Defining Gromov Witten invariants

Barbara Fantechi

Chennai Mathematical Institute February-March 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline of this lecture

Review of last lecture

Cotangent complex

GW obstruction space

Smoothness of $\overline{M}_{0,n}(\mathbb{P}^N, d)$

Expected dimension

GW expected dimension and virtual pullback

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.
- We showed that

$$f:(\mathsf{Art}) o(\mathsf{sets}) ext{ functor} \Rightarrow f = \coprod_{x\in f(\mathbb{C})} f_x.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.
- We showed that

$$f: (\operatorname{Art}) \to (\operatorname{sets}) \text{ functor} \Rightarrow f = \prod_{x \in f(\mathbb{C})} f_x.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

For F : f → g functors, x ∈ f(C), we defined tangent and obstruction spaces to F at x.

- We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.
- We showed that

$$f: (\operatorname{Art}) \to (\operatorname{sets}) \text{ functor} \Rightarrow f = \prod_{x \in f(\mathbb{C})} f_x.$$

- For F : f → g functors, x ∈ f(C), we defined tangent and obstruction spaces to F at x.
- If $F : h_X \to h_Y$ is induced by a morphism of schemes $\phi : X \to Y$ then $T_f(x) = Hom(x^* \tilde{L}_{\phi}, \mathbb{C})$ and and $Ext^1(x^* \tilde{L}_{\phi}, \mathbb{C})$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.

- We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.
- We showed that

$$f: (\operatorname{Art}) \to (\operatorname{sets}) \text{ functor} \Rightarrow f = \prod_{x \in f(\mathbb{C})} f_x.$$

- For F : f → g functors, x ∈ f(C), we defined tangent and obstruction spaces to F at x.
- If $F : h_X \to h_Y$ is induced by a morphism of schemes $\phi : X \to Y$ then $T_f(x) = Hom(x^* \tilde{L}_{\phi}, \mathbb{C})$ and and $Ext^1(x^* \tilde{L}_{\phi}, \mathbb{C})$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.
- If f : X → Y is smooth at x ∈ X then it is unobstructed, i.e., zero is an obstruction space. The converse is also true (formal smoothness).

- We defined (Art):=category of local Artinian f.g. C-algebras; dual to fat points.
- We showed that

$$f: (\operatorname{Art}) \to (\operatorname{sets}) \text{ functor} \Rightarrow f = \prod_{x \in f(\mathbb{C})} f_x.$$

- For F : f → g functors, x ∈ f(C), we defined tangent and obstruction spaces to F at x.
- If $F : h_X \to h_Y$ is induced by a morphism of schemes $\phi : X \to Y$ then $T_f(x) = Hom(x^* \tilde{L}_{\phi}, \mathbb{C})$ and and $Ext^1(x^* \tilde{L}_{\phi}, \mathbb{C})$ is a minimal obstruction space. We will recall what \tilde{L}_{ϕ} is in the next slide.
- If f : X → Y is smooth at x ∈ X then it is unobstructed, i.e., zero is an obstruction space. The converse is also true (formal smoothness).
- ▶ If $f : X \to Y$ is étale at x then $h_{X,x}(A) \to h_{Y,y}(A)$ is a bijection for every A in (Art). The converse is also true.

Theorem

For a morphism of schemes $\phi : X \to Y$ which factorizes as $X \xrightarrow{i} M \xrightarrow{p} Y$, with i a closed embedding and p smooth we can set

$${ ilde L}_\phi:=i^*J o i^*\Omega_p$$

and use it to compute T^1 , T^2 .

Proof.

- Statement is Zariski (and indeed étale) local in both X and Y. We may assume φ is affine; then it is true for any factorisation with M = A^N × Y.
- ► Given two factorizations φ = p₁ ∘ i₁ = p₂ ∘ i₂, we can compare both to φ = p ∘ i where M := M₁ ×_Y M₂. We get a commutative diagram:

We get a commutative diagram:

with q a smooth morphism. Let $I := \mathcal{I}_{X/M}$ and $I_1 := \mathcal{I}_{X/M_1}$.

