Then R is isomorphic to $\prod_{i=1}^n R_i$ if and only if there 103 exist two-sided R-ideals I_1, \ldots, I_n such that R_i is isomorphic to R/I_i for every i and such that the 104 natural map $R \longrightarrow \prod_{i=1}^n R/I_i$ is an isomorphism.

105 *Proof.* 'If' is immediate. 'Only if': Let $\phi : R \longrightarrow \prod_{i=1}^{n} R_i$. Write pr_i for the projection $\prod_{i=1}^{n} R_i \longrightarrow$

106 R_i . Define $I_i := \ker(\operatorname{pr}_i \cdot \phi)$. Since $\operatorname{pr}_i \cdot \phi$ is surjective, we get an isomorphism $f_i : R/I_i \longrightarrow R_i$.

¹⁰⁷ The proposition now follows from the commutativity of the following diagram:



and the observation that $\prod_{i=1}^{n} f_i$ is an isomorphism.

theorem:productdecomposition frings 109 1.14. **Theorem.** Let R be a ring, S its centre and I_1, \ldots, I_n two-sided R-ideals. Then the following are 110 equivalent: theorem:productdecomposition frings:product

(1) The natural map $R \longrightarrow \prod_{i=1}^{n} R_{th}$ is an isomerphism position of rings: central dempotents

(2) There exist idempotents $e_1, \ldots, e_n \in S$ such that $e_i e_i = 0$ for all $i \neq j$, $\sum_{i=1}^n e_i = 1$ and

113 $I_i = R(1-e_i)$ theorem:productdecompositionofrings:comaximal

(3) For all $i \neq j$, $I_i + I_j = R$ and $\bigcap_{i=1}^n I_{i=0} \oplus \mathbb{P}_{rem: productdecomposition of rings: extended ideals (4) There exist ideals <math>J_1, \ldots, J_n$ of S such that the map $S \longrightarrow \prod_{i=1}^n S/J_i$ is an isomorphism and

- 116 $I_i = RJ_i$ for every *i*.
- 117 Proof. TBD.

118 1.15. **Definition.** A *left R*-*module M* is an abelian group *M* with an *R*-action $R \times M \longrightarrow M$ 119 satisfying (r + s)m = rm + sm, (sr)m = s(rm) and 1m = m for all $r, s \in R$ and $m \in M$. A 120 *right R*-*module M* is an abelian group *M* with an *R*-action $M \times R \longrightarrow M$ satisfying m(r + s) =121 mr + ms, m(rs) = (mr)s and m1 = m. A *homomorphism of R*-*modules* is a map $f : M \longrightarrow N$ that 122 is a morphism of abelian groups and satisfies *R*-*linearity*: f(rx) = r(f(x)) for every $r \in R$ and 123 $x \in M$. The set of *R*-homomorphisms from *M* to *N* is denoted $\text{Hom}_R(M, N)$.

If *M* is a left (respectively, right) *R*-module, then, for every $r \in R$, the map $h_r : M \longrightarrow M$, $x \mapsto rx$ (respectively, $x \mapsto xr$) is a morphism of abelian groups called the *left homothety* (respectively, *right homothety*) defined by *r*. Homotheties are not *R*-homomorphisms in general (since

 \square

 $h_r(sx)$ need not equal $s(h_r(x))$ unless rs = sr; if r is central, then h_r is a R-homomorphism. The 127 map $R \longrightarrow \operatorname{End}_{\mathbb{Z}}(M)$ $r \mapsto h_r$ is a ring homomorphism. Its image in $\operatorname{End}_{\mathbb{Z}}(M)$ is called the *ring* 128 of homotheties (more precisely the ring of R-homotheties) of M and is denoted R_M . Conversely, if 129 *M* is an abelian group, then every ring homomorphism $R \longrightarrow \operatorname{End}_{\mathbb{Z}}(M)$ defines an *R*-module 130 structure on *M*. 131

The set $\operatorname{Hom}_R(M, N)$ does not have any 'natural' *R*-module structure, even with N = M, for 132 more-or-less the same reason why homotheties are not *R*-homomorphisms. Similarly, there is 133 no 'natural' ring map from $R \longrightarrow \text{End}_R(M)$. The map $r \mapsto h_r$ from the centre of R of $\text{End}_R(M)$ 134 is a ring map, since central homotheties are *R*-homomorphisms. 135

Hereafter, unless otherwise mentioned, by a *module*, we mean a left module. 136

If M_{λ} , $\lambda \in \Lambda$ is a family of *R*-modules, then the cartesian product $\prod_{\lambda \in \Lambda} M_{\lambda}$ has a natural *R*-137 module structure $r(x_{\lambda})_{\lambda \in \Lambda} = (rx_{\lambda})_{\lambda \in \Lambda}$. It is also a product in the category of *R*-modules, i.e., 138 if $f_{\lambda} : N \longrightarrow M_{\lambda}$ are *R*-homomorphisms, then there is a unique *R*-homomorphism $f : N \longrightarrow M_{\lambda}$ 139 $\prod_{\lambda \in \Lambda} M_{\lambda}$ such that $f_{\lambda} = \operatorname{pr}_{\lambda} \cdot f$ where the $\operatorname{pr}_{\lambda}$ are the projection maps. Therefore $\prod_{\lambda \in \Lambda} M_{\lambda}$ is called *the product module* of the family $M_{\lambda}, \lambda \in \Lambda$. The *(external) direct sum* of the family 140 141 $M_{\lambda}, \lambda \in \Lambda$ is the submodule $\{y \in \prod_{\lambda \in \Lambda} M_{\lambda} \mid \operatorname{pr}_{\lambda}(y) = 0 \text{ except for finitely many } \lambda\}$ and is 142 denoted $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$. Fix $\lambda \in \Lambda$, and consider the family of *R*-homomorphisms $f_{\mu} : M_{\lambda} \longrightarrow M_{\mu}$, 143 $\mu \in \Lambda$, defined by 144

$$f_{\mu} = \begin{cases} \mathrm{id}_{M_{\lambda}}, & \mathrm{if } \mu = \lambda; \\ 0, & \mathrm{otherwise.} \end{cases}$$

Therefore there is a map $\iota_{\lambda} : M_{\lambda} \longrightarrow \prod_{\mu \in \Lambda} M_{\mu}$ such that $\operatorname{pr}_{\lambda} \circ \iota_{\lambda} = \operatorname{id}_{M_{\lambda}}$ and $\operatorname{pr}_{\mu} \circ \iota_{\lambda} = 0$ for 145 every $\mu \neq \lambda$. Since ι_{λ} is injective, it identifies M_{λ} with the submodule $\{(x_{\mu})_{\mu \in \Lambda} \in \prod_{\mu \in \Lambda} M_{\mu} \mid$ 146 $x_{\mu} = 0$ for every $\mu \neq \lambda$ }. Moreover $\operatorname{Im}(\iota_{\lambda}) \subseteq \bigoplus_{\mu \in \Lambda} M_{\mu}$ so ι_{λ} (by abuse of notation) will 147 be thought of as an *R*-homomorphism $M_{\lambda} \longrightarrow \bigoplus_{\mu \in \Lambda} M_{\mu}$. Direct sum is a co-product in the 148 category of *R*-modules: if $f_{\lambda} : M_{\lambda} \longrightarrow N$ are *R*-homomorphisms, then there is a unique *R*-homomorphism $f : \bigoplus_{\lambda \in \Lambda} M_{\lambda} \longrightarrow N$ such that $f_{\lambda} = f \cdot \iota_{\lambda}$. 149 150 proposition:directsumofsubmodules

1.16. **Proposition.** Let M be an R-module, and $N_{\lambda}, \lambda \in \Lambda$ a family of submodules of M. Then the 151 following are equivalent: 152

- 153
- (1) $\sum_{\lambda \in \Lambda} N_{\lambda} = \bigoplus_{\lambda \in \Lambda} N_{\lambda}$; (2) If $\sum_{\lambda \in \Lambda} x_{\lambda} = 0$, with $x_{\lambda} \in N_{\lambda}$ for every $\lambda \in \Lambda$, then $x_{\lambda} = 0$ for every $\lambda \in \Lambda$. 154

(3) for every $\lambda \in \Lambda$, $N_{\lambda} \cap \sum_{\mu \in \Lambda} N_{\lambda} = 0$. 155

 \square

If X is a set and R a ring, R^X (the cartesian product of a family indexed by X, with each 157 member being *R*) is both the product ring (when this family is thought of as a family of rings) 158 and the product R-module (when this family is thought of as a family of R-modules). By 159 $R^{(X)}$, we mean the direct sum of this family of *R*-modules. For $x \in X$, the image of 1 under 160 $\iota_x : R \longrightarrow R^{(X)}$ is denoted by e_x . Then every element of $R^{(X)}$ can be uniquely expressed a finite sum $\sum_{x \in X} r_x e_x$. This construction has the following property: if *M* is an *R*-module and $X \subseteq M$, 161 162 then there exists a unique *R*-homomorphism $R^{(X)} \longrightarrow M$ with $e_x \mapsto x$. An *R*-module *M* is said 163 to be *free* if there exists a subset $X \subseteq M$ such that the *R*-homomorphism $R^{(X)} \longrightarrow M$, $e_x \longrightarrow x$ 164 is an isomorphism. 165 definition:simplemodules

