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Outline of this lecture

Moduli stacks of pointed maps

Mg ,n(V , d) is a DM algebraic stack

Properness of Mg ,n(V , d)

Summary of lecture 1

The category (Art)

Semismall extensions

Infinitesimal study of morphisms: set-up

Infinitesimal study of morphisms: lifting problem

Tangent and obstruction spaces for functors on (Art)



Moduli stacks of pointed maps -1

Definition
The stack Mg ,n(V , d) of prestable, genus g, n pointed maps of
degree d is the pseudofunctor (sch)→ (grpd) associating to each
scheme S the groupoid of families of prestable genus g , n-pointed
maps over S with their isomorphisms.

Its open substack Mg ,n(V , d) of families of stable curves is called
the stack of stable, genus g, n pointed maps of degree d .

Definition
We denote by F : Mg ,n(V , d)→Mg ,n the forgetful morphism,
mapping a family of stable maps to its family of prestable curves
and forgetting the map.

F (C , π, xi , f ) := (C , π, xi ).

We also denote by F the restriction of the forgetful morphism to
Mg ,n(V , d).
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Moduli stacks of pointed maps-2

Theorem
The stack Mg ,n(V , d) is an (Artin) algebraic stack, locally of finite
type over C.

Proof.
It is enough to show that the morphism F : Mg ,n(V , d)→Mg ,n is
quasiprojective.

Let S be a scheme and S →Mg ,n a morphism, i.e., a family of
prestable genus g , n-pointed curves. We need to prove that the
fiber product S ×Mg,n Mg ,n(V , d) is a scheme, quasiprojective over
S .

It follows easily from the definition of fiber product for stacks that
it is isomorphic to MorS(C ,V × B)d .
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Algebraicity of Mg ,n(V , d) -1

Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.
First statement.

Mg ,n(V , d) is an algebraic stack because it is open in Mg ,n(V , d)
which is algebraic; in particular, the forgetful morphism is quasi
projective.



Algebraicity of Mg ,n(V , d) -1

Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.
First statement.

Mg ,n(V , d) is an algebraic stack because it is open in Mg ,n(V , d)
which is algebraic; in particular, the forgetful morphism is quasi
projective.



Algebraicity of Mg ,n(V , d) -1

Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.
First statement.

Mg ,n(V , d) is an algebraic stack because it is open in Mg ,n(V , d)
which is algebraic; in particular, the forgetful morphism is quasi
projective.



Algebraicity of Mg ,n(V , d)-2

Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.

Proving that it is DM is equivalent to showing that, for any point
(C , xi , f ) in the stack, the automorphism group has
zero-dimensional tangent space.

By assumption the automorphism group is finite; since we are in
characteristic zero, it is smooth, hence its tangent space is
zero-dimensional.

This argument fails in positive characteristic, and indeed in that
case the stack is not DM in general.
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Properness of Mg ,n(V , d) -1

Proof of properness.
We apply the geometric version of the valuative criterion of
properness for algebraic stacks.

Let B be any smooth affine curve, b0 ∈ B any point, and
B = B \ b0.
We need to show that any family of stable maps (C , π, xi , f ) over
B can be uniquely extended to B, after possibly a finite base
change.

We first use a base change to extend (C , π, xi ) to (C , π̄, x̄i ) over B.
This can be done in analogy with the proof of properness for Mg ,n.

Assume for simplicity that C is a smooth surface. Then f : C → V
induces a rational map C → V ; after a finite number of blow-ups
ε : C

′ → C , we can assume that the map f ′ := f ◦ εis regular.
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Properness of Mg ,n(V , d) -2

The fibres of π̄ ◦ ε : C
′ → B are nodal curves but may be non

reduced. This can be fixed by a finite base change and
normalisation.

