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Review of last lecture
I We defined (Art):=category of local Artinian f.g. C-algebras;

dual to fat points.

I We showed that

f : (Art)→ (sets) functor ⇒ f =
∐

x∈f (C)

fx .

I For F : f → g functors, x ∈ f (C), we defined tangent and
obstruction spaces to F at x .

I If F : hX → hY is induced by a morphism of schemes
φ : X → Y then Tf (x) = Hom(x∗L̃φ,C) and and
Ext1(x∗L̃φ,C) is a minimal obstruction space.
We will recall what L̃φ is in the next slide.

I If f : X → Y is smooth at x ∈ X then it is unobstructed, i.e.,
zero is an obstruction space. The converse is also true (formal
smoothness).

I If f : X → Y is étale at x then hX ,x(A)→ hY ,y (A) is a
bijection for every A in (Art). The converse is also true.
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Cotangent complex -1

Theorem
For a morphism of schemes φ : X → Y which factorizes as

X
i→ M

p→ Y , with i a closed embedding and p smooth we can set

L̃φ := i∗J → i∗Ωp

and use it to compute T 1, T 2.

Proof.

I Statement is Zariski (and indeed étale) local in both X and
Y . We may assume φ is affine; then it is true for any
factorisation with M = AN × Y .

I Given two factorizations φ = p1 ◦ i1 = p2 ◦ i2, we can compare
both to φ = p ◦ i where M := M1 ×Y M2. We get a
commutative diagram:



Cotangent complex -2
We get a commutative diagram:

X
i //

i1   

M
p //

q

��

Y

M1

p1

>>

with q a smooth morphism. Let I := IX/M and I1 := IX/M1
.

[By Fulton], Intersection Theory, Chap. 4 the diagram

0 // i1
∗I1

ψ1

��

// i∗I

ψ

��

// Ωq
// 0

0 // i1
∗Ωp1

// i∗Ωp
// Ωq

// 0.

commutes and has exact, hence (since Ωq is locally free) locally
split rows. Hence it induces isomorphisms kerψ1 → kerψ and
coker ψ1 → coker ψ, and the same is true for its arbitrary pullbacks
and their duals.
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Cotangent complex -3

If you know the definition of derived category, we just proved that
to every morphism of schemes φ : X → Y admitting a factorisation
as a closed embeding followed by a smooth map (e.g., any
morphism of quasiprojective schemes) we can associate a well
defined object L̃φ ∈ D−1,0

coh (X ).

In fact, one can more generally defined the cotangent complex
(Illusive,1968) Lφ ∈ D≤0

oh (X ) for an arbitrary morphism of DM type

of algebraic stacks, in such a way that L̃φ = τ≥−1Lφ.
The cotangent complex has a technically demanding definition and
good functorial properties; it should be seen as the answer to the
question ”Given morphisms of schemes h = g ◦ f , how do we
extend the short exact sequence

f ∗Ωg → Ωh → Ωf → 0

to a long exact sequence?”
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T 1 and T 2 for MorX (C ,V ) -1
Let p : C → X and q : V → X be quasiprojective morphisms, with
p flat and q smooth. Let x0 ∈ X , and C0, V0 the fibres of p and q
at x0.

Let g := hX ,x0 : (Art)→ (sets), i.e.

g(A) := {a : Spec A→ X | Im(a)red = x0}.

To an a ∈ g(A) we can associate pA : CA → Spec A and
qA : VA → Spec A.
Define f : (Art)→ (sets) by

f (A) = {(a, u) | a ∈ g(A), u : CA → VA, pA = qA ◦ u}.

Let u0 : C0 → V0 be a point in h(C). Let F : f → g be the
forgetful map.

Lemma
H0(C0, u

∗
0TV0) and H1(C0, u

∗
0TV0) are tangent and obstruction

space for F at u0.
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T 1 and T 2 for MorX (C ,V ) -2

Proof.
Given a semismall extension A→ B with kernel I , an element
a ∈ g(A) and a morphism uB : CB → VB , we need to prove that
there is a functorial obstruction in T 2 ⊗ I to the existence of
uA : CA → VA such that uA|CB

= uB . Moreover the set of such uA

(if non-empty) is a principal homogeneous space under T 1.
We outline the main steps of the proof.

