Defining Gromov Witten invariants

Barbara Fantechi

Chennai Mathematical Institute February-March 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

Outline of this lecture

Moduli stacks of pointed maps $\overline{M}_{\sigma,n}(V,d)$ is a DM algebraic stack Properness of $\overline{M}_{g,n}(V,d)$ Summary of lecture 1 The category (Art) Semismall extensions Infinitesimal study of morphisms: set-up Infinitesimal study of morphisms: lifting problem Tangent and obstruction spaces for functors on (Art)

Definition

The stack $\mathfrak{M}_{g,n}(V, d)$ of prestable, genus g, n pointed maps of degree d is the pseudofunctor $(sch) \rightarrow (grpd)$ associating to each scheme S the groupoid of families of prestable genus g, n-pointed maps over S with their isomorphisms.

Definition

The stack $\mathfrak{M}_{g,n}(V,d)$ of prestable, genus g, n pointed maps of degree d is the pseudofunctor $(sch) \rightarrow (grpd)$ associating to each scheme S the groupoid of families of prestable genus g, n-pointed maps over S with their isomorphisms.

Its open substack $\overline{M}_{g,n}(V,d)$ of families of stable curves is called the *stack of stable, genus g*, *n pointed maps of degree d*.

Definition

The stack $\mathfrak{M}_{g,n}(V, d)$ of prestable, genus g, n pointed maps of degree d is the pseudofunctor $(sch) \rightarrow (grpd)$ associating to each scheme S the groupoid of families of prestable genus g, n-pointed maps over S with their isomorphisms.

Its open substack $\overline{M}_{g,n}(V, d)$ of families of stable curves is called the *stack of stable, genus g*, *n pointed maps of degree d*.

Definition

We denote by $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ the forgetful morphism, mapping a family of stable maps to its family of prestable curves and forgetting the map.

Definition

The stack $\mathfrak{M}_{g,n}(V, d)$ of prestable, genus g, n pointed maps of degree d is the pseudofunctor $(sch) \rightarrow (grpd)$ associating to each scheme S the groupoid of families of prestable genus g, n-pointed maps over S with their isomorphisms.

Its open substack $\overline{M}_{g,n}(V,d)$ of families of stable curves is called the *stack of stable, genus g*, *n pointed maps of degree d*.

Definition

We denote by $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ the forgetful morphism, mapping a family of stable maps to its family of prestable curves and forgetting the map.

$$F(C,\pi,x_i,f) := (C,\pi,x_i).$$

Definition

The stack $\mathfrak{M}_{g,n}(V, d)$ of prestable, genus g, n pointed maps of degree d is the pseudofunctor $(sch) \rightarrow (grpd)$ associating to each scheme S the groupoid of families of prestable genus g, n-pointed maps over S with their isomorphisms.

Its open substack $\overline{M}_{g,n}(V,d)$ of families of stable curves is called the *stack of stable, genus g*, *n pointed maps of degree d*.

Definition

We denote by $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ the forgetful morphism, mapping a family of stable maps to its family of prestable curves and forgetting the map.

$$F(C,\pi,x_i,f):=(C,\pi,x_i).$$

We also denote by F the restriction of the forgetful morphism to $\overline{M}_{g,n}(V, d)$.

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

Theorem

The stack $\mathfrak{M}_{g,n}(V,d)$ is an (Artin) algebraic stack, locally of finite type over \mathbb{C} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

The stack $\mathfrak{M}_{g,n}(V,d)$ is an (Artin) algebraic stack, locally of finite type over \mathbb{C} .

Proof.

It is enough to show that the morphism $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ is quasiprojective.

Theorem

The stack $\mathfrak{M}_{g,n}(V,d)$ is an (Artin) algebraic stack, locally of finite type over \mathbb{C} .

Proof.

It is enough to show that the morphism $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ is quasiprojective.

Let S be a scheme and $S \to \mathfrak{M}_{g,n}$ a morphism, i.e., a family of prestable genus g, *n*-pointed curves. We need to prove that the fiber product $S \times_{\mathfrak{M}_{g,n}} \mathfrak{M}_{g,n}(V,d)$ is a scheme, quasiprojective over S.

Theorem

The stack $\mathfrak{M}_{g,n}(V,d)$ is an (Artin) algebraic stack, locally of finite type over \mathbb{C} .

Proof.

It is enough to show that the morphism $F : \mathfrak{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ is quasiprojective.

Let S be a scheme and $S \to \mathfrak{M}_{g,n}$ a morphism, i.e., a family of prestable genus g, *n*-pointed curves. We need to prove that the fiber product $S \times_{\mathfrak{M}_{g,n}} \mathfrak{M}_{g,n}(V,d)$ is a scheme, quasiprojective over S.

