Defining Gromov Witten invariants

Barbara Fantechi

Chennai Mathematical Institute February-March 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline of this lecture

Curve classes and expected dimensions

Normal cone of a closed embedding

Fulton-McPherson intersection theory

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stacks make dreams come true

Quotient stacks

Curve classes and expected dimension -1

Let V be a smooth projective variety. A curve class on X is a group homomorphism $\beta : Pic(X) \to \mathbb{Z}$ such that $Pic^{0}(X) \subset \ker \beta$. If (C, x_{i}, f) is a (pre)stable map to V, we define its class by

 $\beta(L) := \deg_C f^*L.$

If (C, x_i, π, f) is a family of prestable maps over a scheme S and β is a curve class, the set of points $s \in S$ such that $(C_s, x_{i,s}, f_s)$ has class β is open in S. If $S_{\beta} = S$, we say it is a family of class β . We define the algebraic moduli stack $\overline{M}_{g,n}(V, \beta)$ as the pseudofunctor mapping a scheme S to the groupoid of families of stable maps over S of class β .

Curve classes and expected dimension -1

For any embedding $V \subset \mathbb{P}^N$ and any curve class β on V, let $d := \beta(\mathcal{O}_V(1))$. Then $\overline{M}_{g,n}(V,\beta)$ is an open and closed substack of $\overline{M}_{g,n}(V,d)$. In particular, it is proper. Last lecture we proved that the forgetful morphism

$$F:\overline{M}_{g,n}(V,\beta)\to\mathfrak{M}_{g,n}$$

has relative expected dimension $(1 - g) \dim V + \beta (\det T_V)$. An alternative approach is to use classical topology and define $\beta := f_*[C] \in H_2(V, \mathbb{Z})$; then the relative dimension is $(1 - g) \dim V + \beta \cdot c_1(T_V)$. The advantage of the former is that it works in any characteristic.

Normal cone

Let $i: X \to Y$ be a closed embedding of schemes, $\mathcal{I} = \mathcal{I}_{X/Y}$ the ideal sheaf. The normal cone of X in Y is

$$C_{X/Y} = Spec \oplus i^*\mathcal{I}^n.$$

Theorem

If Y is irreducible and reduced of dimension n, then $C_{X/Y}$ is pure dimensional of dimension n.

Proof.

Let Y' be the blow-up of $Y \times \mathbb{A}^1$ along $X \times 0$. Y' is reduced, irreducible of dimension n + 1. Let E be the exceptional divisor of the blow-up; by definition, it is pure-dimensional of dimension n. E contains an open subscheme isomorphic to $C_{X/Y}$.

Normal sheaf

Let $i: X \to Y$ be a closed embedding. Let

 $N_{X/Y} := Spec Sym^* i^* \mathcal{I}_{X/Y}.$

There is a natural closed embedding $C_{X/Y} \rightarrow N_{X/Y}$, and the latter is an abelian group scheme over X.

For every cartesian diagram

there is a natural closed embedding $C_{X'/Y'} \rightarrow g^*(C_{X/Y}) := X' \times_X C_{X/Y}$ and similarly for $N_{X/Y}$. Let $\mathcal{E} \to i^* \mathcal{I}_{X/Y}$ be a surjection of coherent shaves on X. It induces closed embeddings

$$C_{X/Y} \to N_{X/Y} \to Spec Sym^* \mathcal{E}.$$

Examples of normal cones and sheaves

- ▶ Show that there is a natural \mathbb{G}_m -action on $C_{X/Y}$ and $N_{X/Y}$ such that $C_{X/Y} \rightarrow N_{X/Y}$ is equivariant.
- Show that the natural projection C_{X/Y} → X is G_m invariant, and it admits a natural G_m invariant (zero) section.
- ▶ Let Y be a smooth variety and $X \subset Y$ a smooth subvariety, Then $C_{X/Y} = N_{X/Y}$ is the normal bundle of X in Y.
- The same is true if Y is an arbitrary scheme and X is a regularly embedded closed subscheme.
- Compute C_{X/Y} and N_{X/Y} for Y = A² and X = Spec C[x, y]/(x², xy, y²]. In particular show that C_{X/Y} has a unique irreducible component, isomorphic to a quadric cone.

