Defining Gromov Witten invariants

Barbara Fantechi

Chennai Mathematical Institute
February-March 2016

Outline of this lecture

Review of last lecture

Cotangent complex

GW obstruction space

Smoothness of $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$

Expected dimension

GW expected dimension and virtual pullback

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.
- We showed that

$$
f:(\text { Art }) \rightarrow(\text { sets }) \text { functor } \Rightarrow f=\coprod_{x \in f(\mathbb{C})} f_{x} .
$$

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.
- We showed that

$$
f:(\text { Art }) \rightarrow(\text { sets }) \text { functor } \Rightarrow f=\coprod_{x \in f(\mathbb{C})} f_{x} .
$$

- For $F: f \rightarrow g$ functors, $x \in f(\mathbb{C})$, we defined tangent and obstruction spaces to F at x.

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.
- We showed that

$$
f:(\text { Art }) \rightarrow(\text { sets }) \text { functor } \Rightarrow f=\coprod_{x \in f(\mathbb{C})} f_{x}
$$

- For $F: f \rightarrow g$ functors, $x \in f(\mathbb{C})$, we defined tangent and obstruction spaces to F at x.
- If $F: h_{X} \rightarrow h_{Y}$ is induced by a morphism of schemes $\phi: X \rightarrow Y$ then $T_{f}(x)=\operatorname{Hom}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ and and $E x t^{1}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.
- We showed that

$$
f:(\text { Art }) \rightarrow(\text { sets }) \text { functor } \Rightarrow f=\coprod_{x \in f(\mathbb{C})} f_{x}
$$

- For $F: f \rightarrow g$ functors, $x \in f(\mathbb{C})$, we defined tangent and obstruction spaces to F at x.
- If $F: h_{X} \rightarrow h_{Y}$ is induced by a morphism of schemes $\phi: X \rightarrow Y$ then $T_{f}(x)=\operatorname{Hom}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ and and $E x t^{1}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.
- If $f: X \rightarrow Y$ is smooth at $x \in X$ then it is unobstructed, i.e., zero is an obstruction space. The converse is also true (formal smoothness).

Review of last lecture

- We defined (Art):=category of local Artinian f.g. \mathbb{C}-algebras; dual to fat points.
- We showed that

$$
f:(\text { Art }) \rightarrow(\text { sets }) \text { functor } \Rightarrow f=\coprod_{x \in f(\mathbb{C})} f_{x} .
$$

- For $F: f \rightarrow g$ functors, $x \in f(\mathbb{C})$, we defined tangent and obstruction spaces to F at x.
- If $F: h_{X} \rightarrow h_{Y}$ is induced by a morphism of schemes $\phi: X \rightarrow Y$ then $T_{f}(x)=\operatorname{Hom}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ and and $E x t^{1}\left(x^{*} \tilde{L}_{\phi}, \mathbb{C}\right)$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.
- If $f: X \rightarrow Y$ is smooth at $x \in X$ then it is unobstructed, i.e., zero is an obstruction space. The converse is also true (formal smoothness).
- If $f: X \rightarrow Y$ is étale at x then $h_{X, x}(A) \rightarrow h_{Y, y}(A)$ is a bijection for every A in (Art). The converse is also true.

Cotangent complex -1

Theorem
For a morphism of schemes $\phi: X \rightarrow Y$ which factorizes as $X \xrightarrow{i} M \xrightarrow{p} Y$, with i a closed embedding and p smooth we can set

$$
\tilde{L}_{\phi}:=i^{*} J \rightarrow i^{*} \Omega_{p}
$$

and use it to compute T^{1}, T^{2}.
Proof.

- Statement is Zariski (and indeed étale) local in both X and Y. We may assume ϕ is affine; then it is true for any factorisation with $M=\mathbb{A}^{N} \times Y$.
- Given two factorizations $\phi=p_{1} \circ i_{1}=p_{2} \circ i_{2}$, we can compare both to $\phi=p \circ i$ where $M:=M_{1} \times_{Y} M_{2}$. We get a commutative diagram:

Cotangent complex -2

We get a commutative diagram:

with q a smooth morphism. Let $I:=\mathcal{I}_{X / M}$ and $I_{1}:=\mathcal{I}_{X / M_{1}}$.

Cotangent complex -2

We get a commutative diagram:

with q a smooth morphism. Let $I:=\mathcal{I}_{X / M}$ and $I_{1}:=\mathcal{I}_{X / M_{1}}$. [By Fulton], Intersection Theory, Chap. 4 the diagram

commutes and has exact, hence (since Ω_{q} is locally free) locally split rows.