We get a commutative diagram:

with q a smooth morphism. Let $I := \mathcal{I}_{X/M}$ and $I_1 := \mathcal{I}_{X/M_1}$. [By Fulton], Intersection Theory, Chap. 4 the diagram

commutes and has exact, hence (since Ω_q is locally free) locally split rows.

We get a commutative diagram:

with q a smooth morphism. Let $I := \mathcal{I}_{X/M}$ and $I_1 := \mathcal{I}_{X/M_1}$. [By Fulton], Intersection Theory, Chap. 4 the diagram

$$0 \longrightarrow i_1^* I_1 \longrightarrow i^* I \longrightarrow \Omega_q \longrightarrow 0$$
$$\psi_1 \bigg| \qquad \psi_1 \bigg| \qquad \psi_1 \bigg| \qquad \psi_1 = 0$$
$$0 \longrightarrow i_1^* \Omega_{\rho_1} \longrightarrow i^* \Omega_{\rho} \longrightarrow \Omega_q \longrightarrow 0.$$

commutes and has exact, hence (since Ω_q is locally free) locally split rows. Hence it induces isomorphisms ker $\psi_1 \rightarrow \text{ker } \psi$ and $coker \psi_1 \rightarrow coker \psi$, and the same is true for its arbitrary pullbacks and their duals.

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \to Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D_{coh}^{-1,0}(X)$.

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \to Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D_{coh}^{-1,0}(X)$. In fact, one can more generally defined the cotangent complex (Illusive,1968) $L_{\phi} \in D_{oh}^{\leq 0}(X)$ for an arbitrary morphism of DM type of algebraic stacks, in such a way that $\tilde{L}_{\phi} = \tau_{\geq -1} L_{\phi}$.

If you know the definition of derived category, we just proved that to every morphism of schemes $\phi: X \to Y$ admitting a factorisation as a closed embeding followed by a smooth map (e.g., any morphism of quasiprojective schemes) we can associate a well defined object $\tilde{L}_{\phi} \in D^{-1,0}_{cob}(X)$. In fact, one can more generally defined the cotangent complex (Illusive, 1968) $L_{\phi} \in D_{ab}^{\leq 0}(X)$ for an arbitrary morphism of DM type of algebraic stacks, in such a way that $\tilde{L}_{\phi} = \tau_{>-1}L_{\phi}$. The cotangent complex has a technically demanding definition and good functorial properties; it should be seen as the answer to the question "Given morphisms of schemes $h = g \circ f$, how do we extend the short exact sequence

$$f^*\Omega_g \to \Omega_h \to \Omega_f \to 0$$

to a long exact sequence?"

Let $p: C \to X$ and $q: V \to X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_0 \in X$, and C_0 , V_0 the fibres of p and q at x_0 .

Let $p: C \to X$ and $q: V \to X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_0 \in X$, and C_0 , V_0 the fibres of p and q at x_0 .

Let $g := h_{X,x_0} : (\operatorname{Art}) \to (\operatorname{sets})$, i.e.

$$g(A) := \{a : Spec A \rightarrow X \mid Im(a)_{red} = x_0\}.$$

To an $a \in g(A)$ we can associate $p_A : C_A \rightarrow Spec A$ and $q_A : V_A \rightarrow Spec A$.

Let $p: C \to X$ and $q: V \to X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_0 \in X$, and C_0 , V_0 the fibres of p and q at x_0 .

Let $g := h_{X,x_0} : (\operatorname{Art}) \to (\operatorname{sets})$, i.e.

$$g(A) := \{a: \textit{Spec } A \to X \mid \textit{Im}(a)_{\mathsf{red}} = x_0\}.$$

To an $a \in g(A)$ we can associate $p_A : C_A \to Spec A$ and $q_A : V_A \to Spec A$. Define $f : (Art) \to (sets)$ by

$$f(A) = \{(a, u) \mid a \in g(A), u : C_A \rightarrow V_A, p_A = q_A \circ u\}.$$

Let $p: C \to X$ and $q: V \to X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_0 \in X$, and C_0 , V_0 the fibres of p and q at x_0 .

