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Plan of the course

The course will consist of five lectures.

1. Definition of the moduli stack of stable maps Mg ,n(V , d),
sketch of proof of its properness;

2. Obstruction spaces, obstruction theories for morphisms of
schemes and algebraic stacks;

3. Obstruction theory and expected dimension for Mg ,n(V , d);

4. Virtual pullbacks, virtual fundamental classes;

5. Gromov-Witten invariants, definition and examples.

If time allows, we will mention other invariants defined in a similar
way.
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Outline of this lecture

I A brief review of the Hilbert scheme and of the moduli
scheme of morphisms between projective varieties.

I A review of Knudsen’s definition of the moduli of pointed
stable curves.

I Definition of the stack Mg ,n(V , d) of stable maps to a
projective variety V .

I Sketch of proof that Mg ,n(V , d) is algebraic and proper.
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Conventions

I All schemes will be locally of finite type over C.

I A point will mean C-valued point.

I V :=smooth projective variety with V ⊂ PN fixed.

I g , n, d ≥ 0 integers.
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Hilbert scheme -1

Let X be a projective scheme.

Definition
A family of closed subschemes of X parametrized by a scheme S is
a closed subscheme Z ⊂ X × S , flat over S .

Definition
Let f : S1 → S is a morphism of schemes, and Z a family of closed
subschemes of X parametrised by S ;

the pullback f ∗Z of Z via f is
defined to be the closed subscheme

f ∗Z := Z1 := Z ×S S1 ⊂ (X × S)×S S1 = X × S1;

Z1 is flat over S1 since flatness is preserved by base change.
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Hilbert scheme -2

Definition
The Hilbert functor of X is the functor

hilbX : (sch)op → (set)

hilbX (S) = {families of closed subschemes of X parametrised by S}

Lemma
The functor hilbX is represented by a scheme, called the Hilbert
scheme and denoted Hilb(X ).
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Hilbert scheme -3

Lemma
The functor hilbX is represented by a scheme, called the Hilbert
scheme and denoted Hilb(X ).

In other words, there is a universal family ZH of closed subschemes
of X over Hilb(X ), such that for any other scheme S , the natural
map of sets

Mor(S ,HilbX )→ hilb(S) given by f 7→ f ∗ZH

is a bijection.

This determines (HilbX ,ZH) up to canonical isomorphism.
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Hilbert scheme -4

Choose a very ample line bundle O(1) on X . To every closed
subscheme Z of X we can associate its Hilbert Polynomial
P(t) := χ(OZ (t)).

The Hilbert polynomial is locally constant in families.
We define HilbP(X ) ⊂ Hilb(X ) to be the closed and open
subscheme parametrising subschemes with Hilbert polynomial P.

Theorem
The scheme HilbP(X ) is projective.

Example

The Grassmann variety and the projective space of degree d
hypersurfaces are both Hilbert schemes of PN (exercise: find P).
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Mor(C ,V )

Let C and V be projective schemes.

We define a functor m : (sch)op → (set) by

m(S) = {f : S × C → X}

For g : S1 → S and f ∈ m(S), the pullback of f by g is defined as

g∗(f ) := f ◦ (g , idC ) : S1 × C → X ∈ m(S1).

Lemma
Mor(C ,V ) is represented by a scheme.

Proof.
Let h be the Hilbert functor of C × V ; we can define a natural
transformation m→ h by associating to a morphism
f : C × S → V its graph Γf .

This map is an open embedding.
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Relative version

Let q : X → B be a projective morphism, with B any scheme.
Then there is a relative Hilbert scheme Hilb(X/B) parametrizing
closed subschemes in the fibres of q.

Theorem
Hilb(X/B) commutes with base change and HilbP(X/B)→ B is
projective.

Corollary

Let p : C → B and q : X → B be projective morphisms, with p
flat. Then there is a scheme MorB(C ,V ) parametrising morphisms
f : C → V such that p = q ◦ f .

