Defining Gromov Witten invariants

Barbara Fantechi

Chennai Mathematical Institute February-March 2016

Outline of this lecture

Quotient stacks

From complexes to stacks

Notation We fix a base scheme S, a scheme X over S, and a group scheme G over S with a (left) action on X.

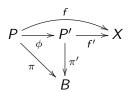
Definition

The *quotient stack* [X/G] is the pseudofunctor $(sch/S) \rightarrow (grpd)$ defined as follows. For B an S-scheme

1. the objects of [X/G](B) are triples (P, π, f) such that

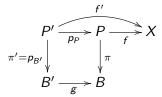
 $\pi: P \to B$ is a *G*-torsor and $f: P \to X$ is *G*-equivariant.

2. morphisms $(P, \pi, f) \rightarrow (P'\pi', f')$ are *G*-equivariant morphisms $\phi: P \rightarrow P'$ such that the following diagram commutes:



Exercise

- 1. Show that all morphisms in [X/G](B) are isomorphisms.
- 2. For $g: B' \to B$, define $g^*(P, \pi, f) = (P', \pi', f')$ where $P' := P \times_B B'$ and π' and f' are defined by the commutative diagram

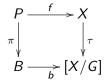


- 3. Show that this defines a pseudofunctor, which is a stack in the Zariski topology.
- 4. If you are familiar with descent theory, show that it is a stack in the étale topology.

Define a (tautological) morphism $\tau: X \to [X/G]$ by the element $(G \times X, p_X, a) \in [X/G](X)$ where G acts on $G \times X$ via $g_1(g_2, x) = (g_1g_2, x)$ and a is the action.

Theorem

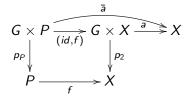
Let B be an S-scheme, and $b = (P, \pi, f) \in [X/G](B)$. There is a natural 2-cartesian diagram



Proof.

We first define an isomorphism $\alpha: \tau \circ f \Rightarrow b \circ \pi$ to make the diagram 2-commutative; we then prove that the induced morphism $P \to B \times_{[X/G]} X$ is an equivalence.

The morphism $\tau \circ f$ is defined by the diagram with cartesian square



where G acts on $G \times P$ via $g_1(g_2, p) = (g_1g_2, p)$ and $p_P(g, p) = p$. The morphism $b \circ \pi$ is defined by the diagram with cartesian square

$$P \times_{B} P \xrightarrow{\overline{f}} X$$

$$\downarrow^{\pi_{1}} \downarrow \qquad \qquad \downarrow^{\pi}$$

$$P \xrightarrow{\pi} B$$

where G acts on $P \times_B P$ via $g(p_1, p_2) = (p_1, gp_2)$. We want to define $\alpha : G \times P \to P \times_B P$ which is G-equivariant and satisfies $p_P = \pi_1 \circ \alpha$ and $\bar{a} = \bar{f} \circ \alpha$.

We define $\alpha(g,p)=(p,gp)$ and verify it has the required properties.

The 2-commutative diagram

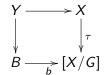
$$P \xrightarrow{f} X$$

$$\pi \downarrow \qquad \qquad \downarrow \tau$$

$$B \xrightarrow{b} [X/G]$$

induces a morphism $P \to B \times_{[X/G]} X$. To prove that it is an equivalence, we construct an explicit inverse.

Let Y be a scheme. A morphism from Y to the fiber product corresponds to a 2 commutative diagram



which means an isomorphism $\beta: G \times Y \to P \times_B Y$. We obtain from this a morphism $Y \to P$ by

$$Y \xrightarrow{(e,id)} G \times Y \xrightarrow{\beta} P \times_B Y \xrightarrow{\pi_P} P.$$

As a corollary to this theorem, we have proved that if $G \to S$ is étale or smooth, then so is $X \to [X/G]$ thus providing an atlas.

