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Abstrat

Labelled transition systems an be extended to faithfully model onurreny

by permitting transitions between states to be labelled by a olletion of ations,

denoting a onurrent step. We an haraterize a sublass of these step transi-

tion systems, alled PN-transition systems, whih desribe the behaviour of Petri

nets. This orrespondene is formally desribed in terms of a oreetion between

a ategory of PN-transition systems and a ategory of Petri nets.

In this paper, we show that we an de�ne subategories of PN-transition systems

whose objets are safe PN-transition systems and elementary PN-transition systems

suh that there is a oreetion between these subategories and subategories of

our ategory of Petri nets orresponding to safe nets and elementary net systems.

We also prove that our ategory of elementary PN-transition systems is equiva-

lent to the ategory of (sequential) elementary transition systems de�ned by Nielsen,

Rozenberg and Thiagarajan, thereby establishing that the onurrent behaviour of

an elementary net system an be ompletely reovered from a desription of its

sequential behaviour.

Finally, we establish a oreetion between our ategory of safe PN-transition

systems and a subategory of asynhronous transition systems whih has been

shown by Winskel and Nielsen to be losely linked to safe nets.

1

Part of the work reported here was done while the author was visiting the Computer Siene Depart-

ment, Aarhus University, Denmark. The author's stay in Denmark was supported by a grant from the

Aarhus University Siene Foundation.

This report is also published as DAIMI-PB-399, Computer Siene Department, Aarhus University,

Aarhus, Denmark.



1 Introdution

Labelled transition systems provide a simple and onvenient framework for abstratly

desribing the behaviour of omputing systems. Their main shortoming from the point

of view of desribing onurrent systems is that they are inherently sequential in nature.

We an overome this limitation by adding some struture to transition systems. One

way of doing this is to permit transitions to be labelled by steps, onsisting of more than

one ation [5, 9℄. This step transition relation is intended to be read as desribing how the

system evolves from one state to another by performing (multi)sets of onurrent ations.

In [9℄, we have shown a lose orrespondene between a lass of step transition systems,

alled PN-transition systems, and Petri nets [14℄. The relationship is desribed in terms

of a oreetion between a ategory of PN-transition systems, alled PNts, and a ategory

of Petri nets, alled PNet , where the morphisms in the two ategories orrespond to a

notion of one system simulating another. This oreetion shows that we an regard PN-

transition systems as a model whih aptures preisely the lass of onurrent behaviours

desribed by Petri nets, while abstrating away from the strutural information assoiated

with nets.

In this paper, we de�ne subategories of PNts whih orrespond to some interesting

lasses of behaviours and relate these sublasses of PN-transition systems to other models

of onurrent systems. In partiular, we show that we an identify natural sublasses of

PN-transition systems whih orrespond to two widely studied lasses of nets, safe nets

and elementary net systems.

The �rst observation we make in this paper is that the hoie of using sequential or

step transition systems to desribe Petri nets depends on how detailed a desription one

wants of system behaviour. It turns out that we an haraterize in a preise way the

sequential transition systems orreponding to Petri nets in terms of a oreetion between

the full subategory of PNts whose objets are sequential PN-transition systems and the

ategory PNet of Petri nets.

Next, we turn to the question of representing the behaviour of safe nets in terms of

step transition systems. Petri nets are a very general model for desribing onurrent

systems. To obtain a tratable theory of their behaviour, one often looks at a restrited

lass of nets alled safe nets. Safe nets are very \well-behaved" and have given rise to a

rih theory. In partiular, we note that there are strong onnetions between the theory

of safe nets, trae languages [7℄ and event strutures [11, 17℄.

To identify a subategory of PNts orresponding to safe nets, we further re�ne the

onept of a region. Regions play a key role in establishing the oreetion between PNts

and PNet . They were originally de�ned in the ontext of sequential transition systems

by Ehrenfeuht and Rozenberg [3℄ as a transition system ounterpart of the notion of

a ondition in an elementary net system. Using regions, they haraterized the lass of

sequential transition systems whih represent the behaviour of elementary net systems.

To de�ne PN-transition systems, the notion of a region is generalized in [9℄ to apture

the transition system ounterpart of a plae of a Petri net. Here, we show that we an

\tune" the notion of a region to identify a full subategory SPNts of safe PN-transition

systems so that there is a oreetion between SPNts the full subategory SNet of PNet

whose objets are safe nets.

We then turn our attention to elementary net systems. In [12℄, Nielsen, Rozenberg and

Thiagarajan exploit the regions de�ned in [3℄ to establish a oreetion between a lass
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of sequential transition systems alled elementary transition systems and elementary net

systems. Here we show how to desribe a full subategory of elementary PN-transition sys-

tems whih is equivalent to the ategory of elementary transition systems de�ned in [12℄.

This equivalene provides an alternative proof of the result, established by Hoogeboom

and Rozenberg [4℄, that for elementary net systems, no information about onurreny is

lost by restriting one's attention to sequential transition systems.

Enrihing the transition relation to inlude steps as labels is not the only way of

introduing additional struture into transition systems to faithfully desribe onurreny.

Another possibility is to retain a sequential transition relation, and add a relation whih

expliitly spei�es whih underlying events in the system are independent of eah other.

This is the approah taken in de�ning asynhronous transition systems [1, 15℄.

In [19℄, Winskel and Nielsen establish a oreetion between a ategory Ats

0

of asyn-

hronous transition systems and a ategory of safe nets. From this, it would appear that

safe PN-transition systems are losely related to asynhronous transition systems. In fat,

we establish a oreetion between our ategory of safe PN-transition systems and the

subategory Ats

0

of asynhronous transition systems de�ned in [19℄.

The reason this orrespondene is a oreetion and not an equivalene is to do with

the role played by the independene relation in an asynhronous transition system. It

turns out that this relation also inorporates some \strutural" information about the

system, in addition to information about onurreny. So, in a sense, asynhronous

transition systems are a more abstrat model than nets but a more onrete model than

safe PN-transition systems.

Another point onerning this orrespondene between safe PN-transition systems and

asynhronous transition systems is that the ategory of safe nets that we work with is

slightly di�erent from the ategory of safe nets that Winskel and Nielsen work with.

However, it turns out that we an establish an adjuntion between these two ategories

of safe nets. This orrespondene an be strengthened when we restrit our attention to

saturated nets, whih are those nets onstruted out of transition systems using regions.

The main results of this paper are summarized in Figures 1 and 2. In the diagrams,

a double arrow ) represents a oreetion. The arrow indiates the diretion of the left

adjoint.

The �rst diagram desribes the orrespondene between sublasses of PN-transition

systems and sublasses of nets. The vertial arrows represent inlusions. For eah pair

of ategories onneted by a vertial arrow, the lower ategory is a full subategory of

the ategory immediately above. In the bottom row, we have indiated that the ategory

of elementary PN-transition systems is equivalent to both the subategory of sequential

elementary PN-transition systems and to the ategory of elementary transition systems

de�ned in [12℄.

In the seond diagram, we show the orrespondene between safe PN-transition sys-

tems and asynhronous transition systems. We also show the adjuntion between our

ategory of safe nets and the ategory of safe nets desribed in [19℄, where the right

adjoint is the inlusion funtor.

The paper is organized as follows. In the next two setions we briey review some

terminology and basi results onerning the ategories PNet (of Petri nets) and PNts (of

PN-transition systems) de�ned in [9℄. In Setion 4 we desribe the oreetion between

PNts and PNet . In the next setion, we haraterize the sequential behaviours of Petri

nets. Setion 6 desribes the subategory of PNts orresponding to safe nets. In Setion 7
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we desribe a subategory of PNts whih is equivalent to the ategory of elementary

transition systems de�ned in [12℄. We relate our ategory of safe PN-transition systems

to Winskel and Nielsen's ategory of asynhronous transition systems in Setion 8. The

next setion desribes the orrespondene between the two di�erent ategories of safe nets

de�ned here and in [19℄. We onlude with a disussion of the results presented here.

A word about notation|the de�nition of PN-transition systems uses multisets quite

extensively. We desribe the notation and terminology we use for multisets in the Ap-

pendix.

2 Petri nets

We begin with a brief introdution to Plae/Transition nets, whih are often simply alled

Petri nets. A more detailed disussion of this lass of nets an be found in [14℄.

De�nition 2.1 A Petri net is a quadruple PN = (S; T;W;M

in

), where:

� S is set of plaes, T is a set of transitions and S \ T = ;. T is assumed to be

ountable.

� W : (S � T ) [ (T � S) ! N

0

is the weight funtion suh that 8t 2 T: 9s 2

S: W (s; t) > 0.

� M

in

: S ! N

0

is the initial marking.

For t 2 T , let

�

t = fs 2 S j W (s; t) > 0g and t

�

= fs 2 S j W (t; s) > 0g. Similarly, for

s 2 S, let

�

s = ft 2 T j W (t; s) > 0g and s

�

= ft 2 T j W (s; t) > 0g. For x 2 S [ T , let

�

x

�

=

�

x [ x

�

. Notie that we have insisted that

�

t be nonempty for eah t 2 T .

The plaes of a Petri net intuitively orrespond to loal states of the system. A global

state, alled a marking, is a multiset M : S ! N

0

. If M(s) = n, then s is said to be

assigned n tokens by M .

A transition t an our at a marking M if for all s 2 S, M(s) � W (s; t). We say

that t is enabled at M and denote this by M [ti.

When a transition t ours at a markingM , a new markingM

0

is generated aording

to the following rule:

8s 2 S: M

0

(s) =M(s)�W (s; t) +W (t; s)

We denote the fat that M evolves to M

0

via t by M [tiM

0

.

Suppose t

1

and t

2

are two transitions and M is a marking suh that 8s 2 S: M(s) �

W (s; t

1

) + W (s; t

2

). Then t

1

and t

2

an both our independently at M and are thus

onurrently enabled. In suh a situation,M an evolve in a single step by the ourrene

of both t

1

and t

2

to a marking M

0

where

8s 2 S: M

0

(s) =M(s)�W (s; t

1

)�W (s; t

2

) +W (t

1

; s) +W (t

2

; s)

We an thus extend the transition relation assoiated with a Petri net to permit

steps of ations between a pair of markings. In general, suh a step will be a multiset

over T rather than a subset of T beause a transition may be onurrent with itself (a

phenomenon alled autoonurreny).
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Let u 2 MS

�n

(T ). u is enabled at a marking M , denoted M [ui, if for all s 2 S,

M(s) �

P

t2T

u(t) �W (s; t). (Reall that u(t) denotes the number of ourrenes of t in

u). When u ours, M is transformed to M

0

(denoted M [uiM

0

) where

8s 2 S: M

0

(s) =M(s) +

X

t2T

u(t) � (W (t; s)�W (s; t))

If

�

t = ;, it is lear that unboundedly large steps onsisting of opies of t will be enabled

at any reahable marking. This is a fairly undesirable phenomenon and prompts the

restrition we have made that every transition have an input plae. This restrition was

not present in the nets onsidered in [9℄. We shall say more on this in Setion 4.

