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Abstra
t

Labelled transition systems 
an be extended to faithfully model 
on
urren
y

by permitting transitions between states to be labelled by a 
olle
tion of a
tions,

denoting a 
on
urrent step. We 
an 
hara
terize a sub
lass of these step transi-

tion systems, 
alled PN-transition systems, whi
h des
ribe the behaviour of Petri

nets. This 
orresponden
e is formally des
ribed in terms of a 
ore
e
tion between

a 
ategory of PN-transition systems and a 
ategory of Petri nets.

In this paper, we show that we 
an de�ne sub
ategories of PN-transition systems

whose obje
ts are safe PN-transition systems and elementary PN-transition systems

su
h that there is a 
ore
e
tion between these sub
ategories and sub
ategories of

our 
ategory of Petri nets 
orresponding to safe nets and elementary net systems.

We also prove that our 
ategory of elementary PN-transition systems is equiva-

lent to the 
ategory of (sequential) elementary transition systems de�ned by Nielsen,

Rozenberg and Thiagarajan, thereby establishing that the 
on
urrent behaviour of

an elementary net system 
an be 
ompletely re
overed from a des
ription of its

sequential behaviour.

Finally, we establish a 
ore
e
tion between our 
ategory of safe PN-transition

systems and a sub
ategory of asyn
hronous transition systems whi
h has been

shown by Winskel and Nielsen to be 
losely linked to safe nets.
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1 Introdu
tion

Labelled transition systems provide a simple and 
onvenient framework for abstra
tly

des
ribing the behaviour of 
omputing systems. Their main short
oming from the point

of view of des
ribing 
on
urrent systems is that they are inherently sequential in nature.

We 
an over
ome this limitation by adding some stru
ture to transition systems. One

way of doing this is to permit transitions to be labelled by steps, 
onsisting of more than

one a
tion [5, 9℄. This step transition relation is intended to be read as des
ribing how the

system evolves from one state to another by performing (multi)sets of 
on
urrent a
tions.

In [9℄, we have shown a 
lose 
orresponden
e between a 
lass of step transition systems,


alled PN-transition systems, and Petri nets [14℄. The relationship is des
ribed in terms

of a 
ore
e
tion between a 
ategory of PN-transition systems, 
alled PNts, and a 
ategory

of Petri nets, 
alled PNet , where the morphisms in the two 
ategories 
orrespond to a

notion of one system simulating another. This 
ore
e
tion shows that we 
an regard PN-

transition systems as a model whi
h 
aptures pre
isely the 
lass of 
on
urrent behaviours

des
ribed by Petri nets, while abstra
ting away from the stru
tural information asso
iated

with nets.

In this paper, we de�ne sub
ategories of PNts whi
h 
orrespond to some interesting


lasses of behaviours and relate these sub
lasses of PN-transition systems to other models

of 
on
urrent systems. In parti
ular, we show that we 
an identify natural sub
lasses of

PN-transition systems whi
h 
orrespond to two widely studied 
lasses of nets, safe nets

and elementary net systems.

The �rst observation we make in this paper is that the 
hoi
e of using sequential or

step transition systems to des
ribe Petri nets depends on how detailed a des
ription one

wants of system behaviour. It turns out that we 
an 
hara
terize in a pre
ise way the

sequential transition systems 
orreponding to Petri nets in terms of a 
ore
e
tion between

the full sub
ategory of PNts whose obje
ts are sequential PN-transition systems and the


ategory PNet of Petri nets.

Next, we turn to the question of representing the behaviour of safe nets in terms of

step transition systems. Petri nets are a very general model for des
ribing 
on
urrent

systems. To obtain a tra
table theory of their behaviour, one often looks at a restri
ted


lass of nets 
alled safe nets. Safe nets are very \well-behaved" and have given rise to a

ri
h theory. In parti
ular, we note that there are strong 
onne
tions between the theory

of safe nets, tra
e languages [7℄ and event stru
tures [11, 17℄.

To identify a sub
ategory of PNts 
orresponding to safe nets, we further re�ne the


on
ept of a region. Regions play a key role in establishing the 
ore
e
tion between PNts

and PNet . They were originally de�ned in the 
ontext of sequential transition systems

by Ehrenfeu
ht and Rozenberg [3℄ as a transition system 
ounterpart of the notion of

a 
ondition in an elementary net system. Using regions, they 
hara
terized the 
lass of

sequential transition systems whi
h represent the behaviour of elementary net systems.

To de�ne PN-transition systems, the notion of a region is generalized in [9℄ to 
apture

the transition system 
ounterpart of a pla
e of a Petri net. Here, we show that we 
an

\tune" the notion of a region to identify a full sub
ategory SPNts of safe PN-transition

systems so that there is a 
ore
e
tion between SPNts the full sub
ategory SNet of PNet

whose obje
ts are safe nets.

We then turn our attention to elementary net systems. In [12℄, Nielsen, Rozenberg and

Thiagarajan exploit the regions de�ned in [3℄ to establish a 
ore
e
tion between a 
lass

1



of sequential transition systems 
alled elementary transition systems and elementary net

systems. Here we show how to des
ribe a full sub
ategory of elementary PN-transition sys-

tems whi
h is equivalent to the 
ategory of elementary transition systems de�ned in [12℄.

This equivalen
e provides an alternative proof of the result, established by Hoogeboom

and Rozenberg [4℄, that for elementary net systems, no information about 
on
urren
y is

lost by restri
ting one's attention to sequential transition systems.

Enri
hing the transition relation to in
lude steps as labels is not the only way of

introdu
ing additional stru
ture into transition systems to faithfully des
ribe 
on
urren
y.

Another possibility is to retain a sequential transition relation, and add a relation whi
h

expli
itly spe
i�es whi
h underlying events in the system are independent of ea
h other.

This is the approa
h taken in de�ning asyn
hronous transition systems [1, 15℄.

In [19℄, Winskel and Nielsen establish a 
ore
e
tion between a 
ategory Ats

0

of asyn-


hronous transition systems and a 
ategory of safe nets. From this, it would appear that

safe PN-transition systems are 
losely related to asyn
hronous transition systems. In fa
t,

we establish a 
ore
e
tion between our 
ategory of safe PN-transition systems and the

sub
ategory Ats

0

of asyn
hronous transition systems de�ned in [19℄.

The reason this 
orresponden
e is a 
ore
e
tion and not an equivalen
e is to do with

the role played by the independen
e relation in an asyn
hronous transition system. It

turns out that this relation also in
orporates some \stru
tural" information about the

system, in addition to information about 
on
urren
y. So, in a sense, asyn
hronous

transition systems are a more abstra
t model than nets but a more 
on
rete model than

safe PN-transition systems.

Another point 
on
erning this 
orresponden
e between safe PN-transition systems and

asyn
hronous transition systems is that the 
ategory of safe nets that we work with is

slightly di�erent from the 
ategory of safe nets that Winskel and Nielsen work with.

However, it turns out that we 
an establish an adjun
tion between these two 
ategories

of safe nets. This 
orresponden
e 
an be strengthened when we restri
t our attention to

saturated nets, whi
h are those nets 
onstru
ted out of transition systems using regions.

The main results of this paper are summarized in Figures 1 and 2. In the diagrams,

a double arrow ) represents a 
ore
e
tion. The arrow indi
ates the dire
tion of the left

adjoint.

The �rst diagram des
ribes the 
orresponden
e between sub
lasses of PN-transition

systems and sub
lasses of nets. The verti
al arrows represent in
lusions. For ea
h pair

of 
ategories 
onne
ted by a verti
al arrow, the lower 
ategory is a full sub
ategory of

the 
ategory immediately above. In the bottom row, we have indi
ated that the 
ategory

of elementary PN-transition systems is equivalent to both the sub
ategory of sequential

elementary PN-transition systems and to the 
ategory of elementary transition systems

de�ned in [12℄.

In the se
ond diagram, we show the 
orresponden
e between safe PN-transition sys-

tems and asyn
hronous transition systems. We also show the adjun
tion between our


ategory of safe nets and the 
ategory of safe nets des
ribed in [19℄, where the right

adjoint is the in
lusion fun
tor.

The paper is organized as follows. In the next two se
tions we brie
y review some

terminology and basi
 results 
on
erning the 
ategories PNet (of Petri nets) and PNts (of

PN-transition systems) de�ned in [9℄. In Se
tion 4 we des
ribe the 
ore
e
tion between

PNts and PNet . In the next se
tion, we 
hara
terize the sequential behaviours of Petri

nets. Se
tion 6 des
ribes the sub
ategory of PNts 
orresponding to safe nets. In Se
tion 7
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Figure 2: The 
onne
tion to asyn
hronous transition systems
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we des
ribe a sub
ategory of PNts whi
h is equivalent to the 
ategory of elementary

transition systems de�ned in [12℄. We relate our 
ategory of safe PN-transition systems

to Winskel and Nielsen's 
ategory of asyn
hronous transition systems in Se
tion 8. The

next se
tion des
ribes the 
orresponden
e between the two di�erent 
ategories of safe nets

de�ned here and in [19℄. We 
on
lude with a dis
ussion of the results presented here.

A word about notation|the de�nition of PN-transition systems uses multisets quite

extensively. We des
ribe the notation and terminology we use for multisets in the Ap-

pendix.

2 Petri nets

We begin with a brief introdu
tion to Pla
e/Transition nets, whi
h are often simply 
alled

Petri nets. A more detailed dis
ussion of this 
lass of nets 
an be found in [14℄.

De�nition 2.1 A Petri net is a quadruple PN = (S; T;W;M

in

), where:

� S is set of pla
es, T is a set of transitions and S \ T = ;. T is assumed to be


ountable.

� W : (S � T ) [ (T � S) ! N

0

is the weight fun
tion su
h that 8t 2 T: 9s 2

S: W (s; t) > 0.

� M

in

: S ! N

0

is the initial marking.

For t 2 T , let

�

t = fs 2 S j W (s; t) > 0g and t

�

= fs 2 S j W (t; s) > 0g. Similarly, for

s 2 S, let

�

s = ft 2 T j W (t; s) > 0g and s

�

= ft 2 T j W (s; t) > 0g. For x 2 S [ T , let

�

x

�

=

�

x [ x

�

. Noti
e that we have insisted that

�

t be nonempty for ea
h t 2 T .

The pla
es of a Petri net intuitively 
orrespond to lo
al states of the system. A global

state, 
alled a marking, is a multiset M : S ! N

0

. If M(s) = n, then s is said to be

assigned n tokens by M .

A transition t 
an o

ur at a marking M if for all s 2 S, M(s) � W (s; t). We say

that t is enabled at M and denote this by M [ti.

When a transition t o

urs at a markingM , a new markingM

0

is generated a

ording

to the following rule:

8s 2 S: M

0

(s) =M(s)�W (s; t) +W (t; s)

We denote the fa
t that M evolves to M

0

via t by M [tiM

0

.

Suppose t

1

and t

2

are two transitions and M is a marking su
h that 8s 2 S: M(s) �

W (s; t

1

) + W (s; t

2

). Then t

1

and t

2


an both o

ur independently at M and are thus


on
urrently enabled. In su
h a situation,M 
an evolve in a single step by the o

urren
e

of both t

1

and t

2

to a marking M

0

where

8s 2 S: M

0

(s) =M(s)�W (s; t

1

)�W (s; t

2

) +W (t

1

; s) +W (t

2

; s)

We 
an thus extend the transition relation asso
iated with a Petri net to permit

steps of a
tions between a pair of markings. In general, su
h a step will be a multiset

over T rather than a subset of T be
ause a transition may be 
on
urrent with itself (a

phenomenon 
alled auto
on
urren
y).
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Let u 2 MS

�n

(T ). u is enabled at a marking M , denoted M [ui, if for all s 2 S,

M(s) �

P

t2T

u(t) �W (s; t). (Re
all that u(t) denotes the number of o

urren
es of t in

u). When u o

urs, M is transformed to M

0

(denoted M [uiM

0

) where

8s 2 S: M

0

(s) =M(s) +

X

t2T

u(t) � (W (t; s)�W (s; t))

If

�

t = ;, it is 
lear that unboundedly large steps 
onsisting of 
opies of t will be enabled

at any rea
hable marking. This is a fairly undesirable phenomenon and prompts the

restri
tion we have made that every transition have an input pla
e. This restri
tion was

not present in the nets 
onsidered in [9℄. We shall say more on this in Se
tion 4.