1.17. **Definition.** An *R*-module *M* is said to be *simple* if it has no submodules different from *M* 166 and 0. 167 example:simplemodules

1.18. Example. We give some examples of simple modules. 168

(1) $_{R}R$ simple if and only if 0 is a maximal left ideal, which holds if and only if R is a division 169 ring. Indeed, if R is a division ring, then every non-zero element generates the unit ideal, so 0 170 is a maximal left ideal. Conversely, suppose that 0 is a maximal left ideal (which implies that 171

5

 $1 \neq 0$) and let $0 \neq r \in R$. Then Rr = R, so there exists $0 \neq r' \in R$ such that r'r = 1, and, 172 furthermore, $0 \neq r'' \in R$ such that r''r' = 1. Hence r' is left-invertible and right-invertible, so 173 it is invertible and its inverse is r = r''. Hence r is invertible mple:simplemodules:fgoverdivring 174 (2) Let D be a division ring and M a finitely generated D-module. Then M is free. Write 175 $R = \operatorname{End}_D(M)$. We now argue that M is a simple R-module. More precisely, we show the 176 following: let $0 \neq x \in M$ and $y \in M$; then there exists $\phi \in R$ such that $\phi(x) = y$. To this end, 177 let $f \in M^*$ be such that f(x) = 1 and define $\phi \in R$ as the map $v \mapsto f(v)y$. 178 (3) More examples to come. 179

1.19. **Proposition.** Let M be an R-module. An R-submodule $N \subsetneq M$ is maximal among the proper R-submodules of M if and only if the quotient M/N is simple. If $M_1 \subsetneq M$ is an R-submodule, then there exists An R-submodule $N \subsetneq M$ that is maximal among the proper R-submodules of M containing M_1 .

184 Proof. TBD.

definition: jhseries

exercise:fdalgoveralgclosed

185 1.20. **Definition.** A *Jordan-Hölder series* of *M* is a decreasing filtration $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq$ 186 $M_s = 0$ of submodules such that for every $1 \le i \le s$, M_{i-1}/M_i is a simple *R*-module; the 187 integer *s* above is the *length* of the above Jordan-Hölder series. Say that an *R*-module *N* is of 188 *finite length* (or is a *finite length* module) if *N* has a Jordan-Hölder series.

remark: jhseriessubsquotients 189 1.21. **Remark.** Let $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_s = 0$ be a Jordan-Hölder series of M and N a 190 submodule of M. Then $(N \cap M_{i-1})/(N \cap M_i)$ is a submodule of M_{i-1}/M_i , so it is either 0 or 191 simple. Hence by deleting repetitions from among the modules $N \cap M_i$, we obtain a Jordan-192 Hölder series of N. Similarly $(N + M_{i-1})/(N + M_i)$ is a quotient of M_{i-1}/M_i , so by deleting 193 repetitions from among the modules $(N + M_i)/N$, we obtain a Jordan-Hölder series of M/N.

proposition: jhserieslength 194 1.22. Proposition. Let $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_s = 0$ and $M = N_0 \supseteq N_1 \supseteq \cdots \supseteq N_t = 0$ be 195 two Jordan-Hölder series of M. Then s = t and there exists a permutation σ of $\{1, \ldots, s\}$ such that for 196 every $1 \le i \le s$, $N_{i-1}/N_i = M_{\sigma(i-1)}/M_{\sigma(i)}$.

Proof. Without loss of generality, $1 \le s \le t$. If s = 1, then M is simple, so the assertions are true. We proceed by induction. Assume that the assertions are true for all R-modules that have a Jordan-Hölder series of length at most s - 1. If $M_1 = N_1$, then by induction, the assertions hold for $M_1 = N_1$, so they hold for M. Therefore we may assume that $M_1 \ne N_1$.

Note that $N_1 \not\subset M_1$; for, otherwise, we have $N_1 \subsetneq M_1 \subsetneq M$, violating the simplicity of M/N_1 . Similarly $M_1 \not\subset N_1$. Write $K = M_1 \cap N_1$. Then $M_1 \subsetneq M_1 + N_1$, so the simplicity of M/M_1 implies that $M_1 + N_1$; hence, $M_1/K \simeq M/N_1$ is simple. Similarly $N_1/K \simeq M/M_1$ is simple.

The assertions of the proposition hold for M_1 , by induction. Let $K = K_0 \supseteq K_1 \supseteq \cdots \supseteq K_r =$ 0 be a Jordan-Hölder series of K. Then $M_1 \supseteq K \supseteq K_1 \supseteq \cdots \supseteq K_r = 0$ is a Jordan-Hölder series of M_1 . Hence s - 1 = r + 1, and the quotients in this Jordan-Hölder series are the same as the quotients in the series $M_1 \supseteq \cdots \supseteq M_s = 0$ after a suitable permutation.

Now, $N_1 \supseteq K \supseteq K_1 \supseteq \cdots \supseteq K_r = 0$ is a Jordan-Hölder series of N_1 of length r + 1 = s - 1, so, by induction, the assertions hold for N_1 . Therefore t - 1 = s - 1 and the the quotients in this Jordan-Hölder series are the same as the quotients in the series $N_1 \supseteq \cdots \supseteq N_t = 0$ after a suitable permutation. Hence the assertions hold for the two given Jordan-Hölder series of M.

214

EXERCISES

(1) Let \Bbbk be an algebraically closed field and R a finite-dimensional \Bbbk -algebra that has no zero-divisors. Show that $\Bbbk = R$. (Hint: Let $0 \neq r \in R$. Show that there is a map of \Bbbk -algebras $\Bbbk[X] \longrightarrow R, X \mapsto r$. What about the kernel of this map?)

exercise:faithful

(2) An *R*-module *M* is *faithful* if its annihilator is 0. Show that *M* is faithful if and only if the map $R \longrightarrow R_M$ (the ring of homotheties) is injective.

220

2. CHANGE OF RINGS

Let *M* be a right *R*-module and *N* a left *R*-module. The *tensor product* of *M* and *N*, denoted 221 $M \otimes_R N$, is the abelian group $\mathbb{Z}^{(M \times N)} / B$, where *B* is the subgroup generated by the elements 222 $(x + x', y) - (x, y) - (x', y), (x, y + y') - (x, y) - (x, y') \text{ and } (xr, y) - (x, ry) \text{ for all } x, x' \in M,$ $y, y' \in N \text{ and } r \in R.$ The image of $(x, y) \in \mathbb{Z}^{(M \times N)}$ under the canonical surjective map 223 224 $\mathbb{Z}^{(M \times N)} \longrightarrow M \otimes_R N$ is denoted by $x \otimes_R y$. The set $\{x \otimes_R y \mid x \in M, y \in N\}$ generate $M \otimes_R N$ 225 as an abelian group. There is no natural *R*-module structure on $M \otimes_R N$: if we try to define 226 $r(x \otimes_R y) := (xr \otimes_R y) = (x \otimes_R ry)$, then $r(xr' \otimes_R y) = r(x \otimes_R r'y) = (x \otimes_R rr'y)$ one way and 227 $r(xr' \otimes_R y) = (xr' \otimes_R ry) = (x \otimes_R r'ry)$ another way. However, the above calculation implies 228 that if *R* is commutative, then there is a natural *R*-module structure on $M \otimes_R N$. 229

Let *R* and *S* be rings. An (S, R)-*bimodule* is an abelian group *M* that is a left *S*-module and a right *R*-module, such that the two structures are compatible with each other: (sx)r = s(xr) for every $r \in R$, $s \in S$ and $x \in M$.

Let *M* be an (S, R)-bimodule, *N* a left *R*-module and *P* a left *S*-module. The abelian group $M \otimes_R N$ has a natural left *S*-module structure: $s(x \otimes_R y) = sx \otimes_R y$. This is well-defined since $s(x \otimes_R ry) = s(xr \otimes_R y) = (sxr) \otimes_R y$ and the element sxr is well-defined. The module Hom_S(*M*, *P*) has a natural left *R*-module structure: $r\phi := [x \mapsto \phi(xr)]$. (Check: $((r'r)\phi)(x) = \phi(x(r'r)) = \phi((xr')r) = (r\phi)(xr') = (r'(r\phi))(x)$; *S*-linearity: $(r\phi)(sx) = \phi(sxr) = s((r\phi)(x))$.) proposition:homtensoradj

238 2.1. Proposition. The map

 $\begin{array}{rcl} \operatorname{Hom}_{S}(M \otimes_{R} N, P) & \longrightarrow & \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(M, P)) \\ g & \mapsto & [y \mapsto [x \mapsto g(x \otimes_{R} y)]] \end{array}$

239 is an isomorphism of abelian groups.

We won't prove this statement (See Bourbaki for a proof), but make some comments, instead. For fixed *g* and *y*, the map $x \mapsto g(x \otimes_R y)$ is *S*-linear, since $g((sx) \otimes_R y) = g(s(x \otimes_R y))$ $y) = s(g(x \otimes_R y))$. For fixed *g*, the map $y \mapsto [x \mapsto g(x \otimes_R y)]$ is *R*-linear: Write ϕ_g for this map; we want to show that $\phi_g(ry) = r(\phi_g(y))$ for every $r \in R$ and $y \in N$. Now, $\phi_g(ry)(x) = \phi_g(x \otimes_R ry) = \phi_g(xr \otimes_R y) = \phi_g(y)(xr) = (r\phi_g(y))(x)$ for every $x \in M$.