The set of all markings reahable from a marking M is denoted by [Mi. [Mi is the

smallest set of markings suh that

� M 2 [Mi

� If M

0

2 [Mi and 9u 2 MS

�n

(T ): M

0

[uiM

00

then M

00

2 [Mi.

Given a Petri net PN = (S; T;W;M

in

), we an assoiate a transition relation)

PN

�

[M

in

i �MS

�n

(T )� [M

in

i with PN as follows.

)

PN

= f(M;u;M

0

) jM 2 [M

in

i and M [uiM

0

g:

Using )

PN

, we an assoiate with PN an obvious transition system TS

PN

whose

states are the reahable markings of PN and whose transition relation is labelled by

multisets. We shall formally de�ne suh step transition systems in the next setion.

Here, we proeed by onstruting a ategory of Petri nets. To do so, we have to de�ne

a suitable notion of morphism.

De�nition 2.2 Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

); i = 1; 2, be two Petri nets. A net morphism

from PN

1

to PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial funtion. (Notie that �

S

is a map from S

2

to S

1

and not

from S

1

to S

2

. Thus, in the \forward" diretion, �

�1

S

� S

1

� S

2

is a relation. For

X � S

1

, �

�1

S

(X) denotes the set fy 2 S

2

j �

S

(y) 2 Xg.)

(ii) �

T

: T

1

* T

2

is a partial funtion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then:

� �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

� 8s 2

�

t

2

: W

1

(�

S

(s); t

1

) = W

2

(s; t

2

).

� 8s 2 t

2

�

: W

1

(t

1

; �

S

(s)) = W

2

(t

2

; s).
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We shall denote both �

S

and �

T

by �, unless it is unlear from the ontext whih

omponent we are referring to. Thus, normally we shall write �(s) for �

S

(s) and �(t) for

�

T

(t).

Let PNet be the ategory whose objets are Petri nets and whose arrows are net

morphisms as de�ned above.

We onlude this setion with a result showing that net morphisms preserve onurrent

behaviour in a strong way. The proof of this result is given in [9℄.

Lemma 2.3 Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

); i = 1; 2, be two Petri nets and let � be a net

morphism from PN

1

to PN

2

. For eah M 2 [M

1

in

i, de�ne M

�

: S

2

! N

0

as follows:

8s 2 S

2

: M

�

(s) =

(

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We then have the following:

(i) 8M 2 [M

1

in

i: M

�

2 [M

2

in

i.

(ii) Suppose that (M;u;M

0

) 2 )

PN

1

. Then (M

�

; �(u);M

0

�

) 2 )

PN

2

.

3 PN-transition systems

A labelled transition system is usually de�ned as a quadruple TS = (Q;�;!; q

in

), where

Q is a set of states and!� Q���Q is a (sequential) transition relation whih desribes

how the system evolves from state to state by performing ations from �, beginning with

the initial state q

in

.

We enrih the transition relation by permitting one state to be transformed to another

in a single step onsisting of a �nite multiset of ations. We an then de�ne the lass of

PN-transition systems as a sublass of this new lass of transition systems whih satis�es

some simple axioms ensuring that all the steps in the system are \onsistent".

De�nition 3.1 A step transition system is a struture TS = (Q;E;!; q

in

), where

� Q is a ountable set of states, with q

in

2 Q as the initial state.

� E is a ountable set of events.

� ! � Q�MS

�n

(E)�Q is the transition relation.

We shall often write q

u

! q

0

instead of (q; u; q

0

) 2 !.

We an extend ! to a relation !

�

over step sequenes in the usual way. Let � =

u

1

u

2

: : : u

n

2 (MS

�n

(E))

�

be a sequene of steps. Then (q; �; q

0

) 2 !

�

i� 9q

0

; q

1

; : : : ; q

n

:

q

0

= q, q

n

= q

0

and q

i�1

u

i

! q

i

for 1 � i � n.

We put three basi restritions on transition systems. First, we introdue idling tran-

sitions, represented by the empty multiset, as self loops at eah state and demand that

these speial transitions our only as self loops. We also ensure that all states in a

transition system are reahable from the initial state. Finally, we insist that there be no

unbounded autoonurreny in the system. Formally, we have the following basi axioms.
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(A1) 8q; q

0

2 Q: q

O

E

�! q

0

i� q = q

0

(where O

E

is the empty multiset over E).

(A2) 8q 2 Q: 9� 2 (MS

�n

(E))

�

: (q

in

; �; q) 2 !

�

.

(A3) 8q 2 Q: 8e 2 E: 9k 2 N

0

: (q; u; q

0

) 2 ! implies u(e) < k.

Heneforth, we shall assume that every step transition system we onsider satis�es axioms

(A1), (A2) and (A3).

Notie that (A1) does not rule out the presene of non-trivial self-loops of the form

q

u

! q.

(A3) orresponds to the restrition we have plaed on nets that eah transition have

an input plae. Notie that no global bound is plaed on autoonurreny|all (A3) says

is that autoonurreny is loally bounded at eah state in the transition system.

To desribe PN-transition systems, we need to introdue the notion of a region. Re-

gions were originally de�ned in the ontext of elementary transition systems in [3℄ and

exploited to de�ne a oreetion between elementary transition systems and elementary

net systems in [12℄. Here we generalize the regions of [3, 12℄ to desribe the transition

system ounterpart of a plae of a Petri net.

De�nition 3.2 Let TS = (Q;E;!; q

in

) be a step transition system. A region is a pair

of funtions r = (r

Q

; r

E

) suh that:

(i) r

Q

: Q! N

0

.

(ii) r

E

: E ! N

0

�N

0

.

For onveniene, we denote the �rst omponent of r

E

(e) as

r

e and the seond om-

ponent of r

E

as e

r

. In other words, if r

E

(e) = (n

1

; n

2

), then

r

e = n

1

and e

r

= n

2

.

(iii) 8(q; u; q

0

) 2 ! : r

Q

(q) �

X

e2E

u(e) �

r

e andr

Q

(q

0

) = r

Q

(q) +

X

e2E

u(e) � (e

r

�

r

e):

We shall denote both r

Q

and r

E

by r, unless it is unlear from the ontext whih ompo-

nent we are referring to. Thus, normally we shall write r(q) for r

Q

(q) and r(e) for r

E

(e).

If

r

e > 0, we say that r is a preregion of e and if e

r

> 0, we say that r is a postregion of e.

So, a region r orresponds to a plae of the Petri net whih we would like to assoiate

with a given step transition system. Reall that for a Petri net PN , we an assoiate an

\obvious" transition system TS

PN

, with states orresponding to the reahable markings of

PN , events to the transitions of PN and the step transition relation de�ned by)

PN

. We

speify the number of tokens on the \plae" r at the \marking" q by r(q). For eah e 2 E,

r(e) spei�es the \weights" W (r; e) and W (e; r). The last ondition in the de�nition of

a region ensures that r

Q

is onsistent with the overall behaviour of the net | for every

transition q

u

! q

0

present in the system, r(q) must have enough \tokens" to permit u to

our and r(q

0

) must ontain the orret number of \tokens" as spei�ed by the normal

�ring rule of a Petri net.

We disregard regions r whih are \disonneted" from all the events | i.e. r suh that

r(e) = (0; 0) for all e 2 E. These trivial regions orrespond to isolated plaes in a Petri

net and do not ontribute in any way to haraterizing the behaviour of the system.
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De�nition 3.3 Let TS = (Q;E;!; q

in

) be a step transition system. A region r is non-

trivial i� for some e 2 E, r(e) 6= (0; 0). We denote the set of non-trivial regions of TS

by R

TS

.

Heneforth, whenever we make a statement referring to all regions, we assume that

we are only onsidering non-trivial regions (unless expliitly stated otherwise).

PN-transition systems are haraterized by two \regional" axioms in addition to the

basi axioms (A1) and (A2):

(A4) Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

TS

: r(q) 6= r(q

0

). (Separation)

(A5) 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q suh that q

u

! q

0

, then

9r 2 R

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

Axiom (A4) says that any pair of distint states in Q will be distinguished by at least one

(non-trivial) region. Axiom (A5) aptures the fundamental idea underlying the dynami

behaviour of a Petri net. It says that if the system annot perform a step labelled by u

at the state q then there must be some region r whih does not have enough \tokens" at

q to permit u to our. In other words, whenever a multiset of ations u is enabled at

a state q of the system by all regions, it must be possible to perform u and reah some

state q

0

in the system.

De�nition 3.4 A PN-transition system is a step transition system TS = (Q;E;!; q

in

)

whih satis�es axioms (A4) and (A5) (in addition to the basi axioms (A1) to (A3)).

We now state a ouple of useful properties of PN-transition systems whih are formally

established in [9℄.

The �rst observation about PN-transition systems is that they are deterministi.

TS = (Q;E;!; q

in

) is said to be a deterministi step transition system in ase the fol-

lowing is true:

8q 2 Q: 8u 2 MS

�n

(E): (q; u; q

0

) 2 ! and (q; u; q

00

) 2 ! implies q

0

= q

00

:

Proposition 3.5 Every PN-transition system is deterministi.

The seond observation is that every step in a PN-transition system an be broken up

into substeps in a onsistent way. This shows that steps do indeed reet onurreny in

a natural way.

Proposition 3.6 Let TS = (Q;E;!; q

in

) be a PN-transition system and let q

u

! q

0

in

TS. Then

8v �

MS

u: 9q

v

2 Q: q

v

! q

v

and q

v

u�v

�! q

0

:

To onstrut a ategory of PN-transition systems, we now de�ne morphisms between

PN-transition systems. These are standard transition system morphisms as de�ned, say,

in [12, 19℄, extended to respet steps.

De�nition 3.7 Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be two PN-transition systems. A

transition system morphism f from TS

1

to TS

2

is a pair of funtions f = (f

Q

; f

E

) where:

8



(i) f

Q

: Q

1

! Q

2

is a total funtion suh that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial funtion.

(iii) If (q; u; q

0

) 2 !

1

then (f

Q

(q); f

E

(u); f

Q

(q

0

)) 2 !

2

.

