ADDING TIME TO SCENARIOS *

Prakash Chandrasekaran and Madhavan Mukund
Chennai Mathematical Institute, Chennai, India

{prakash,madhavan}@cmi.ac.in

Abstract Message Sequence Charts (MSCs) are used to specify theidaghaf com-
municating systems through scenarios. Though timing caims$ are natural
for describing the behaviour of real-life protocols, thesibaViSC notation has
no mechanism to specify such constraints. We propose aiowfat specify-
ing collections of timed scenarios and describe a framevarkutomatic ver-
ification of scenario-based properties for communicatingeistate machines
equipped with local clocks.

1. Introduction

In a distributed system, several agents interact with edobrdo generate a
global behaviour. The interaction between these agenwsuislly described in
terms of scenarios, using message sequence charts (M3Cs) [9

We extend scenarios to incorporate timing constraintdciyig timed MSC
templates. These templates are built from fixed underlyir8Cd by associ-
ating a lower and upper bound on the time interval betweetaicepairs of
events. Timed MSC templates are a natural and useful ertedithe un-
timed notation for scenarios, because protocol specificatiypically include
timing requirements for message exchanges, as well asiptésts of how to
recover from timeouts.

We propose a simple specification language based on guaodechands,
along the lines of Promela [8], for generating collectiofisimed MSC tem-
plates. The semantics of this language is given in terms efgian of HMSCs
(high-level MSCs) [7], with annotations attached to edgekar than nodes.

Our aim is to verify properties of timed systems with resgedtmed MSC
template specifications. Our basic system model consist®rmimunicating
finite-state machines equipped with local clocks. Clockst@ints are used to
guard transitions and specify location invariants, as ireomodels of timed

*Partially supported byimed-DISCOVERIa project under the Indo-French Networking Programme.

2

automata [3]. Just as the runs of timed automata can be deddr terms
of timed words, the interactions exhibited by communiaafiimite-state ma-
chines with clocks can be described using timed MSCs.

Specifications in terms of scenarios give rise to severairabverification
problems. At preliminary stages of system design, scerséifications are
typically incomplete and can be classified into two categmripositive and
negative. Positive scenarios are those that the systensigndel to execute—
for instance, these may describe a handshaking protocattapsa reliable
communication channel between two hosts on a network. Negstenarios
indicate undesirable behaviours, such as a situation wb#nhosts indepen-
dently initiate a handshake, leading to a collision. Thalkto the following
verification problem: given a distributed system and a pasitor negative)
scenario, does the system exhibit (or avoid) the scenario?

In general, a timed MSC template is compatible with infiyitelany timed
MSCs. This makes the scenario matching problem more coateticthan
in the untimed case, where a single scenario describeshexad pattern of
interaction. In our setting, the scenario matching prokdenounts to checking
whether the intersection of two collections of timed MSCsasempty.

As the design of a system evolves, the interpretation of astebased
specification also changes. The specification is now tylgicaen as an ex-
haustive description of how the system should behave. Usaliey then be-
comes an important condition to check—does the implemientaxhibit a
representative behaviour consistent with each of the titeetplates in the
specification? Once again, the complication is that eacbditemplate in the
specification is compatible with an infinite set of timed bgbars. Moreover,
we also have an infinite set of timed templates to verify.

We propose an approach to tackle these verification problesitg) the
modelchecking tooUprraAL, which is designed to verify properties of timed
systems. This paper extends the work reported in [4], whereomly con-
sider finite sets of timed templates. Since the basic systedehof UppPAAL
uses synchronous handshakes, rather than message-passitegd to encode
message-passing channels by creating special processesiab buffers. Ex-
ploiting the handshake mechanismlimpA AL, we can synchronize the system
with the specification. This allows us to transform our vedfion questions
into properties folUpPrPAAL to verify on the composite system.

In the untimed setting, efficient algorithms for the scemaniatching prob-
lem have been identified in [11]. An approach to solve thidjmm using the
modelchecke6priN was proposed in [6].

