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Curve classes and expected dimension -1

Let V be a smooth projective variety. A curve class on X is a
group homomorphism 3 : Pic(X) — Z such that Pic®(X) C ker .
If (C,x;,f)is a (pre)stable map to V/, we define its class by

B(L) := deg f*L.

If (C,x;,m,f) is a family of prestable maps over a scheme S and
is a curve class, the set of points s € S such that (Cs, x; s, fs) has
class S is openin S. If Sg = S, we say it is a family of class §.
We define the algebraic moduli stack Mg o(V, 3) as the
pseudofunctor mapping a scheme S to the groupoid of families of
stable maps over S of class 5.



Curve classes and expected dimension -1

For any embedding V c PV and any curve class 3 on V, let

d := B(Ov(1)). Then Mg ,(V, ) is an open and closed substack
of Mg »(V,d). In particular, it is proper.

Last lecture we proved that the forgetful morphism

F:Mgn(V,B) = Mg

has relative expected dimension (1 — g)dim V + 3(det Ty ).

An alternative approach is to use classical topology and define

B := £[C] € Ha(V,Z); then the relative dimension is
(1—g)dimV 4+ 3-c1(Ty). The advantage of the former is that it
works in any characteristic.



Normal cone

Let i : X — Y be a closed embedding of schemes, 7 = Ty ,y the
ideal sheaf. The normal cone of X in'Y is

Cx/y = Spec @© i"I".

Theorem
If'Y is irreducible and reduced of dimension n, then Cxy is pure
dimensional of dimension n.

Proof.

Let Y’ be the blow-up of Y x Al along X x 0. Y’ is reduced,
irreducible of dimension n+ 1. Let E be the exceptional divisor of
the blow-up; by definition, it is pure-dimensional of dimension n.

E contains an open subscheme isomorphic to Cx/y. O



Normal sheaf

Let i : X — Y be a closed embedding. Let

Nx/y := Spec Sym™i*Ixy .

There is a natural closed embedding Cx /vy — Nx/y, and the latter
is an abelian group scheme over X.

For every cartesian diagram

there is a natural closed embedding

Cxryr — g°(Cx/y) = X' xx Cx;y and similarly for Ny y.
Let &€ — i*Ix,y be a surjection of coherent shaves on X.

It induces closed embeddings

Cx)y = Nx,y — Spec Sym*E.



Examples of normal cones and sheaves

>

Show that there is a natural G,-action on Cx,y and Ny, y
such that Cx,y — Nx,y is equivariant.

Show that the natural projection Cx,y — X is G, invariant,
and it admits a natural G, invariant (zero) section.

Let Y be a smooth variety and X C Y a smooth subvariety,
Then Cx/y = Nx/y is the normal bundle of X in Y.

The same is true if Y is an arbitrary scheme and X is a
regularly embedded closed subscheme.

Compute Cx,y and Nx,y for Y = A? and

X = SpecClx, y]/(x?,xy,y?]. In particular show that Cx,y
has a unique irreducible component, isomorphic to a quadric
cone.

Compute Cx,y and Nx/y for Y = A3 and

X = SpecClx, y, z]/xy, xz.

Show that Cx,y = Nx,y, and find its irreducible components
(hint: there are two of them).



Chow groups and their functoriality

Let X be a scheme of finite type over C. We define Z;(X) to be
the free abelian group generated by d-dimensional subvarieties of
X. We let Z.(X) := ®&qgZ4(X).

We define Raty(X) to be the subgroup of Zy(X) generated by
divy(r), where W is a (d + 1)-dimensional subvariety of X and r
is a nonzero rational function on W.

The Chow group Ag(X) is the quotient of Z,(X) by Raty(X).
Proper pushforward If f : X — Y is proper, it induces

fo 0 Zg(X) = Zg(Y) and £, : Ag(X) — Aq(Y).

Flat pullback If f : X — Y is flat of relative dimension r, it
induces f* : Z4(Y) = Zg+r(X) and * : Ag(Y) — Agr(X).
Vector bundle If 7: E — X is a rank r vector bundle, then

7™ Ag(X) — Agy-(E) is an isomorphism. We denote 0' its
inverse.