Let $g := h_{X,x_0} : (\operatorname{Art}) \to (\operatorname{sets})$, i.e.

$$g(A) := \{a : Spec A \rightarrow X \mid Im(a)_{red} = x_0\}.$$

To an $a \in g(A)$ we can associate $p_A : C_A \to Spec A$ and $q_A : V_A \to Spec A$. Define $f : (Art) \to (sets)$ by

$$f(A) = \{(a, u) \mid a \in g(A), u : C_A \rightarrow V_A, p_A = q_A \circ u\}.$$

Let $u_0 : C_0 \to V_0$ be a point in $h(\mathbb{C})$. Let $F : f \to g$ be the forgetful map.

Let $p: C \to X$ and $q: V \to X$ be quasiprojective morphisms, with p flat and q smooth. Let $x_0 \in X$, and C_0 , V_0 the fibres of p and q at x_0 .

Let $g := h_{X,x_0} : (\operatorname{Art}) \to (\operatorname{sets})$, i.e.

$$g(A) := \{a: \textit{Spec } A \to X \mid \textit{Im}(a)_{\mathsf{red}} = x_0\}.$$

To an $a \in g(A)$ we can associate $p_A : C_A \rightarrow Spec A$ and $q_A : V_A \rightarrow Spec A$. Define $f : (Art) \rightarrow (sets)$ by

$$f(A) = \{(a, u) \mid a \in g(A), u : C_A \rightarrow V_A, p_A = q_A \circ u\}.$$

Let $u_0 : C_0 \to V_0$ be a point in $h(\mathbb{C})$. Let $F : f \to g$ be the forgetful map.

Lemma

 $H^0(C_0, u_0^* T_{V_0})$ and $H^1(C_0, u_0^* T_{V_0})$ are tangent and obstruction space for F at u_0 .

Proof.

Given a semismall extension $A \to B$ with kernel I, an element $a \in g(A)$ and a morphism $u_B : C_B \to V_B$, we need to prove that there is a functorial obstruction in $T^2 \otimes I$ to the existence of $u_A : C_A \to V_A$ such that $u_A|_{C_B} = u_B$. Moreover the set of such u_A (if non-empty) is a principal homogeneous space under T^1 . We outline the main steps of the proof.

Proof.

Given a semismall extension $A \to B$ with kernel *I*, an element $a \in g(A)$ and a morphism $u_B : C_B \to V_B$, we need to prove that there is a functorial obstruction in $T^2 \otimes I$ to the existence of $u_A : C_A \to V_A$ such that $u_A|_{C_B} = u_B$. Moreover the set of such u_A (if non-empty) is a principal homogeneous space under T^1 . We outline the main steps of the proof. **Case** p affine, $V = \mathbb{A}^n \times X$. Elementary.

Proof.

Given a semismall extension $A \to B$ with kernel I, an element $a \in g(A)$ and a morphism $u_B : C_B \to V_B$, we need to prove that there is a functorial obstruction in $T^2 \otimes I$ to the existence of $u_A : C_A \to V_A$ such that $u_A|_{C_B} = u_B$. Moreover the set of such u_A (if non-empty) is a principal homogeneous space under T^1 . We outline the main steps of the proof. **Case** p **affine**, $V = \mathbb{A}^n \times X$. Elementary. **Case** p, q **affine**. Choose a closed embedding $V_A \to \mathbb{A}^n_A$. Translate into algebras and copy last lecture's proof.

Proof.

Given a semismall extension $A \to B$ with kernel *I*, an element $a \in g(A)$ and a morphism $u_B : C_B \to V_B$, we need to prove that there is a functorial obstruction in $T^2 \otimes I$ to the existence of $u_A : C_A \to V_A$ such that $u_A|_{C_B} = u_B$. Moreover the set of such u_A (if non-empty) is a principal homogeneous space under T^1 . We outline the main steps of the proof. **Case** p **affine**, $V = \mathbb{A}^n \times X$. Elementary. **Case** p, q **affine**. Choose a closed embedding $V_A \to \mathbb{A}^n_A$. Translate

into algebras and copy last lecture's proof.