Adding timing constraints to individual scenarios has bpposed in [1],
where an algorithm is given to check whether such a set ohgmonstraints
in consistent. At the level of sets of scenarios, likie sequence chart (LSC)
formalism [5] allows adding interval constraints similarthose we consider.

Adding time to scenarios 3

One important difference is that the semantics of LSCs assisynchronous
composition of scenarios—all processes are assumed to together from
one scenario to the next. We retain the usual asynchronowsrgies for MSC
composition, which is more natural from the point of viewmmfilementations.
The paper is organized as follows. In the next two sectiores fomally
define timed MSCs and timed message-passing automata. fiors5d¢ we
propose a new notation for specifying timed scenarios. émixt section, we
describe some verification problems for scenario basedfgations. In Sec-
tion 6, we describe our approach to address verificationl@nabfor scenario-
based specifications usingprraaL. We conclude with a brief discussion.

2. Timed MSCs
2.1 Message sequence charts

Let? = {p,q,r,...} be afinite set of processes (agents) that communicate
with each other through messages via reliable FIFO chamsetg a finite set

of message types1. Forp € P, let A, = {plg(m),p?q(m) | p # q €
P,m € M} be the set of communication actions in whicparticipates. The
actionplg(m) is read a®p sends the message to ¢ and the actiop?q(m) is

read ag receives the message from ¢. The set of actions thatperforms is
given byY, = A, U {i,}, wherei, is a local action op. We will use local
actions to describe timeouts. We et= |, .» ¥,. We also denote the set of

channelsby Ch = {(p,q) | p # q}-

Labelled posets A X-labelled poset is a structut®/ = (E,<,\) where
(E,<)is a poset and\ : £ — X is a labelling function. Foe € E, let
le={e|e <e}.

Forp € Panda € X, we setE), = {e | A(e) € £,} andE, = {e | A(e) =
a}, respectively. For eactp, ¢) € Ch, we define the relatior,, as follows:

peEP

e<pg€ <<= Ae)=plg(m), A\(') = ¢?p(m)and
|l€ N Ep!q(m)| = |l€/ N Eq?p(m)|
Therelatiore <,, ¢’ says that channels are FIFO with respect to each message—
if e <,q €, the message: read byg ate’ is the one sent by ate.

Finally, for eachp € P, we define the relatior ,,= (£, x E,) N <, with
<yp Standing for the largest irreflexive subsetgf,.

DEFINITION 1 An MSC (ovefP) is afinite 3-labelled poset\/ = (E, <,\)
that satisfies the following conditions.

(i) Each relation<,, is a linear order.

(i) If p # g then for eachm € M, |Ep)| = [Eg2pim) |-

p q r
e | ey
el s el M2 | e

Figure 1. An MSC over{p,q,r}.

(iii) If e <pq €', then|len (UmEM Ep!q(m)) | =1[le'N (Ume/vl Eq?p(m)) |

(iv) The partial order< is the reflexive, transitive closure of the relation
Up,qE'P <pg-

The second condition ensures that every message sent alcmgnael is
received. The third condition says that every channel i€©OFIF

In diagrams, the events of an MSC are presenteadsunal order The events
of each process are arranged in a vertical line and messegessplayed as
horizontal or downward-sloping directed edges. Figure dwshan example
with three processefp, ¢, 7} and seven event&, e}, e/, e, €}, e3, €4} cor-
responding to three messages+—from p to ¢, mo from ¢ to » andmg from p
to r—and one local event o, €] .

Foran MSCM = (E, <,)\), we letlin(M) = {\(r) | 7 is a linearization
of (E, <)}. Forinstancep!q(mi) ¢?p(m1) q'r(m2) i, plr(ms) r7q(ms) r7p(ms)
is one linearization of the MSC in Figure 1.

