
ADDING TIME TO SCENARIOS ∗

Prakash Chandrasekaran and Madhavan Mukund
Chennai Mathematical Institute, Chennai, India

{prakash,madhavan}@cmi.ac.in

Abstract Message Sequence Charts (MSCs) are used to specify the behaviour of com-
municating systems through scenarios. Though timing constraints are natural
for describing the behaviour of real-life protocols, the basic MSC notation has
no mechanism to specify such constraints. We propose a notation for specify-
ing collections of timed scenarios and describe a frameworkfor automatic ver-
ification of scenario-based properties for communicating finite-state machines
equipped with local clocks.

1. Introduction

In a distributed system, several agents interact with each other to generate a
global behaviour. The interaction between these agents is usually described in
terms of scenarios, using message sequence charts (MSCs) [9].

We extend scenarios to incorporate timing constraints, yielding timed MSC
templates. These templates are built from fixed underlying MSCs by associ-
ating a lower and upper bound on the time interval between certain pairs of
events. Timed MSC templates are a natural and useful extension of the un-
timed notation for scenarios, because protocol specifications typically include
timing requirements for message exchanges, as well as descriptions of how to
recover from timeouts.

We propose a simple specification language based on guarded commands,
along the lines of Promela [8], for generating collections of timed MSC tem-
plates. The semantics of this language is given in terms of a version of HMSCs
(high-level MSCs) [7], with annotations attached to edges rather than nodes.

Our aim is to verify properties of timed systems with respectto timed MSC
template specifications. Our basic system model consists ofcommunicating
finite-state machines equipped with local clocks. Clock constraints are used to
guard transitions and specify location invariants, as in other models of timed

∗Partially supported byTimed-DISCOVERI, a project under the Indo-French Networking Programme.

2

automata [3]. Just as the runs of timed automata can be described in terms
of timed words, the interactions exhibited by communicating finite-state ma-
chines with clocks can be described using timed MSCs.

Specifications in terms of scenarios give rise to several natural verification
problems. At preliminary stages of system design, scenariospecifications are
typically incomplete and can be classified into two categories, positive and
negative. Positive scenarios are those that the system is designed to execute—
for instance, these may describe a handshaking protocol to set up a reliable
communication channel between two hosts on a network. Negative scenarios
indicate undesirable behaviours, such as a situation when both hosts indepen-
dently initiate a handshake, leading to a collision. This leads to the following
verification problem: given a distributed system and a positive (or negative)
scenario, does the system exhibit (or avoid) the scenario?

In general, a timed MSC template is compatible with infinitely many timed
MSCs. This makes the scenario matching problem more complicated than
in the untimed case, where a single scenario describes exactly one pattern of
interaction. In our setting, the scenario matching problemamounts to checking
whether the intersection of two collections of timed MSCs isnonempty.

As the design of a system evolves, the interpretation of a scenario-based
specification also changes. The specification is now typically seen as an ex-
haustive description of how the system should behave. Universality then be-
comes an important condition to check—does the implementation exhibit a
representative behaviour consistent with each of the timedtemplates in the
specification? Once again, the complication is that each timed template in the
specification is compatible with an infinite set of timed behaviours. Moreover,
we also have an infinite set of timed templates to verify.

We propose an approach to tackle these verification problemsusing the
modelchecking toolUppaal, which is designed to verify properties of timed
systems. This paper extends the work reported in [4], where we only con-
sider finite sets of timed templates. Since the basic system model ofUppaal

uses synchronous handshakes, rather than message-passing, we need to encode
message-passing channels by creating special processes tomodel buffers. Ex-
ploiting the handshake mechanism inUppaal, we can synchronize the system
with the specification. This allows us to transform our verification questions
into properties forUppaal to verify on the composite system.

In the untimed setting, efficient algorithms for the scenario matching prob-
lem have been identified in [11]. An approach to solve this problem using the
modelcheckerSpin was proposed in [6].

Adding timing constraints to individual scenarios has beenproposed in [1],
where an algorithm is given to check whether such a set of timing constraints
in consistent. At the level of sets of scenarios, thelive sequence chart (LSC)
formalism [5] allows adding interval constraints similar to those we consider.