General case. Note that C_A and C_0 have the same underlying topological space, same for V_A and V_0 .

Proof.

Given a semismall extension $A \to B$ with kernel I, an element $a \in g(A)$ and a morphism $u_B : C_B \to V_B$, we need to prove that there is a functorial obstruction in $T^2 \otimes I$ to the existence of $u_A : C_A \to V_A$ such that $u_A|_{C_B} = u_B$. Moreover the set of such u_A (if non-empty) is a principal homogeneous space under T^1 . We outline the main steps of the proof.

Case *p* **affine,** $V = \mathbb{A}^n \times X$. Elementary.

Case p, q affine. Choose a closed embedding $V_A \to \mathbb{A}_A^n$. Translate into algebras and copy last lecture's proof.

General case. Note that C_A and C_0 have the same underlying topological space, same for V_A and V_0 .

Cover C_A and V_A by open affines $C_{A,i}$ and $V_{A,i}$ such that $u_0(C_{0,i}) \subset V_{0,i}$. Use previous case and Cech cohomology.

Theorem

Let $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful functor. Let $p_0 \in \mathfrak{M}_{g,n}(V, d)$ be given by a prestable map (C_0, x_i^0, f_0) . Then $H^0(C_0, f_0^* T_V)$ and $H^1(C_0, f_0^* T_V)$ are tangent and obstruction spaces for F at p_0 .

Proof.

Theorem

Let $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful functor. Let $p_0 \in \mathfrak{M}_{g,n}(V, d)$ be given by a prestable map (C_0, x_i^0, f_0) . Then $H^0(C_0, f_0^* T_V)$ and $H^1(C_0, f_0^* T_V)$ are tangent and obstruction spaces for F at p_0 .

Proof.

Let $q_0 := F(p_0) \in \mathfrak{M}_{g,n}$ (i.e., the point defined by the curve (C_0, x_i^0)). Take a smooth local chart $\rho : X \to \mathfrak{M}_{g,n}$ with q_0 in the image. Let $(C, \pi, x_i,)$ be the family of stable curves on X defined by $X \to \mathfrak{M}_{g,n}$. Since the fiber product of X and $\mathfrak{M}_{g,n}(V, d)$ over $\mathfrak{M}_{g,n}$ is $Mor_X(C, V \times X)$ the result follows from the previous theorem.

Theorem

Let $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful functor. Let $p_0 \in \mathfrak{M}_{g,n}(V, d)$ be given by a prestable map (C_0, x_i^0, f_0) . Then $H^0(C_0, f_0^* T_V)$ and $H^1(C_0, f_0^* T_V)$ are tangent and obstruction spaces for F at p_0 .

Proof.

Let $q_0 := F(p_0) \in \mathfrak{M}_{g,n}$ (i.e., the point defined by the curve (C_0, x_i^0)). Take a smooth local chart $\rho : X \to \mathfrak{M}_{g,n}$ with q_0 in the image. Let $(C, \pi, x_i,)$ be the family of stable curves on X defined by $X \to \mathfrak{M}_{g,n}$. Since the fiber product of X and $\mathfrak{M}_{g,n}(V, d)$ over $\mathfrak{M}_{g,n}$ is $Mor_X(C, V \times X)$ the result follows from the previous theorem.

Corollary

The same holds for $\overline{M}_{g,n}(V,d) \to \mathfrak{M}_{g,n}$.

Theorem

Let $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful functor. Let $p_0 \in \mathfrak{M}_{g,n}(V, d)$ be given by a prestable map (C_0, x_i^0, f_0) . Then $H^0(C_0, f_0^* T_V)$ and $H^1(C_0, f_0^* T_V)$ are tangent and obstruction spaces for F at p_0 .

Proof.

Let $q_0 := F(p_0) \in \mathfrak{M}_{g,n}$ (i.e., the point defined by the curve (C_0, x_i^0)). Take a smooth local chart $\rho : X \to \mathfrak{M}_{g,n}$ with q_0 in the image. Let $(C, \pi, x_i,)$ be the family of stable curves on X defined by $X \to \mathfrak{M}_{g,n}$. Since the fiber product of X and $\mathfrak{M}_{g,n}(V, d)$ over $\mathfrak{M}_{g,n}$ is $Mor_X(C, V \times X)$ the result follows from the previous theorem.