The set of all markings rea
hable from a marking M is denoted by [Mi. [Mi is the

smallest set of markings su
h that

� M 2 [Mi

� If M

0

2 [Mi and 9u 2 MS

�n

(T ): M

0

[uiM

00

then M

00

2 [Mi.

Given a Petri net PN = (S; T;W;M

in

), we 
an asso
iate a transition relation)

PN

�

[M

in

i �MS

�n

(T )� [M

in

i with PN as follows.

)

PN

= f(M;u;M

0

) jM 2 [M

in

i and M [uiM

0

g:

Using )

PN

, we 
an asso
iate with PN an obvious transition system TS

PN

whose

states are the rea
hable markings of PN and whose transition relation is labelled by

multisets. We shall formally de�ne su
h step transition systems in the next se
tion.

Here, we pro
eed by 
onstru
ting a 
ategory of Petri nets. To do so, we have to de�ne

a suitable notion of morphism.

De�nition 2.2 Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

); i = 1; 2, be two Petri nets. A net morphism

from PN

1

to PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial fun
tion. (Noti
e that �

S

is a map from S

2

to S

1

and not

from S

1

to S

2

. Thus, in the \forward" dire
tion, �

�1

S

� S

1

� S

2

is a relation. For

X � S

1

, �

�1

S

(X) denotes the set fy 2 S

2

j �

S

(y) 2 Xg.)

(ii) �

T

: T

1

* T

2

is a partial fun
tion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then:

� �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

� 8s 2

�

t

2

: W

1

(�

S

(s); t

1

) = W

2

(s; t

2

).

� 8s 2 t

2

�

: W

1

(t

1

; �

S

(s)) = W

2

(t

2

; s).
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We shall denote both �

S

and �

T

by �, unless it is un
lear from the 
ontext whi
h


omponent we are referring to. Thus, normally we shall write �(s) for �

S

(s) and �(t) for

�

T

(t).

Let PNet be the 
ategory whose obje
ts are Petri nets and whose arrows are net

morphisms as de�ned above.

We 
on
lude this se
tion with a result showing that net morphisms preserve 
on
urrent

behaviour in a strong way. The proof of this result is given in [9℄.

Lemma 2.3 Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

); i = 1; 2, be two Petri nets and let � be a net

morphism from PN

1

to PN

2

. For ea
h M 2 [M

1

in

i, de�ne M

�

: S

2

! N

0

as follows:

8s 2 S

2

: M

�

(s) =

(

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We then have the following:

(i) 8M 2 [M

1

in

i: M

�

2 [M

2

in

i.

(ii) Suppose that (M;u;M

0

) 2 )

PN

1

. Then (M

�

; �(u);M

0

�

) 2 )

PN

2

.

3 PN-transition systems

A labelled transition system is usually de�ned as a quadruple TS = (Q;�;!; q

in

), where

Q is a set of states and!� Q���Q is a (sequential) transition relation whi
h des
ribes

how the system evolves from state to state by performing a
tions from �, beginning with

the initial state q

in

.

We enri
h the transition relation by permitting one state to be transformed to another

in a single step 
onsisting of a �nite multiset of a
tions. We 
an then de�ne the 
lass of

PN-transition systems as a sub
lass of this new 
lass of transition systems whi
h satis�es

some simple axioms ensuring that all the steps in the system are \
onsistent".

De�nition 3.1 A step transition system is a stru
ture TS = (Q;E;!; q

in

), where

� Q is a 
ountable set of states, with q

in

2 Q as the initial state.

� E is a 
ountable set of events.

� ! � Q�MS

�n

(E)�Q is the transition relation.

We shall often write q

u

! q

0

instead of (q; u; q

0

) 2 !.

We 
an extend ! to a relation !

�

over step sequen
es in the usual way. Let � =

u

1

u

2

: : : u

n

2 (MS

�n

(E))

�

be a sequen
e of steps. Then (q; �; q

0

) 2 !

�

i� 9q

0

; q

1

; : : : ; q

n

:

q

0

= q, q

n

= q

0

and q

i�1

u

i

! q

i

for 1 � i � n.

We put three basi
 restri
tions on transition systems. First, we introdu
e idling tran-

sitions, represented by the empty multiset, as self loops at ea
h state and demand that

these spe
ial transitions o

ur only as self loops. We also ensure that all states in a

transition system are rea
hable from the initial state. Finally, we insist that there be no

unbounded auto
on
urren
y in the system. Formally, we have the following basi
 axioms.
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(A1) 8q; q

0

2 Q: q

O

E

�! q

0

i� q = q

0

(where O

E

is the empty multiset over E).

(A2) 8q 2 Q: 9� 2 (MS

�n

(E))

�

: (q

in

; �; q) 2 !

�

.

(A3) 8q 2 Q: 8e 2 E: 9k 2 N

0

: (q; u; q

0

) 2 ! implies u(e) < k.

Hen
eforth, we shall assume that every step transition system we 
onsider satis�es axioms

(A1), (A2) and (A3).

Noti
e that (A1) does not rule out the presen
e of non-trivial self-loops of the form

q

u

! q.

(A3) 
orresponds to the restri
tion we have pla
ed on nets that ea
h transition have

an input pla
e. Noti
e that no global bound is pla
ed on auto
on
urren
y|all (A3) says

is that auto
on
urren
y is lo
ally bounded at ea
h state in the transition system.

To des
ribe PN-transition systems, we need to introdu
e the notion of a region. Re-

gions were originally de�ned in the 
ontext of elementary transition systems in [3℄ and

exploited to de�ne a 
ore
e
tion between elementary transition systems and elementary

net systems in [12℄. Here we generalize the regions of [3, 12℄ to des
ribe the transition

system 
ounterpart of a pla
e of a Petri net.

De�nition 3.2 Let TS = (Q;E;!; q

in

) be a step transition system. A region is a pair

of fun
tions r = (r

Q

; r

E

) su
h that:

(i) r

Q

: Q! N

0

.

(ii) r

E

: E ! N

0

�N

0

.

For 
onvenien
e, we denote the �rst 
omponent of r

E

(e) as

r

e and the se
ond 
om-

ponent of r

E

as e

r

. In other words, if r

E

(e) = (n

1

; n

2

), then

r

e = n

1

and e

r

= n

2

.

(iii) 8(q; u; q

0

) 2 ! : r

Q

(q) �

X

e2E

u(e) �

r

e andr

Q

(q

0

) = r

Q

(q) +

X

e2E

u(e) � (e

r

�

r

e):

We shall denote both r

Q

and r

E

by r, unless it is un
lear from the 
ontext whi
h 
ompo-

nent we are referring to. Thus, normally we shall write r(q) for r

Q

(q) and r(e) for r

E

(e).

If

r

e > 0, we say that r is a preregion of e and if e

r

> 0, we say that r is a postregion of e.

So, a region r 
orresponds to a pla
e of the Petri net whi
h we would like to asso
iate

with a given step transition system. Re
all that for a Petri net PN , we 
an asso
iate an

\obvious" transition system TS

PN

, with states 
orresponding to the rea
hable markings of

PN , events to the transitions of PN and the step transition relation de�ned by)

PN

. We

spe
ify the number of tokens on the \pla
e" r at the \marking" q by r(q). For ea
h e 2 E,

r(e) spe
i�es the \weights" W (r; e) and W (e; r). The last 
ondition in the de�nition of

a region ensures that r

Q

is 
onsistent with the overall behaviour of the net | for every

transition q

u

! q

0

present in the system, r(q) must have enough \tokens" to permit u to

o

ur and r(q

0

) must 
ontain the 
orre
t number of \tokens" as spe
i�ed by the normal

�ring rule of a Petri net.

We disregard regions r whi
h are \dis
onne
ted" from all the events | i.e. r su
h that

r(e) = (0; 0) for all e 2 E. These trivial regions 
orrespond to isolated pla
es in a Petri

net and do not 
ontribute in any way to 
hara
terizing the behaviour of the system.
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De�nition 3.3 Let TS = (Q;E;!; q

in

) be a step transition system. A region r is non-

trivial i� for some e 2 E, r(e) 6= (0; 0). We denote the set of non-trivial regions of TS

by R

TS

.

Hen
eforth, whenever we make a statement referring to all regions, we assume that

we are only 
onsidering non-trivial regions (unless expli
itly stated otherwise).

PN-transition systems are 
hara
terized by two \regional" axioms in addition to the

basi
 axioms (A1) and (A2):

(A4) Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

TS

: r(q) 6= r(q

0

). (Separation)

(A5) 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q su
h that q

u

! q

0

, then

9r 2 R

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

Axiom (A4) says that any pair of distin
t states in Q will be distinguished by at least one

(non-trivial) region. Axiom (A5) 
aptures the fundamental idea underlying the dynami


behaviour of a Petri net. It says that if the system 
annot perform a step labelled by u

at the state q then there must be some region r whi
h does not have enough \tokens" at

q to permit u to o

ur. In other words, whenever a multiset of a
tions u is enabled at

a state q of the system by all regions, it must be possible to perform u and rea
h some

state q

0

in the system.

De�nition 3.4 A PN-transition system is a step transition system TS = (Q;E;!; q

in

)

whi
h satis�es axioms (A4) and (A5) (in addition to the basi
 axioms (A1) to (A3)).

We now state a 
ouple of useful properties of PN-transition systems whi
h are formally

established in [9℄.

The �rst observation about PN-transition systems is that they are deterministi
.

TS = (Q;E;!; q

in

) is said to be a deterministi
 step transition system in 
ase the fol-

lowing is true:

8q 2 Q: 8u 2 MS

�n

(E): (q; u; q

0

) 2 ! and (q; u; q

00

) 2 ! implies q

0

= q

00

:

Proposition 3.5 Every PN-transition system is deterministi
.

The se
ond observation is that every step in a PN-transition system 
an be broken up

into substeps in a 
onsistent way. This shows that steps do indeed re
e
t 
on
urren
y in

a natural way.

Proposition 3.6 Let TS = (Q;E;!; q

in

) be a PN-transition system and let q

u

! q

0

in

TS. Then

8v �

MS

u: 9q

v

2 Q: q

v

! q

v

and q

v

u�v

�! q

0

:

To 
onstru
t a 
ategory of PN-transition systems, we now de�ne morphisms between

PN-transition systems. These are standard transition system morphisms as de�ned, say,

in [12, 19℄, extended to respe
t steps.

De�nition 3.7 Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems. A

transition system morphism f from TS

1

to TS

2

is a pair of fun
tions f = (f

Q

; f

E

) where:

8



(i) f

Q

: Q

1

! Q

2

is a total fun
tion su
h that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial fun
tion.

(iii) If (q; u; q

0

) 2 !

1

then (f

Q

(q); f

E

(u); f

Q

(q

0

)) 2 !

2

.

As with regions, we shall denote both f

Q

and f

E

by f , unless it is un
lear from the 
ontext

whi
h 
omponent we are referring to. Thus, normally we shall write f(q) for f

Q

(q) and

f(e) for f

E

(e).

Noti
e that the last 
lause ensures that if a step u is hidden by f then every transition

(q; u; q

0

) 2 !

1

results in q and q

0

being mapped to the same state in Q

2

; i.e. if for all

e 2 u, f(e) is unde�ned, then (q; u; q

0

) 2 !

1

implies (f(q); O

E

2

; f(q

0

)) 2 !

2

, whi
h by

axiom (A1) for
es f(q) = f(q

0

).

PN-transition systems with transition system morphisms form a 
ategory, whi
h we

shall 
all PNts.

4 Relating Petri nets and PN-transition systems

There is a natural way to de�ne a fun
tor NT from PNet to PNts.

NT maps obje
ts in the obvious way|ea
h Petri net PN is mapped to the transition

system asso
iated with its \step" marking diagram. Let PN = (S; T;W;M

in

) be a Petri

net. Then

NT(PN) = ([M

in

i; T;)

PN

;M

in

)

where [M

in

i is the set of markings rea
hable from the initial marking M

in

, T is the set

of transitions of PN and )

PN

is the step transition relation for Petri nets de�ned in

Se
tion 2.

Next we de�ne how NT maps arrows. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two

Petri nets and let � be a net morphism from PN

1

to PN

2

. Then, NT(�) = f

�

is de�ned

as follows.

� 8t 2 T

1

: f

�

(t) = �(t).

� 8M 2 [M

1

in

i: f

�

(M) =M

�

(where M

�

is the map de�ned in Lemma 2.3).

The main result established in [9℄ is the existen
e of a left adjoint to this fun
tor.

Theorem 4.1 There exists a fun
tor TN : PNts ! PNet su
h that TN is left adjoint to

NT.