It follows easily from the definition of fiber product for stacks that it is isomorphic to $Mor_S(C, V \times B)^d$.

Theorem

1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Theorem

1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.

2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

First statement.

Theorem

- 1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.
- 2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

First statement.

 $\overline{M}_{g,n}(V,d)$ is an algebraic stack because it is open in $\mathfrak{M}_{g,n}(V,d)$ which is algebraic; in particular, the forgetful morphism is quasi projective.

Theorem

1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.

(日) (四) (四) (日) (日)

2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

Theorem

- 1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.
- 2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

Proving that it is DM is equivalent to showing that, for any point (C, x_i, f) in the stack, the automorphism group has zero-dimensional tangent space.

(日) (四) (日) (日)

Theorem

- 1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.
- 2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

Proving that it is DM is equivalent to showing that, for any point (C, x_i, f) in the stack, the automorphism group has zero-dimensional tangent space.

By assumption the automorphism group is finite; since we are in characteristic zero, it is smooth, hence its tangent space is zero-dimensional.

Theorem

- 1. The stack $\overline{M}_{g,n}(V,d)$ is a Deligne-Mumford (DM) algebraic stack.
- 2. The stack $\overline{M}_{g,n}(V,d)$ is proper over \mathbb{C} .

Proof.

Proving that it is DM is equivalent to showing that, for any point (C, x_i, f) in the stack, the automorphism group has zero-dimensional tangent space.

By assumption the automorphism group is finite; since we are in characteristic zero, it is smooth, hence its tangent space is zero-dimensional.

This argument fails in positive characteristic, and indeed in that case the stack is not DM in general.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of properness.

Proof of properness.

We apply the geometric version of the valuative criterion of properness for algebraic stacks.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of properness.

We apply the geometric version of the valuative criterion of properness for algebraic stacks.

Let \overline{B} be any smooth affine curve, $b_0 \in \overline{B}$ any point, and $B = \overline{B} \setminus b_0$. We need to show that any family of stable maps (C, π, x_i, f) over

B can be uniquely extended to \overline{B} , after possibly a finite base change.

Proof of properness.

We apply the geometric version of the valuative criterion of properness for algebraic stacks.

Let \overline{B} be any smooth affine curve, $b_0 \in \overline{B}$ any point, and $B = \overline{B} \setminus b_0$. We need to show that any family of stable maps (C, π, x_i, f) over B can be uniquely extended to \overline{B} , after possibly a finite base change.

We first use a base change to extend (C, π, x_i) to $(\overline{C}, \overline{\pi}, \overline{x}_i)$ over \overline{B} . This can be done in analogy with the proof of properness for $\overline{M}_{g,n}$.

Proof of properness.

We apply the geometric version of the valuative criterion of properness for algebraic stacks.

Let \overline{B} be any smooth affine curve, $b_0 \in \overline{B}$ any point, and $B = \overline{B} \setminus b_0$. We need to show that any family of stable maps (C, π, x_i, f) over B can be uniquely extended to \overline{B} , after possibly a finite base change.

We first use a base change to extend (C, π, x_i) to $(\overline{C}, \overline{\pi}, \overline{x}_i)$ over \overline{B} . This can be done in analogy with the proof of properness for $\overline{M}_{g,n}$.

Assume for simplicity that \overline{C} is a smooth surface. Then $f: C \to V$ induces a rational map $\overline{C} \to V$; after a finite number of blow-ups $\varepsilon: \overline{C}' \to \overline{C}$, we can assume that the map $f':= f \circ \varepsilon$ is regular.

The fibres of $\overline{\pi} \circ \varepsilon : \overline{C}' \to \overline{B}$ are nodal curves but may be non reduced. This can be fixed by a finite base change and normalisation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The fibres of $\overline{\pi} \circ \varepsilon : \overline{C}' \to \overline{B}$ are nodal curves but may be non reduced. This can be fixed by a finite base change and normalisation.

We have thus proven that, up to base change, we can extend (C, π, x_i, f) to a family of prestable maps over \overline{B} . We now need to show that among such extensions there is a unique stable one.

The fibres of $\overline{\pi} \circ \varepsilon : \overline{C}' \to \overline{B}$ are nodal curves but may be non reduced. This can be fixed by a finite base change and normalisation.

We have thus proven that, up to base change, we can extend (C, π, x_i, f) to a family of prestable maps over \overline{B} . We now need to show that among such extensions there is a unique stable one. First we prove existence. Let $(\overline{C}, \overline{\pi}, \overline{x}_i, \overline{f})$ be a prestable extension to B. If it isn't stable, there is a rational curve Z in C_{b_0} , contracted by \overline{f} , whose normalisation \widetilde{Z} contains at most two special points.