Adding time to scenarios 3

One important difference is that the semantics of LSCs assumes synchronous
composition of scenarios—all processes are assumed to movetogether from
one scenario to the next. We retain the usual asynchronous semantics for MSC
composition, which is more natural from the point of view of implementations.

The paper is organized as follows. In the next two sections, we formally
define timed MSCs and timed message-passing automata. In Section 4, we
propose a new notation for specifying timed scenarios. In the next section, we
describe some verification problems for scenario based specifications. In Sec-
tion 6, we describe our approach to address verification problems for scenario-
based specifications usingUppaal. We conclude with a brief discussion.

2. Timed MSCs

2.1 Message sequence charts

Let P = {p, q, r, . . .} be a finite set of processes (agents) that communicate
with each other through messages via reliable FIFO channelsusing a finite set
of message typesM. For p ∈ P, let ∆p = {p!q(m), p?q(m) | p 6= q ∈
P,m ∈ M} be the set of communication actions in whichp participates. The
actionp!q(m) is read asp sends the messagem to q and the actionp?q(m) is
read asp receives the messagem from q. The set of actions thatp performs is
given byΣp = ∆p ∪ {ip}, whereip is a local action ofp. We will use local
actions to describe timeouts. We setΣ =

⋃

p∈P Σp. We also denote the set of
channelsby Ch = {(p, q) | p 6= q}.

Labelled posets A Σ-labelled poset is a structureM = (E,≤, λ) where
(E,≤) is a poset andλ : E → Σ is a labelling function. Fore ∈ E, let
↓e = {e′ | e′ ≤ e}.

Forp ∈ P anda ∈ Σ, we setEp = {e | λ(e) ∈ Σp} andEa = {e | λ(e) =
a}, respectively. For each(p, q) ∈ Ch, we define the relation<pq as follows:

e <pq e′ ⇐⇒ λ(e) = p!q(m), λ(e′) = q?p(m) and
|↓e ∩ Ep!q(m)| = |↓e′ ∩ Eq?p(m)|

The relatione <pq e′ says that channels are FIFO with respect to each message—
if e <pq e′, the messagem read byq ate′ is the one sent byp ate.

Finally, for eachp ∈ P, we define the relation≤pp= (Ep × Ep) ∩ ≤, with
<pp standing for the largest irreflexive subset of≤pp.

Definition 1 An MSC (overP) is a finite Σ-labelled posetM = (E,≤, λ)
that satisfies the following conditions.

(i) Each relation≤pp is a linear order.

(ii) If p 6= q then for eachm ∈ M, |Ep!q(m)| = |Eq?p(m)|.

4

p q r

e1

e′1

e′′1

e2

e′2 e3

e′3

m1

m2

m3

Figure 1. An MSC over{p, q, r}.

(iii) If e <pq e′, then|↓e ∩
(
⋃

m∈M Ep!q(m)

)

| = |↓e′ ∩
(
⋃

m∈M Eq?p(m)

)

|.

(iv) The partial order≤ is the reflexive, transitive closure of the relation
⋃

p,q∈P <pq.

The second condition ensures that every message sent along achannel is
received. The third condition says that every channel is FIFO.

In diagrams, the events of an MSC are presented invisual order. The events
of each process are arranged in a vertical line and messages are displayed as
horizontal or downward-sloping directed edges. Figure 1 shows an example
with three processes{p, q, r} and seven events{e1, e

′
1, e

′′
1 , e2, e

′
2, e3, e

′
3} cor-

responding to three messages—m1 from p to q, m2 from q to r andm3 from p

to r—and one local event onp, e′1.
For an MSCM = (E,≤, λ), we let lin(M) = {λ(π) | π is a linearization

of (E,≤)}. For instance,p!q(m1) q?p(m1) q!r(m2) ip p!r(m3) r?q(m2) r?p(m3)
is one linearization of the MSC in Figure 1.