Case p affine, V = An × X . Elementary.
Case p, q affine. Choose a closed embedding VA → An

A. Translate
into algebras and copy last lecture’s proof.
General case. Note that CA and C0 have the same underlying
topological space, same for VA and V0.
Cover CA and VA by open affines CA,i and VA,i such that
u0(C0,i ) ⊂ V0,i . Use previous case and Cech cohomology.
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GW obstruction space

Theorem
Let F : Mg ,n(V , d)→Mg ,n be the forgetful functor. Let
p0 ∈Mg ,n(V , d) be given by a prestable map (C0, x

0
i , f0). Then

H0(C0, f
∗

0 TV ) and H1(C0, f
∗

0 TV ) are tangent and obstruction
spaces for F at p0.

Proof.

Let q0 := F (p0) ∈Mg ,n (i.e., the point defined by the curve
(C0, x

0
i )). Take a smooth local chart ρ : X →Mg ,n with q0 in the

image. Let (C , π, xi , ) be the family of stable curves on X defined
by X →Mg ,n. Since the fiber product of X and Mg ,n(V , d) over
Mg ,n is MorX (C ,V × X ) the result follows from the previous
theorem.

Corollary

The same holds for Mg ,n(V , d)→Mg ,n.

We call H1(C0, f
∗

0 TV ) the Gromov-Witten (GW) obstruction space
for F at p0.
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A vanishing theorem
Let C be prestable curve; the dual graph ΓC has one vertex for
every component, and one edge for every node.

Lemma
A prestable curve C has genus zero iff every component is smooth
and rational curve and the dual graph ΓC is a tree.

Theorem
Let C be a prestable curve of genus zero, L a line bundle on C such
that degX L ≥ 0 for every component X of C . Then H1(C , L) = 0.

Proof.
Induction on the number n of components of C . The case n = 1 is
trivial.

If n > 1, there is a component X containing only one node
p. Let Y be the closure of C \ X .
Tensor by L the exact sequence

0→ OC → OX ⊕OY → Op → 0

and take cohomology.
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Smoothness of M0,n(PN , d)

Theorem
For any n,N and d the stack M0,n(PN , d) is smooth of dimension
(N + 1)d + N + n − 3.

Smoothness Since M0,n is smooth, it is enough to show that the
map F : M0,n(PN , d)→M0,n is smooth. The obstruction space at
a point p ∈ M0,n(PN , d) corresponding to a stable map (C , xi , f ) is
H1(C , f ∗TPN ). Pullback the Euler sequence

0→ OPN →
N⊕
j=0

OPN (1)→ TPN → 0

via f , take cohomology, and note that f ∗(OPN (1)) has
non-negative degree on every component of X .
Dimension The relative tangent space TpF has dimension

h0(C , f ∗TPN ) = χ(C , f ∗TPN ) = (N + 1)d + N.

The fact that M0,n has dimension n − 3 completes the proof.
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Expected dimension -1

Let F : X → Y be a morphism of schemes, x ∈ X , y := f (x). Let
n := dim TxF , and assume we are given an obstruction space T 2

x F
of dimension r .

Lemma Let Z be an irreducible component of Xy containing x .
Then

n − r ≤ dim Z ≤ n.

Proof We can assume that Y = y = Spec C (since obstruction
theories are preserved by base change) and that X is affine. We
can also assume that the obstruction theory is the minimal one,
since lowering r strengthens the inequality.
The statement is unchanged if we replace X by any affine open
which contains x . Hence we can assume that
X = Spec C[x1, . . . , xn]/J and J = (f1, . . . , fr ) where
r = dim J/mpJ.
The expected dimension is n − r and the result follows by
induction on r and Lüroth’s theorem.



Expected dimension -1

Let F : X → Y be a morphism of schemes, x ∈ X , y := f (x). Let
n := dim TxF , and assume we are given an obstruction space T 2

x F
of dimension r .
Lemma Let Z be an irreducible component of Xy containing x .
Then

n − r ≤ dim Z ≤ n.