As with regions, we shall denote both f

Q

and f

E

by f , unless it is unlear from the ontext

whih omponent we are referring to. Thus, normally we shall write f(q) for f

Q

(q) and

f(e) for f

E

(e).

Notie that the last lause ensures that if a step u is hidden by f then every transition

(q; u; q

0

) 2 !

1

results in q and q

0

being mapped to the same state in Q

2

; i.e. if for all

e 2 u, f(e) is unde�ned, then (q; u; q

0

) 2 !

1

implies (f(q); O

E

2

; f(q

0

)) 2 !

2

, whih by

axiom (A1) fores f(q) = f(q

0

).

PN-transition systems with transition system morphisms form a ategory, whih we

shall all PNts.

4 Relating Petri nets and PN-transition systems

There is a natural way to de�ne a funtor NT from PNet to PNts.

NT maps objets in the obvious way|eah Petri net PN is mapped to the transition

system assoiated with its \step" marking diagram. Let PN = (S; T;W;M

in

) be a Petri

net. Then

NT(PN) = ([M

in

i; T;)

PN

;M

in

)

where [M

in

i is the set of markings reahable from the initial marking M

in

, T is the set

of transitions of PN and )

PN

is the step transition relation for Petri nets de�ned in

Setion 2.

Next we de�ne how NT maps arrows. Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be two

Petri nets and let � be a net morphism from PN

1

to PN

2

. Then, NT(�) = f

�

is de�ned

as follows.

� 8t 2 T

1

: f

�

(t) = �(t).

� 8M 2 [M

1

in

i: f

�

(M) =M

�

(where M

�

is the map de�ned in Lemma 2.3).

The main result established in [9℄ is the existene of a left adjoint to this funtor.

Theorem 4.1 There exists a funtor TN : PNts ! PNet suh that TN is left adjoint to

NT.

The unit of the adjuntion in fat turns out to be a natural isomorphism, so there is

atually a oreetion between this pair of funtors.

We shall not desribe TN in any detail. The main idea is that a PN-transition system

an be transformed into a Petri net by regarding events as the transitions of the net and

regions as the plaes of the net.

A remark is in order at this point about the ategories PNts and PNet and the

oreetion that we have de�ned here. In the original formulation of the oreetion

between PN-transition systems and Petri nets in [9℄, no assumption was made about

9



transitions in a net having input plaes. Correspondingly, the axiom (A3) that we have

introdued for PN-transition systems was not present.

It is quite lear that for any net PN = (S; T;W;M

in

), if every t 2 T has an input

plae, then TS

PN

will satisfy axiom (A3). It is not diÆult to prove the onverse|if

TS = (Q;E;!; q

in

) satis�es (A3), then for every e 2 E there exists an r 2 R

TS

suh that

r

e > 0 and so TN(TS) will have an input plae for eah transition.

The oreetion that is established in [9℄ ontinues to hold when we restrit TN and

NT to the ategories we have de�ned here. The reason we have hosen to work in this more

restritive framework is that here we will be dealing mainly with speial lasses of nets,

like safe nets, whih do not exhibit any autoonurreny under \normal irumstanes".

So, for these lasses of nets, it is reasonable to demand that we abolish the unbounded

autoonurreny generated by transitions with no input plaes.

5 Sequential PN-transition systems

PN-transition systems faithfully reord the onurrent behaviour of Petri nets by means

of transitions labelled with multisets of events.

However, it turns out that we an also haraterize the transition systems orrespond-

ing to the purely sequential behaviour of Petri nets.

For onveniene, we shall de�ne sequential transition systems as speial ases of step

transition systems.

De�nition 5.1 Let TS = (Q;E;!; q

in

) be a step transition system. TS is sequential i�

TS satis�es axioms (A1) to (A3) and, further,

8(q; u; q

0

) 2 ! : juj � 1:

In other words, a sequential transition system an have steps labelled either by single

events, or by O

E

, orresponding to the idling transition at eah state.

De�nition 5.2 Let TS = (Q;E;!; q

in

) be a transition system. TS is a sequential PN-

transition system if it is sequential and, further, it satis�es the two axioms (A4) and (A5)

for PN-transition systems.

It is lear that any sequential PN-transition system is also a (normal) PN-transition

system. In fat, we an de�ne a full subategory SeqPNts whose objets are sequential

PN-transition systems and whose arrows are transition system morphisms.

It is not diÆult to prove the following.

Theorem 5.3 SeqPNts is a oreetive subategory of PNts.

Proof To establish this, we have to show that the inlusion funtor from SeqPNts to

PNts has a right adjoint. The right adjoint is the funtor whih forgets onurreny.

More formally, de�ne U : PNts ! SeqPNts to be the funtor whih maps a PN-

transition system TS = (Q;E;!; q

in

) to a sequential PN-transition system TS

0

=

(Q;E;!

0

; q

in

), where

!

0

= f(q; u; q

0

) j q

u

! q

0

and juj � 1g:

10



For eah transition system morphism f : TS

1

! TS

2

in PNts, U(f) : U(TS

1

) !

U(TS

2

) is the map suh that U(f)

Q

= f

Q

and U(f)

E

= f

E

.

It is straightforward to verify that U is in fat right adjoint to the inlusion funtor.

We omit the details. 2

So, by omposing the inlusion funtor with the funtor TN : PNts ! PNet we obtain

a funtor whih is left adjoint to the funtor UÆNT taking nets to their sequential marking

diagrams.

We an also haraterize sequential PN-transition systems diretly in terms of regions.

Proposition 5.4 Let TS = (Q;E;!; q

in

) be a PN-transition system. TS is sequential

i� r

seq

2 R

TS

, where r

seq

is de�ned as follows:

8q 2 Q: r

seq

(q) = 1.

8e 2 E: r

seq

(e) = (1; 1).

Proof It is easy to see that if TS is sequential, r

seq

is in fat a region. Conversely, if

r

seq

is a region in R

TS

, learly for eah transition q

u

! q

0

in TS, juj � 1 and so TS is

sequential. 2

In the net TN(TS) orresponding to the sequential PN-transition system TS, r

seq

will

be a plae marked at the initial marking and onneted to all transitions by self-loops,

ensuring that the net exhibits no onurreny in its behaviour.

6 Safe nets

Petri nets an exhibit very omplex behaviours whih are diÆult to haraterize globally.

To obtain a mathematially tratable theory, one often looks at restrited lasses of nets.

In this regard, one very important sublass of nets is the lass of safe nets. In general,

a Petri net PN = (S; T;W;M

in

) is said to be k-safe if M(s) � k for every reahable

marking M 2 [M

in

i. Call PN a safe net if it is 1-safe.

Thus, in a safe net, every reahable marking is a set, rather than a multiset of plaes.

Let PN = (S; T;W;M

in

) be a safe net. For any transition t 2 T , if there is a plae s 2

�

t

suh that W (s; t) > 1, then t will never be enabled. Similarly, if there is a plae s 2 t

�

suh that W (t; s) > 0, t an never our beause after t ours, s would be unsafe. So, it

makes sense to restrit W to values from f0; 1g instead of the entire range N

0

.

With this in mind, we de�ne safe nets in terms of our general de�nition of Petri nets

as follows.

De�nition 6.1 Let PN = (S; T;W;M

in

) be a Petri net. Then PN is a safe net provided

(i) 8s 2 S: 8t 2 T: W (s; t) � 1 and W (t; s) � 1:

(ii) 8M 2 [M

in

i: 8s 2 S: M(s) � 1.

Let SNet be the full subategory of PNet whose objets are safe nets. We an restrit

the funtor NT to a funtor SNT : SNet ! PNts .

We now want to identify a subategory SPNts of PNts suh that there is a oreetion

between STN : SPNts ! SNet and SNT : SNet ! SPNts .

For this, we de�ne 0/1-regions.

11



De�nition 6.2 Let TS = (Q;E;!; q

in

) be a step transition system. Then r = (r

Q

; r

E

)

is a 0/1-region of TS if r is a region and

8q 2 Q: r

Q

(q) � 1.

8e 2 E:

r

e � 1 and e

r

� 1.

Let R

0=1

TS

= fr 2 R

TS

j r is a 0/1-region g.

We an then modify the regional axioms (A4) and (A5) to refer only to 0/1-regions.

(A4') Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

0=1

TS

: r(q) 6= r(q

0

). (Separation)

(A5') 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q suh that q

u

! q

0

, then

9r 2 R

0=1

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

De�nition 6.3 A safe PN-transtion system is a step transition system TS = (Q;E;!; q

in

)

whih satis�es axioms (A4') and (A5') (in addition to the basi axioms (A1) to (A3)).

Let SPNts be the full subategory of PNts whose objets are safe PN-transition sys-

tems.

As we had mentioned in Setion 2, in general we need to onsider steps labelled by

multisets rather than sets in order to deal with autoonurreny. Clearly, a safe net annot

exhibit autoonurreny. So, sine safe PN-transition systems are supposed to desribe

the behaviour of safe nets, it is not surprising that we have the following.

Proposition 6.4 Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Then for every

transition q

u

! q

0

in TS, u is a set.

Proof Let e 2 u. It suÆes to show that there is a 0/1-region r suh that

r

e = 1.

By (A3) we know that autoonurreny is bounded. In other words, at eah state q,

there is some k 2 N

0

suh that the step onsisting of k ourrenes of e is not enabled.

By (A5') there is a 0/1-region r suh that r(q) < k �

r

e. It is lear that

r

e must be 1, and

so we are done. 2

We now establish that the transition system TS

PN

assoiated with a safe net PN is

in fat a safe PN-transition system.

Lemma 6.5 Let PN = (S; T;W;M

in

) be a safe net. Then TS

PN

= ([M

in

i; T;)

PN

;M

in

)

is a safe PN-transition system.

Proof It is straightforward to show that TS

PN

satis�es the three basi axioms (A1) to

(A3) for step transition systems. So, what we have to show is that axioms (A4') and

(A5') are true as well.

For eah s 2 S, we an de�ne a region r

s

in TS

PN

as follows.

8M 2 [M

in

i: r

s

(M) =M(s).

8t 2 T: r

s

(t) = (W (s; t);W (t; s)).

It is not diÆult to establish that r

s

is a region, and, in fat is a 0/1-region. r

s

will be

non-trivial provided s is not isolated in PN (i.e. there is some t 2 T suh that s 2

�

t or

s 2 t

�

.)

12



It then immediately follows that TS

PN

satis�es (A4'). Given any M;M

0

2 [M

in

i, if

M 6=M

0

, there must be a non-isolated plae s 2 S suh thatM(s) 6=M(s

0

). Then learly

r

s

is a non-trivial 0/1-region of TS

PN

separating M from M

0

.