2.2 Timed MSC templates

A timed MSC template is an MSC annotated with time intervals between pairs
of events along a process line. For instance, consider the interaction between a
user, an ATM and a server depicted in Figure 2. This MSC has sixteen events
generated by eight messages. The eventsu2 andu3 are linked by a time interval
(0, 2), as are the eventss2 ands3. These time intervals represent constraints on
the delay between the occurrences of the events. Thus, this template specifies
that the server is expected to respond to a request to authenticate an ATM card
within 2 units of time. Similarly, a user has to type in his PINwithin 3 units of
time of the ATM requesting the PIN.

Figure 3 shows an alternative scenario in which the user doesnot supply
the PIN within the specified time limit, leading to the ATM rejecting the card.
Notice that the timeout event is modelled as a local event on the ATM process.

Adding time to scenarios 5

User ATM Server

u1

u2

u3

u4

(0, 3)

a1

a2

a3

a4

a5

a6

a7

a8

s1

s2

s3

s4

(0, 2)

card
card-data
card-OK

pin-request
pin

verify-pin
pin-OK

menu

Figure 2. A timed MSC template describing interaction with an ATM.

User ATM Server

u1

u2

u3

(0, 3)

a1

a2

a3

a4

a5

a6

s1

s2
(0, 2)

card
card-data
card-OK

pin-request

reject-card

Figure 3. The user’s PIN message times out.

We assume that time intervals are bounded by natural numbers. A pair of
time points(m,n), m,n ∈ N, m ≤ n, denotes the time interval{x ∈ R≥0 |
m ≤ x ≤ n}.1

Definition 2 Let M = (E,≤, λ) be an MSC. Aninterval constraintis a
tuple〈(e1, e2), (t1, t2)〉, where:

e1, e2 ∈ E with e1 ≤pp e2 or e1 <pq e2 for somep, q ∈ P.

t1, t2 ∈ N with t1 ≤ t2.

The restriction on the relationship betweene1 ande2 ensures that an interval
constraint is either local to a process or describes the delay in transmitting a
single message.

1For simplicity, we restrict ourselves to closed timed intervals in this paper. We can easily generalize our
approach to include open and half-open time intervals.

6

User ATM Server

(u1, 0)

(u2, 4.1)

(u3, 6.1)

(u4, 12.1)

(a1, 0)

(a2, 1)

(a3, 4)

(a4, 4)

(a5, 6.2)

(a6, 7)

(a7, 11.5)

(a8, 12)

(s1, 1)

(s2, 2.3)

(s3, 8.3)

(s4, 10)

card

card-data

card-OK

pin-request

pin

verify-pin

pin-OK

menu

Figure 4. A timed MSC instance describing interaction with an ATM.

Definition 3 A timed MSC templateis pair T = (M,I) whereM =
(E,≤, λ) is an MSC andI ⊆ (E×E)×(N×N) is a set of interval constraints.

2.3 Timed MSCs

In a timed MSC, events are explicitly time-stamped so that the ordering on the
time-stamps respects the partial order on the events.

Definition 4 A timed MSCis pair (M, τ) whereM = (E,≤, λ) is an MSC
andτ : E → R≥0 assigns a nonnegative time-stamp to each event, such that
for all e1, e2 ∈ E, if e1 ≤ e2 thenτ(e1) ≤ τ(e2).

A timed MSC satisfies a timed MSC template if the time-stamps assigned
to events respect the interval constraints specified in the template.

Definition 5 LetM = (E,≤, λ) be an MSC,T = (M,I) a timed template
andMτ = (M, τ) a timed MSC.Mτ is said tosatisfyT if the following holds

For each 〈(e1, e2), (t1, t2)〉 ∈ I, t1 ≤ τ(e2) − τ(e1) ≤ t2.

Definition 6 Let T be a timed MSC template. We denote byL(T) the set
of timed MSCs that satisfyT .

Figure 4 shows a timed MSC that satisfies the template in Figure 2.
Let Mτ = (M, τ) be a timed MSC, whereM = (E,≤, λ), and letπ =

e0e1 . . . em be a linearization of(E,≤). By labelling each event with its times-
tamp, this linearization gives rise to a timed linearization (e0, τ(e0))(e1, τ(e1))

Adding time to scenarios 7

· · · (en, τ(en)). As is the case with untimed MSCs, under the FIFO assump-
tion for channels, a timed MSC can be faithfully reconstructed from any one
of its timed linearizations.