We have thus proven that, up to base change, we can extend
(C , π, xi , f ) to a family of prestable maps over B. We now need to
show that among such extensions there is a unique stable one.
First we prove existence. Let (C , π̄, x̄i , f̄ ) be a prestable extension
to B. If it isn’t stable, there is a rational curve Z in Cb0 , contracted

by f̄ , whose normalisation Z̃ contains at most two special points.
Since the fibres are connected, Z̃ must contain at least one special
point, mapping to a node of C . If it is the only special point, Z
must be a (−1) curve (i.e., smooth rational curve with
NZ/C = OZ (−1). By the minimal model theory for surfaces, Z is

the exceptional divisor of the blowup of a point ε : C by C
′

and
there exists a unique f̄ ′ such that f̄ = f̄ ′ ◦ ε.
The same argument applies when there are two special points, one
a node and one marked.
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Properness of Mg ,n(V , d) -3

Proof.

To conclude the proof, we have to consider components Z as
above whose normalisation contains exactly two special points,
both nodes.

Again by connectedness, Z must also be smooth, and one can
prove that NZ/C = OZ (−2). Hence Z can be contracted as above,
but this time to an A1 singularity.

Repeating the process, we get in the situation we had before,
except now C

′
has rational double points. This proves existence.

The same argument applies when there are two special points, one
a node and one marked.
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Properness of Mg ,n(V , d) -4

Proof.

To prove uniqueness, any other extension must be birational to the
one we started with; if they are both smooth, a birational map
factors uniquely as a sequence of blow-ups and blow-downs.
One can prove by induction on the total number of bloe-ups and
blow-downs that the birational map must be an isomorphism.
For the general case, we cannot assume that C is smooth but its
singularities are very limited, either nodes

{xy = 0} ⊂ A3
x ,y ,z

or An

{xy = zn+1} ⊂ A3
x ,y ,z .

One can extend the previous argument to this case, working with
the minimal resolution of singularities of C , which is easy to
construct explicitly.
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Summary of the previous lecture

For any projective smooth variety (indeed, any projective scheme)
V we have defined a proper DM algebraic stack of (families of)
stable maps Mg ,n(V , d); by definition it carries a universal genus
g , n-pointed stable map (C , π, xi , f ) of degree d .

The forgetful morphism F : Mg ,n(V , d)→Mg ,n is quasiprojective.



Remarks

1. A similar argument with minimal models of surfaces proves
the properness of Mg ,n.

2. Replacing minimal models with semistable reduction gives
properness of Mg ,n and Mg ,n(V , d) in any characteristic.

3. However while Mg ,n is DM in any characteristic (and indeed
over Z), Mg ,n(V , d) is not.
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over Z), Mg ,n(V , d) is not.



The category (Art)

Lemma
Let A be a local f.g. C-algebra. The following are equivalent:

1. (Spec A)red = Spec C; i.e., Spec A is a fat point.

2. A is f.d. as a C-vector space.

3. mA is nilpotent.

4. A is Artinian.

Definition
We denote by (Art) the category of local C algebras satisfying the
equivalent conditions above.

Note that C is both an initial and a final object in (Art).
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Semismall extensions -1

Definition
Let φ : A→ B be a surjective morphism in (Art), I = ker φ. The
exact sequence

0→ I → A→ B → 0 (1)

is called a semi-small extension if I ·mA = 0.
We also say that φ or Spec B → Spec A is a semismall extension.

Every surjective morphism in (Art) (or equivalently, every closed
embedding of fat points) factors as a finite sequence of semismall
extensions.
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Semismall extensions -2

Definition
A morphism of semismall extensions is a commutative diagram

0 → I → A → B → 0
↓ ↓ ↓

0 → I ′ → A′ → B ′ → 0

where rows are semismall extensions and A→ A′ is a morphism in
(Art).

Exercise Show that this implies B → B ′ is a morphism in (Art)

.
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Set-up

Let X be a scheme, and hX : (Art)→ (sets) the (covariant) functor

hX (A) := Mor(Spec A,X ).

There is a canonical identification

hX =
∐
x∈X

hX ,x

where
hX ,x(A) := {α ∈ hX (A) | Im(α)red = x}.