Next onsider (A5'). Suppose M 2 [M

in

i and u 2 MS

�n

(T ), and there is no M

0

suh

that M

u

!M

0

. Then, at the marking M 2 [M

in

i, u is not enabled. By the �ring rule for

Petri nets, this implies that there is some s 2 S suh that M(s) <

P

t2u

W (s; t). Clearly,

r

s

is then a non-trivial 0/1-region suh that r

s

(M) <

P

t2u

r

s

t and we are done. 2

Given a pair of safe nets PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, and a net morphism � :

PN

1

! PN

2

, for eah M 2 [M

1

in

i we an de�ne a marking M

�

2 [M

2

in

i as in Lemma 2.3.

That is

8s 2 S

2

:M

�

(s) =

(

M(�(s)) if �(s) exists

M

2

in

(s) otherwise

We an then de�ne SNT : SNet ! SPNts as follows:

� Let PN = (S; T;W;M

in

) be a safe net. Then SNT(PN) = ([M

in

i; T;)

PN

;M

in

).

� Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be a pair of safe nets and � : PN

1

! PN

2

a

net morphism. Then SNT(�) : SNT(PN

1

)! SNT(PN

2

) is given by:

{ 8t 2 T

1

: SNT(�)(t) = �(t).

{ 8M 2 [M

1

in

i: SNT(�)(M) =M

�

.

It is easy to hek the following.

Proposition 6.6 SNT : SNet ! SPNts is a funtor.

We an onstrut a funtor STN : SPNts ! SNet whih is left adjoint to SNT. We

�rst de�ne STN

0

, a map on objets from SPNts to SNet .

Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Then

STN

0

(TS) = (R

0=1

TS

; E;W

TS

;M

TS

in

)

where W

TS

(r; e) =

r

e and W

TS

(e; r) = e

r

for eah r 2 R

0=1

TS

and e 2 E, and M

TS

in

(r) =

r(q

in

) for eah r 2 R

0=1

TS

.

Theorem 6.7 STN

0

extends to a funtor STN : SPNts ! SNet suh that STN is left

adjoint to SNT and the unit of the adjuntion is a natural isomorphism.

Proof We just sketh the main ideas. The details are similar to those used to establish

the oreetion between TN and NT and an be �lled in from [9℄.

We an �rst establish that for eah safe PN-transition system TS, there is a transition

system isomorphism �

TS

: TS ! SNT ÆSTN

0

(TS). This map will serve as the unit of the

adjuntion.

Suppose that TS 2 SPNts and PN 2 SNet suh that there is a transition system

morphism f : TS ! SNT(PN). Then, we an establish that there is a unique morphism

� : STN

0

(TS)! PN suh that f = SNT(�) Æ �

TS

.

Given this, if follows (aording to [6℄), that STN

0

an be extended uniquely to a

funtor STN : SPNts ! SNet whih is left adjoint to SNT. 2
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7 Elementary transition systems

Next, we look at one of the basi models of net theory, elementary net systems. In [12℄,

Nielsen, Rozenberg and Thiagarajan establish a oreetion between a lass of transition

systems alled elementary transition systems and elementary net systems.

In many ways, that result is the starting point of the work reported here. In this

setion, we de�ne a subategory of PNts whose objets are elementary PN-transition

systems, whih orresponds to the ategory of elementary transition systems of [12℄|

that is, there is an equivalene between these two ategories.

We begin by desribing elementary net systems. This will motivate the axioms we

need to put on PN-transition systems to de�ne elementary PN-transition systems.

Rather than try and de�ne elementary net systems in terms of general Petri nets, we

start from srath and provide the standard de�nition (see, for instane, [16℄).

We begin with the de�nition of a net.

De�nition 7.1 A net is a triple N = (S; T; F ) where:

(i) S is a set of S-elements and T is a set of T -elements, suh that S \ T = ;.

(ii) F � (S�T )[(T �S) is the ow relation suh that 8x 2 S[T: 9y 2 S[T: [(x; y) 2

F _ (y; x) 2 F ℄.

Thus a net spei�es the underlying struture of a system. The ow relation F orre-

sponds to the f0; 1g-valued weight funtion we de�ned for safe nets. We use

�

x, x

�

and

�

x

�

to denote the neighbourhood of x 2 S [ T , as usual.

Normally, the S-elements are alled onditions and denoted by B and the T -elements

are alled events and denoted by E. Here, we shall stik to S and T to remain onsistent

with the notation for nets used so far.

De�nition 7.2 An elementary net system is a quadruple ENS = (S; T; F; 

in

) where

(i) (S; T; F ) is a net, alled the underlying net of ENS.

(ii) 

in

� S is the initial ase.

Thus, the initial ase orresponds to an initial marking in a safe net. The essential

di�erene between an elementary net system and a safe net is in the �ring rule. Let

; 

0

� S be ases of an elementary net system and t 2 T be an event. Then



t

! 

0

def

= � 

0

=

�

t ^ 

0

�  = t

�

Thus, in an elementary net system, an event annot our at a ase where its post-

onditions are not empty. This means that an event whih is onneted to a ondition by

a self-loop will be permanently disabled.

Given the transition relation de�ned above, we an de�ne [

in

i, the set of ases reah-

able from 

in

, in the same way that we de�ned [M

in

i for Petri nets. We an then assoiate

a sequential transition relation!

ENS

with an elementary net system ENS = (S; T; F; 

in

)

in the obvious way:

!

ENS

= f(; t; 

0

) j ; 

0

2 [

in

i and 

t

! 

0

g
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We an extend this sequential transition relation to a step transition relation between

ases. As in a safe net, a set of transitions is onurrently enabled at a ase provided eah

individual transition is enabled and the neighbourhoods of the transitions are pairwise

disjoint.

)

ENS

= f; u; 

0

j ; 

0

2 [

in

i; u = ft

1

; t

2

; : : : ; t

n

g;

9

1

; 

2

; : : : ; 

n

: 8i 2 f1; 2; : : : ; ng: 

t

i

! 

i

; and

8i; j 2 f1; 2; : : : ; ng: i 6= j implies

�

t

i

�

\

�

t

j

�

= ;g

So, given an elementary net system ENS = (S; T; F; 

in

), we an assoiate with it a

sequential transition system STS

ENS

= ([

in

i; T;!

ENS

; 

in

) and a step transition system

TS

ENS

= ([

in

i; T;)

ENS

; 

in

).

In [3℄, Ehrenfeuht and Rozenberg gave a haraterization of the sequential transition

systems arising from elementary net systems. In [12℄, this haraterization was extended

to a oreetion between these elementary transition systems and elementary net systems.

Here we shall show how to haraterize the step transition systems orresponding to

elementary net systems as a suitable sublass of PN-transition systems. We shall then

establish a ategorial equivalene between our elementary PN-transition systems and

elementary transition systems.

We begin by de�ning elementary regions.

De�nition 7.3 Let TS = (Q;E;!; q

in

) be a step transition system. An elementary re-

gion of TS is a pair of funtions r = (r

Q

; r

E

) suh that r is a region of TS and, in

addition:

8q 2 Q: r(q) � 1.

8e 2 E: r(e) 2 f(0; 1); (1; 0); (0; 0)g.

Let R

E

TS

denote the set of all non-trivial elementary regions of TS.

Thus an elementary region is a 0/1-region with the onstraint that r(e) 6= (1; 1) for

any event e. As before, we modify the regional axioms (A4) and (A5) to refer only

to elementary regions. We also expliitly add the ondition that every e 2 E have an

ourrene.

(A4") Let q; q

0

2 Q: q 6= q

0

) 9r 2 R

E

TS

: r(q) 6= r(q

0

). (Separation)

(A5") 8q 2 Q: 8u 2 MS

�n

(E): If there does not exist q

0

2 Q suh that q

u

! q

0

, then

9r 2 R

E

TS

: r(q) <

X

e2E

u(e) �

r

e. (Enabling)

(A6") 8e 2 E: 9q

u

! q

0

: e 2 u:

De�nition 7.4 An elementary PN-transition system is a step transition system TS =

(Q;E;!; q

in

) whih satis�es axioms (A4") to (A6") in addition to the basi axioms (A1)

to (A3).

Let EPNts be the full subategory of PNts whose objets are elementary PN-transition

systems. As with safe PN-transition systems, it is easy to show that all steps in an

elementary transition system onsist of sets of events rather than multisets.
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We want to establish a ategorial equivalene between the subategory EPNts and

the ategory of elementary transition systems de�ned in [12℄. In order to do this, we �rst

have to desribe elementary transition systems.

Elementary transition systems are de�ned as a sublass of \onventional" sequential

transition systems (as opposed to the sequential versions of step transition systems whih

we de�ned De�nition 5.1).

De�nition 7.5 A transition system is a quadruple STS = (Q;E;!; q

in

) where

� Q is a set of states with q

in

2 Q as the initial state.

� E is a set of events.

� ! � Q� E �Q is the transition relation.

The next thing to do is to de�ne regions on these transition systems.

De�nition 7.6 Let STS = (Q;E;!; q

in

) be a transition system. A simple region is a

subset � � Q suh that:

(i) q

t

! q

0

^ q 2 � ^ q

0

=2 �) 8q

1

t

! q

0

1

in STS: [q

1

2 � ^ q

0

1

=2 �℄

(ii) q

t

! q

0

^ q =2 � ^ q

0

2 �) 8q

1

t

! q

0

1

in STS: [q

1

=2 � ^ q

0

1

2 �℄

� is non-trivial if it is not equal to Q or to ;. Let R

STS

denote the set of non-trivial simple

regions of STS.

For e 2 E, de�ne � 2

�

e if there is a transition q

e

! q

0

in STS suh that q 2 � and

q

0

=2 �. Similarly, � 2 e

�

if there is a transition q

e

! q

0

in STS suh that q =2 � and q

0

2 �.

As usual,

�

e = f� 2 R

STS

j � 2

�

eg, e

�

= f� 2 R

STS

j � 2 e

�

g and

�

e

�

=

�

e [ e

�

.

The lass of elementary transition systems is then given by the following axioms.

(EA1) 8q

e

! q

0

: q 6= q

0

.

(EA2) 8e 2 E: 9q

e

! q

0

.

(EA3) 8q 2 Q: 9� 2 E

�

: (q

in

; �; q) 2 !

�

.

(EA4) 8q; q

0

2 Q: q 6= q

0

) 9� 2 R

STS

: q 2 �, q

0

=2 �.

(EA5) 8q 2 Q: 8e 2 E: If there does not exist q

0

suh that q

e

! q

0

then 9� 2

�

e: q =2 �.