3. Timed Message-Passing Automata

Message-passing automata are a natural machine model for generating MSCs.
We extend the definition used in [7] to include local clocks oneach process
and time-bounds on the channels.

Definition 7 LetC denote a finite-set of real-valued variables calledclocks.
A clock constraintis a conjunctive formula of the formx ∼ n or x− y ∼ n for
x, y ∈ C, n ∈ N and∼ ∈ {≤, <,=, >,≥}. Let Φ(C) denote the set of clock
constraints over the set of clocksC.

Clock constraints will be used as guards and location invariants in timed
message-passing automata.

Definition 8 A clock assignmentfor a set of clocksC is a functionv : C →
R≥0 that assigns a nonnegative real value to each clock inC.

A clock assignmentv is said tosatisfya clock constraintϕ if ϕ evaluates
to true when we substitute for each clockc mentioned inϕ the corresponding
valuev(c).

Definition 9 A timed message-passing automaton (timed MPA)overΣ is a
structure A = ({Ap}p∈P ,Σ,B). Each componentAp is of the form
(Sp, S

p
in, Cp,→p, Ip), where:

Sp is a finite set ofp-local states.

S
p
in ⊆ Sp, is a set of initial states forp.

Cp is a set of local clocks forp.

→p ⊆ Sp × Φ(Cp) × Σp × 2Cp × Sp is thep-local transition relation.

Ip : S → Φ(Cp) assigns aninvariantto each state.

The functionB : (P ×P) → (N×N) associates with each channel a lower
and an upper bound on the transmission time of messages on that channel.

The local transition relation→p specifies how the processp changes state
when it performs internal events or sends and receives messages.

A transition of the form(s, ϕ, a,X, s′) says that in states, p can perform
the actiona and move to states′. This transition isguardedby the clock
constraintϕ—the transition is enabled only when the current values of all the

8

clocks satisfyϕ. The setX specifies the clocks whose values are reset to 0
when this transition is taken. Ifa is of the formip, this transition corresponds
to performing a local event onp. If a = p!q(m), then this transition involves
sending a messagem from p to q. Symmetrically, ifa = p?q(m), then this
transition involvesp receiving a messagem from to q.

A process can remain in a states only if the current values of all the clocks
satisfy the invariantI(s). To make our model amenable for automated verifica-
tion, we restrict location invariants to constraints that are downward closed—
that is, constraints of the formx ≤ n or x < n, wherex is a clock andn ∈ N.

As is customary with timed automata, we allow timed MPA to perform
two types of moves: moves where the automaton does not changestate and
time elapses, and moves where some local componentp changes state instan-
taneously as permitted by→p.

A global state ofA is an element of
∏

p∈P Sp. For a global states, sp

denotes thepth component ofs. A configurationis a triple(s, χ, v) wheres

is a global state,χ : Ch → M∗ is thechannel statedescribing the message
queue in each channelc and v : C → R≥0 is a clock assignment, where
C =

⋃

p∈P Cp. An initial configurationof A is of the form(sin, χε, v0) where
sin ∈

∏

p∈P S
p
in, χε(c) is the empty stringε for every channelc andv0(x) = 0

for everyx ∈ C.
The set of reachable configurations ofA, ConfA, is defined inductively in

the usual way, together with a transition relation=⇒ ⊆ ConfA× (Σ∪R≥0)×
ConfA. A move labelled byd ∈ R≥0 is a time elapsing move. All clocks
advance byd, but the local states of processes and the channel contents remain
unchanged. A move labelled bya ∈ Σ is a local transition taken by one of
processes. For each processp, the local state ofp determines the set of moves
available forp in the current configuration. Ifa = ip, only the state ofp
changes and the rest of the configuration is unchanged. Ifa = p!q(m), the
messagem is appended to the channel(p, q). An action of the formp?q(m)
is enabled only ifm is currently at the head of the channel(q, p). For a more
formal definition of the global transition relation, see [4].