Now suppose, additionally, that *R* is commutative and that *S* is an *R*-algebra with the image of *R* in *S* lying inside the centre of *S*. Then Hom_{*S*}($M \otimes_R N$, *P*) has a natural *R*-module structure: define *rg* to be the *S*-linear map $t \mapsto g(rt)$ for $t \in M \otimes_R N$. Hence the map in Proposition 2.1 is a *R*-homomorphism: $\phi_{rg}(y)(x) = (rg)(x \otimes_R y) = r(g(x \otimes_R y)) = r\phi_g(y)(x)$, and hence an *R*-isomorphism.

250

3. Semisimplicity

²⁵¹ In this section, modules are left modules, unless specified otherwise.

Recall that an *R*-module is simple if it is non-zero and it has no submodules other than 0 and *M*.
remark:simpleoverhomotheties

²⁵⁴ 3.1. **Remark.** Let *R* be a ring and *M* an *R*-module. Then *M* is simple as an *R*-module if and ²⁵⁵ only if it is simple as a module over its ring of homotheties. This follows from noting that the ²⁵⁶ structure of *M* as an *R*-module is defined through the ring map $R \longrightarrow \text{End}_{\mathbb{Z}}(M)$, so it is the ²⁵⁷ same as the structure of *M* as a module over the image of the above ring map.

proposition:schurlemmaone 258 3.2. **Proposition** (Schurlemma, version 1). Let R be a ring and M and N R-modules. Let $f : M \rightarrow N$ be a non-zero R-morphism. Then:

- (1) If M is simple, f is injective. 260
- (2) If N is simple, f is surjective. 261
- (3) If M and N are simple, f is an isomorphism. 262

Proof. Since $f \neq 0$, ker $f \subsetneq M$ and $0 \neq \text{Im } f \subseteq N$. if *M* is simple, then ker f = 0; if *N* is simple, 263 then Im f = N. 264 corollary:schurlemmatwo

- 3.3. Corollary (Schur lemma, version 2). If M is a simple R-module, then $End_R(M)$ is a division 265 ring. 266
- *Proof.* Every non-zero endomorphism of M is an isomorphism, i.e., an invertible element of 267 $\operatorname{End}_{R}(M).$ \square 268 corollary:EndRfdvsalgclosed

3.4. Corollary. Let \Bbbk be an algebraically closed field, R a \Bbbk -algebra, M a simple R-module which is 269 finite-dimensional as a k-vector space. Then for every $\phi \in \operatorname{End}_R(M)$, there exists $\lambda \in \Bbbk$ such that 270 $\phi(x) = \lambda x$ for every $x \in M$. 271

Proof. Since $\operatorname{End}_{\mathbb{R}}(M) \subseteq \operatorname{End}_{\mathbb{k}}(M)$ it is a finite-dimensional division ring over k. Now use 272 Section 1, Exercise 1. 273

- Here is another proof. Let λ be an eigen-value of ϕ considered as a k-endomorphism of *M*. 274
- The maps λid_M and $\phi \lambda id_M$ are *R*-morphisms. Since λ is an eigen-value, ker($\phi \lambda id_M$) $\neq 0$, 275 so, since *M* is a simple *R*-module, $\phi = \lambda i d_M$. 276
- 3.5. Corollary. With notation as in Corollary 3.4, if additionally R is commutative, then $\dim_{\mathbb{K}} M = 1$. 277
- *Proof.* Let $r \in R$. Then the homothety $x \mapsto rx$ is a *R*-morphism. Hence there exists $\lambda \in k$ such 278 that $rx = \lambda x$ for every $x \in M$. Therefore the ring R_M of homotheties coincides with the image 279 \square
- of \Bbbk in End_Z(*M*). Hence *M* is simple over \Bbbk . 280

proposition:sumofsimplesubmodules 3.6. **Proposition.** Let *M* be an *R*-module that is the sum of a family $S_{\lambda}, \lambda \in \Lambda$ of simple submodules, 281 and N a submodule of M. Then there exists $\Lambda_1 \subseteq \Lambda$ such that $M = N \oplus \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. 282

Proof. Without loss of generality $N \neq M$. Let \mathcal{P} be the set of subsets $\Lambda' \subseteq \Lambda$ such that the sum 283 $N + \sum_{\lambda \in \Lambda'} S_{\lambda}$ is a direct sum. It is non-empty, there exists $\lambda \in \Lambda$ such that $S_{\lambda} \not\subseteq N$, and, for 284 such λ , $S_{\lambda} \cap N = 0$, so $S_{\lambda} + N = S_{\lambda} \oplus N$. Order \mathcal{P} by inclusion. Let $\Lambda_i, i \in \mathcal{I}$ be a chain in 285 \mathcal{P} . Then by Proposition 1.16 $\cup_{i \in \mathcal{I}} \Lambda_i \in \mathcal{P}$, so by Zorn's lemma, \mathcal{P} has a maximal element Λ_1 . 286 Set $N' = N + \sum_{\lambda \in \Lambda_1} S_{\lambda}$. Now for every $\lambda \in \Lambda \setminus \Lambda_1$, $\Lambda_1 \cup \{\lambda\} \notin \mathcal{P}$, so $S_{\lambda} \cap N' \neq 0$ (again by 287 Proposition 1.16) which implies that $S_{\lambda} \subseteq N'$. Hence M = N'. 288 corollary:charnofsemisimplemodules

- 3.7. Corollary. Let M be an R-module. Then the following are required at inframe is implemedules: sum 289
- (1) M is a sum of a family of simple submodules corollary: charnofsemisimplemodules: directsum 290
- (2) M is the direct sum of a family of simple submodules in the submodules is direct summand 291
- (3) Every submodule of M is a direct summand of M. 292
- We first need a lemma: 293
- lemma:everysubmodulesplitsimplieshassimples 3.8. Lemma. If every submodule of M is a direct summand of M then every non-zero submodule of M 294 has a simple submodule. 295
- *Proof.* Let N be a non-zero submodule of M and $0 \neq x \in N$. Write $Rx \simeq R/I$ for some 296 left *R*-ideal $I \neq R$. Let m be a maximal left *R*-ideal containing *I*. We claim that $\mathfrak{m} x \subsetneq R x$. 297 Assume that claim: Then we have $\mathfrak{m} x \subsetneq R x \subseteq M$. Since $\mathfrak{m} x$ is a direct summand of M, it is 298 a direct summand of Rx. Hence Rx contains a submodule isomorphic to the simple module 299 R/\mathfrak{m} . Now to prove the claim, assume, by way of contraction, that $\mathfrak{m}x = Rx$. Then there exist 300 $a_1,\ldots,a_t \in \mathfrak{m}$ and $r_1,\ldots,r_t \in R$ such that $\sum_{i=1}^t r_i a_i x = x$. Hence $1 - \sum_{i=1}^t r_i a_i \in I \subseteq \mathfrak{m}$, so 301 $1 \in \mathfrak{m}$, a contraction. \square 302

Proof of Corollary 3.7. (1) \implies (2): Apply Proposition 3.6 with N = 0. (2) \implies (1): Immediate.

 $(1) \implies (3)$: Apply Proposition 3.6. $(3) \implies (1)$: Let M' be the sum of simple submodules of

³⁰⁵ *M*. Write $M = M' \oplus M''$. If M'' is non-zero, then it has a simple submodule by Lemma 3.8,

which contradicts the fact that $M' \cap M'' = 0$. Hence M = M'.

307 3.9. Definition. An *R*-module *M* is said to be *semisimple* of it satisfies the (equivalent) condi 308 tions of Corollary 3.7.
 remark:semisimplemodules

3.10. **Remark.** Let M be a semisimple R-module. (1) Let $S_{\lambda}, \lambda \in \Lambda$ be a family of simple submodules of M such that $M = \sum_{\lambda \in \Lambda} S_{\lambda}$. Let N be a submodule of M. Then there exists $\Lambda_1 \subseteq \Lambda$ such that $M = N \oplus \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. (Proposition 3.6.) Write $N' = \bigoplus_{\lambda \in \Lambda_1} S_{\lambda}$. The composite map $N' \hookrightarrow M \twoheadrightarrow M/N$ is an isomorphism, and the images of $S_{\lambda}, \lambda \in \Lambda_1$ in M/N are simple submodules of M/N; hence M/N is semisimple. Applying the above argument to N', we see that $N \simeq M/N'_{remark}$ submodules: simple

(2) *M* is simple if and only if $\text{End}_R(M)$ is a division ring. 'Only if' follows from the Schur lemma (Corollary 3.3). Conversely, if *M* is not simple, then it has a simple direct summand *N*; the projection to *N* followed by the inclusion $N \longrightarrow M$ gives a non-invertible endomorphism of *M*.

319 3.11. **Definition.** Let *E* be a ring and *B* a subset of *E*. The *commutant* of *B* (in *E*) is the subring 320 $\{e \in E \mid eb = be \text{ for every } b \in B\}$ of *E*. The *bicommutant* of *B* is the commutant of the 321 commutant of *B*.