Corollary

The same holds for $\overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$. We call $H^1(C_0, f_0^* T_V)$ the Gromov-Witten (GW) obstruction space for F at p_0 .

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_C is a tree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_C is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\deg_X L \ge 0$ for every component X of C. Then $H^1(C, L) = 0$.

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_C is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\deg_X L \ge 0$ for every component X of C. Then $H^1(C, L) = 0$.

Proof.

Induction on the number n of components of C. The case n = 1 is trivial.

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_C is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\deg_X L \ge 0$ for every component X of C. Then $H^1(C, L) = 0$.

Proof.

Induction on the number *n* of components of *C*. The case n = 1 is trivial. If n > 1, there is a component *X* containing only one node *p*. Let *Y* be the closure of $C \setminus X$.

Let *C* be prestable curve; the *dual graph* Γ_C has one vertex for every component, and one edge for every node.

Lemma

A prestable curve C has genus zero iff every component is smooth and rational curve and the dual graph Γ_C is a tree.

Theorem

Let C be a prestable curve of genus zero, L a line bundle on C such that $\deg_X L \ge 0$ for every component X of C. Then $H^1(C, L) = 0$.

Proof.

Induction on the number *n* of components of *C*. The case n = 1 is trivial. If n > 1, there is a component *X* containing only one node *p*. Let *Y* be the closure of $C \setminus X$. Tensor by *L* the exact sequence

$$0 \to \mathcal{O}_C \to \mathcal{O}_X \oplus \mathcal{O}_Y \to \mathcal{O}_p \to 0$$

and take cohomology.

Smoothness of $\overline{M}_{0,n}(\mathbb{P}^N, d)$

Theorem

For any n, N and d the stack $\overline{M}_{0,n}(\mathbb{P}^N, d)$ is smooth of dimension (N+1)d + N + n - 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Smoothness of $\overline{M}_{0,n}(\mathbb{P}^N, d)$

Theorem

For any n, N and d the stack $\overline{M}_{0,n}(\mathbb{P}^N, d)$ is smooth of dimension (N+1)d + N + n - 3.

Smoothness Since $\mathfrak{M}_{0,n}$ is smooth, it is enough to show that the map $F : \overline{M}_{0,n}(\mathbb{P}^N, d) \to \mathfrak{M}_{0,n}$ is smooth. The obstruction space at a point $p \in \overline{M}_{0,n}(\mathbb{P}^N, d)$ corresponding to a stable map (C, x_i, f) is $H^1(C, f^*T_{\mathbb{P}^N})$. Pullback the Euler sequence

$$0 o \mathcal{O}_{\mathbb{P}^N} o igoplus_{j=0}^N \mathcal{O}_{\mathbb{P}^N}(1) o \mathcal{T}_{\mathbb{P}^N} o 0$$

via f, take cohomology, and note that $f^*(\mathcal{O}_{\mathbb{P}^N}(1))$ has non-negative degree on every component of X.

Smoothness of $\overline{M}_{0,n}(\mathbb{P}^N, d)$

Theorem

For any n, N and d the stack $\overline{M}_{0,n}(\mathbb{P}^N, d)$ is smooth of dimension (N+1)d + N + n - 3.

Smoothness Since $\mathfrak{M}_{0,n}$ is smooth, it is enough to show that the map $F : \overline{M}_{0,n}(\mathbb{P}^N, d) \to \mathfrak{M}_{0,n}$ is smooth. The obstruction space at a point $p \in \overline{M}_{0,n}(\mathbb{P}^N, d)$ corresponding to a stable map (C, x_i, f) is $H^1(C, f^*T_{\mathbb{P}^N})$. Pullback the Euler sequence

$$0 o \mathcal{O}_{\mathbb{P}^N} o igoplus_{j=0}^N \mathcal{O}_{\mathbb{P}^N}(1) o \mathcal{T}_{\mathbb{P}^N} o 0$$

via f, take cohomology, and note that $f^*(\mathcal{O}_{\mathbb{P}^N}(1))$ has non-negative degree on every component of X. **Dimension** The relative tangent space T_pF has dimension

$$h^{0}(C, f^{*}T_{\mathbb{P}^{N}}) = \chi(C, f^{*}T_{\mathbb{P}^{N}}) = (N+1)d + N.$$

ъ

The fact that $\mathfrak{M}_{0,n}$ has dimension n-3 completes the proof.