Letprf(σ) denote the set of prefixes of a timed wordσ = (a1, t1)(a2, t2) . . .

(ak, tk) ∈ (Σ×R≥0)
∗. A run ofA overσ is a mapρ : prf(σ) → ConfA where

ρ(ε) is assigned an initial configuration(sin, χε, v0) and for eachσ′ · (ai, ti) ∈

prf(σ), ρ(σ′)
di=⇒

ai=⇒ ρ(σ′ · (ai, ti)) with ti = ti−1 + di andt0 = 0.
The runρ is completeif ρ(σ) = (s, χε, v) is a configuration in which all

channels are empty. When a run onσ is complete,σ is a timed linearization of
a timed MSC. We defineL(A) = {σ | A has a complete run overσ}. L(A)
corresponds to the set of timed linearizations of a collection of timed MSCs.

Figure 5 is a simple example of a timed MPA. Here, the traditional producer-
consumer system is augmented with a clockc in the producer process. The

Adding time to scenarios 9

Producer
c ≤ 2

c ≥ 1 ⇒ p!q(m), {c}

Consumer

q?p(m)

Figure 5. A timed MPA: producer-consumer

Producer Consumer

(p1, 0)

(p2, 1.5)

(p3, 3.4)

(p4, 4.4)

(c1, 0.7)

(c2, 1.5)

(c3, 3.6)

(c4, 5.0)

m

m

m

m

Figure 6. A timed MSC generated by the producer-consumer system.

constraintc ≥ 1 on the transition ensures that each new message is generated
by the producer at least one unit of time after the previous one. The location
invariantc ≤ 2 forces the producer to generate a new message no later than two
units of time after the previous one. The consumer has no timing constraints.
Figure 6 shows a typical timed MSC generated by this timed MPA.

4. Specifying timed scenarios

The standard method to describe multiple communication scenarios is to use
High-Level Message Sequence Charts (HMSCs). An HMSC is a finite directed
graph with designated initial and terminal vertices. Each vertex in an HMSC
is labelled by an MSC. The edges represent the natural operation of MSC con-
catenation. The collection of MSCs represented by an HMSC consists of all
those MSCs obtained by tracing a path in the HMSC from an initial vertex to a
terminal vertex, concatenating the MSCs that are encountered along the path.

In an HMSC, MSCs are concatenated asynchronously. This corresponds to
gluing together the process lines of consecutive MSCs. The implication is that
the boundaries between the individual MSCs along a path disappear, as a result
of which some processes could move ahead of others. If the asynchrony be-
tween processes is bounded, all channels remain universally bounded and the
specification is globally finite-state. Unfortunately, it is undecidable in gen-

10

eral whether an HMSC specification satisfies this property, though sufficient
structural conditions are known [7].

We propose a guarded command language inspired by Promela [8] to de-
scribe families of timed scenarios generated from basic timed templates. The
basic building blocks of the language are finite timed MSC templates, as de-
fined in Section 2.2. Statements are combined using sequential composition
(;), nondeterministic guarded choice (if...fi) and nondeterministic guarded
looping (do...od). We allow statements to be labelled, and permit labelled
breaks from within loops as well as explicit gotos.

Rather than providing a precise grammar describing the syntax, we explain
the notation through an example. Continuing with our ATM example, suppose
the ATM is programmed to ask for the user’s PIN after he has inserted the card.
If the user does not enter his PIN within a specified time limit, the ATM repeats
the request. At some point, nondeterministically, the ATM can also decide to
reject the card. Once the user does respond, there is a possibility that the PIN
is wrong. If so, the ATM swallows the card. If the PIN is correct, the user may
ask for his balance or may try to make a withdrawal. These scenarios can be
combined in our notation as follows, where some of the basic timed templates
used in the specification are shown in Figure 7.