Let ÔX ,x := limOX ,x/m
N
x . There is a natural, functorial bijection

hX ,x → Homalg (ÔX ,x ,A)
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Set-up - 2

Let f : X → Y be a morphism of schemes, x ∈ X , y = f (x).
Let Ry := ÔY ,y and Rx := ÔX ,x ;
let f ∗ : Ry → Rx be the homomorphism induced by (f , f ]).
Let A→ B be a semismall extension with kernel I .

Assume we are given a commutative diagram of schemes

Spec B −→ X
↓ ↓

Spec A −→ Y

with Im(Spec B)red = x .
We want to study the set of morphisms Spec A→ X making the
diagram commute (infinitesimal lifting problem).
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Set-up -3
Equivalently, we have a commutative diagram of local algebras

Ry
αY−→ A

↓ ↓
Rx

β−→ B

and we want to study the set of morphisms α : Rx → A making
the diagram commute.

WLOG assume that X and Y are affine of f.t. over C.
Hence X → Y factors (non-canonically) as

X
i→ An × Y

p→ Y .

with i a closed embedding. Therefore Ry → Rx factors as

Ry → Ry [[t1, . . . , tn]]
i∗→ Rx

with i∗ surjective; let J = ker i∗.
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Lifting problem -1

Lemma
Let S := Ry [[t1, . . . , tn]]. The set of liftings αS : S → A such that
the diagram

Ry
αY−→ A

↓ ↓
S

β◦i∗−→ B

commutes is a principal homogeneous space for the abelian group
HomC(Ωf (x)), I ).

Proof.
(Sketch) It is easy to show that a lifting exists (take the image of
each ti in B and lift it to A).

Show that the difference of two
liftings is a map λ : S → I which is an Ry -derivation, and
conversely.
Hence the set of liftings is a p.h.s. for DerRy (S , I ).
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Lifting problem -2

Lemma
Let S := Ry [[t1, . . . , tn]]. The set of liftings αS : S → A such that
the diagram

Ry
αY−→ A

↓ ↓
S

β◦i∗−→ B

commutes is a principal homogeneous space for the abelian group
Homvsp(Ωf (x)), I ).

Proof.

DerRy (S , I ) = HomS(ΩS/Ry
, I ) = HomS/ms

(Ωp(x), I )

since mS · I = 0. Here Ωp(x) := x∗Ωp.
By construction the natural map x∗Ωp → x∗Ωf is an
isomorphism.
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Lifting problem -3

Let us denote by L the set of liftings S → A as before. Fix a lifting
φ0 ∈ L as before. We get a commutative diagram with exact rows

0 → J → S → Rx → 0
↓ ↓ ↓

0 → I → A → B → 0

There is a morphism α : Rx → A making the diagram commute if
and only if λ0 := φ0|J : J → I is zero; in this case, α is unique.
I.e., we have a natural map ρ : L→ HomC(J/msJ, I ) such that the
set of liftings is the inverse image of zero.

Claim The map ρ is equivariant for the action of HomC(Ωp(x), I ),
induced by the exact sequence on X

i∗IX/An×Y → i∗Ωp → Ωf → 0

via x∗ together with the fact the fact that x∗IX = x∗J.
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Lifting problem -4

Definition
We define Hom(x∗L̃f , I ) and Ext1(x∗L̃f , I ) as kernel and cockernel
of the map

Hom(x∗Ωp, I )→ Hom(x∗i∗IX , I ).

Theorem
Let h = hX ,x and g := hY ,,y . We have shown that there is an
exact sequence of groups and sets

0→ Hom(x∗L̃f , I )→ h(A)→ h(B)×g(B) g(A)
ob→ Ext1(x∗L̃f , I ).

Here a sequence of groups and sets

0→ A0
a−→ Z0

ψ−→ Z1
ob−→ A1

with Ai abelian groups and Zi sets, is called exact if a is an action
of A0 on X0 which acts simply transitively on the fibres of ψ, and
ob is a set map such that ob(z1) = 0 if and only if ψ−1(z1) 6= ∅.