Cotangent complex -2

We get a commutative diagram:

with q a smooth morphism. Let $I:=\mathcal{I}_{X / M}$ and $I_{1}:=\mathcal{I}_{X / M_{1}}$. [By Fulton], Intersection Theory, Chap. 4 the diagram

commutes and has exact, hence (since Ω_{q} is locally free) locally split rows. Hence it induces isomorphisms $\operatorname{ker} \psi_{1} \rightarrow \operatorname{ker} \psi$ and coker $\psi_{1} \rightarrow$ coker ψ, and the same is true for its arbitrary pullbacks and their duals.

Cotangent complex -3

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \rightarrow Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D_{\text {coh }}^{-1,0}(X)$.

Cotangent complex -3

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \rightarrow Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D_{\text {coh }}^{-1,0}(X)$.
In fact, one can more generally defined the cotangent complex (Illusive, 1968) $L_{\phi} \in D_{\text {oh }}^{\leq 0}(X)$ for an arbitrary morphism of DM type of algebraic stacks, in such a way that $\tilde{L}_{\phi}=\tau_{\geq-1} L_{\phi}$.

Cotangent complex -3

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \rightarrow Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D_{\text {coh }}^{-1,0}(X)$.
In fact, one can more generally defined the cotangent complex (Illusive,1968) $L_{\phi} \in D_{\text {oh }}^{\leq 0}(X)$ for an arbitrary morphism of DM type of algebraic stacks, in such a way that $\tilde{L}_{\phi}=\tau_{\geq-1} L_{\phi}$.
The cotangent complex has a technically demanding definition and good functorial properties; it should be seen as the answer to the question "Given morphisms of schemes $h=g \circ f$, how do we extend the short exact sequence

$$
f^{*} \Omega_{g} \rightarrow \Omega_{h} \rightarrow \Omega_{f} \rightarrow 0
$$

to a long exact sequence?"
T^{1} and T^{2} for $\operatorname{Mor}_{x}(C, V)-1$
Let $p: C \rightarrow X$ and $q: V \rightarrow X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_{0} \in X$, and C_{0}, V_{0} the fibres of p and q at x_{0}.
T^{1} and T^{2} for $\operatorname{Mor} x(C, V)-1$
Let $p: C \rightarrow X$ and $q: V \rightarrow X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_{0} \in X$, and C_{0}, V_{0} the fibres of p and q at x_{0}.
Let $g:=h_{X, x_{0}}:($ Art $) \rightarrow$ (sets), i.e.

$$
g(A):=\left\{a: \operatorname{Spec} A \rightarrow X \mid \operatorname{Im}(a)_{\mathrm{red}}=x_{0}\right\} .
$$

To an $a \in g(A)$ we can associate $p_{A}: C_{A} \rightarrow$ Spec A and $q_{A}: V_{A} \rightarrow \operatorname{Spec} A$.
T^{1} and T^{2} for $\operatorname{Mor} x(C, V)-1$
Let $p: C \rightarrow X$ and $q: V \rightarrow X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_{0} \in X$, and C_{0}, V_{0} the fibres of p and q at x_{0}.
Let $g:=h_{X, x_{0}}:($ Art $) \rightarrow$ (sets), i.e.

$$
g(A):=\left\{a: \operatorname{Spec} A \rightarrow X \mid \operatorname{Im}(a)_{\mathrm{red}}=x_{0}\right\} .
$$

To an $a \in g(A)$ we can associate $p_{A}: C_{A} \rightarrow$ Spec A and $q_{A}: V_{A} \rightarrow \operatorname{Spec} A$.
Define $f:($ Art $) \rightarrow$ (sets) by

$$
f(A)=\left\{(a, u) \mid a \in g(A), u: C_{A} \rightarrow V_{A}, p_{A}=q_{A} \circ u\right\} .
$$

T^{1} and T^{2} for $\operatorname{Mor} x(C, V)-1$
Let $p: C \rightarrow X$ and $q: V \rightarrow X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_{0} \in X$, and C_{0}, V_{0} the fibres of p and q at x_{0}.
Let $g:=h_{X, x_{0}}:($ Art $) \rightarrow$ (sets), i.e.

$$
g(A):=\left\{a: \operatorname{Spec} A \rightarrow X \mid \operatorname{Im}(a)_{\mathrm{red}}=x_{0}\right\} .
$$

To an $a \in g(A)$ we can associate $p_{A}: C_{A} \rightarrow$ Spec A and $q_{A}: V_{A} \rightarrow \operatorname{Spec} A$.
Define $f:($ Art $) \rightarrow$ (sets) by

$$
f(A)=\left\{(a, u) \mid a \in g(A), u: C_{A} \rightarrow V_{A}, p_{A}=q_{A} \circ u\right\} .
$$