L0:: Initiate;

L1:: do

[] NoPin

[] NoPin; RejectCard; goto L0

[] SwallowCard; goto L0

[] OKPin ; break L1

od;

if

[] BalanceEnquiry; goto L0

[] WithdrawCash; if

[] InsufficientFunds; goto L0

[] DispenseCash; goto L0

fi

fi

It is not difficult to see that our textual notation can be translated into a
graphical HMSC-like notation, provided we annotate edges in the HMSC,
rather than nodes, by basic timed MSC templates. Figure 8 shows the HMSC
corresponding to the current example.

Adding time to scenarios 11

User ATM Server

u1 a1

a2

a3

s1

s2

Initiate

(0, 2)

card
card-data
card-OK

User ATM

u2 (0, 3)
a4

a5

NoPin

pin-request
User ATM

u3 a6

RejectCard

reject-card

User ATM Server

u2

u3

u4

(0, 3)
a4

a5

a6

a7

a8

s3

s4

Swallow Card

pin-request
pin

verify-pin
pin-wrong

swallow-card

User ATM Server

u2

u3

u4

(0, 3)
a4

a5

a6

a7

a8

s3

s4

OKPin

pin-request
pin

verify-pin
pin-OK

menu

Figure 7. Some basic timed MSC templates used in the sample specification

12

L0 L1
Initiate OKPin

BalanceEnquiry

WithdrawCash

NoPin

SwallowCard

NoPinRejectCard

InsufficientFunds

DispenseCash

Figure 8. HMSC corresponding to the sample specification

5. Verification questions for timed scenarios

In the setting of timed MSC templates and timed MPAs, there are multiple
verification questions that one can address. We focus on two of them here.

5.1 Scenario matching

Given a timed MSC templateT and a timed MPAA, we ask whetherA ex-
hibits any timed scenario that is consistent withT . In other words, we would
like to check thatL(T) ∩ L(A) is nonempty. This question is natural in the
early stages of a specification, when scenarios are not expected to exhaustively
describe the system’s behaviour.

Sometimes, it is fruitful to describe forbidden scenarios as timed templates.
Let T be such anegativetemplate. We then want to check that a timed MPAA
doesnot exhibit a timed scenario consistent withT . In other words, we would
like L(T) ∩ L(A) to be empty.

The scenario matching problem for timed MSCs is more complicated than
the same problem for untimed MSCs in one obvious way. Even though a timed
template is defined with respect to a single underlying MSC, the set of timed
MSCs that satisfy a given template is in general infinite. Thus, even with
a single template, the matching problem comes down to one of comparing
infinite collections of (timed) MSCs.

5.2 Universality

As the specification evolves, it is expected that it more exactly describes the
desired behaviour. In an untimed setting, it would be natural at this stage to
demand that the behaviour of the implementation match the specification upto,
say, language equivalence. However, in a timed setting, we may have a specifi-
cation with generous time constraints to be compared with animplementation

Adding time to scenarios 13

that is more restrictive. Hence, the natural analogue of language equivalence
is to ask whether for every timed MSC template in the specification, there is
at least one timed behaviour in the implementation that is consistent with the
template. We refer to this problem asuniversality.

6. UsingUppaal for scenario verification

In [4], we present a framework for verifying properties of timed scenarios us-
ing Uppaal, a modelchecker for timed systems [2]. The framework in [4]
is designed to deal with finite sets of timed MSC templates, which can essen-
tially be handled one at a time. Here, we extend this framework to tackle with
specifications that encompass a possibly infinite set of scenarios.

Uppaal supports the analysis of networks of timed automata for timing
properties. Unfortunately,Uppaal does not have a direct way of modelling
asynchronous communication. We can simulate asynchronouscommunica-
tion by creating explicit buffer processes. Moreover, we can exploit the syn-
chronous communication paradigm built-in toUppaal to synchronize the sys-
tem with the specification at each communication action. This allows the sys-
tem to evolve only along trajectories that are consistent with the specification,
thus automatically restricting the behaviours of the composite system to those
that are of interest.

6.1 Modelling channels inUppaal

SinceUppaal has no notion of buffered communication, we construct an ex-
plicit buffer process for each channel between processes. Message passing is
simulated by a combination of shared memory and binary synchronization. Let
p andq be processes and letc be the channel betweenp andq. We create a sep-
arate processc which maintains, internally, an array of messagesMpq whose
size corresponds to the capacity ofc. This array is used byc as a circular buffer
to store the state of the channel. The processc maintains two pointers into the
array: the next free slot into whichp can write and the slot at the head of the
queue from whichq will next read a message.