2.2 Timed MSC templates

A timed MSC template is an MSC annotated with time intervatsMeen pairs
of events along a process line. For instance, consider theittion between a
user, an ATM and a server depicted in Figure 2. This MSC hdeeatixevents
generated by eight messages. The evenndus are linked by a time interval
(0,2), as are the events andss. These time intervals represent constraints on
the delay between the occurrences of the events. Thusgethjddte specifies
that the server is expected to respond to a request to aigttenan ATM card
within 2 units of time. Similarly, a user has to type in his RiRhin 3 units of
time of the ATM requesting the PIN.

Figure 3 shows an alternative scenario in which the user doesupply
the PIN within the specified time limit, leading to the ATMeejing the card.
Notice that the timeout event is modelled as a local evenhe® T M process.

Adding time to scenarios 5

User ATM Server
u card J ay
as card-data sy
4, L._card-OK | 1(0,2)
" pin-reques? a
(0.3} [pn "
3 a 5verify-pin 5
6 pin-OK 3
a7 S4
” menu ag

Figure 2. Atimed MSC template describing interaction with an ATM.

User ATM Server
u card J ay

as card-data sy

4, L card-OK | 1(0,2)
" pin-reques% a
T 1(0,3)

. ¢ a5
reject-card

us Qg

Figure 3. The user’s PIN message times out.

We assume that time intervals are bounded by natural numBepsir of
time points(m,n), m,n € N, m < n, denotes the time intervdl: € R>¢ |
m <z <n}lt

DEFINITION 2 Let M = (E,<,\) be an MSC. Annterval constrainis a
tuple ((e1, e2), (t1,t2)), where:

m ep,ex € Ewithey <)) €9 0r e <, €2 for somep, g € P.
m {y,l0 € Nwith ¢; < ts.

The restriction on the relationship betwegrandes; ensures that an interval
constraint is either local to a process or describes theydelagansmitting a
single message.

1For simplicity, we restrict ourselves to closed timed iwéds in this paper. We can easily generalize our
approach to include open and half-open time intervals.

User ATM Server
(u1,0) card (ar,0)
(as, 1) card-data (s1,1)
pin req(ucgs’tél) B (52,2.3)
ug, 4.1 ag,4
() oin (as,4)
(U3,6.1) (a576'2.?y .
verity-pin
ae, 7 53, 8.3
() pin-OK ()
(CL7, 11.5) * (84, 10)
(ug,12.1) menu (as,12)

Figure 4. Atimed MSC instance describing interaction with an ATM.

DEFINITION 3 A timed MSC templatds pair 7 = (M,Z) where M =
(E,<,\)isanMSCand C (ExE)x(NxN) is aset of interval constraints.

2.3 Timed MSCs

In atimed MSC, events are explicitly time-stamped so thaittdering on the
time-stamps respects the partial order on the events.

DEFINITION 4 Atimed MSCis pair (M, 7) whereM = (E, <, \) isan MSC
andt : E — R>(assigns a nonnegative time-stamp to each event, such that
forall e;,es € E,if e < ey thent(er) < 7(e2).

A timed MSC satisfies a timed MSC template if the time-stamgsigned
to events respect the interval constraints specified incimplate.

DEFINITION 5 LetM = (E,<,\) bean MSC7 = (M, T) atimed template
and M, = (M,) atimed MSCAM is said tosatisfy7 if the following holds

For each ((e1, e2), (t1,t2)) € Z,t1 < 7(ez) — 7(e1) < ta.

DEFINITION 6 Let7 be atimed MSC template. We denotell§f") the set
of timed MSCs that satisfy.

Figure 4 shows a timed MSC that satisfies the template in Eigur

Let M, = (M,) be atimed MSC, wherd/ = (E,<,\), and letr =
eoel - - - ey be alinearization of £, <). By labelling each event with its times-
tamp, this linearization gives rise to a timed linearizafiey, 7(eg))(e1, 7(e1))

Adding time to scenarios 7

- (en,7(en)). As is the case with untimed MSCs, under the FIFO assump-
tion for channels, a timed MSC can be faithfully reconskdcfrom any one
of its timed linearizations.