Exercise Show that for a scheme B, any morphism $B \to [X/G]$ is strongly representable. Indeed, if $C \to [X/G]$ is another morphism from a scheme, the fiber product $B \times_{[X/G]} C$ is quasi projective over $B \times C$.

When is the quotient stack [X/G] algebraic?

The answer is complicated, since it depends on the definition of algebraic stack, which in turn isn't always the same.

A good rule of thumb is that you want $G \to S$ to be smooth, or at least flat; this way $\tau: X \to [X/G]$ gives an atlas.

A sufficient condition (i.e., one that works with all definitions I know) is that X be of finite type and G be a closed subgroup of GL(N) or $\mathbb{P}GL(N)$ for some N.

Example: \overline{M}_g as quotient stack

Fix $g \ge 2$, and $m \ge 3$. Let P(t) = m(2g - 2)t + 1 - g and N := 1 - g + m(2g - 2) = P(1).

Let C be a prestable genus g curve. Then $H^1(C, \omega_C^{\otimes m}) = 0$ and C is stable if and only if $\omega_C^{\otimes m}$ is very ample.

Let $U \subset Hilb^P(\mathbb{P}^N)$ be the open subscheme parametrising stable curves, and $V \subset U$ the closed subscheme parametrizing curves $C \subset \mathbb{P}^N$ such that $\mathcal{O}_C(1)$ is isomorphic to $\omega_C^{\otimes m}$.

Exercise Show that \overline{M}_g is isomorphic to the stack quotient [V/G] where $G = Aut(\mathbb{P}^N)$.

Advantages: we can think, e.g., of line bundles on \overline{M}_g as G-equivariant line bundles on V.

Disadvantages: it's non-canonical (we *choose* an m) and *unnatural*. For instance, proving that \overline{M}_g is smooth is way easier than proving that V is smooth.

Let X be an algebraic stack (if this helps, you can assume it is a scheme; the stackiness of X will play no role in what follows). We consider the following 2-category M(X).

- 1. the objects of M(X) are morphisms of coherent sheaves $d_E: \mathcal{E}_{-1} \to \mathcal{E}_0$ on X with \mathcal{E}_0 locally free.
- 2. morphisms $\phi = (\phi_{-1}, \phi_0)$ are commutative diagrams

$$\begin{array}{c|c}
\mathcal{E}_{-1} \xrightarrow{d_{E}} \mathcal{E}_{0} \\
\downarrow^{\phi_{-1}} \downarrow & \downarrow^{\phi_{0}} \\
\mathcal{F}_{-1} \xrightarrow{d_{E}} \mathcal{F}_{0}
\end{array}$$

3. a 2 morphism $\alpha:\phi\Rightarrow\psi$ is a homomorphism $\alpha:\mathcal{E}_0\to\mathcal{F}_{-1}$ such that

$$\psi_0 - \phi_0 = d_F \circ \alpha$$
 and $\psi_{-1} - \phi_{-1} = \alpha \circ d_F$.

Let us now define a contravariant 2-functor H from M(X) to algebraic stacks.

- ▶ $H(d_E : \mathcal{E}_1 \to \mathcal{E}_0) := [E_1/E_0]$ where $E_i = \operatorname{Spec} \operatorname{Sym} \mathcal{E}_{-i}$ is an abelian group scheme over X, and the homomorphism of group schemes $E_0 \to E_1$ induced by d_E makes E_0 act on E_1 by translations.
- Let $\phi: \mathcal{E}_{\bullet} \to \mathcal{F}_{\bullet}$. We define $H(\phi)$ as follows. Let $g: B \to X$ be a morphism with B a scheme, and $(P, \pi, f) \in [F_1/F_0](B)$. That is, P is a g^*F_0 torsor and $f: P \to F_1$ is an equivariant morphism.