Proof We can assume that Y = y = Spec C (since obstruction
theories are preserved by base change) and that X is affine. We
can also assume that the obstruction theory is the minimal one,
since lowering r strengthens the inequality.
The statement is unchanged if we replace X by any affine open
which contains x . Hence we can assume that
X = Spec C[x1, . . . , xn]/J and J = (f1, . . . , fr ) where
r = dim J/mpJ.
The expected dimension is n − r and the result follows by
induction on r and Lüroth’s theorem.
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Expected dimension -2

Definition
Let F : X → Y be a morphism of schemes. For x ∈ X let
T 1
x F := TxF the relative tangent space, and assume that at every

point of x ∈ X we are given a finite dimensional obstruction space
T 2
x F , such that

d(x) := dim T 1
x X − dim T 2

x X is a constant d .

We then say that F has relative expected dimension d . Note that
d ∈ Z may be negative.



Expected dimension -3

Examples

I Let F : X → Y be smooth of relative dimension d . Choosing
T 2
x F = 0 makes F into a morphism of relative expected

dimension d .

I In the same assumptions, let E be any vector bundle of rank r
on X . Choose T 2

x F = E (x) for every x in X . Then F has
relative expected dimension d − r .

I Assume that f factors as X
i→ M

p→ Y with i closed
embedding and p smooth of relative dimension n. Let E be a
rank r locally free sheaf on X and α : E → i∗IX/M a
surjection. Then choosing T 2

x X = coker(α(x)∨) gives F a
relative expected dimension of n − r .

I In particular this applies if f is lci of relative dimension d , i.e.,
has a factorization as above such that i is a regular
embedding of codimension r ; then i∗IX/M is locally free of
rank r and we can choose α to be the identity.
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Expected dimension -4

Remark Let f : X → Y be a morphism of nonsingular varieties.
Then it is lci with factorisation X → X × Y → Y , and thus has
relative dimension dim X − dim Y .

Remark In all examples we have so far given of morphisms having
relative expected dimension, Fulton-McPherson intersection theory
defines a pullback map A∗(Y )→ A∗(X ) of degree d , where d is
the expected dimension.
All of the above extends to strongly representable morphisms
F : X → Y of algebraic stacks, i.e. those such that for any
morphism S → Y with S a scheme, the fiber product X ×S Y is
also a scheme.
It also extends to morphisms of DM type, i.e. those for which S
scheme implies X ×S Y is a DM algebraic stack.
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GW expected dimension and virtual pullback
Let F : Mg ,n(V , d)→Mg ,n be the forgetful morphism.

Lemma
The GW obstruction spaces makes F a morphism of relative
expected dimension

d̄ = χ(C , f ∗TV ) = dim V (1− g) + d · c1(TV ).

Proof Follows immediately from Riemann-Roch on the curve C .
Goal Find a natural pullback morphism

F ∗GW : A∗(Mg ,n)→ A∗(Mg ,n(V , d)) of degree d̄

agreeing with lci pullback when F is lci of relative dimension d̄ ,
i.e., when the GW obstruction space is minimal at every point.
This implies we can define the virtual fundamental class

[Mg ,n(V , d)]vir := F ∗GW [Mg ,n] ∈ Ad̄+3g−3+n(Mg ,n(V , d)),

use it to define GW invariants and prove their properties.
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The genus zero case -1

Fix V ⊂ PN , n, d ≥ 0. as usual and let g = 0. Let
X = M0,n(V , d) and Y = M0,n. Let M := M0,n(PN , d); denote by
i : X → M the natural inclusion and by f : X → Y and
p : M → Y the forgetful morphisms. Recall that f and p are quasi
projective and p is smooth.

Exercise The morphism i is a closed embedding. Hint: the same is
true for Mg ,n(V , d)→ Mg ,n(W , d) for every closed embedding
V →W of projective schemes. The analogous statement for stack
of prestable maps is also true.

Lemma
Let I := i∗IX/M . There is a locally free sheaf E on X and a
surjection E → i∗I inducing the GW obstruction space at every
point.

Corollary

We can define genus zero Gromov-Witten invariants.
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The genus zero case -2

Sketch of the proof. Let p0 ∈ Mg ,n(V , d). Consider the diagram
with cartesian square

C0

��

//

��

f0
,,C

π
��

f
// V // PN

p0
// Mg ,n(V , d)

and the exact sequence

0→ TV → TPN |V → N → 0.

The sheaf E is defined to be the dual of π∗f
∗N.
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