The unit of the adjun
tion in fa
t turns out to be a natural isomorphism, so there is

a
tually a 
ore
e
tion between this pair of fun
tors.

We shall not des
ribe TN in any detail. The main idea is that a PN-transition system


an be transformed into a Petri net by regarding events as the transitions of the net and

regions as the pla
es of the net.

A remark is in order at this point about the 
ategories PNts and PNet and the


ore
e
tion that we have de�ned here. In the original formulation of the 
ore
e
tion

between PN-transition systems and Petri nets in [9℄, no assumption was made about

9



transitions in a net having input pla
es. Correspondingly, the axiom (A3) that we have

introdu
ed for PN-transition systems was not present.

It is quite 
lear that for any net PN = (S; T;W;M

in

), if every t 2 T has an input

pla
e, then TS

PN

will satisfy axiom (A3). It is not diÆ
ult to prove the 
onverse|if

TS = (Q;E;!; q

in

) satis�es (A3), then for every e 2 E there exists an r 2 R

TS

su
h that

r

e > 0 and so TN(TS) will have an input pla
e for ea
h transition.

The 
ore
e
tion that is established in [9℄ 
ontinues to hold when we restri
t TN and

NT to the 
ategories we have de�ned here. The reason we have 
hosen to work in this more

restri
tive framework is that here we will be dealing mainly with spe
ial 
lasses of nets,

like safe nets, whi
h do not exhibit any auto
on
urren
y under \normal 
ir
umstan
es".

So, for these 
lasses of nets, it is reasonable to demand that we abolish the unbounded

auto
on
urren
y generated by transitions with no input pla
es.

5 Sequential PN-transition systems

PN-transition systems faithfully re
ord the 
on
urrent behaviour of Petri nets by means

of transitions labelled with multisets of events.

However, it turns out that we 
an also 
hara
terize the transition systems 
orrespond-

ing to the purely sequential behaviour of Petri nets.

For 
onvenien
e, we shall de�ne sequential transition systems as spe
ial 
ases of step

transition systems.

De�nition 5.1 Let TS = (Q;E;!; q

in

) be a step transition system. TS is sequential i�

TS satis�es axioms (A1) to (A3) and, further,

8(q; u; q

0

) 2 ! : juj � 1:

In other words, a sequential transition system 
an have steps labelled either by single

events, or by O

E

, 
orresponding to the idling transition at ea
h state.

De�nition 5.2 Let TS = (Q;E;!; q

in

) be a transition system. TS is a sequential PN-

transition system if it is sequential and, further, it satis�es the two axioms (A4) and (A5)

for PN-transition systems.

It is 
lear that any sequential PN-transition system is also a (normal) PN-transition

system. In fa
t, we 
an de�ne a full sub
ategory SeqPNts whose obje
ts are sequential

PN-transition systems and whose arrows are transition system morphisms.

It is not diÆ
ult to prove the following.

Theorem 5.3 SeqPNts is a 
ore
e
tive sub
ategory of PNts.

Proof To establish this, we have to show that the in
lusion fun
tor from SeqPNts to

PNts has a right adjoint. The right adjoint is the fun
tor whi
h forgets 
on
urren
y.

More formally, de�ne U : PNts ! SeqPNts to be the fun
tor whi
h maps a PN-

transition system TS = (Q;E;!; q

in

) to a sequential PN-transition system TS

0

=

(Q;E;!

0

; q

in

), where

!

0

= f(q; u; q

0

) j q

u

! q

0

and juj � 1g:

10



For ea
h transition system morphism f : TS

1

! TS

2

in PNts, U(f) : U(TS

1

) !

U(TS

2

) is the map su
h that U(f)

Q

= f

Q

and U(f)

E

= f

E

.

It is straightforward to verify that U is in fa
t right adjoint to the in
lusion fun
tor.

We omit the details. 2

So, by 
omposing the in
lusion fun
tor with the fun
tor TN : PNts ! PNet we obtain

a fun
tor whi
h is left adjoint to the fun
tor UÆNT taking nets to their sequential marking

diagrams.

We 
an also 
hara
terize sequential PN-transition systems dire
tly in terms of regions.

Proposition 5.4 Let TS = (Q;E;!; q

in

) be a PN-transition system. TS is sequential

i� r

seq

2 R

TS

, where r

seq

is de�ned as follows:

8q 2 Q: r

seq

(q) = 1.

8e 2 E: r

seq

(e) = (1; 1).

Proof It is easy to see that if TS is sequential, r

seq

is in fa
t a region. Conversely, if

r

seq

is a region in R

TS

, 
learly for ea
h transition q

u

! q

0

in TS, juj � 1 and so TS is

sequential. 2

In the net TN(TS) 
orresponding to the sequential PN-transition system TS, r

seq

will

be a pla
e marked at the initial marking and 
onne
ted to all transitions by self-loops,

ensuring that the net exhibits no 
on
urren
y in its behaviour.

6 Safe nets

Petri nets 
an exhibit very 
omplex behaviours whi
h are diÆ
ult to 
hara
terize globally.

To obtain a mathemati
ally tra
table theory, one often looks at restri
ted 
lasses of nets.

In this regard, one very important sub
lass of nets is the 
lass of safe nets. In general,

a Petri net PN = (S; T;W;M

in

) is said to be k-safe if M(s) � k for every rea
hable

marking M 2 [M

in

i. Call PN a safe net if it is 1-safe.

Thus, in a safe net, every rea
hable marking is a set, rather than a multiset of pla
es.

Let PN = (S; T;W;M

in

) be a safe net. For any transition t 2 T , if there is a pla
e s 2

�

t

su
h that W (s; t) > 1, then t will never be enabled. Similarly, if there is a pla
e s 2 t

�

su
h that W (t; s) > 0, t 
an never o

ur be
ause after t o

urs, s would be unsafe. So, it

makes sense to restri
t W to values from f0; 1g instead of the entire range N

0

.

With this in mind, we de�ne safe nets in terms of our general de�nition of Petri nets

as follows.

De�nition 6.1 Let PN = (S; T;W;M

in

) be a Petri net. Then PN is a safe net provided

(i) 8s 2 S: 8t 2 T: W (s; t) � 1 and W (t; s) � 1:

(ii) 8M 2 [M

in

i: 8s 2 S: M(s) � 1.

Let SNet be the full sub
ategory of PNet whose obje
ts are safe nets. We 
an restri
t

the fun
tor NT to a fun
tor SNT : SNet ! PNts .

We now want to identify a sub
ategory SPNts of PNts su
h that there is a 
ore
e
tion

between STN : SPNts ! SNet and SNT : SNet ! SPNts .

For this, we de�ne 0/1-regions.

11



De�nition 6.2 Let TS = (Q;E;!; q

in

) be a step transition system. Then r = (r

Q

; r

E

)

is a 0/1-region of TS if r is a region and

8q 2 Q: r

Q

(q) � 1.

8e 2 E:

r

e � 1 and e

r

� 1.

Let R

0=1

TS

= fr 2 R

TS

j r is a 0/1-region g.

We 
an then modify the regional axioms (A4) and (A5) to refer only to 0/1-regions.

(A4') Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

0=1

TS

: r(q) 6= r(q

0

). (Separation)

(A5') 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q su
h that q

u

! q

0

, then

9r 2 R

0=1

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

De�nition 6.3 A safe PN-transtion system is a step transition system TS = (Q;E;!; q

in

)

whi
h satis�es axioms (A4') and (A5') (in addition to the basi
 axioms (A1) to (A3)).

Let SPNts be the full sub
ategory of PNts whose obje
ts are safe PN-transition sys-

tems.

As we had mentioned in Se
tion 2, in general we need to 
onsider steps labelled by

multisets rather than sets in order to deal with auto
on
urren
y. Clearly, a safe net 
annot

exhibit auto
on
urren
y. So, sin
e safe PN-transition systems are supposed to des
ribe

the behaviour of safe nets, it is not surprising that we have the following.

Proposition 6.4 Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Then for every

transition q

u

! q

0

in TS, u is a set.

Proof Let e 2 u. It suÆ
es to show that there is a 0/1-region r su
h that

r

e = 1.

By (A3) we know that auto
on
urren
y is bounded. In other words, at ea
h state q,

there is some k 2 N

0

su
h that the step 
onsisting of k o

urren
es of e is not enabled.

By (A5') there is a 0/1-region r su
h that r(q) < k �

r

e. It is 
lear that

r

e must be 1, and

so we are done. 2

We now establish that the transition system TS

PN

asso
iated with a safe net PN is

in fa
t a safe PN-transition system.

Lemma 6.5 Let PN = (S; T;W;M

in

) be a safe net. Then TS

PN

= ([M

in

i; T;)

PN

;M

in

)

is a safe PN-transition system.

Proof It is straightforward to show that TS

PN

satis�es the three basi
 axioms (A1) to

(A3) for step transition systems. So, what we have to show is that axioms (A4') and

(A5') are true as well.

For ea
h s 2 S, we 
an de�ne a region r

s

in TS

PN

as follows.

8M 2 [M

in

i: r

s

(M) =M(s).

8t 2 T: r

s

(t) = (W (s; t);W (t; s)).

It is not diÆ
ult to establish that r

s

is a region, and, in fa
t is a 0/1-region. r

s

will be

non-trivial provided s is not isolated in PN (i.e. there is some t 2 T su
h that s 2

�

t or

s 2 t

�

.)
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It then immediately follows that TS

PN

satis�es (A4'). Given any M;M

0

2 [M

in

i, if

M 6=M

0

, there must be a non-isolated pla
e s 2 S su
h thatM(s) 6=M(s

0

). Then 
learly

r

s

is a non-trivial 0/1-region of TS

PN

separating M from M

0

.

Next 
onsider (A5'). Suppose M 2 [M

in

i and u 2 MS

�n

(T ), and there is no M

0

su
h

that M

u

!M

0

. Then, at the marking M 2 [M

in

i, u is not enabled. By the �ring rule for

Petri nets, this implies that there is some s 2 S su
h that M(s) <

P

t2u

W (s; t). Clearly,

r

s

is then a non-trivial 0/1-region su
h that r

s

(M) <

P

t2u

r

s

t and we are done. 2

Given a pair of safe nets PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, and a net morphism � :

PN

1

! PN

2

, for ea
h M 2 [M

1

in

i we 
an de�ne a marking M

�

2 [M

2

in

i as in Lemma 2.3.

That is

8s 2 S

2

:M

�

(s) =

(

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We 
an then de�ne SNT : SNet ! SPNts as follows:

� Let PN = (S; T;W;M

in

) be a safe net. Then SNT(PN) = ([M

in

i; T;)

PN

;M

in

).

� Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be a pair of safe nets and � : PN

1

! PN

2

a

net morphism. Then SNT(�) : SNT(PN

1

)! SNT(PN

2

) is given by:

{ 8t 2 T

1

: SNT(�)(t) = �(t).

{ 8M 2 [M

1

in

i: SNT(�)(M) =M

�

.

It is easy to 
he
k the following.

Proposition 6.6 SNT : SNet ! SPNts is a fun
tor.

We 
an 
onstru
t a fun
tor STN : SPNts ! SNet whi
h is left adjoint to SNT. We

�rst de�ne STN

0

, a map on obje
ts from SPNts to SNet .

Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Then

STN

0

(TS) = (R

0=1

TS

; E;W

TS

;M

TS

in

)

where W

TS

(r; e) =

r

e and W

TS

(e; r) = e

r

for ea
h r 2 R

0=1

TS

and e 2 E, and M

TS

in

(r) =

r(q

in

) for ea
h r 2 R

0=1

TS

.

Theorem 6.7 STN

0

extends to a fun
tor STN : SPNts ! SNet su
h that STN is left

adjoint to SNT and the unit of the adjun
tion is a natural isomorphism.

Proof We just sket
h the main ideas. The details are similar to those used to establish

the 
ore
e
tion between TN and NT and 
an be �lled in from [9℄.

We 
an �rst establish that for ea
h safe PN-transition system TS, there is a transition

system isomorphism �

TS

: TS ! SNT ÆSTN

0

(TS). This map will serve as the unit of the

adjun
tion.

Suppose that TS 2 SPNts and PN 2 SNet su
h that there is a transition system

morphism f : TS ! SNT(PN). Then, we 
an establish that there is a unique morphism

� : STN

0

(TS)! PN su
h that f = SNT(�) Æ �

TS

.

