2

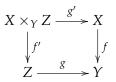
1 GRADUATE TOPOLOGY I, AUG-NOV 2016. PROBLEM SETS

MANOJ KUMMINI

3	1. Set 1: For the quiz on 2016-Aug-12.
4	(1) Consider \mathbb{R} with the standard topology, and let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a map. Show that f is
5	continuous if and only if for every $x \in \mathbb{R}$ and every $\epsilon \in \mathbb{R}_+$, there exists $\delta \in \mathbb{R}_+$ such
6	that $f(B_{x,\delta}) \subseteq B_{f(x),\epsilon}$. Formulate and prove a similar statement for a map $f: X \longrightarrow Y$
7	where X and Y are metric spaces (Munkres, Theorem 21.1).
8	(2) The <i>Zariski topology</i> on \mathbb{C}^n is the topology in which a subset $A \subseteq \mathbb{C}^n$ is closed if and only
9	if there exists a set $I \subseteq \mathbb{C}[X_1, \ldots, X_n]$ (polynomial ring in the indeterminates X_1, \ldots, X_n)
10	such that
	$A = \{ \mathbf{z} \in \mathbb{C}^n \mid f(\mathbf{z}) = 0 \text{ for every } f \in I \}.$
11	(a) Check that this indeed is a topology. (Hint: For $I_1, \ldots, I_t \subseteq \mathbb{C}[X_1, \ldots, X_n]$, you
12	might need to consider the set $J = \{f_1 \cdots f_t \mid f_i \in I_i, i = 1, \dots, t\}$.)
13	(b) This topology is strictly coarser than the standard topology on \mathbb{C}^n , thought of as
14	\mathbb{R}^{2n} . In fact, if $n = 1$, this is the co-finite topology.
15	(c) For a non-zero $f \in \mathbb{C}[X_1,, X_n]$, define $D_f := \{\mathbf{z} \in \mathbb{C}^n \mid f(\mathbf{z}) \neq 0\}$. Show that
16	$D_f, f \in \mathbb{C}[X_1, \dots, X_n], f \neq 0$ is a basis for the Zariski topology on \mathbb{C}^n .
17	(3) Show that the lower-limit topology on \mathbb{R} is strictly finer than the standard topology on
18	
19	(4) Let <i>X</i> and <i>Y</i> be topological spaces and $f : X \longrightarrow Y$ be a map. Then the following are
20	equivalent:
21	(a) f is continuous; (b) F = 1 i R (Y ($-1(R)$); f = 0 R R
22	(b) For every basis \mathcal{B} of Y , $f^{-1}(B)$ is open for every $B \in \mathcal{B}$; (c) For every sublassis $\mathcal{B} \in \mathcal{N}$, $f^{-1}(B)$ is even for every $B \in \mathcal{B}$;
23	(c) For every subbasis \mathcal{B} of Y , $f^{-1}(B)$ is open for every $B \in \mathcal{B}$. (5) S12 of Mumbrus Lemma 12.2: Everyplas 1.2 and 4:
24	(5) §13 of Munkres: Lemma 13.3; Examples 1, 2 and 4;
25	(6) Let X, Y and Z be topological spaces with functions $X \xrightarrow{f} Y \xrightarrow{g} Z$. Show that if f
26	and gf are continuous and Y has the finest topology that keeps f continuous, then g is
27	continuous. (Hint: show that this topology is $\{U \subseteq Y \mid f^{-1}(U) \text{ is open in } Y\}$.)
28	(7) Show that the product topology on \mathbb{R}^n is finer than the metric topology given by the
29	metric d_2 defined in class.
30	2. Set 2: For the quiz on 2016-Aug-26.
00	
31	(1) Munkres §18: Exercises (pp. 127ff.): 11,12,13. §19: Exercises (p. 134): 10. §20: Exercises
32	(pp. 142ff.): 1, 3, 4 (Look at Theorem 20.4 and the definitions) §22: Examples 1, 2, 3, 5,
33	
34	(2) Show that a continuous surjective closed map is a quotient map.
35	(3) Show that the map $t \mapsto (\cos 2\pi i t, \sin 2\pi i t)$ is a open map from \mathbb{R} to \mathbb{S}^1 , with the standard tandard tangles in the standard tangle is a standard tangle in the standard tangle in the standard tangle is a standard tangle in the standard tangle is a standard tangle in the standard tangle in the standard tangle is a standard tangle in the standard tangle in the standard tangle is a standard tangle in the standard tangle in the standard tangle is a standard tangle in the standard tangle in the standard tangle is a standard tangle in the standard tandard tangle in the stand
36	dard topologies. Hence it is a quotient map.
37	(4) <i>Product of maps</i> . Let $X \xrightarrow{f} Y$ and $Z \xrightarrow{g} Y$ be continuous maps. We define the <i>product</i>
38	of <i>f</i> and <i>g</i> (also called the <i>fibre product of X</i> and <i>Z</i> over <i>Y</i> , and denoted $X \times_Y Z$) as
	$\{(x,z) \in X \times Z \mid f(x) = g(z)\}.$
	1