3. Timed Message-Passing Automata

Message-passing automata are a natural machine modelferageg MSCs.
We extend the definition used in [7] to include local clockseath process
and time-bounds on the channels.

DEeFINITION 7 LetC denote a finite-set of real-valued variables caltdocks

A clock constraints a conjunctive formula of the form~ n or x —y ~ n for
z,y € C,n € Nand~ € {<,<,=,>,>}. Let®(C) denote the set of clock
constraints over the set of clocks

Clock constraints will be used as guards and location iawési in timed
message-passing automata.

DEeFINITION 8 A clock assignmerfor a set of clockg is a functionv : C —
R> that assigns a nonnegative real value to each clodak.in

A clock assignment is said tosatisfya clock constrainty if ¢ evaluates
to true when we substitute for each clacknentioned inp the corresponding
valuev(c).

DEeFINITION 9 Atimed message-passing automaton (timed MRAYY is a
structure A = ({Ap}pep, X, B). Each component4, is of the form
(Sp, St..Cp, —p, 1)), where:

in’
= S, is afinite set op-local states.

m SP C S, isasetof initial states fop.

= (,is aset of local clocks fop.

m —, C S, x®(C,) x %, x 2% x S, is thep-local transition relation.

s [,: S — ®(C,) assigns annvariantto each state.

The function5 : (P x P) — (N x N) associates with each channel a lower
and an upper bound on the transmission time of messages bohaanel.

The local transition relatior-, specifies how the procegschanges state
when it performs internal events or sends and receives gessa

A transition of the form(s, ¢, a, X, s') says that in state, p can perform
the actiona and move to state’. This transition isguardedby the clock
constraintp—the transition is enabled only when the current valuesldhal

8

clocks satisfyp. The setX specifies the clocks whose values are reset to 0
when this transition is taken. {f is of the formi,, this transition corresponds
to performing a local event op. If a = plqg(m), then this transition involves
sending a message from p to q. Symmetrically, ifa = p?q(m), then this
transition involves receiving a message from toq.

A process can remain in a stat@nly if the current values of all the clocks
satisfy the invariani (s). To make our model amenable for automated verifica-
tion, we restrict location invariants to constraints that downward closed—
that is, constraints of the form < n or x < n, wherex is a clock and: € N.

As is customary with timed automata, we allow timed MPA tofpen
two types of moves: moves where the automaton does not claateand
time elapses, and moves where some local compgnehanges state instan-
taneously as permitted by:,,.

A global state ofA is an element of [., S,. For a global stats, 5,
denotes theth component of. A configurationis a triple (s, x, v) wheres
is a global statey : Ch — M* is thechannel statalescribing the message
queue in each channelandv : ¢ — Rx(is a clock assignment, where
C= Up673 Cp. An initial configurationof A is of the form(s;,,, x., vo) where
Sin € [1pep Sin» x=(c) is the empty string for every channet anduvy(z) = 0
for everyz € C.

The set of reachable configurations.&f Conf,, is defined inductively in
the usual way, together with a transition relaties> C Conf4 x (X UR>) x
Conf. A move labelled byd € R>(is a time elapsing move. All clocks
advance by, but the local states of processes and the channel conéenésrr
unchanged. A move labelled ky € ¥ is a local transition taken by one of
processes. For each processhe local state o determines the set of moves
available forp in the current configuration. & = 4,, only the state op
changes and the rest of the configuration is unchanged. = plq(m), the
messagen is appended to the channgl, ¢). An action of the formp?q(m)
is enabled only ifn is currently at the head of the chanriel p). For a more
formal definition of the global transition relation, see.[4]

Letprf(o) denote the set of prefixes of a timed were= (a1, t1)(asg,t2) . ..
(ak, tr) € (XxR>p)*. Arun of Aovero isamaypp : prf(c) — Conf4 where
p(e) is assigned an initial configuratid®;,,, x-, vo) and for eaclv’ - (a;, t;) €
prf(c), p(o’) <Es=% p(o” - (a;,1;)) With t; = t;_y + d; andty = 0.