The channelc shares two variablesspc andrcq with p andq, respectively.
These are used to transfer information about the actual message between the
processes and the channel. The channelc also uses two special actionsapc and
acq to synchronize withp andq, respectively. These synchronizations represent
the actual insertions and deletions of messages into and from the channel.

Whenp sends a messagem to q, it sets the shared variablespc to m and
synchronizes withc onapc. Whenc synchronizes withp, it copies the message
from spc into the array slot that currently corresponds to the end of the queue
and then moves the free slot pointer to the next position in the array.

14

Symmetrically, whenq wants to read a messagem from p, it sets the shared
variablercq tom and then synchronizes withc on actionacq. In c, this synchro-
nization is guarded by conditions that check that there is atleast one message
in the queue and that the message at the head of the queue matches the oneq
is looking for, as recorded in the shared variablercq.

6.2 Modelling channel delays

In an MPA, clocks are local and must be associated with a fixed process. How-
ever,Uppaal permits global clocks. To faithfully model channel delays,we
associate an array of clocks with each channel, one for each position in the
queue. With universally bounded channels, we can always assign a fresh clock
from this array to each new message sent on a channel that is initialized when
the message is sent. The receive action for this message is guarded by clock
constraints corresponding to the time bounds associated with the channel.

6.3 Modelling timed MSC specifications inUppaal

To verify a timed MSC specification, the first step is to convert the specification
into a timed MPA, preserving the language of timed MSCs of thespecification.

For a single timed MSC template, the communication structure of the MPA
is fixed and can be computed easily, using the FIFO property ofchannels.
We introduce a new local clock for each local timing constraint and add clock
constraints using these clocks to guard the actions of the MPA so that it respects
the timed template.

Since we can interpret a general timed MSC specification as anHMSC in
which edges are labelled by basic timed MSC templates, we construct an MPA
for each basic timed MSC template and connect these up using internal actions
and dummy states to reflect the overall structure of the corresponding HMSC.

The usual difficulty with this construction is to ensure thatall processes
follow consistent paths in the HMSC. For this, we add a monitor process that
tracks the path followed by each process in the system. We have to ensure
that the information maintained by the monitor process is bounded. As we
have observed earlier, with asynchronous concatenation, some processes may
be arbitrarily far ahead of others and the overall behaviourmay be non-regular.
We can ensure regularity by imposing structural restrictions on the HMSC [7].
Instead, we impose a bound on the number of live instances of each basic timed
MSC template in the system. This allows us to perform a form ofbounded
model-checking for arbitrary timed template specifications.

6.4 Scenario matching

We can now augment the system description inUppaal so that the evolution
of the system to be verified is controlled by the external template specification.

Adding time to scenarios 15

Recall that each action corresponding to sending or receiving a message by a
local process is broken up into two steps in theUppaal implementation, one
which sets the value of a shared variablespc and another which communicates
with the buffer process via a shared actionapc. We extend this sequence to
a third action,bpc, by which the system synchronizes with the specification.

A move of the forms
p!q(m)
=⇒ s′ in the original timed MPA now breaks up, in

theUppaal implementation, into a sequence of three movess
spc=m
=⇒ s1

apc

=⇒

s2
bpc
=⇒ s′. The third action,bpc synchronizes with the corresponding process

p in the timed MPA derived from the timed template that is beingverified.
Thus, the system can progress via this action only if it is consistent with the
constraints specified by the template.

Symmetrically, for a receive action of the forms
p?q(m)
=⇒ s′, theUppaal

implementation executes a sequence of the forms
rpc=m
=⇒ s1

ācp
=⇒ s2

b̄cp
=⇒ s′,

where, by convention, an actiona synchronizes with a matching actionā.
By construction, it now follows that the timed MSCs executedby the com-

posite system are those which are consistent with both the timed template and
with the underlying timed MPA being modelled inUppaal. Thus, we have
restricted the behaviour of the system toL(T) ∩ L(A), for a given timed tem-
plateT and a given timed MPAA. From this, it is a simple matter of invoking
theUppaal modelchecker to verify whether this set of behaviours is empty
and whether all behaviours in this set satisfy a given property. This answers
the scenario verification problems posed in the previous section.