322 3.12. **Remark.** Let *E* and *B* be as in the definition above. Write B' and B'' for the commutant 323 and the bicommutant, respectively, of *B* in *E*.

(1) $B \subseteq B''$ and B' equals its bicommutant. Proof: TBD.

(2) If *B* is a subring of *E*, then $B' \cap B = \{e \in B \mid eb = be \text{ for every } b \in B\}$ is the centre of *B*. Therefore $B'' \cap B$ is the centre of *B'*. Additionally, if $b \in B'' \cap B$, then for every $c \in B''$, cb = bc, so $B'' \cap B$ is the centre of *B''* also. In particular, *B'* and *B''* have the same centre.

(3) If *B* is a commutative subring of *E* (not necessarily central in *E*) then $B \subseteq B'$. Hence $B'' \subseteq B'$, and, therefore, B'' is the centre of B'.

330 3.13. **Definition.** Let *M* be an *R*-module. The *commutant* and the *bicommutant* of *M* are the 331 commutant and the bicommutant of the ring R_M of homotheties in $\text{End}_{\mathbb{Z}}(M)$, respectively.

332 3.14. **Remark.** The commutant of M is $\operatorname{End}_R(M)$. To see this, note that if $h_r \in R_M$ is the 333 homothety $x \mapsto rx$ and $f \in \operatorname{End}_{\mathbb{Z}}(M)$, then the condition $h_r f = fh_r$ is another way of stating 334 that for every $x \in M$, $rf(x) = (h_r f)(x) = (fh_r)(x) = f(rx)$. Hence the bicommutant of M is 335 $\operatorname{End}_{\operatorname{End}_R(M)}(M)$.

proposition: bicommutant properties 336 3.15. **Proposition.** Let R be a ring and M an R-module of Mirectsum 337 (1) Let I be a set. The bicommutant of the R-module $M^{(I)}$ is the ring of homotheties of the R"-module 338 $M^{(I)}$.

(2) Suppose that M is semisimple. Then for every $x \in M$ and every $s \in R''$, there exists $r \in R$ such that sx = rx. In particular, every R-submodule of M is also an R''-submodule.

341 Proof. (1): TBD

(2): Let $x \in M$. Then Rx is an R-direct summand of M. Let $\phi \in \text{End}_R(M)$ be the projection endomorphism with image Rx. Let $s \in R''$. Then $s\phi = \phi s$ (as elements of $\text{End}_{\mathbb{Z}}(M)$). Hence for every $y \in Rx$, $sy = s\phi(y) = \phi(sy)$, so $sy \in Rx$.

theorem:density

 \square

345 3.16. **Theorem** (Jacobson density theorem). Let *R* be a ring and *M* a semisimple *R*-module. Write 346 *R*" for the bicommutant of *M*. Let $s \in \text{End}_{\mathbb{Z}}(M)$. Then $s \in R$ " if and only if for every finite subset 347 $X \subseteq M$, there exists $r \in R$ such that sx = rx for every $x \in X$.

309

310

311 312

313

Proof. 'If': Let $\phi \in \text{End}_R(M)$ and $x \in M$. Let $r \in R$ be such that sx = rx and $s\phi(x) = r\phi(x)$ (apply the hypothesis to $X = \{x, \phi(x)\}$). Then $s\phi(x) = r\phi(x) = \phi(rx) = \phi(sx)$. Hence $s\phi = \phi s$ (as elements of $\text{End}_{\mathbb{Z}}(M)$) for every $\phi \in \text{End}_R(M)$, i.e., $s \in R''$.

³⁵¹ 'Only if': Let $X = \{x_1, ..., x_n\}, n \ge 1$. Write $x = (x_1, ..., x_n) \in M^n$. Consider the ³⁵² R''-homothety $(y_1, ..., y_n) \mapsto (sy_1, ..., sy_n)$ of M. By Proposition 3.15(1) there exists an el-³⁵³ ement \tilde{s} of the bicommutant of the R-module M^n such that $\tilde{s}((y_1, ..., y_n)) = (sy_1, ..., sy_n)$. ³⁵⁴ Note that M^n is a semisimple R-module. By Proposition 3.15(2) there exists $r \in R$ such that ³⁵⁵ $(sx_1, ..., sx_n) = \tilde{s}x = rx = (rx_1, ..., rx_n)$, i.e., sx = rx for every $x \in X$.

355 $(sx_1, \ldots, sx_n) = \tilde{s}x = rx = (rx_1, \ldots, rx_n)$, i.e., sx = rx for every $x \in X$. definition:isotypic

356 3.17. **Definition.** Let *S* be a simple *R*-module and *M* an *R*-module. Say that *M* is *isotypic of type* 357 *S* if $M \simeq S^{(I)}$ for some set *I*. Say that *M* is *isotypic* if there exists a simple *R*-module *T* such that 358 *M* is isotypic of type *T*.

remark:isotypic

359 3.18. **Remark.** Every isotypic *R*-module is semisimple. If M_{λ} , $\lambda \in \Lambda$ is a family of *R*-modules 360 with M_{λ} isotypic of type *S* (where *S* is a simple *R*-module), for every $\lambda \in \Lambda$, then $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ 361 is isotypic of type *S*. If *S* is a simple *R*-module, *I* a set and *M* a submodule of $S^{(I)}$, then *M* is 362 isotypic of type *S*: for, if *M'* is a submodule of $S^{(I)}$ with $M + M' = S^{(I)}$ and $M \cap M' = 0$, then 363 $M \simeq S/M' \simeq S^{(I_1)}$ for some $I_1 \subseteq I$ (Proposition 3.6).

364 3.19. **Definition.** *R* is said to be a *semisimple ring* if $_RR$ is a semisimple *R*-module. *R* is said 365 to be a *simple ring* if it is a semisimple ring and there is a unique simple *R*-module up to 366 isomorphism.

remark:semisimpleandsimplerings

367 3.20. **Remark.** Let *R* be a ring.

remark:semisimpleandsimplerings:finitelymany

(1) Suppose that *R* is semisimple. Then it has finitely many simple modules, up to isomor-368 phism. For, write _{*R*} R as the (direct) sum of a family S_{λ} , $\lambda \in \Lambda$ of *R*-modules. Let *T* be a simple 369 *R*-module. Let $0 \neq x \in T$. The *R*-morphism map $_R R \longrightarrow T$, $1 \mapsto x$ is surjective. There-370 fore there exists $\mu \in \Lambda$ such that $T \simeq S_{\mu}$ (Remark 3.10(1)). Hence each simple *R*-module is 371 isomorphic to a submodule of _{*R*}*R*. Let $S_i, i \in \mathcal{I}$ be all the distinct simple *R*-modules, up to 372 isomorphism. Write $_{R}R \simeq \bigoplus_{i \in \mathcal{I}} M_i$ where, for every $i \in \mathcal{I}$, M_i is a direct sum of copies of S_i . 373 Since $_RR$ is a finitely-generated R-module, \mathcal{I} must be a finite set and for each $i \in \mathcal{I}$, M_i must 374 be a direct sum of finitely many copies of Smark: semisimpleandsimplerings: modulessemisimple 375 (2) Suppose that R is semisimple. Then every R-module is semisimple, since every R-376 module is a quotient of $_{R}R^{(I)}$ for some I, which is semisimplead simplerings: simple is so typic 377 (3) If *R* is a simple ring, then, for some set $I_{R}R \simeq S^{(I)}$ where *S* the unique (up to isomor-378 phism) simple *R*-module; hence $_RR$ is isotypic. Conversely, if $_RR$ is isotypic of type *S*, then 379 (a) _RR is semisimple; (b) if T is a simple R-module, then $T \simeq S$ (as in Remark 3.20(1), using 380 Remark 3.10(1)). Hence *R* is a simple ring. 381

		proposition:simplering
382	3.21. Proposition. <i>Let R be a simple ring. Then:</i>	proposition:simplering:twosidedideal
383	(1) The only two-sided ideals of R are 0 and R.	proposition:simplering:simplefaithful
384	(2) Every simple module over R is faithful.	

Proof. (1): Let *I* be any simple left *R*-ideal. If *J* is any other simple left ideal then it is isomorphic to *J* (as a left *R*-module). Both *I* and *J* are direct summands of $_RR$. Thus we get an *R*-endomorphism of $_RR$ as the composite $_RR \rightarrow I \simeq J \hookrightarrow _RR$. Every endomorphism *f* of $_RR$ is given by multiplication by f(1) on the right. Thus we see that for every simple left ideal *J*, there exists $\alpha_J \in R$ such that the map $I \rightarrow J$, $x \mapsto x\alpha_J$ is an isomorphism. Since *R* is a direct sum of simple left ideals, IR = R. Hence the only non-zero two-sided ideal is *R*.

(2): The annihilator of any non-zero left *R*-module is a two-sided proper ideal of *R*. Now use (1). \Box

proposition:endfree

393 3.22. **Proposition.** Let *D* be division ring and *M* a finitely generated *D*-module. Write $R = \text{End}_D(M)$. 394 Then *R* is a simple ring, *M* a simple and faithful *R*-module and $D \simeq \text{End}_R(M)$.

Proof. Write $R = \text{End}_D(M)$. That M is simple over R was established in Example 1.18(2). Since $R \subseteq \text{End}_{\mathbb{Z}}(M)$, the map $R \longrightarrow R_M$ is an isomorphism, so M is a faithful R-module.