Let $u_{0}: C_{0} \rightarrow V_{0}$ be a point in $h(\mathbb{C})$. Let $F: f \rightarrow g$ be the forgetful map.
T^{1} and T^{2} for $\operatorname{Mor} x(C, V)-1$
Let $p: C \rightarrow X$ and $q: V \rightarrow X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_{0} \in X$, and C_{0}, V_{0} the fibres of p and q at x_{0}.
Let $g:=h_{X, x_{0}}:($ Art $) \rightarrow$ (sets), i.e.

$$
g(A):=\left\{a: \operatorname{Spec} A \rightarrow X \mid \operatorname{Im}(a)_{\mathrm{red}}=x_{0}\right\} .
$$

To an $a \in g(A)$ we can associate $p_{A}: C_{A} \rightarrow \operatorname{Spec} A$ and $q_{A}: V_{A} \rightarrow \operatorname{Spec} A$.
Define $f:($ Art $) \rightarrow$ (sets) by

$$
f(A)=\left\{(a, u) \mid a \in g(A), u: C_{A} \rightarrow V_{A}, p_{A}=q_{A} \circ u\right\} .
$$

Let $u_{0}: C_{0} \rightarrow V_{0}$ be a point in $h(\mathbb{C})$. Let $F: f \rightarrow g$ be the forgetful map.
Lemma
$H^{0}\left(C_{0}, u_{0}^{*} T_{V_{0}}\right)$ and $H^{1}\left(C_{0}, u_{0}^{*} T_{V_{0}}\right)$ are tangent and obstruction space for F at u_{0}.

Proof.

Given a semismall extension $A \rightarrow B$ with kernel I, an element $a \in g(A)$ and a morphism $u_{B}: C_{B} \rightarrow V_{B}$, we need to prove that there is a functorial obstruction in $T^{2} \otimes I$ to the existence of $u_{A}: C_{A} \rightarrow V_{A}$ such that $u_{A} \mid C_{B}=u_{B}$. Moreover the set of such u_{A} (if non-empty) is a principal homogeneous space under T^{1}.
We outline the main steps of the proof.

Proof.

Given a semismall extension $A \rightarrow B$ with kernel I, an element $a \in g(A)$ and a morphism $u_{B}: C_{B} \rightarrow V_{B}$, we need to prove that there is a functorial obstruction in $T^{2} \otimes I$ to the existence of $u_{A}: C_{A} \rightarrow V_{A}$ such that $u_{A} \mid C_{B}=u_{B}$. Moreover the set of such u_{A} (if non-empty) is a principal homogeneous space under T^{1}.
We outline the main steps of the proof.
Case p affine, $V=\mathbb{A}^{n} \times X$. Elementary.

Proof.

Given a semismall extension $A \rightarrow B$ with kernel I, an element $a \in g(A)$ and a morphism $u_{B}: C_{B} \rightarrow V_{B}$, we need to prove that there is a functorial obstruction in $T^{2} \otimes I$ to the existence of $u_{A}: C_{A} \rightarrow V_{A}$ such that $u_{A} \mid C_{B}=u_{B}$. Moreover the set of such u_{A} (if non-empty) is a principal homogeneous space under T^{1}.
We outline the main steps of the proof.
Case p affine, $V=\mathbb{A}^{n} \times X$. Elementary.
Case p, q affine. Choose a closed embedding $V_{A} \rightarrow \mathbb{A}_{A}^{n}$. Translate into algebras and copy last lecture's proof.

T^{1} and T^{2} for $\operatorname{Mor}_{x}(C, V)-2$

Proof.

Given a semismall extension $A \rightarrow B$ with kernel I, an element $a \in g(A)$ and a morphism $u_{B}: C_{B} \rightarrow V_{B}$, we need to prove that there is a functorial obstruction in $T^{2} \otimes I$ to the existence of $u_{A}: C_{A} \rightarrow V_{A}$ such that $u_{A} \mid C_{B}=u_{B}$. Moreover the set of such u_{A} (if non-empty) is a principal homogeneous space under T^{1}.
We outline the main steps of the proof.
Case p affine, $V=\mathbb{A}^{n} \times X$. Elementary.
Case p, q affine. Choose a closed embedding $V_{A} \rightarrow \mathbb{A}_{A}^{n}$. Translate into algebras and copy last lecture's proof.
General case. Note that C_{A} and C_{0} have the same underlying topological space, same for V_{A} and V_{0}.

T^{1} and T^{2} for $\operatorname{Mor}_{x}(C, V)-2$

Proof.

