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Outline of this lecture

Quotient stacks

From complexes to stacks



Notation We fix a base scheme S, a scheme X over S, and a
group scheme G over S with a (left) action on X.

Definition
The quotient stack [X /G] is the pseudofunctor (sch/S) — (grpd)
defined as follows. For B an S-scheme

1. the objects of [X/G](B) are triples (P, m, f) such that

m: P — Bisa G-torsor and f : P — X is G-equivariant.

2. morphisms (P, 7, f) — (P'n’, f") are G-equivariant morphisms
¢ : P — P’ such that the following diagram commutes:




Exercise

1.
2.

Show that all morphisms in [X/G](B) are isomorphisms.
For g : B — B, define g*(P,x,f) = (P, 7', f") where
P’ .= P xg B’ and 7’ and f’ are defined by the commutative
diagram
f‘/

— T
P p__>x

PP f
ﬂ-/:pB/\L lﬂ'

B/?B

. Show that this defines a pseudofunctor, which is a stack in

the Zariski topology.

If you are familiar with descent theory, show that it is a stack
in the étale topology.



Define a (tautological) morphism 7 : X — [X/G] by the element
(G x X, px,a) € [X/G](X) where G acts on G x X via

g1(g2, x) = (g1&2, x) and a is the action.

Theorem

Let B be an S-scheme, and b= (P, m,f) € [X/G](B).
There is a natural 2-cartesian diagram

p—L X
B—>[X/G]

Proof.

We first define an isomorphism a : 7o f = b o m to make the
diagram 2-commutative; we then prove that the induced morphism
P — B Xx,6) X is an equivalence. L]



The morphism 7o f is defined by the diagram with cartesian square

/\
GXP—s=GxX21=X

(id,f)
PPl lm

P X
f

where G acts on G x P via gi(g2, p) = (g182, p) and pp(g, p) = p.
The morphism bo is defined by the diagram with cartesian square

f

/_\
PxgP—>P—2X

I

P——B

where G acts on P xg P via g(p1, p2) = (p1,gp2). We want to
definea: G X P — P xpg P which is G-equivariant and satisfies
pp =mioaand 3= foa.

We define a(g, p) = (p, gp) and verify it has the required
properties.



The 2-commutative diagram

p—" > X
B—>[X/G]

induces a morphism P — B X(x,5] X. To prove that it is an
equivalence, we construct an explicit inverse.

Let Y be a scheme. A morphism from Y to the fiber product
corresponds to a 2 commutative diagram

Y X
N
B—>[X/G]

which means an isomorphism 3: G x Y — P xg Y. We obtain
from this a morphism Y — P by

y Doy L pxpy T p



As a corollary to this theorem, we have proved that if G — S is
étale or smooth, then so is X — [X/G] thus providing an atlas.
Exercise Show that for a scheme B, any morphism B — [X/G] is
strongly representable. Indeed, if C — [X/G] is another morphism
from a scheme, the fiber product B X[x,c] C Is quasi projective
over B x C.

When is the quotient stack [X/G] algebraic?

The answer is complicated, since it depends on the definition of
algebraic stack, which in turn isn't always the same.

A good rule of thumb is that you want G — S to be smooth, or at
least flat; this way 7 : X — [X/G] gives an atlas.

A sufficient condition (i.e., one that works with all definitions |

know) is that X be of finite type and G be a closed subgroup of
GL(N) or PGL(N) for some N.



Example: M, as quotient stack

Fix g > 2, and m > 3. Let P(t) = m(2g —2)t+1— g and
N:=1—g+m(2g —2)= P(1).

Let C be a prestable genus g curve. Then H(C,w&™) =0 and C
is stable if and only if w?m is very ample.

Let U C Hilb”(PN) be the open subscheme parametrising stable
curves, and V' C U the closed subscheme parametrizing curves

C C PN such that O¢(1) is isomorphic to wg™.

Exercise Show that M, is isomorphic to the stack quotient [V//G]
where G = Aut(PV).

Advantages: we can think, e.g., of line bundles on M, as
G-equivariant line bundles on V.

Disadvantages: it's non-canonical (we choose an m) and
unnatural. For instance, proving that Wg Is smooth is way easier

than proving that V is smooth.



Let X be an algebraic stack (if this helps, you can assume it is a
scheme; the stackiness of X will play no role in what follows).
We consider the following 2-category M(X).

1. the objects of M(X) are morphisms of coherent sheaves
de : €1 — & on X with & locally free.

2. morphisms ¢ = (¢_1, o) are commutative diagrams

£ 1 _ 9 o

ol s

Fo1—Fo

3. a 2 morphism « : ¢ = 9 is a homomorphism o : &g — F_1
such that

Yo—¢o=droa and Y_1—¢d_1=aodE.



Let us now define a contravariant 2-functor H from M(X) to
algebraic stacks.

» H(de : &1 — &) := [E1/Eo] where E; = Spec Sym&_; is an
abelian group scheme over X, and the homomorphism of
group schemes Ey — E; induced by dg makes Eg act on E; by
translations.

> Let ¢ : E¢ — Fo. We define H(¢) as follows. Let g: B — X
be a morphism with B a scheme, and (P, 7, f) € [F1/Fo](B).
That is, P is a g*Fg torsor and f : P — F; is an equivariant
morphism.

The morphism ¢ induces a commutative diagram of abelian
group schemes over X

FOLFl

S

Eo —— E;.
0 c_/E 1



We define H(¢)(P,m, ) to be (P', 7', f") where

» P’ = P xx Ey/Fpy By this we mean that P x x Eg —>_P’ is an
Fo-torsor, where Fy acts via fo(p, eg) = (fo - p, €0 — Po(en))-

» Exercise Prove that P xx Ey — B induces 7’ : P' — B
making P’ into an Ep-torsor.