Write $S = \text{End}_R(M)$ the bicommutant of M. We have maps $D \longrightarrow D_M \subseteq S$ (where D_M denotes the ring of homotheties). Since D is a division ring, the map $D \longrightarrow D_M$ is an isomorphism. Let $s \in S$. We want to show that there exists $a \in D$ such that $s = h_a$, the homothety $x \mapsto rx$. Fix $x \in M$. Note that M is a semisimple D-module. By the density theorem (Theorem 3.16) (in fact, Proposition 3.15(2) is enough) there exists $a \in D$ such that $sx = h_ax$. Let $y \in M$; there exists $\phi \in R$ such that $\phi(x) = y$; see Example 1.18(2). Then $sy = s(\phi(x)) = \phi(sx) = \phi(h_ax) = h_a\phi(x) = h_ay$. This is true for every $y \in M$, so $s = h_a$.

⁴⁰⁴ Define a map $_{R}R \longrightarrow M^{n}$ by $\phi \mapsto (\phi(x_{i}))$. This is a map of left *R*-modules. If $\phi(x_{i}) = 0$ for ⁴⁰⁵ every *i*, then for every $y = \sum_{i} a_{i}x_{i}$ (with $a_{i} \in D$ for every *i*) $\phi(y) = \sum_{i} \phi(a_{i}x_{i}) = \sum_{i} a_{i}\phi(x_{i}) = 0$, ⁴⁰⁶ so $\phi = 0$, since *M* is a faithful *R*-module. Hence $_{R}R$ is an *R*-submodule of M^{n} , which is isotypic. ⁴⁰⁷ Hence *R* is simple by Remarks 3.18 and 3.20(3).

theorem:wedderburnsimple

⁴⁰⁸ 3.23. **Theorem** (Wedderburn). Let *R* be a ring. Then *R* is simple if and only if it is isomorphic to ⁴⁰⁹ $M_n(D)$ for some division ring *D* and a positive integer *n*.

⁴¹⁰ *Proof.* 'If' is a corollary of Proposition 3.22. Conversely, suppose that *R* is simple. Let *S* be the ⁴¹¹ unique (up to isomorphism) simple *R*-module and $D = \text{End}_R(S)$. Note that the commutant ⁴¹² of *S* (as an *R*-module) is *D*. The bicommutant of *S* (as an *R*-module) is $\text{End}_D(S)$, so we have ⁴¹³ a natural ring map $R \longrightarrow R_S \subseteq \text{End}_D(S)$. The map $R \longrightarrow R_S$ is an isomorphism since *S* is a ⁴¹⁴ faithful *R*-module (Proposition 3.21(2)).

Let v_1, \ldots, v_n be a basis of S as a D-module. Let $\phi \in \operatorname{End}_D(S)$. By the density theorem (Theorem 3.16) there exists $r \in R$ such that $\phi(v_i) = rv_i$ for every $1 \le i \le n$. Hence $\phi(\sum_i d_i v_i) =$ $\sum_i (d_i r)v_i = \sum_i (rd_i)v_i = r(\sum_i d_i v_i)$ for every collection $d_1, \ldots, d_n \in D$. Hence the map $R \longrightarrow$ $R_S \subseteq \operatorname{End}_D(S)$ is surjective, and an isomorphism.

419 3.24. Lemma. Let $\phi : R \longrightarrow R'$ be an isomorphism of rings. Let I be a left R-ideal. Then lemma: ringisomand commutants: imageofideal

 $\begin{array}{ll} {}^{420} & (1) \ I' := \phi(I) \ is \ a \ left \ R' \ ideal \ and \ the \ induced \ map \ \phi|_I : I \longrightarrow I' \ is \ an \ isomorphism \ of \ R-modules, \\ {}^{421} & where \ R \ acts \ on \ I' \ through \ \phi. \\ \end{array}$

422 (2) The ring map $\Phi : \operatorname{End}_{\mathbb{Z}}(I) \longrightarrow \operatorname{End}_{\mathbb{Z}}(I'), f \mapsto \phi|_{I} \circ f \circ \phi|_{I}^{-1}$ is an isomorphism. Moreover, 423 for every $r \in R, \Phi(h_{r}) = h_{\phi(r)}$ (where h_{r} denotes the homethety $x \mapsto rx$ of I) for every $r \in R$, $\Phi(h_{r}) = h_{\phi(r)}$ (where h_{r} denotes the homethety $x \mapsto rx$ of I)

(3) Write S and S' for the commutants of I and I' respectively. Then $\Phi(S) = S'$; this gives a ring isomorphism $\Phi|_S : S \longrightarrow S'$.

Proof. (1): Since I' is an abelian group, it suffices to show that for every $r' \in R'$ and $x \in I'$, $r'x' \in I'$. This indeed is true since $r'x' = \phi(\phi^{-1}(r')\phi^{-1}(x'))$. To show that $\phi|_I : I \longrightarrow I'$ is an isomorphism of *R*-modules, it suffices to check that it is also an *R*-morphism, since it is an isomorphism of abelian groups; this is immediate.

(2): It is straightforward to check that the ring map $\operatorname{End}_{\mathbb{Z}}(I') \longrightarrow \operatorname{End}_{\mathbb{Z}}(I), g \mapsto \phi|_{I}^{-1} \circ g \circ \phi|_{I}$ is the inverse of Φ . Let $y \in I'$ and $r \in R$. We want to show that $(\phi|_{I} \circ h_{r} \circ \phi|_{I}^{-1})(y) = h_{\phi(r)}(y)$. This follows immediately from the definitions.

433 (3): ' \subseteq ': Let $s \in S$, $r' \in R'$ and $y \in I'$; we want to show that $\Phi(s)(h_{r'}(y)) = h_{r'}(\Phi(s)(y))$. 434 Write $r' = \phi(r)$ and $y = \phi(x)$. Then $\Phi(s)(h_{r'}(y)) = \phi(s(h_r(x)))$ and $h_{r'}(\Phi(s)(y)) = \phi(h_r(s(x)))$. 435 Since $s \in S$, we have that $h_r(s(x)) = s(h_r(x))$.

⁴³⁶ ' \supseteq ': Let $s' \in S'$. Write $s' = \Phi(s)$ with $s \in \operatorname{End}_{\mathbb{Z}}(I)$. We need to show that $s \in S$. Let ⁴³⁷ $r \in R$ and $x \in I$; we want to show that $s(h_r(x)) = h_r(s(x))$. This follows from noting that ⁴³⁸ $\phi(s(h_r(x))) = s'(h_{\phi(r)}(\phi(x))) = h_{\phi(r)}(s'(\phi(x))) = \phi(h_r(s(x)))$. 3.25. **Proposition.** Let D_1 and D_2 be division rings and n_1 and n_2 positive integers. Then $M_{n_1}(D_1) \simeq M_{n_2}(D_2)$ if and only if $D_1 \simeq D_2$ and $n_1 = n_2$.

Proof. 'If' is immediate. Conversely, first, by looking at Jordan-Hölder sequences, we conclude that $n_1 = n_2$ which we call n. Let $\phi : M_n(D_1) \longrightarrow M_n(D_2)$ be an isomorphism. Apply Lemma 3.24 with $R = M_n(D_1)$ and $R' = M_n(D_2)$ and I any simple left ideal of $M_n(D_1)$. Then, in the notation of that Lemma, $I \simeq D_1^n$ (as $M_n(D_1)$ -modules), $I' \simeq D_2^n$ (as $M_n(D_2)$ -modules) $S \simeq D_1$ and $S' \simeq D_2$ (as rings, in both the cases).

theorem:wedderburnsemisimple 3.26. **Theorem** (Wedderburn). Let R be a semisimple ring and $_{R}R = \bigoplus_{i=1}^{m} I_i$ the isotypic decomposition of $_{R}R$ (into left R-ideals). Write $1 = e_1 + \cdots + \underbrace{\mathsf{tree}}_{i \neq 0}$ right we deriver simple: two sided ideal (1) For each $1 \leq i \leq m$, I_i is a two-sided R-ideal. theorem:wedderburnsemisimple:simplering (2) For each $1 \leq i \leq m$, I_i is a simple ring with the operations induced from R and with e_i as the multiplicative identity. theorem:wedderburnsemisimple:product

451 (3) $R = \prod_{i=1}^{m} I_i$ as rings.

lemma:productofsimpleleftidealandsimplemodule 3.27. Lemma. Let R be a ring, I a simple left R-ideal and M a simple R-module. If I is not isomorphic to M, then IM = 0.

Proof. *IM* is a submodule of *M*, so IM = 0 or IM = M. If IM = M, then there exists $x \in M$ such that $Ix \neq 0$, so Ix = M. Hence the map $I \longrightarrow M$, $r \mapsto rx$ is an *R*-isomorphism.

Proof of Theorem 3.26. (1): Note that for $j \neq i$, $I_i I_j = 0$ by Lemma 3.27. Hence $I_i \subseteq I_i R = I_i I_i \subseteq$ I_i, so $I_i R = I_i I_i = I_i$, i.e., I_i is a two-sided ideal.

(2): We already checked that I_i is closed under the multiplication induced from R. For every $r \in I_i$, $r = r(e_1 + \cdots + e_m) = re_i$.