Given a semismall extension $A \rightarrow B$ with kernel I, an element $a \in g(A)$ and a morphism $u_{B}: C_{B} \rightarrow V_{B}$, we need to prove that there is a functorial obstruction in $T^{2} \otimes I$ to the existence of $u_{A}: C_{A} \rightarrow V_{A}$ such that $u_{A} \mid C_{B}=u_{B}$. Moreover the set of such u_{A} (if non-empty) is a principal homogeneous space under T^{1}.
We outline the main steps of the proof.
Case p affine, $V=\mathbb{A}^{n} \times X$. Elementary.
Case p, q affine. Choose a closed embedding $V_{A} \rightarrow \mathbb{A}_{A}^{n}$. Translate into algebras and copy last lecture's proof.
General case. Note that C_{A} and C_{0} have the same underlying topological space, same for V_{A} and V_{0}.
Cover C_{A} and V_{A} by open affines $C_{A, i}$ and $V_{A, i}$ such that $u_{0}\left(C_{0, i}\right) \subset V_{0, i}$. Use previous case and Cech cohomology.

GW obstruction space

Theorem
Let $F: \mathfrak{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful functor. Let $p_{0} \in \mathfrak{M}_{g, n}(V, d)$ be given by a prestable map $\left(C_{0}, x_{i}^{0}, f_{0}\right)$. Then $H^{0}\left(C_{0}, f_{0}^{*} T_{V}\right)$ and $H^{1}\left(C_{0}, f_{0}^{*} T_{V}\right)$ are tangent and obstruction spaces for F at p_{0}.

Proof.

GW obstruction space

Theorem
Let $F: \mathfrak{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful functor. Let $p_{0} \in \mathfrak{M}_{g, n}(V, d)$ be given by a prestable map $\left(C_{0}, x_{i}^{0}, f_{0}\right)$. Then $H^{0}\left(C_{0}, f_{0}^{*} T_{V}\right)$ and $H^{1}\left(C_{0}, f_{0}^{*} T_{V}\right)$ are tangent and obstruction spaces for F at p_{0}.

Proof.

Let $q_{0}:=F\left(p_{0}\right) \in \mathfrak{M}_{g, n}$ (i.e., the point defined by the curve $\left.\left(C_{0}, x_{i}^{0}\right)\right)$. Take a smooth local chart $\rho: X \rightarrow \mathfrak{M}_{g, n}$ with q_{0} in the image. Let (C, π, x_{i},) be the family of stable curves on X defined by $X \rightarrow \mathfrak{M}_{g, n}$. Since the fiber product of X and $\mathfrak{M}_{g, n}(V, d)$ over $\mathfrak{M}_{g, n}$ is $\operatorname{Mor}_{X}(C, V \times X)$ the result follows from the previous theorem.

GW obstruction space

Theorem
Let $F: \mathfrak{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful functor. Let $p_{0} \in \mathfrak{M}_{g, n}(V, d)$ be given by a prestable map $\left(C_{0}, x_{i}^{0}, f_{0}\right)$. Then $H^{0}\left(C_{0}, f_{0}^{*} T_{V}\right)$ and $H^{1}\left(C_{0}, f_{0}^{*} T_{V}\right)$ are tangent and obstruction spaces for F at p_{0}.

Proof.

Let $q_{0}:=F\left(p_{0}\right) \in \mathfrak{M}_{g, n}$ (i.e., the point defined by the curve $\left.\left(C_{0}, x_{i}^{0}\right)\right)$. Take a smooth local chart $\rho: X \rightarrow \mathfrak{M}_{g, n}$ with q_{0} in the image. Let (C, π, x_{i},) be the family of stable curves on X defined by $X \rightarrow \mathfrak{M}_{g, n}$. Since the fiber product of X and $\mathfrak{M}_{g, n}(V, d)$ over $\mathfrak{M}_{g, n}$ is $\operatorname{Mor}_{X}(C, V \times X)$ the result follows from the previous theorem.

Corollary

The same holds for $\bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$.

GW obstruction space

Theorem
Let $F: \mathfrak{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful functor. Let $p_{0} \in \mathfrak{M}_{g, n}(V, d)$ be given by a prestable map $\left(C_{0}, x_{i}^{0}, f_{0}\right)$. Then $H^{0}\left(C_{0}, f_{0}^{*} T_{V}\right)$ and $H^{1}\left(C_{0}, f_{0}^{*} T_{V}\right)$ are tangent and obstruction spaces for F at p_{0}.

Proof.