Given this, if follows (a

ording to [6℄), that STN

0


an be extended uniquely to a

fun
tor STN : SPNts ! SNet whi
h is left adjoint to SNT. 2
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7 Elementary transition systems

Next, we look at one of the basi
 models of net theory, elementary net systems. In [12℄,

Nielsen, Rozenberg and Thiagarajan establish a 
ore
e
tion between a 
lass of transition

systems 
alled elementary transition systems and elementary net systems.

In many ways, that result is the starting point of the work reported here. In this

se
tion, we de�ne a sub
ategory of PNts whose obje
ts are elementary PN-transition

systems, whi
h 
orresponds to the 
ategory of elementary transition systems of [12℄|

that is, there is an equivalen
e between these two 
ategories.

We begin by des
ribing elementary net systems. This will motivate the axioms we

need to put on PN-transition systems to de�ne elementary PN-transition systems.

Rather than try and de�ne elementary net systems in terms of general Petri nets, we

start from s
rat
h and provide the standard de�nition (see, for instan
e, [16℄).

We begin with the de�nition of a net.

De�nition 7.1 A net is a triple N = (S; T; F ) where:

(i) S is a set of S-elements and T is a set of T -elements, su
h that S \ T = ;.

(ii) F � (S�T )[(T �S) is the 
ow relation su
h that 8x 2 S[T: 9y 2 S[T: [(x; y) 2

F _ (y; x) 2 F ℄.

Thus a net spe
i�es the underlying stru
ture of a system. The 
ow relation F 
orre-

sponds to the f0; 1g-valued weight fun
tion we de�ned for safe nets. We use

�

x, x

�

and

�

x

�

to denote the neighbourhood of x 2 S [ T , as usual.

Normally, the S-elements are 
alled 
onditions and denoted by B and the T -elements

are 
alled events and denoted by E. Here, we shall sti
k to S and T to remain 
onsistent

with the notation for nets used so far.

De�nition 7.2 An elementary net system is a quadruple ENS = (S; T; F; 


in

) where

(i) (S; T; F ) is a net, 
alled the underlying net of ENS.

(ii) 


in

� S is the initial 
ase.

Thus, the initial 
ase 
orresponds to an initial marking in a safe net. The essential

di�eren
e between an elementary net system and a safe net is in the �ring rule. Let


; 


0

� S be 
ases of an elementary net system and t 2 T be an event. Then




t

! 


0

def

= 
� 


0

=

�

t ^ 


0

� 
 = t

�

Thus, in an elementary net system, an event 
annot o

ur at a 
ase where its post-


onditions are not empty. This means that an event whi
h is 
onne
ted to a 
ondition by

a self-loop will be permanently disabled.

Given the transition relation de�ned above, we 
an de�ne [


in

i, the set of 
ases rea
h-

able from 


in

, in the same way that we de�ned [M

in

i for Petri nets. We 
an then asso
iate

a sequential transition relation!

ENS

with an elementary net system ENS = (S; T; F; 


in

)

in the obvious way:

!

ENS

= f(
; t; 


0

) j 
; 


0

2 [


in

i and 


t

! 


0

g
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We 
an extend this sequential transition relation to a step transition relation between


ases. As in a safe net, a set of transitions is 
on
urrently enabled at a 
ase provided ea
h

individual transition is enabled and the neighbourhoods of the transitions are pairwise

disjoint.

)

ENS

= f
; u; 


0

j 
; 


0

2 [


in

i; u = ft

1

; t

2

; : : : ; t

n

g;

9


1

; 


2

; : : : ; 


n

: 8i 2 f1; 2; : : : ; ng: 


t

i

! 


i

; and

8i; j 2 f1; 2; : : : ; ng: i 6= j implies

�

t

i

�

\

�

t

j

�

= ;g

So, given an elementary net system ENS = (S; T; F; 


in

), we 
an asso
iate with it a

sequential transition system STS

ENS

= ([


in

i; T;!

ENS

; 


in

) and a step transition system

TS

ENS

= ([


in

i; T;)

ENS

; 


in

).

In [3℄, Ehrenfeu
ht and Rozenberg gave a 
hara
terization of the sequential transition

systems arising from elementary net systems. In [12℄, this 
hara
terization was extended

to a 
ore
e
tion between these elementary transition systems and elementary net systems.

Here we shall show how to 
hara
terize the step transition systems 
orresponding to

elementary net systems as a suitable sub
lass of PN-transition systems. We shall then

establish a 
ategori
al equivalen
e between our elementary PN-transition systems and

elementary transition systems.

We begin by de�ning elementary regions.

De�nition 7.3 Let TS = (Q;E;!; q

in

) be a step transition system. An elementary re-

gion of TS is a pair of fun
tions r = (r

Q

; r

E

) su
h that r is a region of TS and, in

addition:

8q 2 Q: r(q) � 1.

8e 2 E: r(e) 2 f(0; 1); (1; 0); (0; 0)g.

Let R

E

TS

denote the set of all non-trivial elementary regions of TS.

Thus an elementary region is a 0/1-region with the 
onstraint that r(e) 6= (1; 1) for

any event e. As before, we modify the regional axioms (A4) and (A5) to refer only

to elementary regions. We also expli
itly add the 
ondition that every e 2 E have an

o

urren
e.

(A4") Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

E

TS

: r(q) 6= r(q

0

). (Separation)

(A5") 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q su
h that q

u

! q

0

, then

9r 2 R

E

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

(A6") 8e 2 E: 9q

u

! q

0

: e 2 u:

De�nition 7.4 An elementary PN-transition system is a step transition system TS =

(Q;E;!; q

in

) whi
h satis�es axioms (A4") to (A6") in addition to the basi
 axioms (A1)

to (A3).

Let EPNts be the full sub
ategory of PNts whose obje
ts are elementary PN-transition

systems. As with safe PN-transition systems, it is easy to show that all steps in an

elementary transition system 
onsist of sets of events rather than multisets.
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We want to establish a 
ategori
al equivalen
e between the sub
ategory EPNts and

the 
ategory of elementary transition systems de�ned in [12℄. In order to do this, we �rst

have to des
ribe elementary transition systems.

Elementary transition systems are de�ned as a sub
lass of \
onventional" sequential

transition systems (as opposed to the sequential versions of step transition systems whi
h

we de�ned De�nition 5.1).

De�nition 7.5 A transition system is a quadruple STS = (Q;E;!; q

in

) where

� Q is a set of states with q

in

2 Q as the initial state.

� E is a set of events.

� ! � Q� E �Q is the transition relation.

The next thing to do is to de�ne regions on these transition systems.

De�nition 7.6 Let STS = (Q;E;!; q

in

) be a transition system. A simple region is a

subset � � Q su
h that:

(i) q

t

! q

0

^ q 2 � ^ q

0

=2 �) 8q

1

t

! q

0

1

in STS: [q

1

2 � ^ q

0

1

=2 �℄

(ii) q

t

! q

0

^ q =2 � ^ q

0

2 �) 8q

1

t

! q

0

1

in STS: [q

1

=2 � ^ q

0

1

2 �℄

� is non-trivial if it is not equal to Q or to ;. Let R

STS

denote the set of non-trivial simple

regions of STS.

For e 2 E, de�ne � 2

�

e if there is a transition q

e

! q

0

in STS su
h that q 2 � and

q

0

=2 �. Similarly, � 2 e

�

if there is a transition q

e

! q

0

in STS su
h that q =2 � and q

0

2 �.

As usual,

�

e = f� 2 R

STS

j � 2

�

eg, e

�

= f� 2 R

STS

j � 2 e

�

g and

�

e

�

=

�

e [ e

�

.

The 
lass of elementary transition systems is then given by the following axioms.

(EA1) 8q

e

! q

0

: q 6= q

0

.

(EA2) 8e 2 E: 9q

e

! q

0

.

(EA3) 8q 2 Q: 9� 2 E

�

: (q

in

; �; q) 2 !

�

.

(EA4) 8q; q

0

2 Q: q 6= q

0

) 9� 2 R

STS

: q 2 �, q

0

=2 �.

(EA5) 8q 2 Q: 8e 2 E: If there does not exist q

0

su
h that q

e

! q

0

then 9� 2

�

e: q =2 �.

The �rst axiom rules out self loops in the transition system. The other axioms 
orrespond

to restri
tions we have en
ountered before. In the formulation of elementary transition

systems presented in [12℄, there is an additional axiom preventing two di�erent transitions

between the same pair of states. This amounts to requiring simpli
ity of the nets one is


onsidering. In [9℄ we have pointed out that the 
ore
e
tion between elementary transition

systems and elementary net systems holds even without this restri
tion, so we avoid this

additional axiom here.

A morphism between elementary transition systems is, as usual, a total fun
tion on

the states and a partial fun
tion on the events that preserves the transition relation. The

only 
ompli
ation is that we do not have idling transitions, so we have to be a bit 
areful

in de�ning the simulation 
ondition. On
e again, the de�nition we present here is slightly

di�erent from the one presented in [12℄, but is equivalent to their formulation.
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De�nition 7.7 Let STS

i

= (S

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be a pair of transition systems. A

morphism f from STS

1

to STS

2

is pair of maps f = (f

Q

; f

E

) where:

(i) f

Q

: Q

1

! Q

2

is a total fun
tion su
h that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial fun
tion.

(iii) 8q

e

!

1

q

0

: If f

E

(e) is de�ned, then f

Q

(q)

f

E

(e)

�!

2

f

Q

(q

0

). Otherwise, f

Q

(q) = f

Q

(q

0

).

Let ETS denote the 
ategory whose obje
ts are elementary transition systems and whose

arrows are transition system morphisms as de�ned above.

In an elementary transition system, every \diamond" represents 
on
urren
y. This is

stated in a little more generality in the following proposition.

Proposition 7.8 Let STS = (Q;E;!; q

in

) be an elementary transition system and

fe

1

; e

2

; : : : ; e

n

g � E, n � 2, be a subset of events in E. Then the following statements

are equivalent.

(i) For ea
h i; j 2 f1; 2; : : : ; ng, i 6= j implies

�

e

i

�

\

�

e

j

�

= ;

(ii) 8q 2 Q: If 9q

0

; q

1

; : : : ; q

n

: q = q

0

and q

i�1

e

i

�! q

i

; 1 � i � n, then for ea
h permu-

tation � : f1; 2; : : : ; ng ! f1; 2; : : : ; ng: 9q

0

0

; q

0

1

; : : : ; q

0

n

2 Q, where q

0

= q

0

0

; q

n

= q

0

n

and q

0

i�1

e

�(i)

�! q

0

i

; 1 � i � n.

Proof ((i)) (ii)) If the n events have pairwise disjoint neighbourhoods, then they 
an

o

ur independently. The result is then straightforward, by appealing to axiom (EA5).

The proof pro
eeds by indu
tion on n, the number of pairwise independent events and

we omit the details.

((ii)) (i)) Again, the proof is straightforward, by indu
tion on n.

The base 
ase is when n = 2. So, we have q; q

1

; q

2

; q

0

2 Q and e

1

; e

2

2 E, su
h that

q

e

1

! q

1

e

2

! q

0

and q

e

2

! q

2

e

1

! q

0

.

Consider any � 2 R

STS

. Suppose � 2

�

e

1

. Then, q 2 � and q

1

=2 �, so, by de�nition,

� =2

�

e

2

. Similarly, we must have q

2

2 � and q

0

=2 �, so � =2 e

2

�

either. By a similar

argument, if � 2 e

1

�

, � =2

�

e

2

�

.

A symmetri
 argument shows that � 2

�

e

2

�

implies � =2

�

e

1

�

.

The 
ase n > 2 follows in a straightforward way from the indu
tion hypothesis. We

omit the details. 2

We now prove some useful properties of elementary PN-transition systems. The �rst

observation is that elementary regions are 
ompletely 
hara
terized by their value on

states.

Proposition 7.9 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system and

r; r

0

2 R

E

TS

. Then r

Q

= r

0

Q

implies r = r

0

.

Proof Consider any e 2 E. Then, by axiom (A6") and Proposition 3.6, we know there

is some transition q

feg

! q

0

in TS. From the de�nition of an elementary region, it is easy

to establish that
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r(e) = r

0

(e) =

8

>

<

>

:

(1; 0) if r(q) = 1 and r(q

0

) = 0

(0; 1) if r(q) = 0 and r(q

0

) = 1

(0; 0) otherwise

2

Next, we show that an elementary PN-transition system is free of self-loops labelled

by singleton steps.

Proposition 7.10 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then,

there does not exist a transition of the form q

feg

�! q for any q 2 Q and e 2 E.