(3): For $1 \le i \le n$, write $J_i = \bigoplus_{\substack{1 \le j \le m \\ j \ne i}} I_i$; The natural projection map $R \longrightarrow I_i$ is a ring

homomorphism, with kernel J_i . Therefore it suffices to show that the natural map $R \longrightarrow \prod_{i=1}^{m} R/J_i$ is an isomorphism, for which we will use Theorem 1.14. Let $r \in R$. Write $r = \sum_{i=1}^{n} r_i$, with $r_i \in I_i$ for every i. Then $re_i = r_ie_i = r_i(\sum_{j=1}^{n} e_j)(\sum_{j=1}^{n} e_j)r_i = e_ir_i$, so e_i is a central idempotent for every i. Since $I_iI_j = 0$ for every $i \neq j$, $e_ie_j = 0$ for every $i \neq j$. Note that $I_i = Re_i$ and that $J_i = R(1 - e_i)$. Hence by Theorem 1.14 the natural map $R \longrightarrow \prod_{i=1}^{m} R/J_i$ is an isomorphism.

corollary: characterisationsemisimplerings 3.28. Corollary. Let R be a ring. Then R is semisimple if and only if it is of the form $\prod_{i=1}^{m} M_{n_i}(D_i)$ for

- some division rings D_1, \ldots, D_n and positive integers n_1, \ldots, n_m .
- ⁴⁶⁹ *Proof.* 'Only if': Use Theorems 3.26 and 3.23. 'If': see Exercise below.

470

467

EXERCISES

(1) Let *R* and *S* be rings and *M* and *N* a semisimple *R*-module and a semisimple *S*-module respectively. Show that $M \oplus N$ is a semisimple $(R \times S)$ -module exercise:isotypicdecomposition

(2) Let *R* be a ring and *M* a semisimple *R*-module. Let *N* be a simple *R*-module. Let M' be a submodule of *M*. Then the following are equivalent:

(a) M' is the largest isotypic submodule of M of type N, i.e., M' is isotypic of type N and if N' is a simple submodule of M isomorphic to N, then $N' \subseteq M'$.

(b) M' is the (direct) sum of all the simple submodules of M that are isomorphic to N.

478 (c) $M' = \operatorname{Hom}_R(N, M)$.

⁴⁷⁹ Let N_{λ} , $\lambda \in \Lambda$ be all the distinct (up to isomorphism) simple *R*-modules. Then $M = \bigoplus_{\lambda \in \Lambda} \operatorname{Hom}_{R}(N_{\lambda}, M)$. ⁴⁸⁰ This is called the *isotypic decomposition* of *M*.

12

481

4. INTRODUCTION TO REPRESENTATION THEORY

Throughout this section \Bbbk denotes a commutative ring. A \Bbbk -algebra is a ring R with a ring homomorphism $\Bbbk \longrightarrow R$ (often understood from the context and not stated explicitly) whose image is inside the centre of R. (That is, for us, a \Bbbk -algebra is unital and associative.) If \Bbbk is field, then a \Bbbk -algebra R is said to be *finite-dimensional* if dim_{\Bbbk} R is finite. (Note that the ring map $\Bbbk \longrightarrow R$ makes R into a \Bbbk -vector-space.)

487 4.1. **Discussion**. Let *G* be a group. We make the free k-module $\Bbbk^{(G)}$ into a k-algebra as follows. 488 Let $e_g, g \in G$ denote the standard basis for $\Bbbk^{(G)}$. Then set $e_g e_h = e_{gh}$; now extend it to $\Bbbk^{(G)}$ by 489 setting $(\sum_{i=1}^{n} a_i e_{g_i})(\sum_{j=1}^{m} b_j e_{h_j}) = \sum_{i,j} a_i b_j e_{g_i h_j}$. This gives a ring with identity element e_1 . The 490 map $\Bbbk \longrightarrow \Bbbk^{(G)}$, $a \mapsto ae_1$ is a ring homomorphism; its image is inside the centre of $\Bbbk^{(G)}$. Thus 491 we get a k-algebra structure on $\Bbbk^{(G)}$; we denote it by $\Bbbk[G]$. We will write 1 for the element 492 e_1 .

493 **4.2. Remark.** Let *G* be a group. $\Bbbk[G]$ is commutative if and only if $e_g e_h = e_h e_g$ for all $g, h \in G$ 494 which holds if and only if *G* is an abelian group. For a positive integer $r, \Bbbk[\mathbb{Z}^r] = \Bbbk[x_1, x_1^{-1}, x_2, x_2^{-1}, \dots, x_n, x_n^{-1}]$ 495 and $\Bbbk[\mathbb{Z}/r] \simeq \Bbbk[x]/(x^r - 1)$. If \Bbbk is a field, then $\Bbbk[G]$ is a finite-dimensional \Bbbk -algebra if and 496 only if *G* is a finite group.

497 4.3. **Definition.** Let *G* be a group and *M* a k-module. A (*linear*) *representation* of *G* on *M* is a 498 group homomorphism $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$, the group of invertible k-endomorphisms of *M*. 499 We denote this representation by (M, ρ) ; if the map ρ is understood from the context, we omit 500 it from the notation and say that *M* is a representation of *G*. Moreover, when no confusion is 501 likely to occur, we will write *g* for the automorphism $\rho(g) : M \longrightarrow M$.

⁵⁰² 4.4. **Example.** In these examples assume that *M* is free \Bbbk -module of rank *n* with basis $\{v_1, \ldots, v_n\}$. ⁵⁰³ However, no generality is lost if one further assumes that \Bbbk is a field.

(1) Identify $\operatorname{Aut}_{\Bbbk}(M)$ with $\operatorname{GL}_n(\Bbbk)$ (the group of invertible $n \times n$ matrices over \Bbbk) using the given basis. The cyclic group \mathbb{Z}/n acts on $\{v_1, \ldots, v_n\}$ by cyclically permuting its elements. This gives a representation of \mathbb{Z}/n on M which is given by the group homomorphism $\mathbb{Z}/n \longrightarrow$ $\operatorname{GL}_n(\Bbbk)$

	0	0 0		0	1]	
	1	0	• • •	0	0	
$\overline{1} \mapsto$	0	1	• • •	0	0	
	:		۰.		:	
	0	0	• • •	1	0	

(2) More generally, every subgroup of the permutation group S_n has a *permutation representation* on M by $\sigma : v_i \mapsto v_{\sigma(i)}$. The image of σ in $GL_n(\Bbbk)$ is the *permutation matrix* A_{σ} associated to σ , which is given by

$$(A_{\sigma})_{i,j} = \begin{cases} 1, & \text{if } i = \sigma(j); \\ 0, & \text{otherwise.} \end{cases}$$

(3) Even more generally, if *X* is a set on which *G* acts on the left (as permutations), then we get a permutation representation of *G* on the free module $\mathbb{k}^{(X)}$ by $g : e_x \mapsto e_{g(x)}$. An important example of this is the *regular representation* of *G*: *G* acts on itself by left multiplication; this extends to a representation of *G* on $\mathbb{k}[G]$ satisfying $g : e_h \mapsto e_{gh}$.

discussionbox: category of reps 515 4.5. **Discussion.** Let G be a group, and M, N representations of G. A homomorphism of G-516 representations (or a G-homomorphism) $\phi : M \longrightarrow N$ is is a k-homomorphism $\phi : M \longrightarrow N$ 517 satisfying $\phi(gx) = g(\phi(x))$ for every $x \in M$ and $g \in G$. Thus we can talk of the cate-518 gory of G-representations. We say that N is a G-subrepresentation of M if it is k-submodule

of M and the inclusion map is a G-homomorphism; in this case, for every $g \in G$, the k-519 automorphism g of M induces a k-automorphism of the quotient k-module M/N, so M/N520 has a natural G-representation structure such that the quotiet map $M \longrightarrow M/N$ is a G-521 homomorphism. Therefore the kernel, the image and the cokernel of a G-homomorphism are 522 *G*-representations. Moreover if $M_{\lambda}, \lambda \in \Lambda$ is a family of *G*-representations, then the k-module 523 $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ has a natural G-action, and is the direct sum in the category of G-representations. 524 Similarly, the k-module $\prod_{\lambda \in \Lambda} M_{\lambda}$ has a natural *G*-action, and is the product in the category of 525 G-representations. 526 discussionbox:repsandmodules

4.6. **Discussion.** Let $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$ be a representation of G on M. This extends to a 527 homomorphism of k-algebras $\overline{\rho} : \mathbb{k}[G] \longrightarrow \operatorname{End}_{\mathbb{k}}(M)$ determined (uniquely) by $\overline{\rho}(e_g) = \rho(g)$. 528 Conversely, if $\sigma : \Bbbk[G] \longrightarrow \operatorname{End}_{\Bbbk}(M)$ is a homomorphism of \Bbbk -algebras, then we get a group 529 homomorphism σ' : $G \longrightarrow Aut_{\Bbbk}(M)$, by $\sigma'(g) = \sigma(e_g)$, since the elements e_g are invert-530 ible in $\Bbbk[G]$. The operations are inverses of each other: $(\overline{\rho})' = \rho$ and $(\sigma') = \sigma$. Hence 531 defining a G-representation on a k-module M is equivalent to defining a k[G]-module struc-532 ture on M (compatible with the given k-module structure). For G-representations M and 533 N, a k-homomorphism $\phi: M \longrightarrow N$ is a G-homomorphism) precisely when it is a $\Bbbk[G]$ -534 homomorphism. Therefore the categories of G-representations and of $\Bbbk[G]$ -modules is equiva-535 lent. The notions defined in Discussion 4.5 match the corresponding notions for $\Bbbk[G]$ -modules. 536 Therefore we will interchangeably use 'G-representations' and ' $\Bbbk[G]$ -modules' (and some-537 times, merely, 'G-modules'). \square 538 theorem:maschkegeneral

4.7. **Theorem.** Let G be a finite group with |G| invertible in \Bbbk . Let M be a $\Bbbk[G]$ -module, and N a $\Bbbk[G]$ -submodule of M that is a direct summand of M as a \Bbbk -module. Then N is a direct summand as a $\Bbbk[G]$ -module.