Let $q_{0}:=F\left(p_{0}\right) \in \mathfrak{M}_{g, n}$ (i.e., the point defined by the curve $\left.\left(C_{0}, x_{i}^{0}\right)\right)$. Take a smooth local chart $\rho: X \rightarrow \mathfrak{M}_{g, n}$ with q_{0} in the image. Let (C, π, x_{i},) be the family of stable curves on X defined by $X \rightarrow \mathfrak{M}_{g, n}$. Since the fiber product of X and $\mathfrak{M}_{g, n}(V, d)$ over $\mathfrak{M}_{g, n}$ is $\operatorname{Mor}_{X}(C, V \times X)$ the result follows from the previous theorem.

Corollary

The same holds for $\bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$.
We call $H^{1}\left(C_{0}, f_{0}^{*} T_{V}\right)$ the Gromov-Witten (GW) obstruction space for F at p_{0}.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.
Lemma
A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_{C} is a tree.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_{C} is a tree.
Theorem
Let C be a prestable curve of genus zero, L a line bundle on C such that $\operatorname{deg}_{X} L \geq 0$ for every component X of C. Then $H^{1}(C, L)=0$.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_{C} is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\operatorname{deg}_{X} L \geq 0$ for every component X of C. Then $H^{1}(C, L)=0$.
Proof.
Induction on the number n of components of C. The case $n=1$ is trivial.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_{C} is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\operatorname{deg}_{x} L \geq 0$ for every component X of C. Then $H^{1}(C, L)=0$.

Proof.

Induction on the number n of components of C. The case $n=1$ is trivial. If $n>1$, there is a component X containing only one node p. Let Y be the closure of $C \backslash X$.

A vanishing theorem

Let C be prestable curve; the dual graph Γ_{C} has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_{C} is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\operatorname{deg}_{X} L \geq 0$ for every component X of C. Then $H^{1}(C, L)=0$.

Proof.

Induction on the number n of components of C. The case $n=1$ is trivial. If $n>1$, there is a component X containing only one node p. Let Y be the closure of $C \backslash X$.
Tensor by L the exact sequence

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{O}_{X} \oplus \mathcal{O}_{Y} \rightarrow \mathcal{O}_{p} \rightarrow 0
$$

and take cohomology.

Smoothness of $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$

Theorem
For any n, N and d the stack $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$ is smooth of dimension $(N+1) d+N+n-3$.

Smoothness of $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$

Theorem
For any n, N and d the stack $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$ is smooth of dimension $(N+1) d+N+n-3$.
Smoothness Since $\mathfrak{M}_{0, n}$ is smooth, it is enough to show that the $\operatorname{map} F: \bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right) \rightarrow \mathfrak{M}_{0, n}$ is smooth. The obstruction space at a point $p \in \bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$ corresponding to a stable map $\left(C, x_{i}, f\right)$ is $H^{1}\left(C, f^{*} T_{\mathbb{P}^{N}}\right)$. Pullback the Euler sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \bigoplus_{j=0}^{N} \mathcal{O}_{\mathbb{P}^{N}}(1) \rightarrow T_{\mathbb{P}^{N}} \rightarrow 0
$$

via f, take cohomology, and note that $f^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ has non-negative degree on every component of X.

Smoothness of $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$

Theorem

For any n, N and d the stack $\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$ is smooth of dimension $(N+1) d+N+n-3$.
Smoothness Since $\mathfrak{M}_{0, n}$ is smooth, it is enough to show that the $\operatorname{map} F: \bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right) \rightarrow \mathfrak{M}_{0, n}$ is smooth. The obstruction space at a point $p \in \bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$ corresponding to a stable map $\left(C, x_{i}, f\right)$ is $H^{1}\left(C, f^{*} T_{\mathbb{P}^{N}}\right)$. Pullback the Euler sequence

$$
0 \rightarrow \mathcal{O}_{\mathbb{P}^{N}} \rightarrow \bigoplus_{j=0}^{N} \mathcal{O}_{\mathbb{P}^{N}}(1) \rightarrow T_{\mathbb{P}^{N}} \rightarrow 0
$$

via f, take cohomology, and note that $f^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)$ has non-negative degree on every component of X.
Dimension The relative tangent space $T_{p} F$ has dimension

$$
h^{0}\left(C, f^{*} T_{\mathbb{P}^{N}}\right)=\chi\left(C, f^{*} T_{\mathbb{P}^{N}}\right)=(N+1) d+N
$$

The fact that $\mathfrak{M}_{0, n}$ has dimension $n-3$ completes the proof.

Expected dimension -1

Let $F: X \rightarrow Y$ be a morphism of schemes, $x \in X, y:=f(x)$. Let $n:=\operatorname{dim} T_{x} F$, and assume we are given an obstruction space $T_{x}^{2} F$ of dimension r.