MANOJ KUMMINI

39	Write $f' : X \times_Y Z \longrightarrow Z$, $(x, z) \mapsto z$ and $g' : X \times_Y Z \longrightarrow X$, $(x, z) \mapsto x$. Give $X \times_Y Z$
40	the coarsest topology that makes f' and g' continuous.
41	(a) The following diagram commutes:



(b) the fibre $(f')^{-1}(z)$ over $z \in Z$ is homeomorphic to $f^{-1}(g(z))$. 42 (c) When Y is a point, $X \times_Y Z = X \times Z$. 43 (d) This topology on $X \times_Y Z$ is the subspace topology as the subspace of the product 44 topology on $X \times Z$. 45 (e) For $A \subseteq X$, $f'(g'^{-1}(A)) = g^{-1}(f(A))$. 46 (f) The following properties of f are transferred to f': injectivity, surjectivity, open-47 ness, closedness (Feel free to add more properties!) 48 (g) If Z is a subspace of Y and g is the inclusion map, then $X \times_Y Z = f^{-1}(Z)$ with the 49 subspace topology. If X and Z are subspaces of Y and f and g the inclusion maps, 50 then $X \times_Y Z = X \cap Z$ with the subspace topology. 51 (5) Let a topological group *G* act on a topological space *X*; write $\pi : X \longrightarrow X/G$ for the 52 quotient map. For every $U \subseteq X$, show that $\pi^{-1}(\pi(U)) = \bigcup_{g \in G} g(U)$, so $\pi(U)$ is open. 53 Therefore π is an open map. Is it also a closed map? 54 (6) Let X be a topological space. The *diagonal map* to $X \times X$ (in the product topology) is the 55 map $\delta : X \longrightarrow X \times X$, $x \mapsto (x, x)$. Show that δ gives a homeomorphism from X to its 56 image with the subspace topology. Show that X is Haudorff if and only if the $Im(\delta)$ is 57 closed in $X \times X$ 58 3. Set 3: For the QUIZ on 2016-Sep-09. 59 (1) Munkres §23: Example 7; Theorem 23.6; Exercises 1–4, 7, 9, 11, 12. 60 (2) Munkres §24: Theorem 24.1; Examples 3, 4, 5, 7; Exercises 1, 2 (Hint: consider $t \mapsto$ 61 f(t) - f(-t)), 3 (Hint: consider $t \mapsto t - f(t)$), 4 (Look up the definition of order 62 topology in §14; at least try to prove for \mathbb{R} .) 8, 9, 10, 11. 63 (3) Munkres §25: Theorems 25.3, 25.4; Exercise: 8. 64 (4) Munkres §26: Exercises 1, 3, 4, 5, 6 (Further conclude that if f is surjective, then it is an 65 open map, and, then, Theorem 26.6.), 7, 8, 11, 12. 66 4. Set 4: For the Quiz on 2016-Oct-07. 67 (1) Munkres §29: Exercises 1, 2, 3, 5, 6, 8, 10 68 (2) Munkres §30: Theorem 30.1, 30.2, 30.3(b) (See the next problem); Exercises 1(a), 2, 3, 4, 69 5(a). 70 (3) Munkres §33: Exercises 1,2,3 71 (4) Let \mathcal{B} be a basis for the topology on X. Show that a subset A of X is dense if and only if 72 $A \cap U \neq 0$ for every $U \in \mathcal{B}$. 73 74 5. Set 5: For the Quiz on 2016-Oct-21. (1) Munkres §31: Exercises 1, 2, 4, 5, 6, 7. 75 (2) Munkres §32: Exercises 1, 2, 3. 76 (3) Munkres §33: Exercises 8. 77 (4) Munkres §34: Exercises 3, 4, 5. 78 (5) Munkres §35: Exercises 3, 4. 79

2

GRADUATE TOPOLOGY I, AUG-NOV 2016. PROBLEM SETS

6. Set 6: For the Quiz on 2016-Nov-11.

- (1) Let *Y* be a Haudorff space and $\alpha, \beta : X \longrightarrow Y$ be continuous maps. Then the set of points $x \in X$ with $\alpha(x) = \beta(x)$ is a closed set in *X*.
- (2) Let a group *G* act *X* such that for every $x \in X$ there exists a neighbourhood *U* such that the orbits g(U) are disjoint, i.e, for every $g \neq g' \in G$, $g(U) \cap g'(U) = \emptyset$. (Definition: *G* is said to act *properly discontinuously* on *X*, if this is the case.) Show that the quotient map $X \longrightarrow X/G$ is a covering map.
 - (3) (a) Check that the topology on \mathbb{RP}^2 defined in the class makes it into a quotient space of \mathbb{S}^2 .
 - (b) Let $\mathbb{Z}/2\mathbb{Z}$ act on \mathbb{S}^2 with $\overline{1} \cdot x = -x$. Show that this action is properly discontinous and that the quotient space for this action is \mathbb{RP}^2 .
- (4) Show that covering maps are open maps. In particular, they are quotient maps.
- ⁹² (5) Show that every fibre of a covering map is discrete.
- 93 (6) Read Munkres Section 59.