If p is a flat family of curves of genus g, the scheme MorB(C ,V ; d)
parametrising morphisms of degree d is quasiprojective over B
because it is open in HilbP(C × X/B) with P(t) = dt + 1− g.
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Prestable pointed curves

Definition
A prestable n-pointed (or n-marked) genus g curve is a tuple
(C , x1, . . . , xn) such that

I C is a projective nodal connected curve of arithmetic genus g ;

I x1, . . . , xn are distinct points (called marked points) in the
nonsingular locus of C .

An isomorphism between prestable curves (C , xi ) and (C ′, x ′i ) is an
isomorphism φ : C → C ′ such that φ(xi ) = x ′i for i = 1, . . . , n.

Let ν : C̃ → C be the normalisation morphism. A point x ∈ C̃ is
special if ν(x) is either singular for C or a marked point xi .
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Stable pointed curves

Let (C , x1, . . . , xn) be a prestable curve. The following are
equivalent:

I the automorphism group of (C , x1, . . . , xn) is zero-dimensional.

I H0(C ,TC (−
∑

xi )) = 0.

I every genus zero component of C̃ contains at least three
special points, and every genus one component contains at
least one special point.

I the line bundle ωC (
∑

xi ) is ample on C .

I the line bundle ωC (
∑

xi )
⊗3 is very ample on C .

Definition
If any of these conditions is satisfied (or, equivalently, all of them
are) the prestable curve (C , xi ) is called stable.
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Families of prestable curves -1

Definition
A family of prestable n-pointed, genus g curves over a base scheme
S is a tuple (C , π, x1, . . . , xn) where

I π : C → S is a flat, projective morphism;

I x1, . . . , xn : S → C are sections of π;

I for every s ∈ S , (Cs , x1(s), . . . , xn(s)) is a prestable n-pointed,
genus g curve.

A family of stable curves is defined by replacing prestable with
stable in the definition above.



Families of prestable curves -2

Exercises.

1. Show that a family of prestable curves over a point is a
prestable curve.

2. Show that for any family of prestable curves over S , the set

{s ∈ S s.t. (Cs , x1(s), . . . , xn(s)) is stable}

is open in S .

3. Define isomorphisms for families of prestable curves over a
base S ;

4. Given a family (C , xi ) of prestable n-pointed, genus g curves
over a base scheme S and a morphism f : S ′ → S of schemes,
define a pullback family (C ′, x ′i ) over S ′.
Hint: start with C ′ := C ×S S ′.
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Moduli stacks of pointed curves

Definition
The stack Mg ,n of prestable, genus g, n pointed curves is the
pseudofunctor (sch)→ (grpd) associating to each scheme S the
groupoid of families of prestable genus g n-marked curves over S
with their isomorphisms.

Its open substack Mg ,n of families of stable curves is called the
stack of stable, genus g, n pointed curves.

Theorem
The stack Mg ,n is an (Artin) algebraic stack, locally of finite type
over C; it is smooth, connected, of dimension 3g − 3 + n.

The stack Mg ,n is a Deligne-Mumford (DM) algebraic stack and it
is proper over C.
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Setting a goal

Let V ⊂ PN be a smooth, projective variety, g , n, d ≥ 0 integers.

We want to find a good compactification Mg ,n(V , d) of the space
of tuples (C , x1, . . . , xn) where C ⊂ V is a nonsingular connected
curve of genus g and degree d , and the xi ∈ C are distinct points.

Good means we want to use it to do enumerative geometry; in
particular, we want the compactification to be smooth, or at least
pure-dimensional, so we have a fundamental cycle against which to
integrate cohomology classes pulled back from V via the maps
evi : M → V sending a tuple (C , x1, . . . , xn) to xi ∈ V .

We can find such a compactification using the Hilbert scheme;
however we have no idea how to choose a homology cycle on it in
a natural way, or even how to choose a dimension.
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Key idea

The key idea of Gromov Witten theory is to combine the scheme
of morphisms, the stack of pointed prestable curves and the
stability condition to compactify naturally the space of tuples
(C , x1, . . . , xn, f ) where C is a smooth genus g curve,
x1, . . . , xn ∈ C are distinct points, and f : C → V is a morphism of
degree d which may not be an embedding.