Expected dimension -1

Let $F: X \rightarrow Y$ be a morphism of schemes, $x \in X, y:=f(x)$. Let $n:=\operatorname{dim} T_{x} F$, and assume we are given an obstruction space $T_{x}^{2} F$ of dimension r.
Lemma Let Z be an irreducible component of X_{y} containing x. Then

$$
n-r \leq \operatorname{dim} Z \leq n
$$

Expected dimension -1

Let $F: X \rightarrow Y$ be a morphism of schemes, $x \in X, y:=f(x)$. Let $n:=\operatorname{dim} T_{x} F$, and assume we are given an obstruction space $T_{x}^{2} F$ of dimension r.
Lemma Let Z be an irreducible component of X_{y} containing x. Then

$$
n-r \leq \operatorname{dim} Z \leq n
$$

Proof We can assume that $Y=y=\operatorname{Spec} \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality.

Expected dimension -1

Let $F: X \rightarrow Y$ be a morphism of schemes, $x \in X, y:=f(x)$. Let $n:=\operatorname{dim} T_{x} F$, and assume we are given an obstruction space $T_{x}^{2} F$ of dimension r.
Lemma Let Z be an irreducible component of X_{y} containing x. Then

$$
n-r \leq \operatorname{dim} Z \leq n
$$

Proof We can assume that $Y=y=\operatorname{Spec} \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality.
The statement is unchanged if we replace X by any affine open which contains x. Hence we can assume that $X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J$ and $J=\left(f_{1}, \ldots, f_{r}\right)$ where $r=\operatorname{dim} J / \mathfrak{m}_{p} J$.

Expected dimension -1

Let $F: X \rightarrow Y$ be a morphism of schemes, $x \in X, y:=f(x)$. Let $n:=\operatorname{dim} T_{x} F$, and assume we are given an obstruction space $T_{x}^{2} F$ of dimension r.
Lemma Let Z be an irreducible component of X_{y} containing x. Then

$$
n-r \leq \operatorname{dim} Z \leq n
$$

Proof We can assume that $Y=y=\operatorname{Spec} \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality.
The statement is unchanged if we replace X by any affine open which contains x. Hence we can assume that
$X=\operatorname{Spec} \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J$ and $J=\left(f_{1}, \ldots, f_{r}\right)$ where
$r=\operatorname{dim} J / \mathfrak{m}_{p} J$.
The expected dimension is $n-r$ and the result follows by induction on r and Lüroth's theorem.

Expected dimension -2

Definition

Let $F: X \rightarrow Y$ be a morphism of schemes. For $x \in X$ let $T_{x}^{1} F:=T_{x} F$ the relative tangent space, and assume that at every point of $x \in X$ we are given a finite dimensional obstruction space $T_{X}^{2} F$, such that

$$
d(x):=\operatorname{dim} T_{x}^{1} X-\operatorname{dim} T_{x}^{2} X \text { is a constant } d
$$

We then say that F has relative expected dimension d. Note that $d \in \mathbb{Z}$ may be negative.

Expected dimension -3

Examples

Expected dimension -3

Examples

- Let $F: X \rightarrow Y$ be smooth of relative dimension d. Choosing $T_{x}^{2} F=0$ makes F into a morphism of relative expected dimension d.

Expected dimension -3

Examples

- Let $F: X \rightarrow Y$ be smooth of relative dimension d. Choosing $T_{x}^{2} F=0$ makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose $T_{x}^{2} F=E(x)$ for every x in X. Then F has relative expected dimension $d-r$.

Expected dimension -3

Examples

- Let $F: X \rightarrow Y$ be smooth of relative dimension d. Choosing $T_{x}^{2} F=0$ makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose $T_{x}^{2} F=E(x)$ for every x in X. Then F has relative expected dimension $d-r$.
- Assume that f factors as $X \xrightarrow{i} M \xrightarrow{p} Y$ with i closed embedding and p smooth of relative dimension n. Let \mathcal{E} be a rank r locally free sheaf on X and $\alpha: \mathcal{E} \rightarrow i^{*} \mathcal{I}_{X / M}$ a surjection. Then choosing $T_{x}^{2} X=\operatorname{coker}\left(\alpha(x)^{\vee}\right)$ gives F a relative expected dimension of $n-r$.