Let $F : X \to Y$ be a morphism of schemes, $x \in X$, y := f(x). Let $n := \dim T_x F$, and assume we are given an obstruction space $T_x^2 F$ of dimension r.

Let $F: X \to Y$ be a morphism of schemes, $x \in X$, y := f(x). Let $n := \dim T_x F$, and assume we are given an obstruction space $T_x^2 F$ of dimension r.

Lemma Let Z be an irreducible component of X_y containing x. Then

$$n-r \leq \dim Z \leq n$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $F: X \to Y$ be a morphism of schemes, $x \in X$, y := f(x). Let $n := \dim T_x F$, and assume we are given an obstruction space $T_x^2 F$ of dimension r.

Lemma Let Z be an irreducible component of X_y containing x. Then

$$n-r \leq \dim Z \leq n$$
.

Proof We can assume that $Y = y = Spec \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality.

Let $F: X \to Y$ be a morphism of schemes, $x \in X$, y := f(x). Let $n := \dim T_x F$, and assume we are given an obstruction space $T_x^2 F$ of dimension r.

Lemma Let Z be an irreducible component of X_y containing x. Then

$$n-r \leq \dim Z \leq n$$
.

Proof We can assume that $Y = y = Spec \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality. The statement is unchanged if we replace X by any affine open which contains x. Hence we can assume that $X = Spec \mathbb{C}[x_1, \ldots, x_n]/J$ and $J = (f_1, \ldots, f_r)$ where $r = \dim J/\mathfrak{m}_n J$.

Let $F: X \to Y$ be a morphism of schemes, $x \in X$, y := f(x). Let $n := \dim T_x F$, and assume we are given an obstruction space $T_x^2 F$ of dimension r.

Lemma Let Z be an irreducible component of X_y containing x. Then

$$n-r \leq \dim Z \leq n$$
.

Proof We can assume that $Y = y = Spec \mathbb{C}$ (since obstruction theories are preserved by base change) and that X is affine. We can also assume that the obstruction theory is the minimal one, since lowering r strengthens the inequality.

The statement is unchanged if we replace X by any affine open which contains x. Hence we can assume that

$$X = \operatorname{Spec} \mathbb{C}[x_1, \dots, x_n]/J$$
 and $J = (f_1, \dots, f_r)$ where $r = \dim J/\mathfrak{m}_n J$.

The expected dimension is n - r and the result follows by induction on r and Lüroth's theorem.

Definition

Let $F: X \to Y$ be a morphism of schemes. For $x \in X$ let $T_x^1 F := T_x F$ the relative tangent space, and assume that at every point of $x \in X$ we are given a finite dimensional obstruction space $T_x^2 F$, such that

$$d(x) := \dim T_x^1 X - \dim T_x^2 X$$
 is a constant d .

We then say that F has *relative expected dimension* d. Note that $d \in \mathbb{Z}$ may be negative.

Examples

Examples

Let F : X → Y be smooth of relative dimension d. Choosing T²_xF = 0 makes F into a morphism of relative expected dimension d.

Examples

- Let F : X → Y be smooth of relative dimension d. Choosing T²_xF = 0 makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose T²_xF = E(x) for every x in X. Then F has relative expected dimension d − r.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples

- Let F : X → Y be smooth of relative dimension d. Choosing T²_xF = 0 makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose T²_xF = E(x) for every x in X. Then F has relative expected dimension d − r.
- Assume that f factors as X → M → Y with i closed embedding and p smooth of relative dimension n. Let E be a rank r locally free sheaf on X and α : E → i*I_{X/M} a surjection. Then choosing T_x²X = coker(α(x)[∨]) gives F a relative expected dimension of n − r.