Proof By appealing to axiom (A3) whi
h lo
ally bounds auto
on
urren
y, we 
an de-

du
e that for every e 2 E, there is an elementary region r su
h that

r

e = 1. It then

follows that e

r

= 0, by the de�nition of elementary regions. So r(q) 
annot be de�ned


onsistently for any q su
h that q

feg

! q, and so no su
h transition 
an exist in the system. 2

We 
an now de�ne fun
tors Eseq : EPNts ! ETS and Estep : ETS ! EPNts .

First, we des
ribe Eseq.

� Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then Eseq(TS) =

(Q;E;!

0

; q

in

) where

!

0

= f(q; e; q

0

) j q

feg

! q

0

g:

� Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

); i = 1; 2, be a pair of elementary PN-transition systems

and f : TS

1

! TS

2

a morphism in EPNts . Then Eseq(f) =

^

f : Eseq(TS

1

) !

Eseq(TS

2

) is given by:

{ 8q 2 Q:

^

f(q) = f(q).

{ 8e 2 E:

^

f(e) = f(e).

De�nition 7.11 Let r 2 R

E

TS

be a non-trivial elementary region of an elementary PN-

transition system TS = (Q;E;!; q

in

). Then �

r

def

= fq 2 Q j r(q) = 1g.

Proposition 7.12 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then

(i) 8r 2 R

E

TS

: �

r

is an simple region of Eseq(TS).

(ii) �

r

= �

r

0

implies r = r

0

.

Proof Part (ii) follows from Proposition 7.9. The proof of part (i) is straightforward

and we omit the details. 2

Proposition 7.13 Eseq is a fun
tor.
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Proof Given an elementary PN-transition system TS = (Q;E;!; q

in

), we have to 
he
k

that Eseq(TS) is an elementary transition system. Axiom (EA1) holds be
ause of Proposi-

tion 7.10. (EA2) and (EA3) are satis�ed be
ause TS satis�es (A6") and (A2) respe
tively.

Finally, we 
ome to the regional axioms (EA4) and (EA5). We know that we 
an �nd

regions in TS satisfying axioms (A4') and (A5'). By Proposition 7.12, these regions 
or-

respond uniquely to regions in Eseq(TS) whi
h would enfor
e the regional axioms (EA4)

and (EA5) in Eseq(TS).

It is then trivial to 
he
k that the image of a morphism in EPNts is in fa
t a morphism

in ETS, and we are done. 2

To de�ne the fun
tor going the other way, from ETS to EPNts, we impli
itly use the

result proved in Proposition 7.8.

Let Estep : ETS ! EPNts be de�ned as follows:

� Let STS = (Q;E;!; q

in

) be an elementary transition system. Then Estep(STS) =

(Q;E;!

0

; 


in

) where

!

0

= f(q; u; q

0

) j u = fe

1

; e

2

; : : : ; e

n

g � E

and 9q

0

; q

1

; : : : ; q

n

2 Q: q = q

0

; q

0

= q

n

su
h that 8i 2 f1; 2; : : : ; ng: q

i�1

e

i

! q

i

;

where 8i; j 2 f1; 2; : : : ; ng: i 6= j )

�

e

i

�

\

�

e

j

�

= ;g

[ f(q; O

E

; q) j q 2 Qg:

� Let STS

i

= (S

i

; E

i

;!

i

; q

i

in

); i = 1; 2, be a pair of elementary transition systems and

f : STS

1

! STS

2

a morphism in ETS. Then Estep(f) =

^

f : Estep(STS

1

) !

Estep(STS

2

) is given by:

{ 8q 2 Q:

^

f(q) = f(q).

{ 8e 2 E:

^

f(e) = f(e).

De�nition 7.14 Let � 2 R

STS

be a non-trivial simple region of an elementary transition

system STS = (Q;E;!; q

in

). Then r

�

= (r

�

Q

; r

�

E

), where r

�

Q

: Q ! f0; 1g and r

�

E

:

E ! f(0; 1); (1; 0); (1; 1)g is de�ned as follows.

8q 2 Q: r

�

Q

(q) = 1 i� q 2 �.

8e 2 E: r

�

E

(e) =

8

>

<

>

:

(0; 1) if � 2 e

�

(1; 0) if � 2

�

e

(0; 0) otherwise

Proposition 7.15 Let STS = (Q;E;!; q

in

) be an elementary transition system. Then

(i) 8� 2 R

STS

: r

�

is an elementary region of Estep(STS).

(ii) r

�

= r

�

0

implies � = �

0

.

Proof The proof is straightforward and we omit the details. The main 
ondition we

have to 
he
k for part (i) is that r

�

permits all the steps we have introdu
ed, and this

follows dire
tly from Proposition 7.8. Part (ii) follows from Proposition 7.9. 2
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Proposition 7.16 Estep is a fun
tor.

Proof For an elementary transition system STS = (Q;E;!; q

in

), we have to 
he
k

that Estep(STS) is an elementary PN-transition system. Axioms (A1) follows from the

de�nition of!

0

. Axiom (A2) follows from the fa
t that STS satis�es axiom (EA3). (A3)

is trivially satis�ed. (A6") follows from the fa
t that STS satis�es (EA2). Finally, every

region in STS 
orresponds uniquely to a region in Estep(STS), so we 
an dedu
e that

Estep(STS) satis�es (A4') and (A5') from the fa
t that STS satis�es (EA4) and (EA5).

On
e again, it is trivial to 
he
k that the image of a morphism in ETS is in fa
t a

morphism in EPNts. 2

Theorem 7.17 The fun
tors Eseq and Estep de�ne a 
ategori
al equivalen
e between

EPNts and ETS.

Proof We have to show that the fun
tor Estep Æ Eseq is naturally isomorphi
 to the

identity fun
tor id

EPNts

and, 
orrespondingly, that Eseq Æ Estep is naturally isomorphi
 to

id

ETS

.

In fa
t, we 
an prove something mu
h stronger. Using the results we have proved

so far, it is easy to show that for all TS 2 EPNts, Estep Æ Eseq(TS) = TS and for all

STS 2 ETS, Eseq Æ Estep(STS) = STS. So, these two 
ategories are not just equivalent,

they are in fa
t isomorphi
. 2

So, we have established that the 
ategory of step transition systems de�ned by ele-

mentary net systems is equivalent to the 
ategory of sequential transition systems de�ned

by them. This equivalen
e provides an alternate proof of the result, established 
ombi-

natorially by Hoogeboom and Rozenberg in [4℄, that information about the 
on
urrent

behaviour of an elementary net system 
an always be 
ompletely re
overed from a de-

s
ription of its sequential behaviour.

8 Asyn
hronous transition systems

Asyn
hronous transition systems were introdu
ed by Bednar
zyk [1℄ and Shields [15℄.

These are sequential transition systems equipped with information about 
on
urren
y

in terms of an independen
e relation on the events. These transition systems are 
losely

related to safe nets. In fa
t, in [19℄, Winskel and Nielsen establish a 
ore
e
tion between a

spe
ial 
lass of asyn
hronous transition systems and safe nets. We now show that there is

a 
ore
e
tion between our 
ategory SPNts of safe PN-transition systems and the 
ategory

of asyn
hronous transtion systems de�ned in [19℄.

We begin by de�ning asyn
hronous transition systems. (The parti
ular de�nition we

use is adapted from [19℄).

De�nition 8.1 An asyn
hronous transition system is a stru
ture ATS = (Q;E;); q

in

; I)

su
h that

� (Q;E;); q

in

) is a sequential transition system (in the sense of De�nition 5.1).
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� I � E�E is an irre
exive, symmetri
, independen
e relation satisfying the follow-

ing four 
onditions:

(i) e 2 E implies 9q; q

0

2 Q: q

feg

=) q

0

.

(ii) q

u

) q

0

and q

u

) q

00

implies q

0

= q

00

.

(iii) e

1

Ie

2

and q

fe

1

g

=) q

1

and q

fe

2

g

=) q

2

implies 9q

0

: q

1

fe

2

g

=) q

0

and q

2

fe

1

g

=) q

0

.

(iv) e

1

Ie

2

and q

fe

1

g

=) q

1

and q

1

fe

2

g

=) q

0

implies 9q

2

: q

1

fe

2

g

=) q

2

and q

2

fe

1

g

=) q

0

.

Condition (i) in the de�nition above spe
i�es that ea
h event in E must be \used"

somewhere in the system. The se
ond 
ondition stipulates that the system is determinis-

ti
. The third and fourth 
onditions 
apture the fa
t that I spe
i�es pairs of events whi
h

are independent of ea
h other and 
an thus o

ur 
on
urrently if they are simultaneously

enabled. A
tually, the independen
e relation spe
i�es more than just 
on
urren
y|for

instan
e, two events may be independent without being enabled simultaneously anywhere

in the system. We shall return to this point later.

Sin
e we are dealing with sequential transition systems, for 
onvenien
e we shall write

q

e

) q

0

instead of q

feg

=) q

0

, where e 2 E. We shall typi
ally write q

u

) q

0

to indi
ate that

u 
ould either 
orrespond to feg for some e 2 E or to the empty step O

E

.

Noti
e that the underlying sequential transition system is a step transition system

satisfying axioms (A1) to (A3). So, we have idling transitions at ea
h state and every

state is rea
hable from the initial state. ((A3) is trivially satis�ed in a sequential transition

system).

Asyn
hronous transition systems are 
losely 
onne
ted to safe nets. In [19℄, Winskel

and Nielsen de�ne a 
ategoryA (whi
h we shall 
allAts) 
onsisting of asyn
hronous tran-

sition systems equipped with transition system morphisms whi
h satisfy the additional

requirement that the map on events preserve the independen
e relation. They then es-

tablish a 
ore
e
tion between a sub
ategory of asyn
hronous transition systems, denoted

A

0

(whi
h we shall 
all Ats

0

), and a 
ategory of safe Petri nets.

To identify the sub
ategory Ats

0

, they de�ne a version of regions 
alled 
onditions, us-

ing whi
h they de�ne axioms exa
tly like the regional axioms we impose on PN-transition

systems.

De�nition 8.2 Let ATS = (Q;E;); q

in

; I) be an asyn
hronous transition system. Its


onditions are nonempty subsets b � ) su
h that

(i) (q; e; q

0

) 2 b implies (q; O

E

; q) 2 b and (q

0

; O

E

; q

0

) 2 b.

(ii) (a) (q

1

; e; q

0

1

) 2

�

b and (q

2

; e; q

0

2

) 2 ) implies (q

2

; e; q

0

2

) 2

�

b

(b) (q

1

; e; q

0

1

) 2 b

�

and (q

2

; e; q

0

2

) 2 ) implies (q

2

; e; q

0

2

) 2 b

�

where for (q; e; q

0

) 2 ) we de�ne

(q; e; q

0

) 2

�

b

def

= (q; e; q

0

) =2 b and (q

0

; O

E

; q

0

) 2 b,

(q; e; q

0

) 2 b

�

def

= (q; O

E

; q) 2 b and (q; e; q

0

) =2 b and

�

b

�

=

�

b [ b

�

.

(iii) (q

1

; e

1

; q

0

1

) 2

�

b

�

and (q

2

; e

2

; q

0

2

) 2

�

b

�

implies :e

1

Ie

2

.
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Let B be the set of 
onditions of ATS. For e 2 E, de�ne

�

e = fb 2 B j 9q; q

0

: (q; e; q

0

) 2 b

�

g;

e

�

= fb 2 B j 9q; q

0

: (q; e; q

0

) 2

�

bg; and

�

e

�

=

�

e [ e

�

:

Further, for q 2 Q, de�ne M(q) = fb 2 B j (q; O

E

; q) 2 bg.

Noti
e that a 
ondition is really a subset of states and transitions. The information

about the states is 
oded up in terms of the idling transitions.

We shall establish that the notion of a 
ondition is equivalent to a natural notion of a

region for this 
lass of transition systems, de�ned as follows.

De�nition 8.3 Let ATS = (Q;E;); q

in

; I) be an asyn
hronous transition system. A

region of ATS is a pair of fun
tions r = (r

Q

; r

E

) where

r

Q

: Q! f0; 1g and

r

E

: E ! (f0; 1g � f0; 1g) su
h that

(i) 8q

e

) q

0

:

r

e = 1 implies r

Q

(q) = 1 and r

Q

(q

0

) = r

Q

(q) + (e

r

�

r

e):

(ii) 8e; e

0

2 E: If eIe

0

then (

r

e = 1 or e

r

= 1) implies

r

e

0

= e

0

r

= 0.