The runp is completeif p(o) = (s, xe,v) is a configuration in which all
channels are empty. When a run®@is completeg is a timed linearization of
a timed MSC. We definé.(A) = {o | A has a complete run ovet}. L(A)
corresponds to the set of timed linearizations of a cotbectf timed MSCs.

Figure 5 is a simple example of a timed MPA. Here, the tradéigroducer-
consumer system is augmented with a cledk the producer process. The

Adding time to scenarios 9

c>1=plg(m),{c} q?p(m)
c<?2

Figure 5. Atimed MPA: producer-consumer

Producer Consumer
(p1,0) m (c1,0.7)
(p2,1.5) a (c2,1.5)
(p3,3.4) m (c3,3.6)
(pa,4.4) m (c4,5.0)

Figure 6. A timed MSC generated by the producer-consumer system.

constraintc > 1 on the transition ensures that each new message is generated
by the producer at least one unit of time after the previows drhe location
invariantc < 2 forces the producer to generate a new message no later than tw
units of time after the previous one. The consumer has namgroonstraints.
Figure 6 shows a typical timed MSC generated by this timed MPA

4. Specifying timed scenarios

The standard method to describe multiple communicationasaes is to use
High-Level Message Sequence Charts (HMSCs). An HMSC iste filiected
graph with designated initial and terminal vertices. Eaehiex in an HMSC
is labelled by an MSC. The edges represent the natural ipeEtMSC con-
catenation. The collection of MSCs represented by an HMSGists of all
those MSCs obtained by tracing a path in the HMSC from arainigrtex to a
terminal vertex, concatenating the MSCs that are enccesht@iong the path.
In an HMSC, MSCs are concatenated asynchronously. Thisgmonds to
gluing together the process lines of consecutive MSCs. mipdication is that
the boundaries between the individual MSCs along a patlpplésa, as a result
of which some processes could move ahead of others. If thechsyny be-
tween processes is bounded, all channels remain univetsalinded and the
specification is globally finite-state. Unfortunately, stundecidable in gen-

10

eral whether an HMSC specification satisfies this propentyugh sufficient
structural conditions are known [7].

We propose a guarded command language inspired by Pronjdla d@-
scribe families of timed scenarios generated from basieditemplates. The
basic building blocks of the language are finite timed MSCgietes, as de-
fined in Section 2.2. Statements are combined using seqlentinposition
(;), nondeterministic guarded choicef(. . . £i) and nondeterministic guarded
looping @do. ..od). We allow statements to be labelled, and permit labelled
breaks from within loops as well as explicit gotos.

Rather than providing a precise grammar describing theagymie explain
the notation through an example. Continuing with our ATMregée, suppose
the ATM is programmed to ask for the user’s PIN after he haarted the card.
If the user does not enter his PIN within a specified time lithie ATM repeats
the request. At some point, nondeterministically, the ATah @lso decide to
reject the card. Once the user does respond, there is a iligssilat the PIN
is wrong. If so, the ATM swallows the card. If the PIN is cotrdbe user may
ask for his balance or may try to make a withdrawal. Thesea@ncan be
combined in our notation as follows, where some of the basied templates
used in the specification are shown in Figure 7.

LO:: Initiate;
Li:: do
[] NoPin

[] NoPin; RejectCard; goto LO

[] SwallowCard; goto LO

[] OKPin ; break L1

od;

if

[] BalanceEnquiry; goto LO

[] WithdrawCash; if
[] InsufficientFunds; goto LO
[] DispenseCash; goto LO
fi

fi

It is not difficult to see that our textual notation can be $lated into a
graphical HMSC-like notation, provided we annotate edgeshe HMSC,
rather than nodes, by basic timed MSC templates. Figure8stite HMSC
corresponding to the current example.