» Finally, define ' : P — F; as the morphism induced by

P xx Ey — F1 given by (p, ep) — ¢1(f(p)) + de(eo).

Exercise Associate to each o : ¢ — 1 a 2-morphism

H(a) : H(y) — H(¢).



Let ¢ : E¢ — Fo be a morphism. We call ker ¢ the induced
morphism ker dg — ker dg, and similarly for cokera.
If you prefer you can call the first h=!(¢) and the second h°(¢).

Theorem

1. The morphism H(¢) is representable iff coker¢ is surjective;

2. H(¢) is a closed embedding iff coker¢ is an isomorphism and
ker ¢ is surjective;

3. H(¢) is an equivalence iff coker¢ and ker ¢ are isomorphisms.

Key idea in the proof This is a local statement in X: not just

Zariski local, but étale and smooth local.
So we can assume X = Spec A where A is a f.g. C-algebra, and
that & = (’);‘?e", Fo = O;‘?fo. We can also always pass to a smaller

open affine.



. The fibres of H(¢) are rigid groupoids iff coker¢ is surjective
(category theory).

. Let G be any locally free sheaf, £ := & @ G, df := (de, id).
Then the natural morphisms

[£1/Eo] — [E1/Egl = [E1/ Eo]

are equivalences.

. If coker¢ is surjective, working locally and using 2. we can
assume & = Fog = Eg = Fy. Moreover ker(¢) is surjective
(resp. an isomorphism) iff ¢_1 is.

. If Eg = Fgp, then the diagram

F1 Eq

T

[F1/Fo] — [E1/Eo]

is cartesian with smooth surjective vertical arrows, hence H(¢)
is a closed embedding (resp. an isomorphism) iff F; — Ej is.



Let X be a scheme or an algebraic stack. A sheaf of graded
quasicoherent algebras A = &,>0.4, on X satisfies () is

Ox — Ap is an isomorphism, A; is coherent and generates A as a
sheaf of algebras.

Definition

A cone over X is an affine morphism p: C — X with a G, action
on C such that p is G, invariant and the induced grading on
p«Oc satisfies (1). A morphism of cones is a G,-equivariant
morphism of schemes over X. A cone C is abelian if the natural
morphism Sym*A; — A is an isomorphism, where A = p,Oc.

Lemma

The functor F — Spec Sym™F induces a natural equivalence of
categories
Coh(X)°P — (abelian cones).

Remark We can identify Coh(X) with D

coh

(X).



Definition
A [abelian] stack cone over X is a morphism of algebraic stacks
p: C — X with a G, action on C such that

1. pis G, equivariant;

2. pis locally isomorphic to a quotient [C/E] where C is a
[abelian] cone and E is a vector bundle acting equivariantly on
C.

A [2-]morphism of cone stacks is a G, equivariant [2-]morphism.
An abelian cone stack is a vector bundle stack of rank r € Z if it is
locally isomorphic to a quotient [E;/Eg] with E; vb of rank r; and
r=r —r.

Warning | haven't defined what is a group action on a stack.



Theorem

The 2-functor H induces an equivalence of categories between
DC_O},’O(X )°P and the homotopy category of abelian cone stacks.
Moreover, H(E) is a vector bundle stack iff € is locally isomorphic

to a complex of locally frees.

The proof is inspired by a similar theorem of Deligne.

I’'m cheating! We shouldn’t use Gp,-actions but (multiplicative)
Al-actions.

Key idea: If V and W are vector spaces over C, then they have
natural structures of algebraic varieties and a morphism

¢V — W is linear iff it is G, equivariant.

The theorem follows immediately from the properties of H if X has
enough locally frees.



Definition
Let f : X — Y be a morphism of DM type of algebraic stacks. We
write N¢ for the abelian cone stack associated to Lf = 7>_1Ly,

If £ factors as p o/ with p smooth and DM type and i a closed
embedding, then N¢ = [N;/i*Tp]. It contains [C;/i* T,] as a closed
substack.

Lemma
There is a unique closed substack Cr of N¢ such that it locally

induces [C;/i* Tp].

We call Cr the normal cone to f. If Y is irreducible of dimension
d € Z, then Cr is pure dimensional of dimension d.

There is a one-parameter degeneration of f : X — Y to X — (¢
(the vertex of the cone).



Theorem
Let p: E — X be a vector bundle stack of rank r. Then
p* : Aqg(X) — Ag + r(X) is an isomorphism for all r.

Definition
Let ¢ : & — Ly be a morphism in D_1°(X).
We say it is an obstruction theory if the induced morphism

N — E = H(E) is a closed embedding.
It is a perfect obstruction theory of rank r if E is a vector bundle
stack of rank —r.

Corollary
To a perfect obstruction theory we can associate a virtual pullback

Ad( Y/) — Ad+r(X/)

for every base change f' : X' — Y  of f : X = Y.



Lemma )
Let ¢ : £ — L¢ in D2 (X). Then ¢ is an obstruction theory iff for

coh
every x € X
> hO(x*LY) — hO(x*£EV) is an isomorphism;
> hY(x*LY) — hY(x*EY) is an injective.
In other words, being an obstruction theory is equivalent to
inducing at every point a relative tangent and obstruction space.

Example The forgetful morphism F : Mg ,(V, ) — Mg , has a
perfect obstruction theory £ — Lr where £ = (R f*Ty)V.