Gysin pullback

Let i : X — Y be a closed embedding, ¢ : & — i"Ix/y a
surjection with £ a locally free sheaf of rank r on X.

Theorem
For every cartesian diagram

we have an induced homomorphism ig : Ag(Y') — Ag—(Y),
compatible with proper push forward, flat pullbacks and Chern
classes.

If i is a regular embedding of codimension r and ¢ is an
isomorphism, we just write i' and call it Gysin pullback.



Definition of Gysin pullback

We review the definition of /"g Let V C Y’ be a d-dimensional
variety, W := VN X =V xy X. Let p:=g|lw: W — X. We
have a closed embedding Cy,y — p*Cx,y — p"E, where

E = Spec Sym€&.

Since V is a variety of dimension d, Cyy v is a scheme of pure
dimension d; hence it has a fundamental cycle

[Cw/v] € Ad(Cw)v)

where each irreducible component appears with its natural
multiplicity. We define iz[V] to be the image of [Cyy ] via the
sequence of homomorphisms

Ad(CW/V) — Ad(p*E) — Ad_r(W) — Ad_r(X/)

where the first and third maps are pushforwards via closed
embeddings, and the second is 0' for the bundle g*E — W.



Definition of Ici pullback

Theorem

Letf: X =Y be a morphism of schemes which admits a global

factorisation X - M B Y with i a regular embedding of
codimension r and p smooth of dimension e.

1. The relative dimension e — r € Z of f does not depend on the
factorisation chosen.

2. For any base change X' — Y’ of f, the group homomorphism
flo=10op*: Ag(Y') = Agie_r(X')
does not depend on the factorisation chosen.

The homomorphism f' is called /ci pullback.



Key ideas in the proof of Ici pullback -1

As in last lecture, it is enough to compare factorisations fitting in a
diagram

X—-MmM—_Loy

N

My

with g a smooth morphism. We saw that the complex
Zf = [/*IX/M — I*Qp]

is a well defined element in D;)Il{O(X) and e — r is its rank.
Let 7:=Zx/p and Zy := Ix p,. The locally split exact sequence

0= 1Ty = i"T—i"Qq—0

means that there is an action of i* T4 on Ny, making it into a
principal homogeneous i* T4 space over Nx py, .



Key ideas in the proof of Ici pullback -2

We now base change the previous diagram via V — Y/, yielding

W;WL 74
\ ia g
i P1
M,

where g, p and p; are smooth, i and 7; are closed embeddings but
not necessarily regular of codimension r.
There is an induced action of i* T on CW/W' making it into a

principal homogeneous i* T space over Cy, 77 . We write this as
an exact sequence of cones and bundles over W

Tx
0—=1"Tg = Cpm = Cwyms, = 0
We also have an exact sequence of vector bundles over W

% “x “x
0—=i"Tg—i"Tsg —i{ T — 0.



Dreaming past Fulton-McPherson

Imagine we could combine the two exact sequences above into a
commutative diagram

0 0
0 Ty *Tp i Tp, 0
0 Ty Cwai — Cwym, —0
Cr .
0 0

with the two vertical sequences also exact.



Dreaming past Fulton-McPherson -2

It would immediately follow that there is a canonical isomorphism
Cr — C}, and that each is a cone of pure dimension dim V.
Parts of this dream are real:
» the natural morphism T*IW/W — 7*9;, induces a
homomorphism of abelian group schemes (over W)
Ty = Ny -
» this induces an action of i* T on CW/W

> the morphism CW/W — CW/Wl is equivariant with respect to
these actions and the homomorphism i* T5 — i* T5,.

» However, in general this action is far from being fixed point
free. In fact, if f : X — Y is smooth, and we choose M = X,
i=idx and p=f, Cx/x =X, T+ p = T¢, and the action is
the trivial action.



Quotient groupoids -1

As a warm-up, we describe how groupoids allow us to take
quotients as if every action was free. Let X be a set, G a group
acting on X on the left. Let Y be the quotient set X/G, and
p: X — Y the quotient map.

Lemma
There is a natural commutative diagram

GxX-21-+=X
prxl ip
X Y

where a is the action. It is cartesian if and only if the action is
fixed point free.