Expected dimension -3

Examples

- Let $F: X \rightarrow Y$ be smooth of relative dimension d. Choosing $T_{x}^{2} F=0$ makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose $T_{x}^{2} F=E(x)$ for every x in X. Then F has relative expected dimension $d-r$.
- Assume that f factors as $X \xrightarrow{i} M \xrightarrow{p} Y$ with i closed embedding and p smooth of relative dimension n. Let \mathcal{E} be a rank r locally free sheaf on X and $\alpha: \mathcal{E} \rightarrow i^{*} \mathcal{I}_{X / M}$ a surjection. Then choosing $T_{x}^{2} X=\operatorname{coker}\left(\alpha(x)^{\vee}\right)$ gives F a relative expected dimension of $n-r$.
- In particular this applies if f is Ici of relative dimension d, i.e., has a factorization as above such that i is a regular embedding of codimension r; then $i^{*} \mathcal{I}_{X / M}$ is locally free of rank r and we can choose α to be the identity.

Expected dimension -4

Remark Let $f: X \rightarrow Y$ be a morphism of nonsingular varieties. Then it is Ici with factorisation $X \rightarrow X \times Y \rightarrow Y$, and thus has relative dimension $\operatorname{dim} X-\operatorname{dim} Y$.

Expected dimension -4

Remark Let $f: X \rightarrow Y$ be a morphism of nonsingular varieties. Then it is Ici with factorisation $X \rightarrow X \times Y \rightarrow Y$, and thus has relative dimension $\operatorname{dim} X-\operatorname{dim} Y$.
Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_{*}(Y) \rightarrow A_{*}(X)$ of degree d, where d is the expected dimension.

Expected dimension -4

Remark Let $f: X \rightarrow Y$ be a morphism of nonsingular varieties. Then it is Ici with factorisation $X \rightarrow X \times Y \rightarrow Y$, and thus has relative dimension $\operatorname{dim} X-\operatorname{dim} Y$.
Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_{*}(Y) \rightarrow A_{*}(X)$ of degree d, where d is the expected dimension.
All of the above extends to strongly representable morphisms $F: X \rightarrow Y$ of algebraic stacks, i.e. those such that for any morphism $S \rightarrow Y$ with S a scheme, the fiber product $X \times{ }_{S} Y$ is also a scheme.

Expected dimension -4

Remark Let $f: X \rightarrow Y$ be a morphism of nonsingular varieties. Then it is Ici with factorisation $X \rightarrow X \times Y \rightarrow Y$, and thus has relative dimension $\operatorname{dim} X-\operatorname{dim} Y$.
Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_{*}(Y) \rightarrow A_{*}(X)$ of degree d, where d is the expected dimension.
All of the above extends to strongly representable morphisms $F: X \rightarrow Y$ of algebraic stacks, i.e. those such that for any morphism $S \rightarrow Y$ with S a scheme, the fiber product $X \times{ }_{S} Y$ is also a scheme.
It also extends to morphisms of DM type, i.e. those for which S scheme implies $X \times_{S} Y$ is a DM algebraic stack.

GW expected dimension and virtual pullback
Let $F: \bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful morphism.

GW expected dimension and virtual pullback

Let $F: \bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful morphism.
Lemma
The GW obstruction spaces makes F a morphism of relative expected dimension

$$
\bar{d}=\chi\left(C, f^{*} T_{V}\right)=\operatorname{dim} V(1-g)+d \cdot c_{1}\left(T_{V}\right)
$$

GW expected dimension and virtual pullback

Let $F: \bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful morphism.
Lemma
The GW obstruction spaces makes F a morphism of relative expected dimension

$$
\bar{d}=\chi\left(C, f^{*} T_{V}\right)=\operatorname{dim} V(1-g)+d \cdot c_{1}\left(T_{V}\right) .
$$

Proof Follows immediately from Riemann-Roch on the curve C.

GW expected dimension and virtual pullback

Let $F: \bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful morphism.
Lemma
The GW obstruction spaces makes F a morphism of relative expected dimension

$$
\bar{d}=\chi\left(C, f^{*} T_{V}\right)=\operatorname{dim} V(1-g)+d \cdot c_{1}\left(T_{V}\right) .
$$

Proof Follows immediately from Riemann-Roch on the curve C.
Goal Find a natural pullback morphism

$$
F_{G W}^{*}: A_{*}\left(\mathfrak{M}_{g, n}\right) \rightarrow A_{*}\left(\bar{M}_{g, n}(V, d)\right) \text { of degree } \bar{d}
$$

agreeing with Ici pullback when F is Ici of relative dimension \bar{d}, i.e., when the GW obstruction space is minimal at every point.

GW expected dimension and virtual pullback

Let $F: \bar{M}_{g, n}(V, d) \rightarrow \mathfrak{M}_{g, n}$ be the forgetful morphism.