The �rst axiom rules out self loops in the transition system. The other axioms orrespond

to restritions we have enountered before. In the formulation of elementary transition

systems presented in [12℄, there is an additional axiom preventing two di�erent transitions

between the same pair of states. This amounts to requiring simpliity of the nets one is

onsidering. In [9℄ we have pointed out that the oreetion between elementary transition

systems and elementary net systems holds even without this restrition, so we avoid this

additional axiom here.

A morphism between elementary transition systems is, as usual, a total funtion on

the states and a partial funtion on the events that preserves the transition relation. The

only ompliation is that we do not have idling transitions, so we have to be a bit areful

in de�ning the simulation ondition. One again, the de�nition we present here is slightly

di�erent from the one presented in [12℄, but is equivalent to their formulation.
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De�nition 7.7 Let STS

i

= (S

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be a pair of transition systems. A

morphism f from STS

1

to STS

2

is pair of maps f = (f

Q

; f

E

) where:

(i) f

Q

: Q

1

! Q

2

is a total funtion suh that f

Q

(q

1

in

) = q

2

in

.

(ii) f

E

: E

1

* E

2

is a partial funtion.

(iii) 8q

e

!

1

q

0

: If f

E

(e) is de�ned, then f

Q

(q)

f

E

(e)

�!

2

f

Q

(q

0

). Otherwise, f

Q

(q) = f

Q

(q

0

).

Let ETS denote the ategory whose objets are elementary transition systems and whose

arrows are transition system morphisms as de�ned above.

In an elementary transition system, every \diamond" represents onurreny. This is

stated in a little more generality in the following proposition.

Proposition 7.8 Let STS = (Q;E;!; q

in

) be an elementary transition system and

fe

1

; e

2

; : : : ; e

n

g � E, n � 2, be a subset of events in E. Then the following statements

are equivalent.

(i) For eah i; j 2 f1; 2; : : : ; ng, i 6= j implies

�

e

i

�

\

�

e

j

�

= ;

(ii) 8q 2 Q: If 9q

0

; q

1

; : : : ; q

n

: q = q

0

and q

i�1

e

i

�! q

i

; 1 � i � n, then for eah permu-

tation � : f1; 2; : : : ; ng ! f1; 2; : : : ; ng: 9q

0

0

; q

0

1

; : : : ; q

0

n

2 Q, where q

0

= q

0

0

; q

n

= q

0

n

and q

0

i�1

e

�(i)

�! q

0

i

; 1 � i � n.

Proof ((i)) (ii)) If the n events have pairwise disjoint neighbourhoods, then they an

our independently. The result is then straightforward, by appealing to axiom (EA5).

The proof proeeds by indution on n, the number of pairwise independent events and

we omit the details.

((ii)) (i)) Again, the proof is straightforward, by indution on n.

The base ase is when n = 2. So, we have q; q

1

; q

2

; q

0

2 Q and e

1

; e

2

2 E, suh that

q

e

1

! q

1

e

2

! q

0

and q

e

2

! q

2

e

1

! q

0

.

Consider any � 2 R

STS

. Suppose � 2

�

e

1

. Then, q 2 � and q

1

=2 �, so, by de�nition,

� =2

�

e

2

. Similarly, we must have q

2

2 � and q

0

=2 �, so � =2 e

2

�

either. By a similar

argument, if � 2 e

1

�

, � =2

�

e

2

�

.

A symmetri argument shows that � 2

�

e

2

�

implies � =2

�

e

1

�

.

The ase n > 2 follows in a straightforward way from the indution hypothesis. We

omit the details. 2

We now prove some useful properties of elementary PN-transition systems. The �rst

observation is that elementary regions are ompletely haraterized by their value on

states.

Proposition 7.9 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system and

r; r

0

2 R

E

TS

. Then r

Q

= r

0

Q

implies r = r

0

.

Proof Consider any e 2 E. Then, by axiom (A6") and Proposition 3.6, we know there

is some transition q

feg

! q

0

in TS. From the de�nition of an elementary region, it is easy

to establish that
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r(e) = r

0

(e) =

8

>

<

>

:

(1; 0) if r(q) = 1 and r(q

0

) = 0

(0; 1) if r(q) = 0 and r(q

0

) = 1

(0; 0) otherwise

2

Next, we show that an elementary PN-transition system is free of self-loops labelled

by singleton steps.

Proposition 7.10 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then,

there does not exist a transition of the form q

feg

�! q for any q 2 Q and e 2 E.

Proof By appealing to axiom (A3) whih loally bounds autoonurreny, we an de-

due that for every e 2 E, there is an elementary region r suh that

r

e = 1. It then

follows that e

r

= 0, by the de�nition of elementary regions. So r(q) annot be de�ned

onsistently for any q suh that q

feg

! q, and so no suh transition an exist in the system. 2

We an now de�ne funtors Eseq : EPNts ! ETS and Estep : ETS ! EPNts .

First, we desribe Eseq.

� Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then Eseq(TS) =

(Q;E;!

0

; q

in

) where

!

0

= f(q; e; q

0

) j q

feg

! q

0

g:

� Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

); i = 1; 2, be a pair of elementary PN-transition systems

and f : TS

1

! TS

2

a morphism in EPNts . Then Eseq(f) =

^

f : Eseq(TS

1

) !

Eseq(TS

2

) is given by:

{ 8q 2 Q:

^

f(q) = f(q).

{ 8e 2 E:

^

f(e) = f(e).

De�nition 7.11 Let r 2 R

E

TS

be a non-trivial elementary region of an elementary PN-

transition system TS = (Q;E;!; q

in

). Then �

r

def

= fq 2 Q j r(q) = 1g.

Proposition 7.12 Let TS = (Q;E;!; q

in

) be an elementary PN-transition system. Then

(i) 8r 2 R

E

TS

: �

r

is an simple region of Eseq(TS).

(ii) �

r

= �

r

0

implies r = r

0

.

Proof Part (ii) follows from Proposition 7.9. The proof of part (i) is straightforward

and we omit the details. 2

Proposition 7.13 Eseq is a funtor.
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Proof Given an elementary PN-transition system TS = (Q;E;!; q

in

), we have to hek

that Eseq(TS) is an elementary transition system. Axiom (EA1) holds beause of Proposi-

tion 7.10. (EA2) and (EA3) are satis�ed beause TS satis�es (A6") and (A2) respetively.

Finally, we ome to the regional axioms (EA4) and (EA5). We know that we an �nd

regions in TS satisfying axioms (A4') and (A5'). By Proposition 7.12, these regions or-

respond uniquely to regions in Eseq(TS) whih would enfore the regional axioms (EA4)

and (EA5) in Eseq(TS).

It is then trivial to hek that the image of a morphism in EPNts is in fat a morphism

in ETS, and we are done. 2

To de�ne the funtor going the other way, from ETS to EPNts, we impliitly use the

result proved in Proposition 7.8.

Let Estep : ETS ! EPNts be de�ned as follows:

� Let STS = (Q;E;!; q

in

) be an elementary transition system. Then Estep(STS) =

(Q;E;!

0

; 

in

) where

!

0

= f(q; u; q

0

) j u = fe

1

; e

2

; : : : ; e

n

g � E

and 9q

0

; q

1

; : : : ; q

n

2 Q: q = q

0

; q

0

= q

n

suh that 8i 2 f1; 2; : : : ; ng: q

i�1

e

i

! q

i

;

where 8i; j 2 f1; 2; : : : ; ng: i 6= j )

�

e

i

�

\

�

e

j

�

= ;g

[ f(q; O

E

; q) j q 2 Qg:

� Let STS

i

= (S

i

; E

i

;!

i

; q

i

in

); i = 1; 2, be a pair of elementary transition systems and

f : STS

1

! STS

2

a morphism in ETS. Then Estep(f) =

^

f : Estep(STS

1

) !

Estep(STS

2

) is given by:

{ 8q 2 Q:

^

f(q) = f(q).

{ 8e 2 E:

^

f(e) = f(e).

De�nition 7.14 Let � 2 R

STS

be a non-trivial simple region of an elementary transition

system STS = (Q;E;!; q

in

). Then r

�

= (r

�

Q

; r

�

E

), where r

�

Q

: Q ! f0; 1g and r

�

E

:

E ! f(0; 1); (1; 0); (1; 1)g is de�ned as follows.

8q 2 Q: r

�

Q

(q) = 1 i� q 2 �.

8e 2 E: r

�

E

(e) =

8

>

<

>

:

(0; 1) if � 2 e

�

(1; 0) if � 2

�

e

(0; 0) otherwise

Proposition 7.15 Let STS = (Q;E;!; q

in

) be an elementary transition system. Then

(i) 8� 2 R

STS

: r

�

is an elementary region of Estep(STS).

(ii) r

�

= r

�

0

implies � = �

0

.

Proof The proof is straightforward and we omit the details. The main ondition we

have to hek for part (i) is that r

�

permits all the steps we have introdued, and this

follows diretly from Proposition 7.8. Part (ii) follows from Proposition 7.9. 2
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Proposition 7.16 Estep is a funtor.

Proof For an elementary transition system STS = (Q;E;!; q

in

), we have to hek

that Estep(STS) is an elementary PN-transition system. Axioms (A1) follows from the

de�nition of!

0

. Axiom (A2) follows from the fat that STS satis�es axiom (EA3). (A3)

is trivially satis�ed. (A6") follows from the fat that STS satis�es (EA2). Finally, every

region in STS orresponds uniquely to a region in Estep(STS), so we an dedue that

Estep(STS) satis�es (A4') and (A5') from the fat that STS satis�es (EA4) and (EA5).

One again, it is trivial to hek that the image of a morphism in ETS is in fat a

morphism in EPNts. 2

Theorem 7.17 The funtors Eseq and Estep de�ne a ategorial equivalene between

EPNts and ETS.

Proof We have to show that the funtor Estep Æ Eseq is naturally isomorphi to the

identity funtor id

EPNts

and, orrespondingly, that Eseq Æ Estep is naturally isomorphi to

id

ETS

.

In fat, we an prove something muh stronger. Using the results we have proved

so far, it is easy to show that for all TS 2 EPNts, Estep Æ Eseq(TS) = TS and for all

STS 2 ETS, Eseq Æ Estep(STS) = STS. So, these two ategories are not just equivalent,

they are in fat isomorphi. 2

So, we have established that the ategory of step transition systems de�ned by ele-

mentary net systems is equivalent to the ategory of sequential transition systems de�ned

by them. This equivalene provides an alternate proof of the result, established ombi-

natorially by Hoogeboom and Rozenberg in [4℄, that information about the onurrent

behaviour of an elementary net system an always be ompletely reovered from a de-

sription of its sequential behaviour.