A morphism of degree d = 0 is a constant map; so we can define
such a compactification to be

Mg ,n(V , 0) := Mg ,n × V .

So defined, Mg ,n(V , 0) is smooth and proper of dimension
3g − 3 + n + dim V , and nonempty if and only if 2g − 2 + n > 0.

We are thus led to the following definition.
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Prestable maps

Definition
A prestable (g , n) map to V of degree d is a tuple
(C , x1, . . . , xn, f ) where

I (C , xi ) is a prestable genus g , n-pointed curve;

I f : C → V is a degree d morphism (i.e., deg f ∗(OV (1)) = d).

I an irriducible component Z̃ of C̃ i contracted by f , or a
contracted component, if f ◦ ν(Z̃ ) is a point.
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Stable maps

Let (C , x1, . . . , xn, f ) be a prestable map to V . The following are
equivalent:

I the group of automorphism of (C , x1, . . . , xn) which commute
with f is zero-dimensional.

I every genus zero contracted component of C̃ contains at least
three special points, and every genus one contracted
component contains at least one special point.

I the line bundle ωC (
∑

xi )⊗ f ∗O(3) is ample on C .

I the line bundle (ωC (
∑

xi )⊗ f ∗O(3))⊗3 is very ample on C .

Definition
If any of these conditions is satisfied (or, equivalently, all of them
are) the prestable map (C , xi , f ) is called stable.
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Families of prestable maps -1

Definition
A family of prestable n-pointed, genus g maps to V of degree d
over a base scheme S is a tuple (C , π, x1, . . . , xn, f ) where

I (C , π, x1, . . . , xn) is a family of genus g , n-pointed prestable
curves;

I f : C → V is a morphism;

I for every s ∈ S , degCs
f ∗O(1) = d .

Definition
If moreover for every s ∈ S the prestable map (Cs , xi (s), f |Cs ) is
stable, we say that (C , π, x1, . . . , xn, f ) is a family of stable maps.
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Families of prestable maps -2

Exercises.

1. Show that a family of prestable maps over a point is a
prestable curve.

2. Show that for any family of prestable maps over S , the set

{s ∈ S s.t. (Cs , x1(s), . . . , xn(s), fCs ) is stable}

is open in S .

3. Define isomorphisms for families of prestable maps over a base
S , such that for S a point we recover the previous definition.

4. Given a family (C , xi ), f of prestable n-pointed, genus g maps
over a base scheme S and a morphism f : S ′ → S of schemes,
define a pullback family (C ′, x ′i , f

′) over S ′.
Hint: start with pulling back the family of prestable curves.

5. Show that the pullback of a family of stable maps is also a
family of stable maps.
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Moduli stacks of pointed maps -1

Definition
The stack Mg ,n(V , d) of prestable, genus g, n pointed maps of
degree d is the pseudofunctor (sch)→ (grpd) associating to each
scheme S the groupoid of families of prestable genus g , n-pointed
maps over S with their isomorphisms.

Its open substack Mg ,n(V , d) of families of stable curves is called
the stack of stable, genus g, n pointed maps of degree d .

Definition
We denote by F : Mg ,n(V , d)→Mg ,n the forgetful morphism,
mapping a family of stable maps to its family of prestable curves
and forgetting the map.

F (C , π, xi , f ) := (C , π, xi ).

We also denote by F the restriction of the forgetful morphism to
Mg ,n(V , d).
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The stack Mg ,n(V , d) is an (Artin) algebraic stack, locally of finite
type over C.
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It is enough to show that the morphism F : Mg ,n(V , d)→Mg ,n is
quasiprojective.

Let S be a scheme and S →Mg ,n a morphism, i.e., a family of
prestable genus g , n-pointed curves. We need to prove that the
fiber product S ×Mg,n Mg ,n(V , d) is a scheme, quasiprojective over
S .

It follows easily from the definition of fiber product for stacks that
it is isomorphic to MorS(C ,V × B)d .
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Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.
First statement.