Examples

- Let F : X → Y be smooth of relative dimension d. Choosing T²_xF = 0 makes F into a morphism of relative expected dimension d.
- In the same assumptions, let E be any vector bundle of rank r on X. Choose T²_xF = E(x) for every x in X. Then F has relative expected dimension d − r.
- Assume that f factors as X → M → Y with i closed embedding and p smooth of relative dimension n. Let E be a rank r locally free sheaf on X and α : E → i*I_{X/M} a surjection. Then choosing T²_xX = coker(α(x)[∨]) gives F a relative expected dimension of n − r.
- In particular this applies if f is lci of relative dimension d, i.e., has a factorization as above such that i is a regular embedding of codimension r; then i* *I*_{X/M} is locally free of rank r and we can choose α to be the identity.

Remark Let $f : X \to Y$ be a morphism of nonsingular varieties. Then it is lci with factorisation $X \to X \times Y \to Y$, and thus has relative dimension dim $X - \dim Y$.

Remark Let $f : X \to Y$ be a morphism of nonsingular varieties. Then it is lci with factorisation $X \to X \times Y \to Y$, and thus has relative dimension dim $X - \dim Y$.

Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_*(Y) \rightarrow A_*(X)$ of degree d, where d is the expected dimension.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark Let $f : X \to Y$ be a morphism of nonsingular varieties. Then it is lci with factorisation $X \to X \times Y \to Y$, and thus has relative dimension dim $X - \dim Y$.

Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_*(Y) \rightarrow A_*(X)$ of degree d, where d is the expected dimension.

All of the above extends to strongly representable morphisms $F: X \to Y$ of algebraic stacks, i.e. those such that for any morphism $S \to Y$ with S a scheme, the fiber product $X \times_S Y$ is also a scheme.

Remark Let $f : X \to Y$ be a morphism of nonsingular varieties. Then it is lci with factorisation $X \to X \times Y \to Y$, and thus has relative dimension dim $X - \dim Y$.

Remark In all examples we have so far given of morphisms having relative expected dimension, Fulton-McPherson intersection theory defines a pullback map $A_*(Y) \rightarrow A_*(X)$ of degree d, where d is the expected dimension.

All of the above extends to strongly representable morphisms $F: X \to Y$ of algebraic stacks, i.e. those such that for any morphism $S \to Y$ with S a scheme, the fiber product $X \times_S Y$ is also a scheme.

It also extends to morphisms of DM type, i.e. those for which S scheme implies $X \times_S Y$ is a DM algebraic stack.

GW expected dimension and virtual pullback Let $F : \overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful morphism.

・ロト・日本・モート モー うへぐ

Let $F : \overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful morphism.

Lemma

The GW obstruction spaces makes F a morphism of relative expected dimension

$$\bar{d} = \chi(C, f^*T_V) = \dim V(1-g) + d \cdot c_1(T_V).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $F : \overline{M}_{g,n}(V,d) \to \mathfrak{M}_{g,n}$ be the forgetful morphism.

Lemma

The GW obstruction spaces makes F a morphism of relative expected dimension

$$\bar{d} = \chi(C, f^*T_V) = \dim V(1-g) + d \cdot c_1(T_V).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof Follows immediately from Riemann-Roch on the curve C.

Let $F : \overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful morphism.

Lemma

The GW obstruction spaces makes F a morphism of relative expected dimension

$$\overline{d} = \chi(C, f^*T_V) = \dim V(1-g) + d \cdot c_1(T_V).$$

Proof Follows immediately from Riemann-Roch on the curve *C*. **Goal** Find a natural pullback morphism

$$F^*_{GW}$$
 : $A_*(\mathfrak{M}_{g,n}) o A_*(\overline{M}_{g,n}(V,d))$ of degree \overline{d}

agreeing with lci pullback when F is lci of relative dimension \overline{d} , i.e., when the GW obstruction space is minimal at every point.

Let $F : \overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ be the forgetful morphism.