8 Asynhronous transition systems

Asynhronous transition systems were introdued by Bednarzyk [1℄ and Shields [15℄.

These are sequential transition systems equipped with information about onurreny

in terms of an independene relation on the events. These transition systems are losely

related to safe nets. In fat, in [19℄, Winskel and Nielsen establish a oreetion between a

speial lass of asynhronous transition systems and safe nets. We now show that there is

a oreetion between our ategory SPNts of safe PN-transition systems and the ategory

of asynhronous transtion systems de�ned in [19℄.

We begin by de�ning asynhronous transition systems. (The partiular de�nition we

use is adapted from [19℄).

De�nition 8.1 An asynhronous transition system is a struture ATS = (Q;E;); q

in

; I)

suh that

� (Q;E;); q

in

) is a sequential transition system (in the sense of De�nition 5.1).
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� I � E�E is an irreexive, symmetri, independene relation satisfying the follow-

ing four onditions:

(i) e 2 E implies 9q; q

0

2 Q: q

feg

=) q

0

.

(ii) q

u

) q

0

and q

u

) q

00

implies q

0

= q

00

.

(iii) e

1

Ie

2

and q

fe

1

g

=) q

1

and q

fe

2

g

=) q

2

implies 9q

0

: q

1

fe

2

g

=) q

0

and q

2

fe

1

g

=) q

0

.

(iv) e

1

Ie

2

and q

fe

1

g

=) q

1

and q

1

fe

2

g

=) q

0

implies 9q

2

: q

1

fe

2

g

=) q

2

and q

2

fe

1

g

=) q

0

.

Condition (i) in the de�nition above spei�es that eah event in E must be \used"

somewhere in the system. The seond ondition stipulates that the system is determinis-

ti. The third and fourth onditions apture the fat that I spei�es pairs of events whih

are independent of eah other and an thus our onurrently if they are simultaneously

enabled. Atually, the independene relation spei�es more than just onurreny|for

instane, two events may be independent without being enabled simultaneously anywhere

in the system. We shall return to this point later.

Sine we are dealing with sequential transition systems, for onveniene we shall write

q

e

) q

0

instead of q

feg

=) q

0

, where e 2 E. We shall typially write q

u

) q

0

to indiate that

u ould either orrespond to feg for some e 2 E or to the empty step O

E

.

Notie that the underlying sequential transition system is a step transition system

satisfying axioms (A1) to (A3). So, we have idling transitions at eah state and every

state is reahable from the initial state. ((A3) is trivially satis�ed in a sequential transition

system).

Asynhronous transition systems are losely onneted to safe nets. In [19℄, Winskel

and Nielsen de�ne a ategoryA (whih we shall allAts) onsisting of asynhronous tran-

sition systems equipped with transition system morphisms whih satisfy the additional

requirement that the map on events preserve the independene relation. They then es-

tablish a oreetion between a subategory of asynhronous transition systems, denoted

A

0

(whih we shall all Ats

0

), and a ategory of safe Petri nets.

To identify the subategory Ats

0

, they de�ne a version of regions alled onditions, us-

ing whih they de�ne axioms exatly like the regional axioms we impose on PN-transition

systems.

De�nition 8.2 Let ATS = (Q;E;); q

in

; I) be an asynhronous transition system. Its

onditions are nonempty subsets b � ) suh that

(i) (q; e; q

0

) 2 b implies (q; O

E

; q) 2 b and (q

0

; O

E

; q

0

) 2 b.

(ii) (a) (q

1

; e; q

0

1

) 2

�

b and (q

2

; e; q

0

2

) 2 ) implies (q

2

; e; q

0

2

) 2

�

b

(b) (q

1

; e; q

0

1

) 2 b

�

and (q

2

; e; q

0

2

) 2 ) implies (q

2

; e; q

0

2

) 2 b

�

where for (q; e; q

0

) 2 ) we de�ne

(q; e; q

0

) 2

�

b

def

= (q; e; q

0

) =2 b and (q

0

; O

E

; q

0

) 2 b,

(q; e; q

0

) 2 b

�

def

= (q; O

E

; q) 2 b and (q; e; q

0

) =2 b and

�

b

�

=

�

b [ b

�

.

(iii) (q

1

; e

1

; q

0

1

) 2

�

b

�

and (q

2

; e

2

; q

0

2

) 2

�

b

�

implies :e

1

Ie

2

.
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Let B be the set of onditions of ATS. For e 2 E, de�ne

�

e = fb 2 B j 9q; q

0

: (q; e; q

0

) 2 b

�

g;

e

�

= fb 2 B j 9q; q

0

: (q; e; q

0

) 2

�

bg; and

�

e

�

=

�

e [ e

�

:

Further, for q 2 Q, de�ne M(q) = fb 2 B j (q; O

E

; q) 2 bg.

Notie that a ondition is really a subset of states and transitions. The information

about the states is oded up in terms of the idling transitions.

We shall establish that the notion of a ondition is equivalent to a natural notion of a

region for this lass of transition systems, de�ned as follows.

De�nition 8.3 Let ATS = (Q;E;); q

in

; I) be an asynhronous transition system. A

region of ATS is a pair of funtions r = (r

Q

; r

E

) where

r

Q

: Q! f0; 1g and

r

E

: E ! (f0; 1g � f0; 1g) suh that

(i) 8q

e

) q

0

:

r

e = 1 implies r

Q

(q) = 1 and r

Q

(q

0

) = r

Q

(q) + (e

r

�

r

e):

(ii) 8e; e

0

2 E: If eIe

0

then (

r

e = 1 or e

r

= 1) implies

r

e

0

= e

0

r

= 0.

So, regions for asynhronous transition systems are very similar to the 0/1-regions we

de�ne for safe PN-transition systems. The only additional requirement is that independent

events have disjoint sets of pre and postregions. This reets the intuition that two

transitions in a safe net are independent provided their neighbourhoods are disjoint.

De�nition 8.4 Let ATS = (Q;E;); q

in

; I) be an asynhronous transition system. Let

B denote the set of onditions of ATS and let R denote the set of regions of ATS. We

de�ne two funtions, r̂ : B ! R and

^

b : R! B.

First, let r̂ : B ! R be de�ned as follows.

8b 2 B: 8q 2 Q: r̂(b)(q) =

(

1 if (q; O

E

; q) 2 b

0 otherwise

8b 2 B: 8e 2 E: r̂(b)(e) =

8

>

>

>

<

>

>

>

:

(1; 0) if b 2

�

e n e

�

(0; 1) if b 2 e

�

n

�

e

(1; 1) if b 2

�

e

�

(0; 0) otherwise

Next, let

^

b : R! B be de�ned as follows.

8r 2 R:

^

b(r) = f(q; u; q

0

) j u = O

E

; q = q

0

and r(q) = 1; or

u = feg; r(e) = (0; 0) and r(q) = r(q

0

) = 1g

It is not hard to show the following result.

Proposition 8.5 Let ATS be an asynhronous transition system, with B as its set of

onditions and R as its set of regions.
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(i) 8b 2 B:

^

b(r̂(b)) = b.

(ii) 8r 2 R: r̂(

^

b(r)) = r.

We an now desribe the subategory Ats

0

de�ned in [19℄. Let ATS = (Q;E;); q

in

; I)

be an asynhronous transition system. Then ATS 2 Ats

0

if it satis�es the following two

axioms, stated in terms of its set of onditions B:

Axiom ATS1 M(q) =M(q

0

) implies q = q

0

.

Axiom ATS2

�

e �M(q) implies 9q

0

: q

e

) q

0

, for all q 2 Q; e 2 E.

Clearly M(q) is equivalent to the set of regions fr 2 R j r(q) = 1g. And,

�

e � M(q)

is equivalent to saying r(q) �

r

e for all r 2 R. So we an reformulate these two axioms

in terms of regions and observe that they orrespond to the axioms of separation and

enabling for PN-transition systems (stated in the ontrapositive form).

Axiom ATS1' (8r 2 R: r(q) = r(q

0

)) implies q = q

0

.

Axiom ATS2' (8r 2 R: r(q) �

r

e) implies 9q

0

: q

e

) q

0

, for all q 2 Q; e 2 E.

Atually, when de�ning the ategory Ats of all asynhronous transition systems in

[19℄, Winskel and Nielsen do not assume that every state is reahable (as we have done

here by requiring the underlying sequential transition system to satisfy axiom (A2)). The

axiom for reahability is then introdued in [19℄ as a third axiom that an asynhronous

transition system must satisfy to be in the subategory Ats

0

. Sine we are only interested

in the subategory Ats

0

here, our presentation is equivalent to the one in [19℄.

The morphisms in Ats

0

are transition system morphisms that preserve the indepen-

dene relation. In other words, given two asynhronous transition systems ATS

i

=

(Q

i

; E

i

;)

i

; q

i

in

; I

i

), i = 1; 2, a morphism f : ATS

1

! ATS

2

is a pair (f

Q

; f

E

) where:

� f

Q

: Q

1

! Q

2

is a total funtion suh that f

Q

(q

1

in

) = q

2

in

.

� f

E

: E

1

* E

2

is a partial funtion.

� q

e

)

1

q

0

implies f

Q

(q)

f

E

(e)

=)

2

f

Q

(q

0

).

� If e

1

I

1

e

0

1

and f

E

(e

1

); f

E

(e

0

1

) are both de�ned, then f

E

(e

1

)I

2

f

E

(e

0

1

), for all e

1

; e

0

1

2 E

1

.

We want to establish a relationship between our ategory of safe PN-transition systems

SPNts and the ategory Ats

0

. Atually, to desribe the result we are after we have to

make a slight restrition to our notion of a safe PN-transition system. Heneforth, we

assume that if TS = (Q;E;!; q

in

) is a safe transition system, for every event e 2 E there

is some transition q

u

! q

0

in TS with e 2 u|that is, every event has an ourrene. We

shall disuss the need for this restrition at the end of this setion.

We �rst prove a standard result whih desribes how the independene relation I

in an asynhronous transition system spei�es onurreny. It says that a sequene of

ations whih are pairwise independent orresponds to a onurrent step onsisting of

those ations. So, if suh a sequene is enabled at a state in the system, all permutations

of that sequene must also be enabled at that system and, furthermore, they should all

lead to the same state as the original sequene.
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Lemma 8.6 Let ATS = (Q;E;); q

in

; I) be an asynhronous transition system and

fe

1

; e

2

; : : : ; e

n

g � E; n � 2, be a pairwise independent subset of events in E|in other

words, e

i

Ie

j

for all 1 � i; j � n; i 6= j.