The fibres of $\overline{\pi} \circ \varepsilon : \overline{C}' \to \overline{B}$ are nodal curves but may be non reduced. This can be fixed by a finite base change and normalisation.

We have thus proven that, up to base change, we can extend (C, π, x_i, f) to a family of prestable maps over \overline{B} . We now need to show that among such extensions there is a unique stable one. First we prove existence. Let $(\overline{C}, \overline{\pi}, \overline{x}_i, \overline{f})$ be a prestable extension to B. If it isn't stable, there is a rational curve Z in C_{b_0} , contracted by \overline{f} , whose normalisation \widetilde{Z} contains at most two special points. Since the fibres are connected, \tilde{Z} must contain at least one special point, mapping to a node of C. If it is the only special point, Z must be a (-1) curve (i.e., smooth rational curve with $N_{Z/\overline{C}} = \mathcal{O}_Z(-1)$. By the minimal model theory for surfaces, Z is the exceptional divisor of the blowup of a point $\varepsilon: \overline{C}$ by \overline{C}' and there exists a unique \overline{f}' such that $\overline{f} = \overline{f}' \circ \varepsilon$.

The fibres of $\overline{\pi} \circ \varepsilon : \overline{C}' \to \overline{B}$ are nodal curves but may be non reduced. This can be fixed by a finite base change and normalisation.

We have thus proven that, up to base change, we can extend (C, π, x_i, f) to a family of prestable maps over \overline{B} . We now need to show that among such extensions there is a unique stable one. First we prove existence. Let $(\overline{C}, \overline{\pi}, \overline{x}_i, \overline{f})$ be a prestable extension to B. If it isn't stable, there is a rational curve Z in C_{b_0} , contracted by \overline{f} , whose normalisation \widetilde{Z} contains at most two special points. Since the fibres are connected, \tilde{Z} must contain at least one special point, mapping to a node of C. If it is the only special point, Z must be a (-1) curve (i.e., smooth rational curve with $N_{Z/\overline{C}} = \mathcal{O}_Z(-1)$. By the minimal model theory for surfaces, Z is the exceptional divisor of the blowup of a point $\varepsilon : \overline{C}$ by \overline{C}' and there exists a unique \overline{f}' such that $\overline{f} = \overline{f}' \circ \varepsilon$. The same argument applies when there are two special points, one a node and one marked.

Proof.

Proof.

To conclude the proof, we have to consider components Z as above whose normalisation contains exactly two special points, both nodes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

To conclude the proof, we have to consider components Z as above whose normalisation contains exactly two special points, both nodes.

Again by connectedness, Z must also be smooth, and one can prove that $N_{Z/C} = \mathcal{O}_Z(-2)$. Hence Z can be contracted as above, but this time to an A_1 singularity.

Proof.

To conclude the proof, we have to consider components Z as above whose normalisation contains exactly two special points, both nodes.

Again by connectedness, Z must also be smooth, and one can prove that $N_{Z/C} = \mathcal{O}_Z(-2)$. Hence Z can be contracted as above, but this time to an A_1 singularity.

Repeating the process, we get in the situation we had before, except now \overline{C}' has rational double points. This proves existence.

Proof.

To conclude the proof, we have to consider components Z as above whose normalisation contains exactly two special points, both nodes.

Again by connectedness, Z must also be smooth, and one can prove that $N_{Z/C} = \mathcal{O}_Z(-2)$. Hence Z can be contracted as above, but this time to an A_1 singularity.

Repeating the process, we get in the situation we had before, except now \overline{C}' has rational double points. This proves existence.

The same argument applies when there are two special points, one a node and one marked. $\hfill\square$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof.
Properness of $\overline{M}_{g,n}(V, d)$ -4

Proof.

To prove uniqueness, any other extension must be birational to the one we started with; if they are both smooth, a birational map factors uniquely as a sequence of blow-ups and blow-downs. One can prove by induction on the total number of bloe-ups and blow-downs that the birational map must be an isomorphism.

Properness of $\overline{M}_{g,n}(V,d)$ -4

Proof.

To prove uniqueness, any other extension must be birational to the one we started with; if they are both smooth, a birational map factors uniquely as a sequence of blow-ups and blow-downs. One can prove by induction on the total number of bloe-ups and blow-downs that the birational map must be an isomorphism. For the general case, we cannot assume that \overline{C} is smooth but its singularities are very limited, either nodes

$$\{xy=0\}\subset \mathbb{A}^3_{x,y,z}$$

or A_n

$$\{xy=z^{n+1}\}\subset \mathbb{A}^3_{x,y,z}.$$

Properness of $\overline{M}_{g,n}(V,d)$ -4

Proof.