80

87

88

89

90

99

100

101

102

103

104

105

- (7) Let *Y* be a compact space and let $\{U_{\alpha}\}$ be an open cover of $Y \times I$. We show that there exists a finite cover $\{V_{\beta}\}$ of *Y* of connected open sets and real numbers $0 = t_0 < t_1 < \cdots < t_k = 1$ such that for each β and each *i*, there exists α such that $V_{\beta} \times [t_{i-1}, t_i] \subseteq U_{\alpha}$ as follows. (This argument is due to Yash.) (a) Each U_{α} is a union of open sets of the form $W_{\alpha} \times (s_0, s_1)$ where the W_{α} are open
 - (a) Each U_{α} is a union of open sets of the form $W_{\gamma} \times (s_0, s_1)$ where the W_{γ} are open subsets of *Y* and $0 \le s_0 < s_1 \le 1$. Therefore, without loss of generality, we may assume that every U_{α} is of the form $W_{\gamma} \times (s_0, s_1)$ where the W_{γ} are open subsets of *Y* and $0 \le s_0 < s_1 \le 1$.
 - (b) Let $y \in Y$. Then there exists a finite subcollection \mathcal{U}_y of $\{U_\alpha\}$ that covers $\{y\} \times I$. I. Hence, arguing as in the proof of the tube lemma, there is a connected open neighbourhood $V_y \subseteq Y$ of y such that $V_y \subseteq \bigcup_{U \in \mathcal{U}_y} U$. From the cover $\{V_y\}$, pick a finite cover $\{V_\beta\}$ of Y. Write \mathcal{U}_β for the corresponding \mathcal{U}_y .
- (c) Write p_2 for the projection map $Y \times I \longrightarrow I$. For each β , $\{p_2(U) \mid U \in U_\beta\}$ is an open cover of *I*. Let ρ_β be a Lebesgue radius for this open cover. Let $\rho = \min_\beta \rho_\beta$. Therefore, for each closed interval of length at most 2ρ and for every V_β , their product is contained in some $U \in U_\beta$.
- (8) This is the proof that $G_1^{\alpha}|_{V_{\alpha}\cap V_{\beta}} = G_1^{\beta}|_{V_{\alpha}\cap V_{\beta}}$. We may assume that $V_{\alpha}\cap V_{\beta} \neq \emptyset$. For $\gamma = \alpha, \beta$, there exists l_{γ} such that $F(V_{\gamma} \times \{t_0\}) \subseteq U_{l_{\gamma}}$. Let W_{γ} be the open set of \tilde{X} that is part of $p^{-1}(U_{l_{\gamma}})$ and gets mapped homeomorphically to $U_{l_{\gamma}}$ by p. Therefore $G_1^{\gamma}(V_{\alpha}\cap V_{\beta} \times \{t_0\}) \subseteq W_{\alpha}\cap W_{\beta}, \gamma = \alpha, \beta$. For every $y \in V_{\alpha}\cap V_{\beta}$ and $s \in [t_0, t_1]$,
- 114 $\{y\} \times [t_0, s] \subseteq W_{\alpha} \cap W_{\beta}$ since it is connected, so $G_1^{\gamma}(V_{\alpha} \cap V_{\beta} \times [t_0, t_1]) \subseteq W_{\alpha} \cap W_{\beta}$, 115 $\gamma = \alpha, \beta$. Since $p|_{W_{\alpha} \cap W_{\beta}}$ is injective, and $p \circ G_1^{\gamma} = F|_{V_{\gamma} \times [t_0, t_1]}$, we see that $G_1^{\alpha}|_{V_{\alpha} \cap V_{\beta}} =$ 116 $G_1^{\beta}|_{V_{\alpha} \cap V_{\beta}}$.
- (9) Munkres §52: Exercises 1, 3 (Look up the definition of $\hat{\gamma}$ earlier in this section; this what we denoted (sometimes) by γ_{\pm}), 5, 7.
- (10) Munkres §54: Exercise 8.
- 120 (11) Munkres §55: Theorem 55.2
- 121 CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA

122 *E-mail address*: mkummini@cmi.ac.in