• Compute
$$C_{X/Y}$$
 and $N_{X/Y}$ for $Y = \mathbb{A}^3$ and $X = Spec \mathbb{C}[x, y, z]/xy, xz$.
Show that $C_{X/Y} = N_{X/Y}$, and find its irreducible components (hint: there are two of them).

Chow groups and their functoriality

Let X be a scheme of finite type over \mathbb{C} . We define $Z_d(X)$ to be the free abelian group generated by *d*-dimensional subvarieties of X. We let $Z_*(X) := \bigoplus_d Z_d(X)$.

We define $Rat_d(X)$ to be the subgroup of $Z_d(X)$ generated by $div_W(r)$, where W is a (d+1)-dimensional subvariety of X and r is a nonzero rational function on W.

The Chow group $A_d(X)$ is the quotient of $Z_d(X)$ by $Rat_d(X)$. **Proper pushforward** If $f : X \to Y$ is proper, it induces $f_* : Z_d(X) \to Z_d(Y)$ and $f_* : A_d(X) \to A_d(Y)$. **Flat pullback** If $f : X \to Y$ is flat of relative dimension r, it induces $f^* : Z_d(Y) \to Z_{d+r}(X)$ and $f^* : A_d(Y) \to A_{d+r}(X)$. **Vector bundle** If $\pi : E \to X$ is a rank r vector bundle, then $\pi^* : A_d(X) \to A_{d+r}(E)$ is an isomorphism. We denote $0^!$ its inverse.

Gysin pullback

Let $i : X \to Y$ be a closed embedding, $\phi : \mathcal{E} \to i^* \mathcal{I}_{X/Y}$ a surjection with \mathcal{E} a locally free sheaf of rank r on X.

Theorem

For every cartesian diagram

we have an induced homomorphism $i_{\mathcal{E}}^!$: $A_d(Y') \to A_{d-r}(Y)$, compatible with proper push forward, flat pullbacks and Chern classes.

If *i* is a regular embedding of codimension *r* and ϕ is an isomorphism, we just write *i*[!] and call it *Gysin pullback*.

Definition of Gysin pullback

We review the definition of $i_{\mathcal{E}}^!$. Let $V \subset Y'$ be a *d*-dimensional variety, $W := V \cap X' := V \times_Y X$. Let $p := g|_W : W \to X$. We have a closed embedding $C_{W/V} \to p^* C_{X/Y} \to p^* E$, where $E = Spec Sym \mathcal{E}$. Since *V* is a variety of dimension *d*. *Curve* is a scheme of pure

Since V is a variety of dimension d, $C_{W/V}$ is a scheme of pure dimension d; hence it has a fundamental cycle

$$[C_{W/V}] \in A_d(C_{W/V})$$

where each irreducible component appears with its natural multiplicity. We define $i_{\mathcal{E}}^![V]$ to be the image of $[C_{W/V}]$ via the sequence of homomorphisms

$$A_d(C_{W/V}) \longrightarrow A_d(p^*E) \longrightarrow A_{d-r}(W) \longrightarrow A_{d-r}(X')$$

where the first and third maps are pushforwards via closed embeddings, and the second is $0^!$ for the bundle $g^*E \to W$.

Definition of lci pullback

Theorem

Let $f : X \to Y$ be a morphism of schemes which admits a global factorisation $X \xrightarrow{i} M \xrightarrow{p} Y$ with *i* a regular embedding of codimension *r* and *p* smooth of dimension *e*.

- 1. The relative dimension $e r \in \mathbb{Z}$ of f does not depend on the factorisation chosen.
- 2. For any base change $X' \to Y'$ of f, the group homomorphism

$$f^! := i^! \circ p^* : A_d(Y') \to A_{d+e-r}(X')$$

does not depend on the factorisation chosen.

The homomorphism $f^!$ is called *lci pullback*.