If q

e

1

) q

1

e

2

) : : :

e

n�1

=) q

n�1

e

n

) q

00

then for all permutations � : f1; 2; : : : ; ng !

f1; 2; : : : ; ng, there exist states fq

0

1

; q

0

2

; : : : ; q

0

n�1

g suh that q

e

�(1)

=) q

0

1

e

�(2)

=) : : :

e

�(n�1)

=) q

0

n�1

e

�(n)

=)

q

00

.

Proof The proof is straightforward, by indution on n, the number of pairwise indepen-

dent events. The base ase n = 2 orresponds to ondition (iv) in the de�nition of an

asynhronous transition system. We omit the details. 2

We an now desribe a funtor AS : Ats

0

! SPNts . Given an asynhronous transition

system ATS = (Q;E;); q

in

; I), AS(ATS) = (Q;E;!; q

in

), where

! = f(q; u; q

0

) j u = fe

1

; e

2

; : : : ; e

n

g � E; suh that

e

i

Ie

j

for all 1 � i; j � n; i 6= j and

9q

1

; q

2

; : : : ; q

n�1

: q

e

1

) q

1

e

2

) : : :

e

n�1

=) q

n�1

e

n

) q

0

in ATSg

Let ATS

i

= (Q

i

; E

i

;)

i

; q

i

in

; I

i

); i = 1; 2, be a pair of asynhronous transition systems

and let f : ATS

1

! ATS

2

be a morphism in Ats

0

. Then the orresponding morphism

AS(f) : AS(ATS

1

)! AS(ATS

2

) is given by AS(f)

Q

= f

Q

and AS(f)

E

= f

E

.

Lemma 8.7 AS is a funtor.

Proof Let ATS = (Q;E;); q

in

; I) be an asynhronous transition system in Ats

0

. To

hek that AS(ATS) is a safe PN-transition system, we just observe that every region of

ATS is also a 0/1-region of AS(ATS). It then follows that AS(ATS) must satisfy the

regional axioms (A4') and (A5') beause ATS satis�es Axioms ATS1' and ATS2'.

Given a morphism f : ATS

1

! ATS

2

, where ATS

i

= (Q

i

; E

i

;)

i

; q

i

in

; I

i

), i = 1; 2, and

AS(ATS

i

) = (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, we have to hek that

^

f = AS(f) satis�es ondition

(iii) in De�nition 3.7.

In other words, if q

u

!

1

q

0

, we have to ensure that

^

f(q)

^

f(u)

�!

2

^

f(q

0

). Let u =

fe

1

; e

2

; : : : ; e

n

g. By the de�nition of !

1

, there must exist a sequene of ations q

e

1

)

1

q

1

e

2

)

1

: : :

e

n�1

=)

1

q

n

1

e

n

)

1

q

0

. Sine f is a transition system morphism, it then fol-

lows that the f -image of this sequene exists in ATS

2

. That is there is a sequene

f(q)

f(e

1

)

=)

2

f(q

1

)

f(e

2

)

=)

2

: : :

f(e

n�1

)

=)

2

f(q

n�1

)

f(e

n

)

=)

2

f(q

0

). Sine we know that the events in u

are pairwise independent and f preserves independene, the events in f(u) must be pair-

wise independent as well. It then follows, by the de�nition of !

2

, that f(q)

f(u)

�!

2

f(q

0

).

2

We now onstrut a funtor SA whih is left adjoint to the funtor AS. Let

TS = (Q;E;!; q

in

) be a safe PN-transition system. De�ne SA(TS) = (Q;E;); q

in

; I)

where

� )= f(q; u; q

0

) j q

u

! q

0

and juj � 1g

� I = f(e

1

; e

2

); (e

2

; e

1

) j 9q 2 Q: q

fe

1

;e

2

g

�! q

0

g
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Let TS

i

= (Q

i

; E

i

;!

i

; q

i

in

), i = 1; 2, be a pair of safe PN-transition systems and f :

TS

1

! TS

2

be a morphism in SPNts. Then SA(f) : SA(TS

1

) ! SA(TS

2

) is given by

SA(f)

Q

= f

Q

and SA(f)

E

= f

E

.

Before proving that SA is a funtor, it will be useful to prove a small result about

0/1-regions.

Proposition 8.8 Let TS = (Q;E;!; q

in

) be a safe PN-transition system. Suppose that

e

1

; e

2

2 E suh that there exists a step q

fe

1

;e

2

g

�! q

0

in TS. Then, for all r 2 R

0=1

TS

, if

r

e

1

= 1

or e

1

r

= 1 then

r

e

2

= e

2

r

= 0.

Proof Suppose that r 2 R

0=1

TS

suh that

r

e

1

= 1. Then, sine r(q) � 1,

r

e

2

must be

0, otherwise the step fe

1

; e

2

g would not be enabled at q. e

2

r

must be 0 as well. For,

onsider the state q

2

reahed by the transition q

fe

2

g

�! q

2

. (Suh a transition must exist by

Proposition 3.6). We have r(q

2

) = r(q) + (e

2

r

�

r

e

2

). But r(q) = 1, sine

r

e

1

= 1 and e

1

is enabled at q. We also know that

r

e

2

= 0. So, if e

2

r

were 1, we would have r(q

2

) = 2,

whih is not possible.

On the other hand, if e

1

r

= 1, we must have r(q) = 0. Then, we annot have

r

e

2

= 1,

or e

2

would not be enabled at q. We annot have e

2

r

= 1 either beause then r(q

0

) = 2,

whih is not possible. 2

Lemma 8.9 SA is a funtor.

Proof Let TS = (Q;E;!; q

in

) be a safe PN-transition system. We have to �rst hek

that SA(TS) is an asynhronous transition system. We basially have to hek that

onditions (i) to (iv) of De�nition 8.1 hold.

Condition (i) holds beause we have restrited the objets in SPNts appropriately.

Condition (ii) follows from Proposition 3.5 whih says that PN-transition systems are

deterministi.

Conditions (iii) and (iv) pertain to the independene relation. Condition (iii) says

that e

1

Ie

2

and q

e

1

=) q

1

and q

e

2

=) q

2

implies 9q

0

: q

1

e

2

=) q

0

and q

2

e

1

=) q

0

. Sine e

1

Ie

2

,

we know that q

00

fe

1

;e

2

g

�! q

000

somewhere in TS. By the previous proposition, the pre and

postregions of e

1

and e

2

are disjoint, so if both e

1

and e

2

are enabled at a state q, then

(by axiom (A5')) the step fe

1

; e

2

g must be enabled as well. The result then follows from

Proposition 3.6, whih asserts that all steps in a PN-transition system an be broken up

into substeps in a onsistent way.

Condition (iv) follows by a similar argument.

To verify that SA(TS) satis�es axioms ATS1' and ATS2', notie that by the previ-

ous proposition, any region r 2 R

0=1

TS

would orrespond to a region in SA(TS). Sine

TS satis�es axioms (A4') and (A5') with respet to regions in R

0=1

TS

, it follows that the

orresponding regions in SA(TS) are suÆient to satisfy axioms ATS1' and ATS2'.

We then have to verify that for any morphism f : TS

1

! TS

2

; i = 1; 2, SA(f) =

^

f

is a morphism from SA(TS

1

) to SA(TS

2

), where SA(TS

i

) = (Q

i

; E

i

;)

i

; q

i

in

; I

i

); i = 1; 2.

We basially have to verify that if e

1

I

1

e

2

and both

^

f(e

1

) and

^

f(e

2

) are de�ned, then

^

f(e

1

)I

2

^

f(e

2

), where

^

f(e

1

) = f(e

1

) and

^

f(e

2

) = f(e

2

). If e

1

I

1

e

2

, then, by the de�nition

of I

1

, we know that q

fe

1

;e

2

g

�!

1

q

0

somewhere in TS

1

. This implies that f(q)

ff(e

1

);f(e

2

)g

�!

2

f(q

0

)

in TS

2

. So, if f(e

1

) and f(e

2

) are both de�ned, then, by the de�nition of I

2

, we have
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f(e

1

)I

2

f(e

2

) and we are done. 2

Theorem 8.10 The funtor SA is left adjoint to the funtor AS. The unit of the adjun-

tion is a natural isomorphism.

Proof Let TS 2 SPNts and ATS 2 Ats

0

. Suppose that f : TS ! AS(ATS) is a

morphism. Then, sine TS and SA(TS) have the same underlying sets of states and

events and AS(ATS) and ATS have the same underlying sets of states and events, it is

fairly straightforward to see that

^

f : SA(TS)! ATS is also a morphism, where

^

f

Q

= f

Q

and

^

f

E

= f

E

. Conversely, if g : SA(TS) ! ATS is a morphism, we an show that

g : TS ! AS(ATS) is also a morphism, where g

Q

= g

Q

and g

E

= g

E

. Further,

^

f = f

and

^

g = g for all morphisms f 2 SPNts and g 2 Ats

0

. This establishes a bijetion

between Hom(TS;AS(ATS)) and Hom(SA(TS); ATS). It is not diÆult to show that

this bijetion is natural in both SPNts and Ats

0

, thereby establishing the adjuntion.

It is also not diÆult to show that the unit �

TS

: TS ! ASÆSA(TS) is an isomorphism

for all TS 2 SPNts. 2

So we have established a oreetion between our ategory of safe PN-transition sys-

tems and the ategory of asynhronous transition systems Ats

0

de�ned by Winskel and

Nielsen in [19℄.

The reason that this orrespondene is a oreetion and not a ategorial equivalene

has to do with the nature of the independene relation. In an asynhronous transition

system two events an be independent without ever being enabled simultaneously to

give rise to a onurent step. When representing an asynhronous transition system as

a safe PN-transition system, we lose information about these \unused" independenes.

These \unused" independenes an be regarded as providing some \strutural" informa-

tion about the system whih may not be diretly detetable in its onurrent behaviour.

For example, two events being independent of eah other ould denote the fat that they

our at di�erent loations and do not interfere with eah other. Under suh an inter-

pretation, one omes aross very natural examples of asynhronous transition systems in

whih independent events are never simultaneously enabled (see, for instane, [10℄).

It is not diÆult to show that our ategory of safe PN-transition systems is equivalent

to a subategory of Ats

0

whose objets satisfy the additional onstraint that for every

pair (e

1

; e

2

) 2 I, there is a state q where both e

1

and e

2

are enabled.

We also pointed out a mismath between the de�nition of safe PN-transition systems

we use in this setion and the one we proposed in the Setion 6. The additional assumption

we have made here is that every event in E have an ourrene. This is required beause

asynhronous transition systems in the ategory Ats

0

satisfy this restrition.