Proof. Let $p \in \text{End}_{\Bbbk}(M)$ be a projection with image N. Define a \Bbbk -endomorphism $q : M \longrightarrow M$ by

$$x \mapsto \frac{1}{|G|} \sum_{g \in G} gp(g^{-1}x).$$

The image of q is N and, for every $x \in N$, q(x) = x. Hence $M = N \oplus (\ker q)$ as k-modules. Moreover, $q(gx) = \frac{1}{|G|} \sum_{h \in G} hp(h^{-1}gx) = g\frac{1}{|G|} \sum_{h \in G} g^{-1}hp(h^{-1}gx) = g\frac{1}{|G|} \sum_{h \in G} hp(h^{-1}x) =$ gq(x) for every $g \in G$, so $(\ker q)$ is a k[G]-module. Hence N is a direct summand of M as a [G]-module.

4.8. **Corollary** (Maschke). Let \Bbbk be a field and G a finite group with |G| invertible in \Bbbk . Then $\Bbbk[G]$ is a semisimple ring.

Proof. For every $\Bbbk[G]$ -module M and $\Bbbk[G]$ -submodule N of M, N is a direct summand of M as a \Bbbk -module. By Theorem 4.7, N is a direct summand of M as a $\Bbbk[G]$ -module; now apply Corollary 3.28.

4.9. **Remark.** The assertion of the Corollary 4.8 fails if |G| is not invertible in k. Consider the element $\epsilon = \sum_{g \in G} g \in k[G]$. For every $g \in G$, $g\epsilon = \epsilon = \epsilon g$, so $\epsilon^2 = |G|\epsilon = 0$ and $\epsilon \in k[G]g$, the left ideal generated by g. Hence the left module $k[G]\epsilon$ is not a direct summand of the left module k[G]. In particular k[G] is not a semisimple ring.

4.10. **Corollary.** Let G be a finite group with |G| invertible in \mathbb{k} . An exact sequence of $\mathbb{k}[G]$ -modules is split if and only if it is split as an exact sequence of \mathbb{k} -modules.

Proof. 'If' is immediate. 'Only if': Let $0 \to M_1 \xrightarrow{f} M_2 \to M_3 \to 0$ be an exact sequence of $\Bbbk[G]$ -modules. If it is split as a sequence of \Bbbk -modules, then $\operatorname{Im}(f)$ is a direct summand of M_2 as a \Bbbk -module, so by Theorem 4.7, it is a direct summand also as a $\Bbbk[G]$ -module, i.e., the sequence is split as a sequence of of $\Bbbk[G]$ -modules. 4.11. **Corollary.** Let G be a finite group with |G| invertible in \Bbbk . A $\Bbbk[G]$ -module is projective if and only if it is projective as a \Bbbk -module. In particular, if \Bbbk is a field, then every $\Bbbk[G]$ -module is projective.

Proof. Let M be a $\Bbbk[G]$ -module and F a free $\Bbbk[G]$ -module with a surjective $\Bbbk[G]$ -morphism $\phi: F \longrightarrow M$. If M is projective as a $\Bbbk[G]$ -module, then ϕ is split as a $\Bbbk[G]$ -morphism, and, afortiori, as a \Bbbk -morphism. Hence M is a projective \Bbbk -module. Conversely, if M is a projective a \Bbbk -module, then ϕ is split as a \Bbbk -morphism. By Theorem 4.7, ker ϕ is a direct summand of F as a $\Bbbk[G]$ -module, so ϕ is split as a $\Bbbk[G]$ -morphism. Hence M is a projective $\Bbbk[G]$ -module.

4.12. **Discussion** (Frobenius reciprocity). Let *H* be a subgroup of *G*, and denote the inclusion map $\Bbbk[H] \longrightarrow \Bbbk[G]$ by ρ . The functor ρ_* (from the category of $\Bbbk[G]$ -modules to the category of $\Bbbk[H]$ -modules, treating a a $\Bbbk[G]$ -module as $\Bbbk[H]$ -module through restriction of scalars) is called the *restriction functor* and is denoted Res^{*G*}_{*H*}. The functor $\rho^*(-) = \Bbbk[G] \otimes_{\Bbbk[H]} -$ (from $\Bbbk[H]$ -modules to the category of $\Bbbk[G]$ -modules, treating $\Bbbk[G]$ as a right $\Bbbk[H]$ -module) is called the *induction functor* and is denoted Ind^{*G*}_{*H*}; for a $\Bbbk[G]$ -module *M*, Ind^{*G*}_{*H*}(*M*) is called the representation of *G* induced from *M*. Hom- \otimes adjunction (Proposition 2.1) gives

$$\operatorname{Hom}_{\Bbbk[H]}(M,\operatorname{Res}_{H}^{G}N) = \operatorname{Hom}_{\Bbbk[G]}(\operatorname{Ind}_{H}^{G}M,N)$$

⁵⁷⁷ for every *H*-module *M* and *G*-module *M*.

setup:groupring

⁵⁷⁸ 4.13. **Setup.** For the remainder of this section, let \Bbbk be a field and *G* a finite group with |G|⁵⁷⁹ invertible in \Bbbk . Let

$$\Bbbk[G] = \prod_{i=1}^{c} R_i$$

be the decomposition as the product of simple rings R_i . Let $1 \le i \le c$. Write e_i for the identity element of R_i . Let M_i be a simple R_i -module and $D_i = \text{End}_{R_i}(M_i)$. Write $d_i = \dim_{\mathbb{K}} M_i$. Denote the simple characters (defined below) by χ_1, \ldots, χ_c .

4.14. **Definition.** Let $\rho : G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$ be representation. The *character* of ρ , denoted χ_{ρ} , is the function $G \longrightarrow \Bbbk$, $g \mapsto \operatorname{Trace}(\rho(g))$. Its \Bbbk -linear extension to $\Bbbk[G]$ will also be denoted by χ_{ρ} . A *simple* (or *irreducible*) character of *G* is the character of a simple *G*-module.

Note that the number of simple characters equals the number *c* of the factors in the decomposition of $\Bbbk[G]$ as a product of simple rings in Setup 4.13, since every simple $\Bbbk[G]$ -module is a simple module over R_j for some *j*.

lemma:chijei

589 4.15. Lemma. For all $1 \le i, j \le c$,

$$\chi_j(e_i) = \begin{cases} d_i, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

Proof. Note that M_j is a summand of R_j for every j. Thus $e_i : M_j \longrightarrow M_j$ is the identity map of M_i if j = i and the zero map otherwise. Therefore

$$\chi_j(e_i) = \operatorname{Trace}(M_j \xrightarrow{e_i} M_j) = \begin{cases} d_i, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases} \square$$

proposition: chiregzeroororderofG

⁵⁹² 4.16. **Proposition.** Let χ_{reg} denote the character of the regular representation. Then $\chi_{\text{reg}}(1) = |G|$ ⁵⁹³ and for every $g \in G, g \neq 1, \chi_{\text{reg}}(g) = 0$.

Proof. For any finite-dimensional representation ρ of G on M, $\chi_{\rho}(1) = \dim_{\mathbb{K}} M$ so $\chi_{\text{reg}}(1) = \frac{1}{|G|}$. On the other hand, for every $g \neq 1$, g permutes the natural basis of $\mathbb{K}[G]$ given by Gwithout fixed points, so, with respect to this basis, the matrix of g is a permutation matrix with zeros on the diagonal. Hence for every $g \in G$, $g \neq 1$, $\chi_{\text{reg}}(g) = 0$.