So, regions for asyn
hronous transition systems are very similar to the 0/1-regions we

de�ne for safe PN-transition systems. The only additional requirement is that independent

events have disjoint sets of pre and postregions. This re
e
ts the intuition that two

transitions in a safe net are independent provided their neighbourhoods are disjoint.

De�nition 8.4 Let ATS = (Q;E;); q

in

; I) be an asyn
hronous transition system. Let

B denote the set of 
onditions of ATS and let R denote the set of regions of ATS. We

de�ne two fun
tions, r̂ : B ! R and

^

b : R! B.

First, let r̂ : B ! R be de�ned as follows.

8b 2 B: 8q 2 Q: r̂(b)(q) =

(

1 if (q; O

E

; q) 2 b

0 otherwise

8b 2 B: 8e 2 E: r̂(b)(e) =

8

>

>

>

<

>

>

>

:

(1; 0) if b 2

�

e n e

�

(0; 1) if b 2 e

�

n

�

e

(1; 1) if b 2

�

e

�

(0; 0) otherwise

Next, let

^

b : R! B be de�ned as follows.

8r 2 R:

^

b(r) = f(q; u; q

0

) j u = O

E

; q = q

0

and r(q) = 1; or

u = feg; r(e) = (0; 0) and r(q) = r(q

0

) = 1g

It is not hard to show the following result.

Proposition 8.5 Let ATS be an asyn
hronous transition system, with B as its set of


onditions and R as its set of regions.
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(i) 8b 2 B:

^

b(r̂(b)) = b.

(ii) 8r 2 R: r̂(

^

b(r)) = r.

We 
an now des
ribe the sub
ategory Ats

0

de�ned in [19℄. Let ATS = (Q;E;); q

in

; I)

be an asyn
hronous transition system. Then ATS 2 Ats

0

if it satis�es the following two

axioms, stated in terms of its set of 
onditions B:

Axiom ATS1 M(q) =M(q

0

) implies q = q

0

.

Axiom ATS2

�

e �M(q) implies 9q

0

: q

e

) q

0

, for all q 2 Q; e 2 E.

Clearly M(q) is equivalent to the set of regions fr 2 R j r(q) = 1g. And,

�

e � M(q)

is equivalent to saying r(q) �

r

e for all r 2 R. So we 
an reformulate these two axioms

in terms of regions and observe that they 
orrespond to the axioms of separation and

enabling for PN-transition systems (stated in the 
ontrapositive form).

Axiom ATS1' (8r 2 R: r(q) = r(q

0

)) implies q = q

0

.

Axiom ATS2' (8r 2 R: r(q) �

r

e) implies 9q

0

: q

e

) q

0

, for all q 2 Q; e 2 E.

A
tually, when de�ning the 
ategory Ats of all asyn
hronous transition systems in

[19℄, Winskel and Nielsen do not assume that every state is rea
hable (as we have done

here by requiring the underlying sequential transition system to satisfy axiom (A2)). The

axiom for rea
hability is then introdu
ed in [19℄ as a third axiom that an asyn
hronous

transition system must satisfy to be in the sub
ategory Ats

0

. Sin
e we are only interested

in the sub
ategory Ats

0

here, our presentation is equivalent to the one in [19℄.

The morphisms in Ats

0

are transition system morphisms that preserve the indepen-

den
e relation. In other words, given two asyn
hronous transition systems ATS

i

=

(Q

i

; E

i

;)

i

; q

i

in

; I

i

), i = 1; 2, a morphism f : ATS

1

! ATS

2

is a pair (f

Q

; f

E

) where:

� f

Q

: Q

1

! Q

2

is a total fun
tion su
h that f

Q

(q

1

in

) = q

2

in

.

� f

E

: E

1

* E

2

is a partial fun
tion.

� q

e

)

1

q

0

implies f

Q

(q)

f

E

(e)

=)

2

f

Q

(q

0

).

� If e

1

I

1

e

0

1

and f

E

(e

1

); f

E

(e

0

1

) are both de�ned, then f

E

(e

1

)I

2

f

E

(e

0

1

), for all e

1

; e

0

1

2 E

1

.

We want to establish a relationship between our 
ategory of safe PN-transition systems

SPNts and the 
ategory Ats

0

. A
tually, to des
ribe the result we are after we have to

make a slight restri
tion to our notion of a safe PN-transition system. Hen
eforth, we

assume that if TS = (Q;E;!; q

in

) is a safe transition system, for every event e 2 E there

is some transition q

u

! q

0

in TS with e 2 u|that is, every event has an o

urren
e. We

shall dis
uss the need for this restri
tion at the end of this se
tion.

We �rst prove a standard result whi
h des
ribes how the independen
e relation I

in an asyn
hronous transition system spe
i�es 
on
urren
y. It says that a sequen
e of

a
tions whi
h are pairwise independent 
orresponds to a 
on
urrent step 
onsisting of

those a
tions. So, if su
h a sequen
e is enabled at a state in the system, all permutations

of that sequen
e must also be enabled at that system and, furthermore, they should all

lead to the same state as the original sequen
e.
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Lemma 8.6 Let ATS = (Q;E;); q

in

; I) be an asyn
hronous transition system and

fe

1

; e

2

; : : : ; e

n

g � E; n � 2, be a pairwise independent subset of events in E|in other

words, e

i

Ie

j

for all 1 � i; j � n; i 6= j.

If q

e

1

) q

1

e

2

) : : :

e

n�1

=) q

n�1

e

n

) q

00

then for all permutations � : f1; 2; : : : ; ng !

f1; 2; : : : ; ng, there exist states fq

0

1

; q

0

2

; : : : ; q

0

n�1

g su
h that q

e

�(1)

=) q

0

1

e

�(2)

=) : : :

e

�(n�1)

=) q

0

n�1

e

�(n)

=)

q

00

.

Proof The proof is straightforward, by indu
tion on n, the number of pairwise indepen-

dent events. The base 
ase n = 2 
orresponds to 
ondition (iv) in the de�nition of an

asyn
hronous transition system. We omit the details. 2

We 
an now des
ribe a fun
tor AS : Ats

0

! SPNts . Given an asyn
hronous transition

system ATS = (Q;E;); q

in

; I), AS(ATS) = (Q;E;!; q

in

), where

! = f(q; u; q

0

) j u = fe

1

; e

2

; : : : ; e

n

g � E; su
h that

e

i

Ie

j

for all 1 � i; j � n; i 6= j and

9q

1

; q

2

; : : : ; q

n�1

: q

e

1

) q

1

e

2

) : : :

e

n�1

=) q

n�1

e

n

) q

0

in ATSg

Let ATS

i

= (Q

i

; E

i

;)

i

; q

i

in

; I

i

); i = 1; 2, be a pair of asyn
hronous transition systems

and let f : ATS

1

! ATS

2

be a morphism in Ats

0

. Then the 
orresponding morphism

AS(f) : AS(ATS

1

)! AS(ATS

2

) is given by AS(f)

Q

= f

Q

and AS(f)

E

= f

E

.

Lemma 8.7 AS is a fun
tor.

Proof Let ATS = (Q;E;); q

in

; I) be an asyn
hronous transition system in Ats

0

. To


he
k that AS(ATS) is a safe PN-transition system, we just observe that every region of

ATS is also a 0/1-region of AS(ATS). It then follows that AS(ATS) must satisfy the

regional axioms (A4') and (A5') be
ause ATS satis�es Axioms ATS1' and ATS2'.

Given a morphism f : ATS

1

! ATS

2

, where ATS

i

= (Q

i

; E

i

;)

i

; q

i

in

; I

i

), i = 1; 2, and

AS(ATS

i

) = (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, we have to 
he
k that

^

f = AS(f) satis�es 
ondition

(iii) in De�nition 3.7.

In other words, if q

u

!

1

q

0

, we have to ensure that

^

f(q)

^

f(u)

�!

2

^

f(q

0

). Let u =

fe

1

; e

2

; : : : ; e

n

g. By the de�nition of !

1

, there must exist a sequen
e of a
tions q

e

1

)

1

q

1

e

2

)

1

: : :

e

n�1

=)

1

q

n

1

e

n

)

1

q

0

. Sin
e f is a transition system morphism, it then fol-

lows that the f -image of this sequen
e exists in ATS

2

. That is there is a sequen
e

f(q)

f(e

1

)

=)

2

f(q

1

)

f(e

2

)

=)

2

: : :

f(e

n�1

)

=)

2

f(q

n�1

)

f(e

n

)

=)

2

f(q

0

). Sin
e we know that the events in u

are pairwise independent and f preserves independen
e, the events in f(u) must be pair-

wise independent as well. It then follows, by the de�nition of !

2

, that f(q)

f(u)

�!

2

f(q

0

).

2

We now 
onstru
t a fun
tor SA whi
h is left adjoint to the fun
tor AS. Let

TS = (Q;E;!; q

in

) be a safe PN-transition system. De�ne SA(TS) = (Q;E;); q

in

; I)

where

� )= f(q; u; q

0

) j q

u

! q

0

and juj � 1g

� I = f(e

1

; e

2

); (e

2

; e

1

) j 9q 2 Q: q

fe

1

;e

2

g

�! q

0

g
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Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be a pair of safe PN-transition systems and f :

TS

1

! TS

2

be a morphism in SPNts. Then SA(f) : SA(TS

1

) ! SA(TS

2

) is given by

SA(f)

Q

= f

Q

and SA(f)

E

= f

E

.

Before proving that SA is a fun
tor, it will be useful to prove a small result about

0/1-regions.

Proposition 8.8 Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Suppose that

e

1

; e

2

2 E su
h that there exists a step q

fe

1

;e

2

g

�! q

0

in TS. Then, for all r 2 R

0=1

TS

, if

r

e

1

= 1

or e

1

r

= 1 then

r

e

2

= e

2

r

= 0.

Proof Suppose that r 2 R

0=1

TS

su
h that

r

e

1

= 1. Then, sin
e r(q) � 1,

r

e

2

must be

0, otherwise the step fe

1

; e

2

g would not be enabled at q. e

2

r

must be 0 as well. For,


onsider the state q

2

rea
hed by the transition q

fe

2

g

�! q

2

. (Su
h a transition must exist by

Proposition 3.6). We have r(q

2

) = r(q) + (e

2

r

�

r

e

2

). But r(q) = 1, sin
e

r

e

1

= 1 and e

1

is enabled at q. We also know that

r

e

2

= 0. So, if e

2

r

were 1, we would have r(q

2

) = 2,

whi
h is not possible.

On the other hand, if e

1

r

= 1, we must have r(q) = 0. Then, we 
annot have

r

e

2

= 1,

or e

2

would not be enabled at q. We 
annot have e

2

r

= 1 either be
ause then r(q

0

) = 2,

whi
h is not possible. 2

Lemma 8.9 SA is a fun
tor.

Proof Let TS = (Q;E;!; q

in

) be a safe PN-transition system. We have to �rst 
he
k

that SA(TS) is an asyn
hronous transition system. We basi
ally have to 
he
k that


onditions (i) to (iv) of De�nition 8.1 hold.

Condition (i) holds be
ause we have restri
ted the obje
ts in SPNts appropriately.

Condition (ii) follows from Proposition 3.5 whi
h says that PN-transition systems are

deterministi
.

Conditions (iii) and (iv) pertain to the independen
e relation. Condition (iii) says

that e

1

Ie

2

and q

e

1

=) q

1

and q

e

2

=) q

2

implies 9q

0

: q

1

e

2

=) q

0

and q

2

e

1

=) q

0

. Sin
e e

1

Ie

2

,

we know that q

00

fe

1

;e

2

g

�! q

000

somewhere in TS. By the previous proposition, the pre and

postregions of e

1

and e

2

are disjoint, so if both e

1

and e

2

are enabled at a state q, then

(by axiom (A5')) the step fe

1

; e

2

g must be enabled as well. The result then follows from

Proposition 3.6, whi
h asserts that all steps in a PN-transition system 
an be broken up

into substeps in a 
onsistent way.

Condition (iv) follows by a similar argument.

To verify that SA(TS) satis�es axioms ATS1' and ATS2', noti
e that by the previ-

ous proposition, any region r 2 R

0=1

TS

would 
orrespond to a region in SA(TS). Sin
e

TS satis�es axioms (A4') and (A5') with respe
t to regions in R

0=1

TS

, it follows that the


orresponding regions in SA(TS) are suÆ
ient to satisfy axioms ATS1' and ATS2'.

We then have to verify that for any morphism f : TS

1

! TS

2

; i = 1; 2, SA(f) =

^

f

is a morphism from SA(TS

1

) to SA(TS

2

), where SA(TS

i

) = (Q

i

; E

i

;)

i

; q

i

in

; I

i

); i = 1; 2.