To prove uniqueness, any other extension must be birational to the one we started with; if they are both smooth, a birational map factors uniquely as a sequence of blow-ups and blow-downs. One can prove by induction on the total number of bloe-ups and blow-downs that the birational map must be an isomorphism. For the general case, we cannot assume that \overline{C} is smooth but its singularities are very limited, either nodes

$$\{xy=0\}\subset \mathbb{A}^3_{x,y,z}$$

or A_n

$$\{xy=z^{n+1}\}\subset \mathbb{A}^3_{x,y,z}.$$

One can extend the previous argument to this case, working with the minimal resolution of singularities of \overline{C} , which is easy to construct explicitly.

Summary of the previous lecture

For any projective smooth variety (indeed, any projective scheme) V we have defined a proper DM algebraic stack of (families of) stable maps $\overline{M}_{g,n}(V, d)$; by definition it carries a universal genus g, *n*-pointed stable map (C, π, x_i, f) of degree d.

The forgetful morphism $F : \overline{M}_{g,n}(V, d) \to \mathfrak{M}_{g,n}$ is quasiprojective.

1. A similar argument with minimal models of surfaces proves the properness of $\overline{M}_{g,n}$.

- 1. A similar argument with minimal models of surfaces proves the properness of $\overline{M}_{g,n}$.
- 2. Replacing minimal models with semistable reduction gives properness of $\overline{M}_{g,n}$ and $\overline{M}_{g,n}(V, d)$ in any characteristic.

- 1. A similar argument with minimal models of surfaces proves the properness of $\overline{M}_{g,n}$.
- 2. Replacing minimal models with semistable reduction gives properness of $\overline{M}_{g,n}$ and $\overline{M}_{g,n}(V, d)$ in any characteristic.
- 3. However while $\overline{M}_{g,n}$ is DM in any characteristic (and indeed over \mathbb{Z}), $\overline{M}_{g,n}(V, d)$ is not.

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent: 1. (Spec A)_{red} = Spec \mathbb{C} ; i.e., Spec A is a fat point.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1. $(Spec A)_{red} = Spec \mathbb{C}$; *i.e.*, Spec A is a fat point.

2. A is f.d. as a \mathbb{C} -vector space.

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. $(Spec A)_{red} = Spec \mathbb{C}$; *i.e.*, Spec A is a fat point.
- 2. A is f.d. as a \mathbb{C} -vector space.
- 3. \mathfrak{m}_A is nilpotent.

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- 1. $(Spec A)_{red} = Spec \mathbb{C}$; *i.e.*, Spec A is a fat point.
- 2. A is f.d. as a \mathbb{C} -vector space.
- 3. \mathfrak{m}_A is nilpotent.
- 4. A is Artinian.

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

- 1. $(Spec A)_{red} = Spec \mathbb{C}$; *i.e.*, Spec A is a fat point.
- 2. A is f.d. as a \mathbb{C} -vector space.
- 3. \mathfrak{m}_A is nilpotent.
- 4. A is Artinian.

Definition

We denote by (Art) the category of local $\mathbb C$ algebras satisfying the equivalent conditions above.

Lemma

Let A be a local f.g. \mathbb{C} -algebra. The following are equivalent:

- 1. $(Spec A)_{red} = Spec \mathbb{C}$; *i.e.*, Spec A is a fat point.
- 2. A is f.d. as a \mathbb{C} -vector space.
- 3. \mathfrak{m}_A is nilpotent.
- 4. A is Artinian.

Definition

We denote by (Art) the category of local $\mathbb C$ algebras satisfying the equivalent conditions above.

Note that \mathbb{C} is both an initial and a final object in (Art).

Definition

Let $\phi : A \to B$ be a surjective morphism in (Art), $I = \ker \phi$. The exact sequence

$$0 \to I \to A \to B \to 0 \tag{1}$$

is called a *semi-small extension* if $I \cdot \mathfrak{m}_A = 0$. We also say that ϕ or Spec $B \rightarrow$ Spec A is a semismall extension.

Definition

Let $\phi : A \to B$ be a surjective morphism in (Art), $I = \ker \phi$. The exact sequence

$$0 \to I \to A \to B \to 0 \tag{1}$$

is called a *semi-small extension* if $I \cdot \mathfrak{m}_A = 0$.

We also say that ϕ or $Spec B \rightarrow Spec A$ is a semismall extension.