Lemma

The GW obstruction spaces makes F a morphism of relative expected dimension

$$\overline{d} = \chi(C, f^*T_V) = \dim V(1-g) + d \cdot c_1(T_V).$$

Proof Follows immediately from Riemann-Roch on the curve *C*. **Goal** Find a natural pullback morphism

$$F^*_{GW}: A_*(\mathfrak{M}_{g,n}) o A_*(\overline{M}_{g,n}(V,d))$$
 of degree \overline{d}

agreeing with lci pullback when F is lci of relative dimension \overline{d} , i.e., when the GW obstruction space is minimal at every point. This implies we can define the *virtual fundamental class*

$$[\overline{M}_{g,n}(V,d)]^{\mathsf{vir}} := F^*_{GW}[\mathfrak{M}_{g,n}] \in A_{\overline{d}+3g-3+n}(\overline{M}_{g,n}(V,d)),$$

use it to define GW invariants and prove their properties.

Fix $V \subset \mathbb{P}^N$, $n, d \ge 0$. as usual and let g = 0. Let $X = \overline{M}_{0,n}(V, d)$ and $Y = \mathfrak{M}_{0,n}$. Let $M := \overline{M}_{0,n}(\mathbb{P}^N, d)$; denote by $i: X \to M$ the natural inclusion and by $f: X \to Y$ and $p: M \to Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.

Fix $V \subset \mathbb{P}^N$, $n, d \ge 0$. as usual and let g = 0. Let $X = \overline{M}_{0,n}(V, d)$ and $Y = \mathfrak{M}_{0,n}$. Let $M := \overline{M}_{0,n}(\mathbb{P}^N, d)$; denote by $i: X \to M$ the natural inclusion and by $f: X \to Y$ and $p: M \to Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.

Exercise The morphism *i* is a closed embedding. Hint: the same is true for $\overline{M}_{g,n}(V,d) \to \overline{M}_{g,n}(W,d)$ for every closed embedding $V \to W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

Fix $V \subset \mathbb{P}^N$, $n, d \ge 0$. as usual and let g = 0. Let $X = \overline{M}_{0,n}(V, d)$ and $Y = \mathfrak{M}_{0,n}$. Let $M := \overline{M}_{0,n}(\mathbb{P}^N, d)$; denote by $i: X \to M$ the natural inclusion and by $f: X \to Y$ and $p: M \to Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.

Exercise The morphism *i* is a closed embedding. Hint: the same is true for $\overline{M}_{g,n}(V, d) \to \overline{M}_{g,n}(W, d)$ for every closed embedding $V \to W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

Lemma

Let $I := i^* \mathcal{I}_{X/M}$. There is a locally free sheaf \mathcal{E} on X and a surjection $\mathcal{E} \to i^* I$ inducing the GW obstruction space at every point.

Fix $V \subset \mathbb{P}^N$, $n, d \ge 0$. as usual and let g = 0. Let $X = \overline{M}_{0,n}(V, d)$ and $Y = \mathfrak{M}_{0,n}$. Let $M := \overline{M}_{0,n}(\mathbb{P}^N, d)$; denote by $i: X \to M$ the natural inclusion and by $f: X \to Y$ and $p: M \to Y$ the forgetful morphisms. Recall that f and p are quasi projective and p is smooth.

Exercise The morphism *i* is a closed embedding. Hint: the same is true for $\overline{M}_{g,n}(V, d) \to \overline{M}_{g,n}(W, d)$ for every closed embedding $V \to W$ of projective schemes. The analogous statement for stack of prestable maps is also true.

Lemma

Let $I := i^* \mathcal{I}_{X/M}$. There is a locally free sheaf \mathcal{E} on X and a surjection $\mathcal{E} \to i^* I$ inducing the GW obstruction space at every point.

Corollary

We can define genus zero Gromov-Witten invariants.

Sketch of the proof. Let $p_0 \in \overline{M}_{g,n}(V, d)$. Consider the diagram with cartesian square

and the exact sequence

$$0 \to T_V \to T_{\mathbb{P}^N}|_V \to N \to 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The sheaf \mathcal{E} is defined to be the dual of $\pi_* f^* N$.