4.17. **Definition.** The *prime subring* of k is the image of the map $\mathbb{Z} \longrightarrow \mathbb{k}$. 598 proposition:charactersdeterminerepr 4.18. **Proposition.** Let χ_1, \ldots, χ_c be the distinct simple characters of G. Let $\rho : G \longrightarrow Aut_{\Bbbk}(M)$ be 599 a representation. Then there exist n_1, \ldots, n_c in the prime subring of k such that $\chi_{\rho} = \sum_{i=1}^c n_i \chi_i$. Now 600 suppose that char $\mathbb{k} = 0$. Then the n_i are uniquely determined non-negative integers, and, moreover, if 601 ρ' is a representation such that $\chi_{\rho'} = \chi_{\rho}$ then ρ and ρ' are isomorphic to each other. 602 *Proof.* Since *M* is a finite-dimensional \Bbbk -vector-space, there exist non-negative integers n_1, \ldots, n_c 603 such that $M = \bigoplus_{i=1}^{c} M_{i}^{\oplus n_{i}}$ as $\Bbbk[G]$ -modules. Note that if $\phi : \bigoplus_{i=1}^{c} M_{i}^{\oplus n_{i}} \longrightarrow \bigoplus_{i=1}^{c} M_{i}^{\oplus n_{i}'}$ is a $\Bbbk[G]$ -604 isomorphism, then for each *i*, $\operatorname{Im}(\phi|_{M_i^{\oplus n_i}}) \subseteq M_i^{\oplus n'_i}$, and $\phi|_{M_i^{\oplus n_i}}$ is an isomorphism, from which, 605 after comparing ranks over k, it follows that $n_i = n'_i$. Therefore the integers n_i (in the decom-606 position of *M*) are unique. Denoting the images of the integers n_i in k again by n_i , we see 607 that $\chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$. Now suppose that char $\Bbbk = 0$. Since the map $\mathbb{Z} \longrightarrow \Bbbk$ is injective, the uniqueness is preserved in the expression $\chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$. Further, if $\chi_{\rho'} = \chi_{\rho} = \sum_{i=1}^{c} n_i \chi_i$, 608 609 where $\rho: G \longrightarrow \operatorname{Aut}_{\Bbbk}(M)$ and $\rho': G \longrightarrow \operatorname{Aut}_{\Bbbk}(M')$, then $M \simeq M' \simeq \bigoplus^{c} M_{i}^{\oplus n'_{i}}$. 610 i=1 remarksbox:spaceofcharacters 4.19. **Remark.** We see that the set of characters of *G* is a \Bbbk -vector-space, spanned by the simple 611 characters χ_i . If the dimensions d_i (over k) of the simple k[G]-modules M_i are invertible in k 612 (e.g., if char $\Bbbk = 0$), then the χ_i form a basis. To see this, suppose that $\sum_i \alpha_i \chi_i = 0$, with $\alpha_i \in \Bbbk$. 613 Then $0 = (\sum_i \alpha_i \chi_i)(e_i) = \alpha_i \chi_i(e_i) = \alpha_i d_i$, so $\alpha_i = 0$. 614 4.20. Notation. For $g \in G$, denote its conjugacy class $\{hgh^{-1} \mid h \in G\}$ by C_g . Let $C \subseteq G$ be 615 a set of representatives for the conjugacy classes of G, i.e., $G = \bigsqcup_{g \in C} C_g$. For $g \in G$, write 616 $s_g = \sum_{h \in C_o} h.$ 617 proposition:groupring:centre 4.21. **Proposition.** Let $a \in \Bbbk[G]$. Then the following are equivalent ion: groupring: centre: central 618 (1) a is a central element of $\Bbbk[G]$; proposition:groupring:centre:commuteswithg 619 (2) ag = ga for every $g \in G$ (thought of as a subset of $\Bbbk[G]$); sition: groupring: centre: lincomb 620 (3) *a is a* \Bbbk -linear combination of $\{s_g \mid g \in C\}$. 621 Proof. (1) implies (2): Immediate. 622 (2) implies (3): Write $a = \sum_{\tau \in G} a_{\tau} \tau$. Then $\sum_{\tau \in G} a_{\tau} \tau = a = gag^{-1} \sum_{\tau \in G} a_{\tau} g\tau g^{-1} = \sum_{\tau \in G} a_{g^{-1}\tau g} \tau$. 623 Since *G* is a k-basis of k[G], we see that for every $\tau \in G$, $a_{\tau} = a_{\sigma}$ for every $\sigma \in C_{\tau}$. (3) implies (1): For every $h \in G$, $hs_{g}h^{-1} = s_{g}$, so s_{g} is a central element for every $g \in C$. 624 625 4.22. Corollary. $\{s_g \mid g \in C\}$ is a k-basis for the centre of k[G]. 626 *Proof.* This follows from Proposition 4.21, after noting that $\{s_g \mid g \in C\}$ is linearly independent 627 over k. 628 4.23. **Remark.** A function $f : G \longrightarrow \Bbbk$ is said to be a *class function* if $f(ghg^{-1}) = f(h)$ for every 629 $g, h \in G$, or equivalently, $f(ghg^{-1}) = f(h)$ for every $g, h \in G$. Characters are class functions, 630 since for two matrices *A* and *B*, Trace(AB) = Trace(BA). 631 théorem:centreofgroupringoveralgclosed 4.24. **Theorem.** Suppose that \Bbbk is algebraically closed. Let 632

$$\Bbbk[G] = \prod_{i=1}^{c} R_i$$

 $\begin{array}{ll} & \be a \ decomposition \ as \ the \ product \ of \ simple \ rings \ R_{ht} T \ bfg \ roupring \ over alg closed: number of classes \\ & (1) \ G \ has \ exactly \ c \ conjugacy \ classes. \\ & (2) \ \{s_g \mid g \in \mathcal{C}\} \ and \ \{e_1, \ldots, e_c\} \ are \ bases \ for \ the \ centre \ of \ \Bbbk[G]. \end{array}$

theorem:centreofgroupringoveralgclosed:chireg (3) $\chi_{\text{reg}} = \sum_{i=1}^{c} d_i \chi_i$. (4) $|G| = \sum_{i=1}^{c} d_i^2$. (5) theorem:centreofgroupringoveralgclosed:sumofsquares

Proof. Each R_i is a simple finite-dimensional k-algebra, so $R_i = \operatorname{End}_{D_i}(M_i)$ for a finite-dimensional division ring D_i over k and free D_i -module M_i . Since k is algebraically closed, $D_i = k$. Hence the centre of R_i is $k_i := ke_i$; thus the centre of k[G] is $\prod_{i=1}^c k_i$. This proves (1) and (2). Note that as *R*-modules, $R_i = M_i^{\oplus d_i}$, so $\chi_{\operatorname{reg}} = \sum_{i=1}^c d_i \chi_i$, proving (3). Hence $\dim_k R_i = d_i^2$, so $|G| = \dim_k k[G] = \sum_{i=1}^c d_i^2$ proving (4).

4.25. **Observation.** Suppose that \Bbbk is algebraically closed. Let $g \in G$ and $1 \le i \le c$. For any 4.4 $a \in \Bbbk[G], e_i a \in R_i$. Thus

$$\chi_{\operatorname{reg}}(e_ig) = \sum_{j=1}^c d_j \chi_j(e_ig) = d_i \chi_i(e_ig) = d_i \chi_i(g)$$

Let $g \in G$ be such that it appears in e_i with a non-zero coefficient. Then by Proposition 4.16 $\chi_{\text{reg}}(e_ig^{-1}) \neq 0$, so d_i is non-zero in k. In particular, the χ_i are linearly independent over k (Remark 4.19).

4.26. **Proposition.** Suppose that \Bbbk is algebraically closed. Then for every $1 \le i \le c$,

$$e_{i} = \frac{1}{|G|} \sum_{g \in G} \left(\chi_{\text{reg}}(e_{i}g^{-1}) \right) g = \frac{d_{i}}{|G|} \sum_{g \in G} \left(\chi_{i}(g^{-1}) \right) g$$

- Proof. The second equality follows from Observation 4.25. To prove the first, write $e_i = \sum_{h \in G} a_i h$. Then $\chi_{\text{reg}}(e_i g^{-1}) = \sum_{h \in G} a_h \chi_{\text{reg}}(h g^{-1}) = a_g |G|$.
- 4.27. Notation. Let $X_{\Bbbk}(G)$ denote the set of characters of G and $Z_{\Bbbk}(G)$ the centre of $\Bbbk[G]$. \Box
- 4.28. **Proposition.** Suppose that k is algebraically closed. Then the pairing

$$X_{\Bbbk}(G) \times Z_{\Bbbk}(G) \longrightarrow \Bbbk, (\chi, a) \mapsto \chi(a)$$

is non-degenerate. In particular, $X_{\Bbbk}(G)$ and $Z_{\Bbbk}(G)$ are dual to each other under this pairing.

Proof. Let $\chi = \sum_i \alpha_i \chi_i \neq 0$. Pick *i* such that $\alpha_i \neq 0$; then (use Lemma 4.15 and Observation 4.25)

655 $\chi(e_i) = \alpha_i \chi_i(e_i) = \alpha_i d_i \neq 0$. Now let $a \neq 0 \in Z_k(G)$. Write $a = \sum_i \beta_i e_i$ (Theorem 4.24(2)). Pick

i such that $\beta_i \neq 0$; then $\chi_i(a) = \chi_i(\beta_i(e_i)) = \beta_i d_i \neq 0$.

657 4.29. **Proposition.** Suppose that *k* is algebraically closed. Then we have a bilinear map

$$\langle , \rangle : X_{\Bbbk}(G) \times X_{\Bbbk}(G) \longrightarrow \Bbbk, (\chi, \chi') \mapsto \frac{1}{|G|} \sum_{g \in G} \chi(g) \chi'(g).$$

⁶⁵⁸ The χ_i form an orthonormal basis for $X_k(G)$ with respect to this pairing, i.e.,

$$\langle \chi_i, \chi_j \rangle = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{otherwise.} \end{cases}$$

659 CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA

660 *E-mail address*: mkummini@cmi.ac.in