Mg ,n(V , d) is an algebraic stack because it is open in Mg ,n(V , d)
which is algebraic; in particular, the forgetful morphism is quasi
projective.
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Algebraicity of Mg ,n(V , d)-2

Theorem

1. The stack Mg ,n(V , d) is a Deligne-Mumford (DM) algebraic
stack.

2. The stack Mg ,n(V , d) is proper over C.

Proof.

Proving that it is DM is equivalent to showing that, for any point
(C , xi , f ) in the stack, the automorphism group has
zero-dimensional tangent space.

By assumption the automorphism group is finite; since we are in
characteristic zero, it is smooth, hence its tangent space is
zero-dimensional.

This argument fails in positive characteristic, and indeed in that
case the stack is not DM in general.
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Properness of Mg ,n(V , d) -1

Proof of properness.
We apply the geometric version of the valuative criterion of
properness for algebraic stacks.

Let B be any smooth affine curve, b0 ∈ B any point, and
B = B \ b0.
We need to show that any family of stable maps (C , π, xi , f ) over
B can be uniquely extended to B, after possibly a finite base
change.

We first use a base change to extend (C , π, xi ) to (C , π̄, x̄i ) over B.
This can be done in analogy with the proof of properness for Mg ,n.

Assume for simplicity that C is a smooth surface. Then f : C → V
induces a rational map C → V ; after a finite number of blow-ups
ε : C

′ → C , we can assume that the map f ′ := f ◦ εis regular.
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Properness of Mg ,n(V , d) -2

The fibres of π̄ ◦ ε : C
′ → B are nodal curves but may be non

reduced. This can be fixed by a finite base change and
normalisation.

We have thus proven that, up to base change, we can extend
(C , π, xi , f ) to a family of prestable maps over B. We now need to
show that among such extensions there is a unique stable one.
First we prove existence. Let (C , π̄, x̄i , f̄ ) be a prestable extension
to B. If it isn’t stable, there is a rational curve Z in Cb0 , contracted

by f̄ , whose normalisation Z̃ contains at most two special points.
Since the fibres are connected, Z̃ must contain at least one special
point, mapping to a node of C . If it is the only special point, Z
must be a (−1) curve (i.e., smooth rational curve with
NZ/C = OZ (−1). By the minimal model theory for surfaces, Z is

the exceptional divisor of the blowup of a point ε : C by C
′

and
there exists a unique f̄ ′ such that f̄ = f̄ ′ ◦ ε.
The same argument applies when there are two special points, one
a node and one marked.
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Properness of Mg ,n(V , d) -3

Proof.

To conclude the proof, we have to consider components Z as
above whose normalisation contains exactly two special points,
both nodes.

Again by connectedness, Z must also be smooth, and one can
prove that NZ/C = OZ (−2). Hence Z can be contracted as above,
but this time to an A1 singularity.

Repeating the process, we get in the situation we had before,
except now C

′
has rational double points. This proves existence.

The same argument applies when there are two special points, one
a node and one marked.
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Proof.

To prove uniqueness, any other extension must be birational to the
one we started with; if they are both smooth, a birational map
factors uniquely as a sequence of blow-ups and blow-downs.
One can prove by induction on the total number of bloe-ups and
blow-downs that the birational map must be an isomorphism.
For the general case, we cannot assume that C is smooth but its
singularities are very limited, either nodes

{xy = 0} ⊂ A3
x ,y ,z

or An

{xy = zn+1} ⊂ A3
x ,y ,z .

One can extend the previous argument to this case, working with
the minimal resolution of singularities of C , which is easy to
construct explicitly.
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Summary of the lecture

For any projective smooth variety (indeed, any projective scheme)
V we have defined a proper DM algebraic stack of (families of)
stable maps Mg ,n(V , d); by definition it carries a universal genus
g , n-pointed stable map (C , π, xi , f ) of degree d .

The forgetful morphism F : Mg ,n(V , d)→Mg ,n is quasiprojective.



Remarks

1. A similar argument with minimal models of surfaces proves
the properness of Mg ,n.

2. Replacing minimal models with semistable reduction gives
properness of Mg ,n and Mg ,n(V , d) in any characteristic.

3. However while Mg ,n is DM in any characteristic (and indeed
over Z), Mg ,n(V , d) is not.
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