Every surjective morphism in (Art) (or equivalently, every closed embedding of fat points) factors as a finite sequence of semismall extensions.

Definition

A morphism of semismall extensions is a commutative diagram

where rows are semismall extensions and $A \rightarrow A'$ is a morphism in (Art).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A morphism of semismall extensions is a commutative diagram

where rows are semismall extensions and $A \rightarrow A'$ is a morphism in (Art).

Exercise Show that this implies $B \rightarrow B'$ is a morphism in (Art).

Set-up

Let X be a scheme, and $h_X : (Art) \to (sets)$ the (covariant) functor

 $h_X(A) := Mor(Spec A, X).$

Set-up

Let X be a scheme, and $h_X : (Art) \rightarrow (sets)$ the (covariant) functor

 $h_X(A) := Mor(Spec A, X).$

There is a canonical identification

$$h_X = \coprod_{x \in X} h_{X,x}$$

where

$$h_{X,x}(A) := \{ \alpha \in h_X(A) \, | \, \mathit{Im}(\alpha)_{\mathsf{red}} = x \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Set-up

Let X be a scheme, and $h_X : (Art) \rightarrow (sets)$ the (covariant) functor

 $h_X(A) := Mor(Spec A, X).$

There is a canonical identification

$$h_X = \coprod_{x \in X} h_{X,x}$$

where

$$h_{X,x}(A) := \{ \alpha \in h_X(A) \, | \, \mathit{Im}(\alpha)_{\mathsf{red}} = x \}.$$

Let $\widehat{\mathcal{O}}_{X,x} := \lim \mathcal{O}_{X,x}/\mathfrak{m}_x^N$. There is a natural, functorial bijection $h_{X,x} \to Hom_{alg}(\widehat{\mathcal{O}}_{X,x}, A)$

Let $f: X \to Y$ be a morphism of schemes, $x \in X$, y = f(x). Let $R_y := \widehat{\mathcal{O}}_{Y,y}$ and $R_x := \widehat{\mathcal{O}}_{X,x}$; let $f^*: R_y \to R_x$ be the homomorphism induced by (f, f^{\sharp}) . Let $A \to B$ be a semismall extension with kernel I.

Let $f: X \to Y$ be a morphism of schemes, $x \in X$, y = f(x). Let $R_y := \widehat{\mathcal{O}}_{Y,y}$ and $R_x := \widehat{\mathcal{O}}_{X,x}$; let $f^*: R_y \to R_x$ be the homomorphism induced by (f, f^{\sharp}) . Let $A \to B$ be a semismall extension with kernel I. Assume we are given a commutative diagram of schemes

$$\begin{array}{cccc} Spec \ B & \longrightarrow & X \\ \downarrow & & \downarrow \\ Spec \ A & \longrightarrow & Y \end{array}$$

with $Im(Spec B)_{red} = x$.

We want to study the set of morphisms $Spec A \rightarrow X$ making the diagram commute (infinitesimal lifting problem).

Equivalently, we have a commutative diagram of local algebras

$$\begin{array}{cccc} R_y & \stackrel{\alpha_Y}{\longrightarrow} & A \\ \downarrow & & \downarrow \\ R_x & \stackrel{\beta}{\longrightarrow} & B \end{array}$$

and we want to study the set of morphisms $\alpha: R_x \to A$ making the diagram commute.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Equivalently, we have a commutative diagram of local algebras

$$\begin{array}{cccc} R_y & \xrightarrow{\alpha_Y} & A \\ \downarrow & & \downarrow \\ R_x & \xrightarrow{\beta} & B \end{array}$$

and we want to study the set of morphisms $\alpha : R_x \to A$ making the diagram commute.

WLOG assume that X and Y are affine of f.t. over \mathbb{C} . Hence $X \to Y$ factors (non-canonically) as

$$X \xrightarrow{i} \mathbb{A}^n \times Y \xrightarrow{p} Y.$$

with *i* a closed embedding.

Equivalently, we have a commutative diagram of local algebras

$$\begin{array}{cccc} R_y & \xrightarrow{\alpha_Y} & A \\ \downarrow & & \downarrow \\ R_x & \xrightarrow{\beta} & B \end{array}$$

and we want to study the set of morphisms $\alpha: R_x \to A$ making the diagram commute.

WLOG assume that X and Y are affine of f.t. over \mathbb{C} . Hence $X \to Y$ factors (non-canonically) as

$$X \xrightarrow{i} \mathbb{A}^n \times Y \xrightarrow{p} Y.$$

with *i* a closed embedding. Therefore $R_y \rightarrow R_x$ factors as

$$R_y \to R_y[[t_1,\ldots,t_n]] \stackrel{i^*}{\to} R_x$$

with i^* surjective; let $J = \ker i^*$.