Adding time to scenarios

User ATM Server
u card a
as card-data sy
- 2
4y l.__card-OK 321(07)
Initiate
User ATM User ATM
pin-request reject-card
a41v‘(0,3) u3 J ag
as
NoPin RejectCard
User ATM Server
pin-request
(0,3)1”2 pin a4
us > a5v . .
“ erify-pin s
6 pin-wrong 3
ar S4
wy swallow-card ag
Swallow Card
User ATM Server
pin-request
(0,3)152 ~ pin 24
3 “ 5verify—pin s
6 pin-OK 3
ar S4
wy menu ag
OKPin

Figure 7.

Some basic timed MSC templates used in the sample spedificati

12

InsufficientFunds

BalanceEnquiry

SwallowCard

Initiate L1

RejectCard l' NoPin

Figure 8. HMSC corresponding to the sample specification

WithdrawCash

DispenseCash

5. Verification questions for timed scenarios

In the setting of timed MSC templates and timed MPAs, theeeraultiple
verification questions that one can address. We focus onfitiem here.

5.1 Scenario matching

Given a timed MSC templaté and a timed MPAA, we ask whetherd ex-
hibits any timed scenario that is consistent with In other words, we would
like to check thatZ(7) N L(A) is nonempty. This question is natural in the
early stages of a specification, when scenarios are not egparexhaustively
describe the system’s behaviour.

Sometimes, it is fruitful to describe forbidden scenarissimed templates.
Let7 be such anegativetemplate. We then want to check that a timed MRA
doesnot exhibit a timed scenario consistent with In other words, we would
like L(7T) N L(A) to be empty.

The scenario matching problem for timed MSCs is more coraf@it than
the same problem for untimed MSCs in one obvious way. Evamgha timed
template is defined with respect to a single underlying M&€ set of timed
MSCs that satisfy a given template is in general infinite. S heven with
a single template, the matching problem comes down to onemiaring
infinite collections of (timed) MSCs.

5.2 Universality

As the specification evolves, it is expected that it more tatescribes the
desired behaviour. In an untimed setting, it would be n&tatrshis stage to
demand that the behaviour of the implementation match theifspation upto,
say, language equivalence. However, in a timed setting, ayehave a specifi-
cation with generous time constraints to be compared witimghementation

Adding time to scenarios 13

that is more restrictive. Hence, the natural analogue ajuage equivalence
is to ask whether for every timed MSC template in the spetifinathere is

at least one timed behaviour in the implementation that isistent with the

template. We refer to this problem asiversality

6. UsingUppraAaL for scenario verification

In [4], we present a framework for verifying properties ohéd scenarios us-
ing UppPAAL, a modelchecker for timed systems [2]. The framework in [4]
is designed to deal with finite sets of timed MSC templatesclwban essen-
tially be handled one at a time. Here, we extend this framkwmwtackle with
specifications that encompass a possibly infinite set ofestEn

UpPAAL supports the analysis of networks of timed automata forngmi
properties. UnfortunatelylJprpaAL does not have a direct way of modelling
asynchronous communication. We can simulate asynchrooousnunica-
tion by creating explicit buffer processes. Moreover, we eaploit the syn-
chronous communication paradigm built-inli@pA A1 to synchronize the sys-
tem with the specification at each communication actions Bliows the sys-
tem to evolve only along trajectories that are consisteth thie specification,
thus automatically restricting the behaviours of the cositpassystem to those
that are of interest.

6.1 Modelling channels inUpraAAL

SinceUprraAL has no notion of buffered communication, we construct an ex-
plicit buffer process for each channel between processessdje passing is
simulated by a combination of shared memory and binary spmitation. Let

p andq be processes and lebe the channel betwegrandq. We create a sep-
arate process which maintains, internally, an array of messagés, whose
size corresponds to the capacitycofThis array is used byas a circular buffer

to store the state of the channel. The proeessintains two pointers into the
array: the next free slot into whighcan write and the slot at the head of the
gueue from whichy will next read a message.