Key ideas in the proof of lci pullback -1

As in last lecture, it is enough to compare factorisations fitting in a diagram

with q a smooth morphism. We saw that the complex

$$\tilde{L}_f := [i^* \mathcal{I}_{X/M} \to i^* \Omega_p]$$

is a well defined element in $D_{coh}^{-1,0}(X)$ and e - r is its rank. Let $\mathcal{I} := \mathcal{I}_{X/M}$ and $\mathcal{I}_1 := \mathcal{I}_{X/M_1}$. The locally split exact sequence

$$0
ightarrow i_1^* \mathcal{I}_1
ightarrow i^* \mathcal{I}
ightarrow i^* \Omega_q
ightarrow 0$$

means that there is an action of $i^* T_q$ on $N_{X/M}$, making it into a principal homogeneous $i^* T_q$ space over N_{X/M_1} .

Key ideas in the proof of lci pullback -2

We now base change the previous diagram via $V \rightarrow Y$, yielding

where \bar{q} , \bar{p} and \bar{p}_1 are smooth, \bar{i} and \bar{i}_1 are closed embeddings but not necessarily regular of codimension r. There is an induced action of $\bar{i}^* T_{\bar{q}}$ on $C_{W/\overline{M}}$, making it into a principal homogeneous $\bar{i}^* T_{\bar{q}}$ space over C_{W/\overline{M}_1} . We write this as an *exact sequence of cones and bundles* over W

$$0
ightarrow ar{i}^* T_{ar{q}}
ightarrow C_{W/\overline{M}}
ightarrow C_{W/\overline{M}_1}
ightarrow 0.$$

We also have an exact sequence of vector bundles over W

$$0 \to \overline{i}^* T_{\overline{q}} \to \overline{i}^* T_{\overline{p}} \to \overline{i}_1^* T_{\overline{p}_1} \to 0.$$

Dreaming past Fulton-McPherson

Imagine we could combine the two exact sequences above into a commutative diagram

with the two vertical sequences also exact.

Dreaming past Fulton-McPherson -2

It would immediately follow that there is a canonical isomorphism $C_f \rightarrow C_f^1$, and that each is a cone of pure dimension dim V. Parts of this dream are real:

- ► the natural morphism $\overline{i}^* \mathcal{I}_{W/\overline{M}} \to \overline{i}^* \Omega_{\overline{p}}$ induces a homomorphism of abelian group schemes (over W) $\overline{i}^* T_{\overline{p}} \to N_{W/\overline{M}}$.
- this induces an action of $\overline{i}^* T_{\overline{p}}$ on $C_{W/\overline{M}}$
- ▶ the morphism $C_{W/\overline{M}} \to C_{W/\overline{M}_1}$ is equivariant with respect to these actions and the homomorphism $i^* T_{\overline{p}} \to \overline{i}^* T_{\overline{p}_1}$.
- ▶ However, in general this action is far from being fixed point free. In fact, if $f : X \to Y$ is smooth, and we choose M = X, $i = id_X$ and p = f, $C_{X/X} = X$, $T + p = T_f$, and the action is the trivial action.

Quotient groupoids -1

As a warm-up, we describe how groupoids allow us to take quotients as if every action was free. Let X be a set, G a group acting on X on the left. Let Y be the quotient set X/G, and $p: X \to Y$ the quotient map.

Lemma

There is a natural commutative diagram

where a is the action. It is cartesian if and only if the action is fixed point free.

Quotient groupoids -2

We define the *quotient groupoid* [X/G] as follows. The objects are the elements of X. For $x, y \in X$, we define

$$Mor(x,y) := \{g \in G \, | \, g \cdot x = y\}.$$

Exercise

- 1. Define composition of morphisms, and show that [X/G] is a groupoid.
- 2. Define a morphism $\pi: X \to [X/G]$ sending each object to itself.
- 3. Show that there is a (2-)cartesian diagram of groupoids

From quotient groupoids to quotient stacks -1

We now want to address the same problem in the language of stacks.

Notation We fix a scheme S, a group scheme G over S, and a scheme X over S with a G action.