・ロト・4回・4回・4回・4回・4日・

Lemma Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{\mathbb{C}}(\Omega_f(x)), I)$.

Lemma Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{\mathbb{C}}(\Omega_f(x)), I)$.

Proof.

(Sketch) It is easy to show that a lifting exists (take the image of each t_i in B and lift it to A).

Lemma Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{\mathbb{C}}(\Omega_f(x)), I)$.

Proof.

(Sketch) It is easy to show that a lifting exists (take the image of each t_i in B and lift it to A). Show that the difference of two liftings is a map $\lambda : S \to I$ which is an R_y -derivation, and conversely.

Hence the set of liftings is a p.h.s. for $Der_{R_v}(S, I)$.

・ロト・西ト・ヨト・ヨー シック

Lemma

Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{vsp}(\Omega_f(x)), I)$.

Proof.

Lemma

Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{vsp}(\Omega_f(x)), I)$.

Proof.

$$Der_{R_y}(S, I) = Hom_S(\Omega_{S/R_y}, I) = Hom_{S/\mathfrak{m}_s}(\Omega_p(x), I)$$

since $\mathfrak{m}_S \cdot I = 0$. Here $\Omega_p(x) := x^*\Omega_p$.

Lemma

Let $S := R_y[[t_1, ..., t_n]]$. The set of liftings $\alpha_S : S \to A$ such that the diagram

R_y	$\xrightarrow{\alpha_{Y}}$	Α
Ļ		\downarrow
S	$\xrightarrow{\beta \circ i^*}$	В

commutes is a principal homogeneous space for the abelian group $Hom_{vsp}(\Omega_f(x)), I)$.

Proof.

$$Der_{R_y}(S, I) = Hom_S(\Omega_{S/R_y}, I) = Hom_{S/\mathfrak{m}_s}(\Omega_p(x), I)$$

since $\mathfrak{m}_{S} \cdot I = 0$. Here $\Omega_{p}(x) := x^{*}\Omega_{p}$. By construction the natural map $x^{*}\Omega_{p} \to x^{*}\Omega_{f}$ is an isomorphism.

Let us denote by L the set of liftings $S \to A$ as before. Fix a lifting $\phi_0 \in L$ as before. We get a commutative diagram with exact rows

There is a morphism $\alpha : R_x \to A$ making the diagram commute if and only if $\lambda_0 := \phi_0|_J : J \to I$ is zero; in this case, α is unique. I.e., we have a natural map $\rho : L \to Hom_{\mathbb{C}}(J/\mathfrak{m}_s J, I)$ such that the set of liftings is the inverse image of zero.

Let us denote by L the set of liftings $S \to A$ as before. Fix a lifting $\phi_0 \in L$ as before. We get a commutative diagram with exact rows

There is a morphism $\alpha : R_x \to A$ making the diagram commute if and only if $\lambda_0 := \phi_0|_J : J \to I$ is zero; in this case, α is unique. I.e., we have a natural map $\rho : L \to Hom_{\mathbb{C}}(J/\mathfrak{m}_s J, I)$ such that the set of liftings is the inverse image of zero. **Claim** The map ρ is equivariant for the action of $Hom_{\mathbb{C}}(\Omega_p(x), I)$, induced by the exact sequence on X

$$i^* I_{X/\mathbb{A}^n \times Y} \to i^* \Omega_p \to \Omega_f \to 0$$

via x^* together with the fact the fact that $x^*I_X = x^*J$.

Definition

We define $Hom(x^*\tilde{L}_f, I)$ and $Ext^1(x^*\tilde{L}_f, I)$ as kernel and cockernel of the map

$$Hom(x^*\Omega_p, I) \rightarrow Hom(x^*i^*I_X, I).$$

Theorem

Let $h = h_{X,x}$ and $g := h_{Y,y}$. We have shown that there is an exact sequence of groups and sets

$$0 \to \textit{Hom}(x^*\tilde{L}_f, I) \to \textit{h}(A) \to \textit{h}(B) \times_{\textit{g}(B)} \textit{g}(A) \stackrel{ob}{\to} \textit{Ext}^1(x^*\tilde{L}_f, I).$$

Here a sequence of groups and sets

$$0 \to A_0 \stackrel{a}{\longrightarrow} Z_0 \stackrel{\psi}{\longrightarrow} Z_1 \stackrel{ob}{\longrightarrow} A_1$$

with A_i abelian groups and Z_i sets, is called *exact* if *a* is an action of A_0 on X_0 which acts simply transitively on the fibres of ψ , and *ob* is a set map such that $ob(z_1) = 0$ if and only if $\psi^{-1}(z_1) \neq \emptyset$.
Lifting problem -5

Here the map *ob* is defined as follows: given an element z_1 in $h(B) \times_{g(B)} g(A)$, i.e., a commutative diagram, choose a lifting $\phi_0 : S \to A$ and let $ob(z_1)$ be its image in $Ext^1(x^*\tilde{L}_f, I)$.