Quotient groupoids -2

We define the quotient groupoid [X/G] as follows. The objects are
the elements of X. For x,y € X, we define

Mor(x,y) = {g € G|g-x=y}.

Exercise

1. Define composition of morphisms, and show that [X/G] is a
groupoid.

2. Define a morphism 7 : X — [X/G] sending each object to
itself.

3. Show that there is a (2-)cartesian diagram of groupoids

Gx X2 X

X [X/G]

™



From quotient groupoids to quotient stacks -1

We now want to address the same problem in the language of
stacks.

Notation We fix a scheme S, a group scheme G over S, and a
scheme X over S with a G action.

Let hx, hg : (sch/S) — (sets) be the Yoneda functors (i.e.,

hx(B) S /\/Iors(B,X)).

Giving G a structure of group scheme over S is equivalent to lifting
hg to a functor from schemes to groups, which we also denote hg.
The action of G on X translates into a natural transformation

hec X hx — hx such that, for any scheme B over S, the induced
map hg(B) x hx(B) — hx(B) is an action of the group hg(B) on
the set hx(B).



From quotient groupoids to quotient stacks -2

It is possible to define a pseudofunctor [X/G]" : (sch) — (grpd) by
[X/G]"(B) = [hx(B)/hc(B)],

where the right hand side is the quotient groupoid.

However, | added the superscript w to [X/G]" to mean that this
is the wrong definition.

We know that, if F is a sheaf of abelian groups on a topological
space, and F’ a sub sheaf of abelian groups, the quotient sheaf F”
cannot be defined as F"(U) = F(U)/F'(U).

The same problem happens in the stack context; the
pseudofunctor [X/G]" defined above isn't a stack, i.e., we cannot
defined objects locally and glue them using a cocycle condition.



G torsors

Let S be a scheme, G a group scheme over S, and X an S-scheme
with a G-action.

We say that X is a trivial G-torsor over an S-scheme Y if we are
given a G-invariant morphism 7 : X — Y such that there exists a
section s : Y — X with the property that the induced morphism
G xsY — X given by (g,y) — g - s(y) is an isomorphism. The
section s is called a trivialisation of X.

We say that X is a G-torsor over Y if there exists an étale,
surjective morphism Y — Y such that X' := X xy Y’ is a trivial
G-torsor over Y.

Exercise Show that the pair (7, Y), if it exists, is unique up to
canonical isomorphism.

Exercise Show that A1\ 0 — P" is a G ,-torsor.

Show that any étale finite cover of degree 2 is a uy torsor, where
pz is the group {+1, —1}.



G torsors

Let X be a G torsor over Y. Then for every morphism f : Y/ — Y,
the fiber product X’ := X xy Y’ is naturally a G-torsor over Y/,
and f induces a G-equivariant morphism X’ — X.

For any scheme B, we define the category [X/G](B) as follows.
The objects are tuples (P, 7, g) where 7 : P — B is a G-torsor,
and g : P — X is a G-equivariant morphism.

A morphism (P, m,g) — (P, 7', g’) is a G-equivariant
isomorphism ¢ : P — P’ such that m =7’ o ¢ and g = g’ 0 ¢.

Lemma
Let X be a G-torsor over Y. Show that Mor(B,Y) — [X/G](B)
defined by

f:B—=Y—(P:=Xxy,mg)

where (7, g) are the induced morphisms is an equivalence of
groupoids.



Plan for final lecture
Given S an algebraic stack, G a smooth group scheme over S, and
X a scheme over S with a G action, we will show that the quotient
stack [X/G] is algebraic and that the diagram

G><5X 2 X

X [X/G]

™

is 2-cartesian.
Given a morphism of DM type of algebraic stacks f : XgY with a

factorisation X = M & Y with i a closed embedding and p
smooth, we define the normal cone to f to be Cr := [Cx/m//i* Tp]
and show that it doesn’'t depend on the chosen factorisation. In
fact, it can be defined even if no such factorisation exists.

We define a vector bundle stack E of rank r over X to be an
algebraic stack which is locally isomorphic to a quotient [E;/Eo]
where Eg and E; are vector bundles on X of ranks ry, r1, and the
action is induced by a linear map Eg — E;.
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