6.5 Universality

Recall that universality is the property that the implementation exhibits at least
one timed behaviour consistent with each timed template generated by the
specification. In general, we do not know how to solve this problem. Instead,
we address a weaker version that we callcoverage.

We assume that the user provides a (finite) set of paths through the specifi-
cation that he would like to see exhibited in the implementation. In particular,
we can always ensure that we cover all the edges in the HMSC through such a
collection of paths. InUppaal, we can verify reachability properties written
in CTL. This includes formulas that assert that there existsa path along which
a sequence of state properties holds. By adding state labelsto theUppaal

implementation, we can mark when a basic timed MSC template is executed
by the composite system obtained by synchronizing the specification with the
implementation. Each path to be covered can then be described using an appro-
priate CTL formula of the form permitted byUppaal. The overall problem
then reduces to verifying a finite conjunction of such CTL formulas.

16

7. Discussion

Adding time to specifications of distributed systems appears to be a problem
of both practical and theoretical interest.

Augmenting scenarios with timing constraints allows us to specify and ver-
ify, more accurately, the interactions associated with typical protocol specifi-
cations. Timing constraints give rise to new variants of verification questions,
some of which we do not know how to tackle, such as universality.

Global time indirectly synchronizes processes, leading toundecidability—
for instance, boundedness of channels is undecidable even if we have only local
clocks [10]. It would be interesting to explore whether it ispossible to relax
the correlation the time across components without completely decoupling all
clocks and yet obtain some positive results.

Another interesting theoretical question is to explore therelationship be-
tween automata, logic and languages in a setting that incorporates both distri-
bution and time. A first step in this direction is the work reported in [12].

References
[1] R. Alur, G. Holzmann and D. Peled: An analyzer for messagesequence charts.Software

Concepts and Tools, 17(2) (1996) 70–77.

[2] G. Behrmann, A. Davida and K.G. Larsen: A Tutorial on Uppaal,Proc. SFM 2004, LNCS
3185, Springer-Verlag (2004) 200–236.

[3] J. Bengtsson and Wang Yi: Timed Automata: Semantics, Algorithms and Tools,Lectures
on Concurrency and Petri Nets 2003, LNCS3098, Springer-Verlag (2003) 87–124.

[4] P. Chandrasekaran and M. Mukund: Matching Scenarios with Timing ConstraintsProc.
FORMATS 2006, Springer LNCS 4202 (2006) 98–112.

[5] W. Damm and D. Harel: LSCs: Breathing life into message sequence charts.Formal
Methods in System Design19(1) (2001) 45–80.

[6] D. de Souza and M. Mukund: Checking consistency of SDL+MSC specifications,Proc.
SPIN Workshop 2003, LNCS2648, Springer-Verlag (2003) 151–165.

[7] J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni and P.S. Thiagarajan: A
Theory of Regular MSC Languages.Inf. Comp., 202(1)(2005) 1–38.

[8] G.J. Holzmann: The model checker SPIN,IEEE Trans. on Software Engineering, 23, 5
(1997) 279–295.

[9] ITU-T Recommendation Z.120:Message Sequence Chart (MSC). ITU, Geneva (1999).

[10] P. Krcal and Wang Yi: Communicating Timed Automata: TheMore Synchronous, the
More Difficult to Verify, CAV 2006, LNCS, Springer-Verlag (2006), to appear.

[11] A. Muscholl, D. Peled, and Z. Su: Deciding properties for message sequence charts.Proc.
FOSSACS’98, LNCS1378, Springer-Verlag (1998) 226–242.

[12] Akshay Sunderaraman,Formal Specification and Verification of Timed Com-
municating Systems, Master’s thesis, LSV, ENS Cachan (2006). Available at
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Akshay-M2.pdf