The morphism ϕ induces a commutative diagram of abelian group schemes over X

We define $H(\phi)(P, \pi, f)$ to be (P', π', f') where

- ▶ $P' = P \times_X E_0/F_0$ By this we mean that $P \times_X E_0 \to P'$ is an F_0 -torsor, where F_0 acts via $f_0(p, e_0) = (f_0 \cdot p, e_0 \bar{\phi}_0(e_0))$.
- ▶ **Exercise** Prove that $P \times_X E_0 \to B$ induces $\pi' : P' \to B$ making P' into an E_0 -torsor.
- ▶ Finally, define $f': P' \to F_1$ as the morphism induced by

$$P \times_X E_0 \to F_1$$
 given by $(p, e_0) \mapsto \phi_1(f(p)) + \bar{d}_E(e_0)$.

Exercise Associate to each $\alpha: \phi \to \psi$ a 2-morphism $H(\alpha): H(\psi) \to H(\phi)$.

Let $\phi: \mathcal{E}_{\bullet} \to \mathcal{F}_{\bullet}$ be a morphism. We call $\ker \phi$ the induced morphism $\ker d_E \to \ker d_F$, and similarly for $\operatorname{coker} \phi$. If you prefer you can call the first $h^{-1}(\phi)$ and the second $h^0(\phi)$.

Theorem

- 1. The morphism $H(\phi)$ is representable iff coker ϕ is surjective;
- 2. $H(\phi)$ is a closed embedding iff coker ϕ is an isomorphism and ker ϕ is surjective;
- 3. $H(\phi)$ is an equivalence iff coker ϕ and ker ϕ are isomorphisms.

Key idea in the proof This is a local statement in X: not just Zariski local, but étale and smooth local.

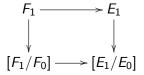
So we can assume $X=\operatorname{Spec} A$ where A is a f.g. $\mathbb C$ -algebra, and that $\mathcal E_0=\mathcal O_X^{\oplus e_0}$, $\mathcal F_0=\mathcal O_X^{\oplus f_0}$. We can also always pass to a smaller open affine.

- 1. The fibres of $H(\phi)$ are rigid groupoids iff $coker\phi$ is surjective (category theory).
- 2. Let \mathcal{G} be any locally free sheaf, $\mathcal{E}'_i := \mathcal{E}_i \oplus \mathcal{G}$, $d'_e := (d_e, id)$. Then the natural morphisms

$$[E_1/E_0] o [E_1'/E_0'] o [E_1/E_0]$$

are equivalences.

- 3. If $coker\phi$ is surjective, working locally and using 2. we can assume $\mathcal{E}_0 = \mathcal{F}_0 \Rightarrow E_0 = F_0$. Moreover $ker(\phi)$ is surjective (resp. an isomorphism) iff ϕ_{-1} is.
- 4. If $E_0 = F_0$, then the diagram



is cartesian with smooth surjective vertical arrows, hence $H(\phi)$ is a closed embedding (resp. an isomorphism) iff $F_1 \to E_1$ is.

Let X be a scheme or an algebraic stack. A sheaf of graded quasicoherent algebras $\mathcal{A}=\oplus_{n\geq 0}\mathcal{A}_n$ on X satisfies (†) is $\mathcal{O}_X\to\mathcal{A}_0$ is an isomorphism, \mathcal{A}_1 is coherent and generates \mathcal{A} as a sheaf of algebras.

Definition

A cone over X is an affine morphism $p:C\to X$ with a \mathbb{G}_m action on C such that p is \mathbb{G}_m invariant and the induced grading on $p_*\mathcal{O}_C$ satisfies (†). A morphism of cones is a \mathbb{G}_m -equivariant morphism of schemes over X. A cone C is abelian if the natural morphism $Sym^*\mathcal{A}_1\to \mathcal{A}$ is an isomorphism, where $\mathcal{A}=p_*\mathcal{O}_C$.

Lemma

The functor $\mathcal{F} \mapsto \mathsf{Spec}\, \mathsf{Sym}^*\mathcal{F}$ induces a natural equivalence of categories

$$Coh(X)^{op} \rightarrow (abelian \ cones).$$

Remark We can identify Coh(X) with $D_{coh}^0(X)$.