Lemma

The GW obstruction spaces makes F a morphism of relative expected dimension

$$
\bar{d}=\chi\left(C, f^{*} T_{V}\right)=\operatorname{dim} V(1-g)+d \cdot c_{1}\left(T_{V}\right) .
$$

Proof Follows immediately from Riemann-Roch on the curve C.
Goal Find a natural pullback morphism

$$
F_{G W}^{*}: A_{*}\left(\mathfrak{M}_{g, n}\right) \rightarrow A_{*}\left(\bar{M}_{g, n}(V, d)\right) \text { of degree } \bar{d}
$$

agreeing with Ici pullback when F is Ici of relative dimension \bar{d}, i.e., when the GW obstruction space is minimal at every point.

This implies we can define the virtual fundamental class

$$
\left[\bar{M}_{g, n}(V, d)\right]^{\text {vir }}:=F_{G W}^{*}\left[\mathfrak{M}_{g, n}\right] \in A_{\bar{d}+3 g-3+n}\left(\bar{M}_{g, n}(V, d)\right),
$$

use it to define GW invariants and prove their properties.

The genus zero case -1

Fix $V \subset \mathbb{P}^{N}, n, d \geq 0$. as usual and let $g=0$. Let
$X=\bar{M}_{0, n}(V, d)$ and $Y=\mathfrak{M}_{0, n}$. Let $M:=\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$; denote by $i: X \rightarrow M$ the natural inclusion and by $f: X \rightarrow Y$ and $p: M \rightarrow Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.

The genus zero case -1

Fix $V \subset \mathbb{P}^{N}, n, d \geq 0$. as usual and let $g=0$. Let
$X=\bar{M}_{0, n}(V, d)$ and $Y=\mathfrak{M}_{0, n}$. Let $M:=\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$; denote by
$i: X \rightarrow M$ the natural inclusion and by $f: X \rightarrow Y$ and
$p: M \rightarrow Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.
Exercise The morphism i is a closed embedding. Hint: the same is true for $\bar{M}_{g, n}(V, d) \rightarrow \bar{M}_{g, n}(W, d)$ for every closed embedding $V \rightarrow W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

The genus zero case -1

Fix $V \subset \mathbb{P}^{N}, n, d \geq 0$. as usual and let $g=0$. Let
$X=\bar{M}_{0, n}(V, d)$ and $Y=\mathfrak{M}_{0, n}$. Let $M:=\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$; denote by
$i: X \rightarrow M$ the natural inclusion and by $f: X \rightarrow Y$ and
$p: M \rightarrow Y$ the forgetful morphisms. Recall that f and p are quasi
projective and p is smooth.
Exercise The morphism i is a closed embedding. Hint: the same is true for $\bar{M}_{g, n}(V, d) \rightarrow \bar{M}_{g, n}(W, d)$ for every closed embedding $V \rightarrow W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

Lemma

Let $I:=i^{*} \mathcal{I}_{X / M}$. There is a locally free sheaf \mathcal{E} on X and a surjection $\mathcal{E} \rightarrow i^{*} I$ inducing the GW obstruction space at every point.

The genus zero case -1

Fix $V \subset \mathbb{P}^{N}, n, d \geq 0$. as usual and let $g=0$. Let
$X=\bar{M}_{0, n}(V, d)$ and $Y=\mathfrak{M}_{0, n}$. Let $M:=\bar{M}_{0, n}\left(\mathbb{P}^{N}, d\right)$; denote by
$i: X \rightarrow M$ the natural inclusion and by $f: X \rightarrow Y$ and
$p: M \rightarrow Y$ the forgetful morphisms. Recall that f and p are quasi
projective and p is smooth.
Exercise The morphism i is a closed embedding. Hint: the same is true for $\bar{M}_{g, n}(V, d) \rightarrow \bar{M}_{g, n}(W, d)$ for every closed embedding $V \rightarrow W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

Lemma

Let $I:=i^{*} \mathcal{I}_{X / M}$. There is a locally free sheaf \mathcal{E} on X and a surjection $\mathcal{E} \rightarrow i^{*} I$ inducing the GW obstruction space at every point.

Corollary
We can define genus zero Gromov-Witten invariants.

The genus zero case -2

Sketch of the proof. Let $p_{0} \in \bar{M}_{g, n}(V, d)$. Consider the diagram with cartesian square

and the exact sequence

$$
\left.0 \rightarrow T_{V} \rightarrow T_{\mathbb{P}^{N}}\right|_{V} \rightarrow N \rightarrow 0
$$

The sheaf \mathcal{E} is defined to be the dual of $\pi_{*} f^{*} N$.