The channet shares two variables,. andr., with p andg, respectively.
These are used to transfer information about the actualagedsetween the
processes and the channel. The chaniado uses two special actioas. and
a4 10 synchronize wittp andg, respectively. These synchronizations represent
the actual insertions and deletions of messages into andtfre channel.

Whenp sends a message to g, it sets the shared variablg,. to m and
synchronizes witle ona,.. Whenc synchronizes witlp, it copies the message
from s, into the array slot that currently corresponds to the endefiLeue
and then moves the free slot pointer to the next positioneratinay.

14

Symmetrically, whery wants to read a messagefrom p, it sets the shared
variabler., tom and then synchronizes witton actiona,,. In ¢, this synchro-
nization is guarded by conditions that check that there isagt one message
in the queue and that the message at the head of the queueemttetoney
is looking for, as recorded in the shared variablg

6.2 Modelling channel delays

In an MPA, clocks are local and must be associated with a fixechss. How-
ever, UppPAAL permits global clocks. To faithfully model channel delays

associate an array of clocks with each channel, one for easitign in the
gueue. With universally bounded channels, we can alwaygraadresh clock
from this array to each new message sent on a channel th&tatized when
the message is sent. The receive action for this messagairideglby clock
constraints corresponding to the time bounds associatiéctiva channel.

6.3 Modelling timed MSC specifications inUPPAAL

To verify atimed MSC specification, the first step is to cohtlee specification
into a timed MPA, preserving the language of timed MSCs ofttexification.

For a single timed MSC template, the communication strectfithe MPA
is fixed and can be computed easily, using the FIFO propertyhafnels.
We introduce a new local clock for each local timing constraind add clock
constraints using these clocks to guard the actions of th& $dPhat it respects
the timed template.

Since we can interpret a general timed MSC specification a8MSC in
which edges are labelled by basic timed MSC templates, wsticat an MPA
for each basic timed MSC template and connect these up ugiegal actions
and dummy states to reflect the overall structure of the sparding HMSC.

The usual difficulty with this construction is to ensure tldltprocesses
follow consistent paths in the HMSC. For this, we add a marptocess that
tracks the path followed by each process in the system. We twaensure
that the information maintained by the monitor process isrided. As we
have observed earlier, with asynchronous concatenatione grocesses may
be arbitrarily far ahead of others and the overall behavoay be non-regular.
We can ensure regularity by imposing structural restmgion the HMSC [7].
Instead, we impose a bound on the number of live instancescofleasic timed
MSC template in the system. This allows us to perform a fornbainded
model-checking for arbitrary timed template specification

6.4 Scenario matching

We can now augment the system descriptio/#PAAL so that the evolution
of the system to be verified is controlled by the external fatepspecification.

Adding time to scenarios 15

Recall that each action corresponding to sending or raugi@imessage by a
local process is broken up into two steps in thepaar. implementation, one
which sets the value of a shared variablgand another which communicates
with the buffer process via a shared actiop. We extend this sequence to
a third action,b,., by which the system synchronizes with the specification.

A move of the forms pﬁg) s’ in the original timed MPA now breaks up, in

. . . Spe=m Q
the UppAAL implementation, into a sequence of three move$= s; ==

S92 b:”> s'. The third actionp,. synchronizes with the corresponding process
p in the timed MPA derived from the timed template that is bewusgified.
Thus, the system can progress via this action only if it issigiant with the
constraints specified by the template.

?q(m)

Symmetrically, for a receive action of the form”==%" ', the UPPAAL

implementation executes a sequence of the forE=y" s; —2 sy & ¢,
where, by convention, an actiensynchronizes with a matching actian

By construction, it now follows that the timed MSCs execubgdhe com-
posite system are those which are consistent with bothniedtiemplate and
with the underlying timed MPA being modelled TippaAL. Thus, we have
restricted the behaviour of the systemZtZ) N L(.A), for a given timed tem-
plate7 and a given timed MPAA4. From this, it is a simple matter of invoking
the UppaAL modelchecker to verify whether this set of behaviours istgmp
and whether all behaviours in this set satisfy a given ptypérhis answers
the scenario verification problems posed in the previousosec