Let $h_X, h_G : (\operatorname{sch}/S) \to (\operatorname{sets})$ be the Yoneda functors (i.e., $h_X(B) = \operatorname{Mor}_S(B, X)$).

Giving G a structure of group scheme over S is equivalent to lifting h_G to a functor from schemes to groups, which we also denote h_G . The action of G on X translates into a natural transformation $h_G \times h_X \to h_X$ such that, for any scheme B over S, the induced map $h_G(B) \times h_X(B) \to h_X(B)$ is an action of the group $h_G(B)$ on the set $h_X(B)$. From quotient groupoids to quotient stacks -2

It is possible to define a pseudofunctor $[X/G]^w : (\operatorname{sch}) \to (\operatorname{grpd})$ by

$$[X/G]^w(B) = [h_X(B)/h_G(B)],$$

where the right hand side is the quotient groupoid.

However, I added the superscript w to $[X/G]^w$ to mean that this is the *wrong* definition.

We know that, if F is a sheaf of abelian groups on a topological space, and F' a sub sheaf of abelian groups, the quotient sheaf F" cannot be defined as F" (U) = F(U)/F'(U).

The same problem happens in the stack context; the pseudofunctor $[X/G]^w$ defined above isn't a stack, i.e., we cannot defined objects locally and glue them using a cocycle condition.

G torsors

Let S be a scheme, G a group scheme over S, and X an S-scheme with a G-action.

We say that X is a trivial G-torsor over an S-scheme Y if we are given a G-invariant morphism $\pi: X \to Y$ such that there exists a section $s: Y \to X$ with the property that the induced morphism $G \times_S Y \to X$ given by $(g, y) \mapsto g \cdot s(y)$ is an isomorphism. The section s is called a trivialisation of X.

We say that X is a G-torsor over Y if there exists an étale, surjective morphism $Y \to Y$ such that $X' := X \times_Y Y'$ is a trivial G-torsor over Y'.

Exercise Show that the pair (π, Y) , if it exists, is unique up to canonical isomorphism.

Exercise Show that $\mathbb{A}^{n+1} \setminus 0 \to \mathbb{P}^n$ is a \mathbb{G}_m -torsor.

Show that any étale finite cover of degree 2 is a μ_2 torsor, where μ_2 is the group $\{+1, -1\}$.

G torsors

Let X be a G torsor over Y. Then for every morphism $f: Y' \to Y$, the fiber product $X' := X \times_Y Y'$ is naturally a G-torsor over Y', and f induces a G-equivariant morphism $X' \to X$. For any scheme B, we define the category [X/G](B) as follows. The objects are tuples (P, π, g) where $\pi : P \to B$ is a G-torsor, and $g : P \to X$ is a G-equivariant morphism. A morphism $(P, \pi, g) \to (P', \pi', g')$ is a G-equivariant isomorphism $\phi : P \to P'$ such that $\pi = \pi' \circ \phi$ and $g = g' \circ \phi$.

Lemma

Let X be a G-torsor over Y. Show that $Mor(B, Y) \rightarrow [X/G](B)$ defined by

$$f: B \to Y \mapsto (P:=X \times_Y, \pi, g)$$

where (π, g) are the induced morphisms is an equivalence of groupoids.

Plan for final lecture

Given S an algebraic stack, G a smooth group scheme over S, and X a scheme over S with a G action, we will show that the quotient stack [X/G] is algebraic and that the diagram

is 2-cartesian.

Given a morphism of DM type of algebraic stacks $f : X \not \otimes Y$ with a factorisation $X \xrightarrow{i} M \xrightarrow{p} Y$ with *i* a closed embedding and *p* smooth, we define the *normal cone to f* to be $C_f := [C_{X/M}//i^*T_p]$ and show that it doesn't depend on the chosen factorisation. In fact, it can be defined even if no such factorisation exists. We define a vector bundle stack *E* of rank *r* over *X* to be an algebraic stack which is locally isomorphic to a quotient $[E_1/E_0]$ where E_0 and E_1 are vector bundles on *X* of ranks r_0 , r_1 , and the action is induced by a linear map $E_0 \rightarrow E_1$.