We basi
ally have to verify that if e

1

I

1

e

2

and both

^

f(e

1

) and

^

f(e

2

) are de�ned, then

^

f(e

1

)I

2

^

f(e

2

), where

^

f(e

1

) = f(e

1

) and

^

f(e

2

) = f(e

2

). If e

1

I

1

e

2

, then, by the de�nition

of I

1

, we know that q

fe

1

;e

2

g

�!

1

q

0

somewhere in TS

1

. This implies that f(q)

ff(e

1

);f(e

2

)g

�!

2

f(q

0

)

in TS

2

. So, if f(e

1

) and f(e

2

) are both de�ned, then, by the de�nition of I

2

, we have
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f(e

1

)I

2

f(e

2

) and we are done. 2

Theorem 8.10 The fun
tor SA is left adjoint to the fun
tor AS. The unit of the adjun
-

tion is a natural isomorphism.

Proof Let TS 2 SPNts and ATS 2 Ats

0

. Suppose that f : TS ! AS(ATS) is a

morphism. Then, sin
e TS and SA(TS) have the same underlying sets of states and

events and AS(ATS) and ATS have the same underlying sets of states and events, it is

fairly straightforward to see that

^

f : SA(TS)! ATS is also a morphism, where

^

f

Q

= f

Q

and

^

f

E

= f

E

. Conversely, if g : SA(TS) ! ATS is a morphism, we 
an show that

g : TS ! AS(ATS) is also a morphism, where g

Q

= g

Q

and g

E

= g

E

. Further,

^

f = f

and

^

g = g for all morphisms f 2 SPNts and g 2 Ats

0

. This establishes a bije
tion

between Hom(TS;AS(ATS)) and Hom(SA(TS); ATS). It is not diÆ
ult to show that

this bije
tion is natural in both SPNts and Ats

0

, thereby establishing the adjun
tion.

It is also not diÆ
ult to show that the unit �

TS

: TS ! ASÆSA(TS) is an isomorphism

for all TS 2 SPNts. 2

So we have established a 
ore
e
tion between our 
ategory of safe PN-transition sys-

tems and the 
ategory of asyn
hronous transition systems Ats

0

de�ned by Winskel and

Nielsen in [19℄.

The reason that this 
orresponden
e is a 
ore
e
tion and not a 
ategori
al equivalen
e

has to do with the nature of the independen
e relation. In an asyn
hronous transition

system two events 
an be independent without ever being enabled simultaneously to

give rise to a 
on
urent step. When representing an asyn
hronous transition system as

a safe PN-transition system, we lose information about these \unused" independen
es.

These \unused" independen
es 
an be regarded as providing some \stru
tural" informa-

tion about the system whi
h may not be dire
tly dete
table in its 
on
urrent behaviour.

For example, two events being independent of ea
h other 
ould denote the fa
t that they

o

ur at di�erent lo
ations and do not interfere with ea
h other. Under su
h an inter-

pretation, one 
omes a
ross very natural examples of asyn
hronous transition systems in

whi
h independent events are never simultaneously enabled (see, for instan
e, [10℄).

It is not diÆ
ult to show that our 
ategory of safe PN-transition systems is equivalent

to a sub
ategory of Ats

0

whose obje
ts satisfy the additional 
onstraint that for every

pair (e

1

; e

2

) 2 I, there is a state q where both e

1

and e

2

are enabled.

We also pointed out a mismat
h between the de�nition of safe PN-transition systems

we use in this se
tion and the one we proposed in the Se
tion 6. The additional assumption

we have made here is that every event in E have an o

urren
e. This is required be
ause

asyn
hronous transition systems in the 
ategory Ats

0

satisfy this restri
tion.

However, this restri
tion on asyn
hronous transition systems is a 
onsequen
e of how


onditions are de�ned. For an asyn
hronous transtition system ATS = (Q;E;); q

in

; I),

it is easy to see that one 
annot de�ne a 
ondition b 2

�

e for any e 2 E whi
h does

not o

ur in ATS. This is be
ause 
onditions are de�ned as subsets of transitions whi
h

are present in the system. Sin
e we 
annot �nd any b 2

�

e for an event e whi
h does

not o

ur, Axiom ATS2 would then require e to be enabled at every state in the system,

whi
h is a 
ontradi
tion. So, for asyn
hronous transition systems in Ats

0

, 
ondition (i)

in De�nition 8.1 is implied by Axiom ATS2.
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However, in the generalized set up of regions, it is possible to de�ne \disabling regions"

whi
h take the value 0 at all states but whi
h are the preregion of some event e, thereby

ensuring that e is never enabled. The regional version of the se
ond axiom, Axiom ATS2',

would 
learly permit su
h permanently disabled events to be part of the spe
i�
ation of

the system.

It is not diÆ
ult to generalize De�nition 8.1 by dropping 
ondition (i) and building

a slightly larger 
ategory Ats

0

0

satisfying Axioms ATS1' and ATS2'. It then turns out

that the 
ore
e
tion we have des
ribed here goes through between the 
ategory SPNts as

originally de�ned in the previous se
tion and the more generous 
ategory Ats

0

0

.

9 Safe nets revisited

We showed in Se
tion 6 that there is a 
ore
e
tion between SPNts, the 
ategory of safe

PN-transition systems and SNet , our 
ategory of safe nets. Then, we showed that there is

also a 
ore
e
tion between SPNts and Ats

0

, where Ats

0

is a sub
ategory of the Ats, the


ategory of asyn
hronous transition systems. In [19℄, Winskel and Nielsen have established

a 
ore
e
tion between Ats

0

and a 
ategory of safe nets whi
h we shall 
all WNet .

Unfortunately, the 
ategory WNet is not the same as the 
ategory SNet we have

de�ned here. However, we show now that there is an adjun
tion between these two


ategories. Further, we 
an establish a 
ore
e
tion between the sub
ategories of SNet

and WNet 
onsisting of only saturated nets, where saturated nets are those nets whi
h

arise out of the regional 
onstru
tion in going from transition systems to nets.

The only di�eren
e between WNet and SNet is that the morphisms of WNet are

slightly stri
ter than those of SNet .

Let us brie
y re
all the de�nition of the 
ategory SNet . The obje
ts of SNet are

safe nets, as given by De�nition 6.1. Morphisms between safe nets are the same as

those between general nets, as given in De�nition 2.2. However, sin
e the de�nition of a

morphism be
omes slightly simpler when restri
ted to safe nets, we pause to spell it out

in detail.

Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be a pair of safe nets. An SNet -morphism

� : PN

1

! PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial fun
tion.

(ii) �

T

: T

1

* T

2

is a partial fun
tion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

The 
ategory WNet also has as its obje
ts safe nets, like SNet . However, the mor-

phisms are slightly stri
ter than those of SNet . � : PN

1

! PN

2

is a morphism in WNet

if � is an SNet-morphism, and, in addition, �

�1

S

(M

1

in

) = M

2

in

(where, abusing notation,

M

i

in

; i = 1; 2 denote the subsets of S

1

and S

2

whi
h are marked initially in PN

1

and PN

2

respe
tively).
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So, the essential di�eren
e between aWNet -morphism and an SNet -morphism is that

in aWNet -morphism �

S

is a total fun
tion when restri
ted to those pla
es marked initially

in the se
ond net.

Clearly, every WNet -morphism is also an SNet -morphism. So WNet is a sub
ategory

of SNet , though not a full sub
ategory.

It turns out that we 
an 
onstru
t a left adjoint to the in
lusion fun
tor fromWNet to

SNet (though this will not 
onstitute a re
e
tion be
ause WNet is not a full sub
ategory

of SNet [6℄).

In going from SNet to WNet , we have, in general, to make an SNet -morphism into a

WNet-morphism. In other words, we have to 
onvert the map on the initial marking from

a partial fun
tion to a total fun
tion. A standard way to 
onvert a partial fun
tion to a

total fun
tion is to augment the range of the fun
tion with a spe
ial \unde�ned" value.

Similarly, here we augment the net that is the sour
e of the morphism with an isolated

marked pla
e.

Formally, de�ne a fun
tor SNWN : SNet !WNet as follows.

� For PN = (S; T;W;M

in

) 2 SNet , SNWN(PN) = (S ℄ f�sg; T;W

0

;M

in

0

), where:

{ �s =2 S (we use ℄ to denote disjoint union).

{ 8s 2 S ℄ f�sg: 8t 2 T: W

0

(s; t) =

(

W (s; t) if s 2 S

0 otherwise

{ 8s 2 S ℄ f�sg: 8t 2 T: W

0

(t; s) =

(

W (t; s) if s 2 S

0 otherwise

{ M

in

0

(�s) = 1 and 8s 2 S: M

in

0

(s) =M

in

(s).

� Let � : PN

1

! PN

2

be a morphism between PN

1

and PN

2

, where PN

i

= (S

i

; T

i

;W

i

;M

i

in

),

i = 1; 2. Then, SNWN(�) = �

0

: SNWN(PN

1

) ! SNWN(PN

2

) is given as follows,

where SNWN(PN

i

) = (S

i

℄ f�s

i

g; T

i

;W

0

i

;M

i

in

0

), i = 1; 2.

{ 8t 2 T

1

: �

0

(t) = �(t).

{ 8s 2 S

2

℄ f�s

2

g: �

0

(s) =

8

>

>

>

<

>

>

>

:

�s

1

if (s = �s

2

) or

(s 2 S

2

;M

2

in

0

(s) = 1 and

�(s) is unde�ned)

�(s) otherwise

Theorem 9.1 SNWN : SNet !WNet is left adjoint to the in
lusion fun
tor.

Proof Let PN

1

= (S

1

; T

1

;W

1

;M

1

in

) and PN

2

= (S

2

; T

2

;W

2

;M

2

in

) be two safe nets. We

shall establish a bije
tion betweenHom(PN

1

; PN

2

) andHom(SNWN(PN

1

); PN

2

), where

SNWN(PN

1

) = (S

1

℄ �s

1

; T

1

;W

0

1

;M

1

in

0

).

We �rst de�ne a map � : Hom(PN

1

; PN

2

) ! Hom(SNWN(PN

1

); PN

2

). Suppose

that � : PN

1

! PN

2

2 Hom(PN

1

; PN

2

). De�ne �(�) : SNWN(PN

1

)! PN

2

as follows.

� 8t 2 T

1

: �(�)(t) = �(t).

� 8s 2 S

2

: �(�)(s) =

(

�s

1

if M

2

in

(s) = 1 and �(s) unde�ned

�(s) otherwise
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Next we de�ne a map � : Hom(SNWN(PN

1

); PN

2

) ! Hom(PN

1

; PN

2

). Let  :

SNWN(PN

1

)! PN

2

. Then �( ) : PN

1

! PN

2

is given as follows.

� 8t 2 T

1

: �( )(t) =  (t).

� 8s 2 S

2

: �( )(s) =

(

unde�ned if  (s) = �s

1

 (s) otherwise

It is straightforward to show that �(�(�)) = � and �(�( )) for all � 2 Hom(PN

1

; PN

2

)

and  2 Hom(SNWN(PN

1

); PN

2

). It is not diÆ
ult to show that this bije
tion is natural

in SNet and WNet , and we are done.

2

As we mentioned at the beginning of this se
tion, we 
an establish a slightly stronger

result when we look at the safe nets a
tually arising out of the regional 
onstru
tion from

transition systems.

In Se
tion 6, we have des
ribed a fun
tor STN whi
h asso
iates a net STN(TS) with

ea
h safe PN-transition system TS. Following [12℄, we 
an 
all su
h a net saturated ,

be
ause it 
ontains all possible pla
es whi
h are 
onsistent with the behaviour des
ribed

by TS. A 
ru
ial feature of the 
onstru
tion is that these saturated nets have no isolated

pla
es be
ause we only use non-trivial regions in the 
onstru
tion of the saturated net.

In [19℄, Winskel and Nielsen des
ribe a similar fun
tor, whi
h we 
an 
all AWN, go-

ing from Ats

0

to WNet . On
e again, given an asyn
hronous transition system ATS,

AWN(ATS) will be a saturated net. Here, saturation is with respe
t to the underlying

sequential behaviour of ATS as well as the independen
e relation I spe
i�ed by ATS.

An important di�eren
e between the 
onstru
tion des
ribed in [19℄ and the 
onstru
tion

we des
ribe in Se
tion 6 is that the 
onstru
tion in [19℄ adds trivial regions as well.