Lifting problem -5

Here the map ob is defined as follows: given an element z1 in
h(B)×g(B) g(A), i.e., a commutative diagram, choose a lifting

φ0 : S → A and let ob(z1) be its image in Ext1(x∗L̃f , I ).

Theorem
The exact sequence of groups and sets is functorial in semismall
extensions, i.e. a morphism of A→ B to A′ → B ′ induces a
commutative diagram

Hom(x∗L̃f , I ) → h(A) → h(B)×g(B) g(A)
ob→ Ext1(x∗L̃f , I )

↓ ↓ ↓ ↓
Hom(x∗L̃f , I

′) → h(A′) → h(B ′)×g(B′) g(A′)
ob→ Ext1(x∗L̃f , I

′).



Tangent and obstruction spaces -1

Let f̄ , ḡ : (Art)→ (sets) be functors, and F̄ : f̄ → ḡ a natural
transformation. Choose x ∈ f̄ (C) and let y = F̄ (x) ∈ g(C). Let
f := f̄x : (Art)→ (sets) be the fiber functor

f (A) := {a ∈ f̄ (A) |πA∗(a) = x} where πA : A→ C,

and let F : f → g be the natural transformation induced by F̄ .

Definition
Let T 1

x F̄ , T 2
x F̄ be C vector spaces. We say that they are the

tangent space and an obstruction space for F̄ at x if for any
semismall extension A→ B there is a functorial exact sequence

0→ T 1
x F̄ ⊗ I → f (A)→ f (B)×g(B) g(A)

ob→ T 2
x F̄ .

Note the difference between the tangent space and an obstruction
space.
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transformation. Choose x ∈ f̄ (C) and let y = F̄ (x) ∈ g(C). Let
f := f̄x : (Art)→ (sets) be the fiber functor

f (A) := {a ∈ f̄ (A) |πA∗(a) = x} where πA : A→ C,

and let F : f → g be the natural transformation induced by F̄ .

Definition
Let T 1

x F̄ , T 2
x F̄ be C vector spaces. We say that they are the

tangent space and an obstruction space for F̄ at x if for any
semismall extension A→ B there is a functorial exact sequence

0→ T 1
x F̄ ⊗ I → f (A)→ f (B)×g(B) g(A)

ob→ T 2
x F̄ .

Note the difference between the tangent space and an obstruction
space.



Tangent and obstruction spaces -1
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Tangent and obstruction spaces -2

Lemma
A tangent space, if it exists, is unique up to canonical isomorphism
and can be identified with the fiber over the image of y ∈ g(C) of
the map f (C[ε]/ε2)→ g(C[ε]/ε2).

The obstruction space cannot be unique, since any vector space
containing it is also an obstruction space. An obstruction space is
minimal if all others can be obtained in this way; a minimal
obstruction space, if it exists, is unique up to canonical
isomorphism.

Lemma
Let φ : X → Y be a morphism of schemes, F̄ : hX → hY the
induced natural transformation. Then Hom(x∗L̃f ,C) is the tangent
space and Ext1(x∗L̃f ,C) is the minimal obstruction space for F̄ at
x.

We also speak of tangent and obstruction spaces to f at x .
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Tangent and obstruction spaces: exercises

1. If f : X → Y is smooth at x ∈ X then it is unobstructed, i.e.,
zero is an obstruction space. The converse is also true (formal
smoothness).

2. If f : X → Y is étale at x then hX ,x(A)→ hY ,y (A) is a
bijection for every A in (Art). The converse is also true.

3. Let

X ′
f ′→ Y ′

↓ ↓
X

f→ Y

be a cartesian diagram of schemes, x ′ ∈ X ′ and x ∈ X its
image. Show that if T 1 and T 2 are tangent and obstruction
space for f at x , then they are also tangent and obstruction
space for f ′ at x ′.

4. If T 2 is minimal for f at x it may not be minimal for f ′ at x ′;
it is minimal if Y ′ → Y is smooth.
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