Theorem

The exact sequence of groups and sets is functorial in semismall extensions, i.e. a morphism of $A \rightarrow B$ to $A' \rightarrow B'$ induces a commutative diagram

$$\begin{array}{ccccc} Hom(x^{*}\tilde{L}_{f},I) & \rightarrow & h(A) & \rightarrow & h(B) \times_{g(B)} g(A) & \stackrel{ob}{\rightarrow} & Ext^{1}(x^{*}\tilde{L}_{f},I) \\ & \downarrow & & \downarrow & & \downarrow \\ Hom(x^{*}\tilde{L}_{f},I') & \rightarrow & h(A') & \rightarrow & h(B') \times_{g(B')} g(A') & \stackrel{ob}{\rightarrow} & Ext^{1}(x^{*}\tilde{L}_{f},I'). \end{array}$$

Let $\overline{f}, \overline{g} : (\operatorname{Art}) \to (\operatorname{sets})$ be functors, and $\overline{F} : \overline{f} \to \overline{g}$ a natural transformation. Choose $x \in \overline{f}(\mathbb{C})$ and let $y = \overline{F}(x) \in g(\mathbb{C})$. Let $f := \overline{f}_x : (\operatorname{Art}) \to (\operatorname{sets})$ be the fiber functor

$$f(A) := \{ a \in \overline{f}(A) \mid \pi_{A*}(a) = x \}$$
 where $\pi_A : A \to \mathbb{C}$,

and let $F: f \to g$ be the natural transformation induced by \overline{F} .

Let $\overline{f}, \overline{g} : (\operatorname{Art}) \to (\operatorname{sets})$ be functors, and $\overline{F} : \overline{f} \to \overline{g}$ a natural transformation. Choose $x \in \overline{f}(\mathbb{C})$ and let $y = \overline{F}(x) \in g(\mathbb{C})$. Let $f := \overline{f}_x : (\operatorname{Art}) \to (\operatorname{sets})$ be the fiber functor

$$f(A) := \{ a \in \overline{f}(A) \, | \, \pi_{A*}(a) = x \}$$
 where $\pi_A : A \to \mathbb{C}$,

and let $F: f \to g$ be the natural transformation induced by \overline{F} .

Definition

Let $T_x^1 \overline{F}$, $T_x^2 \overline{F}$ be \mathbb{C} vector spaces. We say that they are the tangent space and an obstruction space for \overline{F} at x if for any semismall extension $A \to B$ there is a functorial exact sequence

$$0 \to T^1_x \bar{F} \otimes I \to f(A) \to f(B) \times_{g(B)} g(A) \stackrel{ob}{\to} T^2_x \bar{F}.$$

くしゃ (雪) (雪) (雪) (雪) (雪) (

Let $\overline{f}, \overline{g} : (\operatorname{Art}) \to (\operatorname{sets})$ be functors, and $\overline{F} : \overline{f} \to \overline{g}$ a natural transformation. Choose $x \in \overline{f}(\mathbb{C})$ and let $y = \overline{F}(x) \in g(\mathbb{C})$. Let $f := \overline{f}_x : (\operatorname{Art}) \to (\operatorname{sets})$ be the fiber functor

$$f(A) := \{ a \in \overline{f}(A) \, | \, \pi_{A*}(a) = x \}$$
 where $\pi_A : A \to \mathbb{C}$,

and let $F: f \to g$ be the natural transformation induced by \overline{F} .

Definition

Let $T_x^1 \overline{F}$, $T_x^2 \overline{F}$ be \mathbb{C} vector spaces. We say that they are the tangent space and an obstruction space for \overline{F} at x if for any semismall extension $A \to B$ there is a functorial exact sequence

$$0 \to T^1_x \overline{F} \otimes I \to f(A) \to f(B) \times_{g(B)} g(A) \stackrel{ob}{\to} T^2_x \overline{F}.$$

Note the difference between **the** tangent space and **an** obstruction space.

Lemma

A tangent space, if it exists, is unique up to canonical isomorphism and can be identified with the fiber over the image of $y \in g(\mathbb{C})$ of the map $f(\mathbb{C}[\varepsilon]/\varepsilon^2) \to g(\mathbb{C}[\varepsilon]/\varepsilon^2)$.