The reason why the 
onstru
tion in [19℄ also in
ludes trivial regions is to do with the

stri
ter notion of a net morphism in the 
ategory WNet . Noti
e that it is always possible

to de�ne a trivial morphism between two transition systems in whi
h the map on events

is empty. Corresponding to this, in the 
ategory SNet it is always possible to de�ne a

trivial morphism between two nets where the map on pla
es and the map on transitions

are both empty. However, in the 
ategory WNet , su
h trivial maps do not always exist,

be
ause of the strong 
ondition on how the initial markings have to be related. If the net

that is the sour
e of a morphism has an isolated marked pla
e, however, su
h a trivial map


an also be de�ned inWNet . Hen
e, to transport the trivial maps between asyn
hronous

transition systems in Ats

0

faithfully to trivial maps between the asso
iated nets inWNet ,

it is essential that the fun
tor AWN 
reate isolated pla
es.

Let SatSNet be the sub
ategory of SNet where for every net PN 2 SatSNet , there is

a safe PN-transition system TS 2 SPNts su
h that PN is isomorphi
 to STN(TS). Sim-

ilarly, let SatWNet be the sub
ategory of WNet su
h that for every net PN 2 SatWNet ,

there is an asyn
hronous transition system ATS 2 Ats

0

su
h that PN is isomorphi
 to

AWN(ATS).

The fun
tor SNWN : SPNts !WNet restri
ts to a fun
tor from SatSNet to SatWNet ,

whi
h we shall again 
all SNWN, for 
onvenien
e.

Going in the opposite dire
tion, starting with a net PN 2 SatWNet , we 
an �rst

apply the fun
tor WNA, whi
h is the right adjoint of AWN, to obtain an asyn
hronous
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Figure 3:

transition system 
orresponding to PN . Then by applying AS and STN we obtain a net

in SatSNet .

Theorem 9.2 The fun
tor SNWN : SatSNet ! SatWNet is left adjoint to the fun
-

tor STN Æ AS Æ WNA : SatWNet ! SatSNet. The unit of the adjun
tion is a natural

isomorphism.

Proof The proof is tedious but straightforward, based on several results we have proved

already, so we omit the details. 2

So, even at the level of saturated nets, we only get a 
ore
e
tion and not a 
ategori
al

equivalen
e between SatSNet and SatWNet . This is be
ause a safe net that is saturated

with respe
t its des
ription as an asyn
hronous transition system need not be saturated

with respe
t to its des
ription as a safe PN-transition system. So, the \obvious" fun
tor

from SatWNet to SatSNet whi
h just removes the isolated pla
es will not, in general,

yield a net in SatSNet at all.

Consider, for example, the simple transition system TS in Figure 3. If we view this

as a safe PN-transition system, the 
orresponding saturated net STN(TS) would have a

pla
e s su
h that s 2 e

1

�

and s 2

�

e

3

.

However, we 
an make TS into an asyn
hronous transition system in more than one

way. The obvious asyn
hronous transition system version of TS has the empty indepen-

den
e relation. But, we 
an also spe
ify that e

1

and e

3

are independent. This would mean

that in the net AWN(TS), the neighbourhoods of e

1

and e

3

would be disjoint, hen
e ruling

out the pla
e s 
onne
ting e

1

to e

3

whi
h is present in STN(TS).

Another way of 
omparing the 
ategories SNet andWNet is to examine sub
ategories

of SNet and WNet where we saturate the nets in both sub
ategories with respe
t to the

same 
lass of transition systems.

First, we 
an relate SPNts and WNet by fun
tors STWN : SPNts ! WNet and

SWNT : WNet ! SPNts in mu
h the same way as we related SPNts and SNet by STN

and SNT, ex
ept that STWN 
onstru
ts pla
es 
orresponding to both trivial and non-

trivial regions. It is then easy to establish a 
ore
e
tion between STWN and SWNT. We


an then look at the 
ategory SatWNet

0

, 
onsisting of safe nets whi
h are isomorphi
 to

STWN(TS) for some TS 2 SPNts. It is not diÆ
ult to show that SatSNet and SatWNet

0

are 
ategori
ally equivalent, where the fun
tor from SatSNet to SatWNet

0

is SNWN as

before and the fun
tor in the opposite dire
tion is the one whi
h strips o� isolated pla
es

from a net.

In a similar way, we 
an de�ne a 
ore
e
tion between Ats

0

and SNet in terms of fun
-

tors AN : Ats

0

! SNet and NA : SNet ! Ats

0

, where AN 
onstru
ts pla
es 
orresponding

to only non-trivial regions. We 
an then look at the 
ategory SatSNet

0


onsisting of safe
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nets whi
h are isomorphi
 to AN(ATS) for some ATS 2 Ats

0

. It turns out that SatSNet

0

and SatWNet are 
ategori
ally equivalent.

So, provided we use the same notion of saturation in both SNet and WNet , we end

up with equivalent sub
ategories of saturated nets.

10 Dis
ussion

In this paper we have shown how to de�ne sub
ategories of PN-transition systems whi
h

des
ribe the behaviour of safe nets and elementary net systems. This is a
hieved by

\tuning" the notion of a region appropriately. It then turns out that the 
ore
e
tion

established between the 
ategories PNts and PNet in [9℄ 
an be restri
ted to 
ore
e
tions

between the 
orresponding sub
ategories of these two 
ategories.

We have examined the relationship between sequential and step transition systems in

the setting of PN-transition systems. In general, there is a 
ore
e
tion between sequential

PN-transition systems and \normal" PN-transition systems with steps. However, when

we restri
t our attention to transition systems des
ribing the behaviour of elementary

net systems, the sub
ategories of sequential and step transition systems are equivalent.

This shows that for elementary net systems, all information about 
on
urren
y 
an be

re
overed by examining the sequential behaviour of the system.

We have also established a 
ore
e
tion between safe PN-transition system and asyn-


hronous transition systems. This result shows that asyn
hronous transition systems are,

in a sense, a more 
on
rete model of behaviour than step transition systems be
ause the

independen
e relation 
an provide \stru
tural" information about a system whi
h 
annot

be inferred dire
tly from an examination of its behaviour.

A brief remark is in order about the way we have des
ribed the 
orresponden
e between

step transition systems and Petri nets. We have 
hosen to present the relationship between

step transition systems and di�erent 
lasses of Petri nets dire
tly in terms of 
ore
e
tions,

by identifying spe
ial 
ategories of step transition systems 
orresponding to ea
h 
lass of

nets. Instead, we 
ould have followed the approa
h adopted by Winskel and Nielsen in

[19℄ and �rst established the existen
e of left adjoints for the natural fun
tors from nets to

step transition systems and then \
ut down" the adjun
tions to 
ore
e
tions by restri
ting

the 
lass of step transition systems under 
onsideration.

In a sense, it would have been more uniform to follow the approa
h of [19℄, be
ause

the right adjoints in all the 
ore
e
tions we establish between transition systems and nets


orrespond to the same fun
tor|the one taking a net to its \step" marking diagram.

We have 
hosen to dire
tly present the results in terms of 
ore
e
tions be
ause these


ore
e
tions denote, in our opinion, stronger and more relevant relationships between

the two 
lasses of models than those represented by simple adjun
tions. An adjun
tion

between step transition systems and a parti
ular 
lass of nets des
ribes the minimal way

of \massaging" a given step transition system so that it represents the behaviour of some

net from the 
lass of nets under 
onsideration. On the other hand, if we have a 
ore
e
tion

between a 
lass of step transition systems and a 
lass of nets, we are guaranteed that the


lass of transition systems we are 
onsidering 
aptures pre
isely the behaviours des
ribable

by the 
lass of nets we are interested in.

It is natural to ask what we a
hieve by establishing these formal relationships between

di�erent models of 
on
urren
y. One motivation for establishing su
h relationships is
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that they provide a basis for translating results from one model to another. This gives us

the freedom to work within whi
hever framework is most 
onvenient and \automati
ally"

obtain 
onne
tions to other approa
hes.

For instan
e, to obtain a non-interleaved model for a pro
ess 
al
ulus su
h as CCS [8℄,

it is intuitively easier to enri
h the standard interleaved transition system semanti
s to

obtain a more faithful representation of 
on
urren
y, rather than providing a semanti
s

dire
tly in terms of nets [2, 13℄ or event stru
tures [18℄. Thus, using a very simple extension

of the standard operational semanti
s for CCS, we 
an provide a non-interleaved semanti
s

for a ri
h sub
lass of the language in terms of asyn
hronous transtition systems from the

sub
ategory Ats

0

[10℄. This implies, by the results 
onne
ting Ats

0

and WNet , that we

automati
ally obtain a net semanti
s for this language.

The other natural question that one may ask is why we work within the framework

of 
ategory theory. One reason is that it provides a 
onvenient mathemati
al language to

phrase the kinds of 
orresponden
es we would like to des
ribe. For instan
e, 
ore
e
tions

su

intly 
apture the idea of one model being embedded in another.

The other advantage of working with 
ategories is that many interesting operations

that one de�nes on these models 
an be 
aptured as universal 
ategori
al 
onstru
tions.

For instan
e, parallel 
omposition 
orresponds to a notion of 
ategori
al produ
t, while

nondeterministi
 
hoi
e 
an be des
ribed in terms of 
oprodu
ts. Thus, by relating 
ate-

gories of models, we 
an also 
ompare how these 
onstru
tions behave in di�erent models.

This issue is dis
ussed in some detail in [19℄, where a number of relationships between

models for 
on
urren
y are established in a 
ategori
al setting, spanning the spe
trum of

linear-time, bran
hing-time and partial-order approa
hes to modelling the behaviour of


on
urrent systems.

We 
on
lude by pointing out a major issue whi
h we have ignored in our study|that

of labelling. In the theory of Petri nets, abstra
tion is a
hieved by adding a set of labels

whi
h 
an be asso
iated with the underlying events of the system. This is 
ru
ial for using

nets to provide, say, a semanti
s for CCS-like langages. In [19℄, labelling is introdu
ed

into the 
ategori
al treatment of di�erent models of 
on
urren
y by means of �brations

and 
o�brations. Though they point out some problems in de�ning these 
onstru
tions

over 
ategories of nets, it does not seem to prevent the 
ore
e
tion between unlabelled

transition systems and unlabelled nets from being extended to the 
orresponding labelled


ategories. So, while we have not expli
itly handled labelling in our framework, we are


on�dent that we 
an follow the route set out in [19℄ without too mu
h diÆ
ulty.
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A Appendix

We �x some terminology and notation regarding multisets.

De�nition A.1 Let A be a set.

� A multiset u over A is a fun
tion u : A ! N

0

, where N

0

is the set of natural

numbers f0; 1; 2; : : :g. The set of all multisets over A is denoted by MS (A).

� For u 2 MS (A), let juj, the size of u, be given by

P

a2A

u(a). u is �nite i� juj is

�nite. The set of all �nite multisets over A is denoted by MS

�n

(A).
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� The empty multiset over A is the unique fun
tion O

A

: A ! N

0

su
h that 8a 2

A: O

A

(a) = 0.

� Let u; v 2 MS (A). Then u is a submultiset of v, written u �

MS

v, in 
ase u(a) �

v(a) for all a 2 A.

Thus, if u is a multiset over A, for ea
h a 2 A, u(a) is the number of o

urren
es of a

in u. Abusing notation, we shall write a 2 u to signify that u(a) � 1. For simpli
ity,

we shall usually write out multisets as sets with multipli
ities | for instan
e, if a; b 2 A,

then fa; a; bg denotes the multiset u over A whi
h assigns u(a) = 2, u(b) = 1 and u(
) = 0

for all 
 2 A su
h that 
 6= a and 
 6= b.

Multisets 
an be added and subtra
ted pointwise | if u and v are two multisets over

A, then u+ v and u� v are de�ned as follows:

� 8a 2 A: (u+ v)(a) = u(a) + v(a).

� If v �

MS

u then 8a 2 A: (u� v)(a) = u(a)� v(a) .

Given a partial fun
tion f : A * B between sets, f 
an be extended in a natural way

to a (total) fun
tion

^

f : MS

�n

(A)! MS

�n

(B) as follows:

8u 2 MS

�n

(A): 8b 2 B:

^

f(u)(b) =

X

fa2Ajf(a)=bg

u(a)

By 
onvention,

^

f(u) = O

B

in 
ase f(a) is unde�ned for all a 2 u.

For 
onvenien
e, we shall denote both f and its extension

^

f to multisets by f .
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