6.5 Universality

Recall that universality is the property that the implenaéioh exhibits at least
one timed behaviour consistent with each timed templatergéed by the
specification. In general, we do not know how to solve thidfm. Instead,
we address a weaker version that we callerage

We assume that the user provides a (finite) set of paths thrihegspecifi-
cation that he would like to see exhibited in the implemeotatin particular,
we can always ensure that we cover all the edges in the HMS@gdhrsuch a
collection of paths. IMJpprAAL, we can verify reachability properties written
in CTL. This includes formulas that assert that there exagiath along which
a sequence of state properties holds. By adding state |&hbéie UppPAaAL
implementation, we can mark when a basic timed MSC temptagxécuted
by the composite system obtained by synchronizing the Sp&idn with the
implementation. Each path to be covered can then be dedar#ieg an appro-
priate CTL formula of the form permitted byppaAL. The overall problem
then reduces to verifying a finite conjunction of such CTlnfotas.

16

7. Discussion

Adding time to specifications of distributed systems appéarmbe a problem
of both practical and theoretical interest.

Augmenting scenarios with timing constraints allows uspecify and ver-
ify, more accurately, the interactions associated withicglpprotocol specifi-
cations. Timing constraints give rise to new variants offigtion questions,
some of which we do not know how to tackle, such as univeysalit

Global time indirectly synchronizes processes, leadingniecidability—
for instance, boundedness of channels is undecidable fewerhave only local
clocks [10]. It would be interesting to explore whether ipisssible to relax
the correlation the time across components without coralgietecoupling all
clocks and yet obtain some positive results.

Another interesting theoretical question is to explore rdlationship be-
tween automata, logic and languages in a setting that incags both distri-
bution and time. A first step in this direction is the work reted in [12].

References

[1] R. Alur, G. Holzmann and D. Peled: An analyzer for messsgguence chartSoftware
Concepts and Toold.7(2) (1996) 70-77.
[2] G.Behrmann, A. Davida and K.G. Larsen: A Tutorial on Ugh&roc. SFM 2004LNCS
3185 Springer-Verlag (2004) 200-236.
[3] J.Bengtsson and Wang Yi: Timed Automata: SemanticspAflams and Toolsl,.ectures
on Concurrency and Petri Nets 2003NCS 3098 Springer-Verlag (2003) 87—-124.
[4] P. Chandrasekaran and M. Mukund: Matching Scenariols Wiining Constraint$roc.
FORMATS 2006Springer LNCS 4202 (2006) 98-112.
[5] W. Damm and D. Harel: LSCs: Breathing life into messagguseice charts.Formal
Methods in System Desid®(1) (2001) 45-80.
[6] D.de Souza and M. Mukund: Checking consistency of SDL-tM$ecificationsProc.
SPIN Workshop 2003.NCS 2648 Springer-Verlag (2003) 151-165.
[7] J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohondd®S. Thiagarajan: A
Theory of Regular MSC Languagédsf. Comp, 202(1)(2005) 1-38.
[8] G.J. Holzmann: The model checker SPIREE Trans. on Software Engineering3, 5
(1997) 279-295.
[9] ITU-T Recommendation Z.120essage Sequence Chart (MSI)J, Geneva (1999).
[10] P. Krcal and Wang Yi: Communicating Timed Automata: TWere Synchronous, the
More Difficult to Verify, CAV 2006 LNCS, Springer-Verlag (2006), to appear.
[11] A.Muscholl, D. Peled, and Z. Su: Deciding propertiesrfiessage sequence chaRsoc.
FOSSACS'98_.NCS 1378 Springer-Verlag (1998) 226-242.
[12] Akshay SunderaramanfFormal Specification and Verification of Timed Com-
municating SystemsMaster's thesis, LSV, ENS Cachan (2006). Available at
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/Akshay-M2.pdf