Lemma

A tangent space, if it exists, is unique up to canonical isomorphism and can be identified with the fiber over the image of $y \in g(\mathbb{C})$ of the map $f(\mathbb{C}[\varepsilon]/\varepsilon^2) \to g(\mathbb{C}[\varepsilon]/\varepsilon^2)$.

The obstruction space cannot be unique, since any vector space containing it is also an obstruction space. An obstruction space is *minimal* if all others can be obtained in this way; a minimal obstruction space, if it exists, is unique up to canonical isomorphism.

Lemma

A tangent space, if it exists, is unique up to canonical isomorphism and can be identified with the fiber over the image of $y \in g(\mathbb{C})$ of the map $f(\mathbb{C}[\varepsilon]/\varepsilon^2) \to g(\mathbb{C}[\varepsilon]/\varepsilon^2)$.

The obstruction space cannot be unique, since any vector space containing it is also an obstruction space. An obstruction space is *minimal* if all others can be obtained in this way; a minimal obstruction space, if it exists, is unique up to canonical isomorphism.

Lemma

Let $\phi : X \to Y$ be a morphism of schemes, $\overline{F} : h_X \to h_Y$ the induced natural transformation. Then $Hom(x^*\widetilde{L}_f, \mathbb{C})$ is the tangent space and $Ext^1(x^*\widetilde{L}_f, \mathbb{C})$ is the minimal obstruction space for \overline{F} at x.

Lemma

A tangent space, if it exists, is unique up to canonical isomorphism and can be identified with the fiber over the image of $y \in g(\mathbb{C})$ of the map $f(\mathbb{C}[\varepsilon]/\varepsilon^2) \to g(\mathbb{C}[\varepsilon]/\varepsilon^2)$.

The obstruction space cannot be unique, since any vector space containing it is also an obstruction space. An obstruction space is *minimal* if all others can be obtained in this way; a minimal obstruction space, if it exists, is unique up to canonical isomorphism.

Lemma

Let $\phi : X \to Y$ be a morphism of schemes, $\overline{F} : h_X \to h_Y$ the induced natural transformation. Then $Hom(x^*\widetilde{L}_f, \mathbb{C})$ is the tangent space and $Ext^1(x^*\widetilde{L}_f, \mathbb{C})$ is the minimal obstruction space for \overline{F} at x.

We also speak of tangent and obstruction spaces to f at x.

1. If $f : X \to Y$ is smooth at $x \in X$ then it is *unobstructed*, i.e., zero is an obstruction space. The converse is also true (formal smoothness).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1. If $f : X \to Y$ is smooth at $x \in X$ then it is *unobstructed*, i.e., zero is an obstruction space. The converse is also true (formal smoothness).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2. If $f : X \to Y$ is étale at x then $h_{X,x}(A) \to h_{Y,y}(A)$ is a bijection for every A in (Art). The converse is also true.

- 1. If $f : X \to Y$ is smooth at $x \in X$ then it is *unobstructed*, i.e., zero is an obstruction space. The converse is also true (formal smoothness).
- 2. If $f : X \to Y$ is étale at x then $h_{X,x}(A) \to h_{Y,y}(A)$ is a bijection for every A in (Art). The converse is also true.

3. Let

$$\begin{array}{cccc} X' & \stackrel{f'}{\to} & Y' \\ \downarrow & & \downarrow \\ X & \stackrel{f}{\to} & Y \end{array}$$

be a cartesian diagram of schemes, $x' \in X'$ and $x \in X$ its image. Show that if T^1 and T^2 are tangent and obstruction space for f at x, then they are also tangent and obstruction space for f' at x'.

- 1. If $f : X \to Y$ is smooth at $x \in X$ then it is *unobstructed*, i.e., zero is an obstruction space. The converse is also true (formal smoothness).
- 2. If $f : X \to Y$ is étale at x then $h_{X,x}(A) \to h_{Y,y}(A)$ is a bijection for every A in (Art). The converse is also true.

3. Let

Χ′	$\stackrel{f'}{ ightarrow}$	Y'
\downarrow		\downarrow
Χ	$\stackrel{f}{\rightarrow}$	Y

be a cartesian diagram of schemes, $x' \in X'$ and $x \in X$ its image. Show that if T^1 and T^2 are tangent and obstruction space for f at x, then they are also tangent and obstruction space for f' at x'.

4. If T^2 is minimal for f at x it may not be minimal for f' at x'; it is minimal if $Y' \to Y$ is smooth.