Definition

A [abelian] stack cone over X is a morphism of algebraic stacks $p:C\to X$ with a \mathbb{G}_m action on C such that

- 1. p is \mathbb{G}_m equivariant;
- 2. p is locally isomorphic to a quotient $\lceil C/E \rceil$ where C is a [abelian] cone and E is a vector bundle acting equivariantly on C.

A [2-]morphism of cone stacks is a \mathbb{G}_m equivariant [2-]morphism. An abelian cone stack is a *vector bundle stack* of rank $r \in \mathbb{Z}$ if it is locally isomorphic to a quotient $[E_1/E_0]$ with E_i vb of rank r_i and $r = r_1 - r_0$.

Warning I haven't defined what is a group action on a stack.

Theorem

The 2-functor H induces an equivalence of categories between $D_{coh}^{-1,0}(X)^{op}$ and the homotopy category of abelian cone stacks. Moreover, $H(\mathcal{E})$ is a vector bundle stack iff \mathcal{E} is locally isomorphic to a complex of locally frees.

The proof is inspired by a similar theorem of Deligne.

I'm cheating! We shouldn't use \mathbb{G}_m -actions but (multiplicative) \mathbb{A}^1 -actions.

Key idea: If V and W are vector spaces over \mathbb{C} , then they have natural structures of algebraic varieties and a morphism $\phi: V \to W$ is linear iff it is \mathbb{G}_m equivariant.

The theorem follows immediately from the properties of H if X has enough locally frees.

Definition

Let $f: X \to Y$ be a morphism of DM type of algebraic stacks. We write N_f for the abelian cone stack associated to $\tilde{L}_f = \tau_{\geq -1} L_f$, If f factors as $p \circ i$ with p smooth and DM type and i a closed embedding, then $N_f = [N_i/i^*T_p]$. It contains $[C_i/i^*T_p]$ as a closed substack.

Lemma

There is a unique closed substack C_f of N_f such that it locally induces $[C_i/i^*T_p]$.

We call C_f the normal cone to f. If Y is irreducible of dimension $d \in \mathbb{Z}$, then C_f is pure dimensional of dimension d.

There is a one-parameter degeneration of $f: X \to Y$ to $X \to C_f$ (the vertex of the cone).

Theorem

Let $p: E \to X$ be a vector bundle stack of rank r. Then $p^*: A_d(X) \to A_d + r(X)$ is an isomorphism for all r.

Definition

Let $\phi: \mathcal{E} \to \tilde{L}_f$ be a morphism in $D^{-1,0}_{coh}(X)$.

We say it is an obstruction theory if the induced morphism

 $N_f \to E = H(\mathcal{E})$ is a closed embedding.

It is a *perfect obstruction theory of rank* r if E is a vector bundle stack of rank -r.

Corollary

To a perfect obstruction theory we can associate a virtual pullback

$$A_d(Y') \rightarrow A_{d+r}(X')$$

for every base change $f': X' \to Y'$ of $f: X \to Y$.

Lemma

Let $\phi: \mathcal{E} \to \tilde{L}_f$ in $D^b_{coh}(X)$. Then ϕ is an obstruction theory iff for every $x \in X$

- $h^0(x^*\tilde{L}_f^{\vee}) \to h^0(x^*\mathcal{E}^{\vee})$ is an isomorphism;
- $h^1(x^*\tilde{L}_f^{\vee}) \to h^1(x^*\mathcal{E}^{\vee})$ is an injective.

In other words, being an obstruction theory is equivalent to inducing at every point a relative tangent and obstruction space.

Example The forgetful morphism $F: \overline{M}_{g,n}(V,\beta) \to \mathfrak{M}_{g,n}$ has a perfect obstruction theory $\mathcal{E} \to \tilde{L}_F$ where $\mathcal{E} = (R\pi_* f^* T_V)^\vee$.