However, this restrition on asynhronous transition systems is a onsequene of how

onditions are de�ned. For an asynhronous transtition system ATS = (Q;E;); q

in

; I),

it is easy to see that one annot de�ne a ondition b 2

�

e for any e 2 E whih does

not our in ATS. This is beause onditions are de�ned as subsets of transitions whih

are present in the system. Sine we annot �nd any b 2

�

e for an event e whih does

not our, Axiom ATS2 would then require e to be enabled at every state in the system,

whih is a ontradition. So, for asynhronous transition systems in Ats

0

, ondition (i)

in De�nition 8.1 is implied by Axiom ATS2.
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However, in the generalized set up of regions, it is possible to de�ne \disabling regions"

whih take the value 0 at all states but whih are the preregion of some event e, thereby

ensuring that e is never enabled. The regional version of the seond axiom, Axiom ATS2',

would learly permit suh permanently disabled events to be part of the spei�ation of

the system.

It is not diÆult to generalize De�nition 8.1 by dropping ondition (i) and building

a slightly larger ategory Ats

0

0

satisfying Axioms ATS1' and ATS2'. It then turns out

that the oreetion we have desribed here goes through between the ategory SPNts as

originally de�ned in the previous setion and the more generous ategory Ats

0

0

.

9 Safe nets revisited

We showed in Setion 6 that there is a oreetion between SPNts, the ategory of safe

PN-transition systems and SNet , our ategory of safe nets. Then, we showed that there is

also a oreetion between SPNts and Ats

0

, where Ats

0

is a subategory of the Ats, the

ategory of asynhronous transition systems. In [19℄, Winskel and Nielsen have established

a oreetion between Ats

0

and a ategory of safe nets whih we shall all WNet .

Unfortunately, the ategory WNet is not the same as the ategory SNet we have

de�ned here. However, we show now that there is an adjuntion between these two

ategories. Further, we an establish a oreetion between the subategories of SNet

and WNet onsisting of only saturated nets, where saturated nets are those nets whih

arise out of the regional onstrution in going from transition systems to nets.

The only di�erene between WNet and SNet is that the morphisms of WNet are

slightly striter than those of SNet .

Let us briey reall the de�nition of the ategory SNet . The objets of SNet are

safe nets, as given by De�nition 6.1. Morphisms between safe nets are the same as

those between general nets, as given in De�nition 2.2. However, sine the de�nition of a

morphism beomes slightly simpler when restrited to safe nets, we pause to spell it out

in detail.

Let PN

i

= (S

i

; T

i

;W

i

;M

i

in

), i = 1; 2, be a pair of safe nets. An SNet -morphism

� : PN

1

! PN

2

is a pair � = (�

S

; �

T

) where:

(i) �

S

: S

2

* S

1

is a partial funtion.

(ii) �

T

: T

1

* T

2

is a partial funtion.

(iii) 8s

1

2 S

1

: 8s

2

2 S

2

: If s

1

= �

S

(s

2

) then M

1

in

(s

1

) =M

2

in

(s

2

).

(iv) 8t

1

2 T

1

: If �

T

(t

1

) is unde�ned then �

�1

S

(

�

t

1

) = �

�1

S

(t

1

�

) = ;.

(v) 8t

1

2 T

1

: If �

T

(t

1

) = t

2

then �

�1

S

(

�

t

1

) =

�

t

2

and �

�1

S

(t

1

�

) = t

2

�

.

The ategory WNet also has as its objets safe nets, like SNet . However, the mor-

phisms are slightly striter than those of SNet . � : PN

1

! PN

2

is a morphism in WNet

if � is an SNet-morphism, and, in addition, �

�1

S

(M

1

in

) = M

2

in

(where, abusing notation,

M

i

in

; i = 1; 2 denote the subsets of S

1

and S

2

whih are marked initially in PN

1

and PN

2

respetively).
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So, the essential di�erene between aWNet -morphism and an SNet -morphism is that

in aWNet -morphism �

S

is a total funtion when restrited to those plaes marked initially

in the seond net.

Clearly, every WNet -morphism is also an SNet -morphism. So WNet is a subategory

of SNet , though not a full subategory.

It turns out that we an onstrut a left adjoint to the inlusion funtor fromWNet to

SNet (though this will not onstitute a reetion beause WNet is not a full subategory

of SNet [6℄).

In going from SNet to WNet , we have, in general, to make an SNet -morphism into a

WNet-morphism. In other words, we have to onvert the map on the initial marking from

a partial funtion to a total funtion. A standard way to onvert a partial funtion to a

total funtion is to augment the range of the funtion with a speial \unde�ned" value.

Similarly, here we augment the net that is the soure of the morphism with an isolated

marked plae.

Formally, de�ne a funtor SNWN : SNet !WNet as follows.

� For PN = (S; T;W;M

in

) 2 SNet , SNWN(PN) = (S ℄ f�sg; T;W

0

;M

in

0

), where:

{ �s =2 S (we use ℄ to denote disjoint union).

{ 8s 2 S ℄ f�sg: 8t 2 T: W

0

(s; t) =

(

W (s; t) if s 2 S

0 otherwise

{ 8s 2 S ℄ f�sg: 8t 2 T: W

0

(t; s) =

(

W (t; s) if s 2 S

0 otherwise

{ M

in

0

(�s) = 1 and 8s 2 S: M

in

0

(s) =M

in

(s).

� Let � : PN

1

! PN

2

be a morphism between PN

1

and PN

2

, where PN

i

= (S

i

; T

i

;W

i

;M

i

in

),

i = 1; 2. Then, SNWN(�) = �

0

: SNWN(PN

1

) ! SNWN(PN

2

) is given as follows,

where SNWN(PN

i

) = (S

i

℄ f�s

i

g; T

i

;W

0

i

;M

i

in

0

), i = 1; 2.

{ 8t 2 T

1

: �

0

(t) = �(t).

{ 8s 2 S

2

℄ f�s

2

g: �

0

(s) =

8

>

>

>

<

>

>

>

:

�s

1

if (s = �s

2

) or

(s 2 S

2

;M

2

in

0

(s) = 1 and

�(s) is unde�ned)

�(s) otherwise

Theorem 9.1 SNWN : SNet !WNet is left adjoint to the inlusion funtor.

Proof Let PN

1

= (S

1

; T

1

;W

1

;M

1

in

) and PN

2

= (S

2

; T

2

;W

2

;M

2

in

) be two safe nets. We

shall establish a bijetion betweenHom(PN

1

; PN

2

) andHom(SNWN(PN

1

); PN

2

), where

SNWN(PN

1

) = (S

1

℄ �s

1

; T

1

;W

0

1

;M

1

in

0

).

We �rst de�ne a map � : Hom(PN

1

; PN

2

) ! Hom(SNWN(PN

1

); PN

2

). Suppose

that � : PN

1

! PN

2

2 Hom(PN

1

; PN

2

). De�ne �(�) : SNWN(PN

1

)! PN

2

as follows.

� 8t 2 T

1

: �(�)(t) = �(t).

� 8s 2 S

2

: �(�)(s) =

(

�s

1

if M

2

in

(s) = 1 and �(s) unde�ned

�(s) otherwise
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Next we de�ne a map � : Hom(SNWN(PN

1

); PN

2

) ! Hom(PN

1

; PN

2

). Let  :

SNWN(PN

1

)! PN

2

. Then �( ) : PN

1

! PN

2

is given as follows.

� 8t 2 T

1

: �( )(t) =  (t).

� 8s 2 S

2

: �( )(s) =

(

unde�ned if  (s) = �s

1

 (s) otherwise

It is straightforward to show that �(�(�)) = � and �(�( )) for all � 2 Hom(PN

1

; PN

2

)

and  2 Hom(SNWN(PN

1

); PN

2

). It is not diÆult to show that this bijetion is natural

in SNet and WNet , and we are done.

2

As we mentioned at the beginning of this setion, we an establish a slightly stronger

result when we look at the safe nets atually arising out of the regional onstrution from

transition systems.

In Setion 6, we have desribed a funtor STN whih assoiates a net STN(TS) with

eah safe PN-transition system TS. Following [12℄, we an all suh a net saturated ,

beause it ontains all possible plaes whih are onsistent with the behaviour desribed

by TS. A ruial feature of the onstrution is that these saturated nets have no isolated

plaes beause we only use non-trivial regions in the onstrution of the saturated net.

In [19℄, Winskel and Nielsen desribe a similar funtor, whih we an all AWN, go-

ing from Ats

0

to WNet . One again, given an asynhronous transition system ATS,

AWN(ATS) will be a saturated net. Here, saturation is with respet to the underlying

sequential behaviour of ATS as well as the independene relation I spei�ed by ATS.

An important di�erene between the onstrution desribed in [19℄ and the onstrution

we desribe in Setion 6 is that the onstrution in [19℄ adds trivial regions as well.

The reason why the onstrution in [19℄ also inludes trivial regions is to do with the

striter notion of a net morphism in the ategory WNet . Notie that it is always possible

to de�ne a trivial morphism between two transition systems in whih the map on events

is empty. Corresponding to this, in the ategory SNet it is always possible to de�ne a

trivial morphism between two nets where the map on plaes and the map on transitions

are both empty. However, in the ategory WNet , suh trivial maps do not always exist,

beause of the strong ondition on how the initial markings have to be related. If the net

that is the soure of a morphism has an isolated marked plae, however, suh a trivial map

an also be de�ned inWNet . Hene, to transport the trivial maps between asynhronous

transition systems in Ats

0

faithfully to trivial maps between the assoiated nets inWNet ,

it is essential that the funtor AWN reate isolated plaes.

Let SatSNet be the subategory of SNet where for every net PN 2 SatSNet , there is

a safe PN-transition system TS 2 SPNts suh that PN is isomorphi to STN(TS). Sim-

ilarly, let SatWNet be the subategory of WNet suh that for every net PN 2 SatWNet ,

there is an asynhronous transition system ATS 2 Ats

0

suh that PN is isomorphi to

AWN(ATS).

The funtor SNWN : SPNts !WNet restrits to a funtor from SatSNet to SatWNet ,

whih we shall again all SNWN, for onveniene.

Going in the opposite diretion, starting with a net PN 2 SatWNet , we an �rst

apply the funtor WNA, whih is the right adjoint of AWN, to obtain an asynhronous
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Figure 3:

transition system orresponding to PN . Then by applying AS and STN we obtain a net

in SatSNet .

Theorem 9.2 The funtor SNWN : SatSNet ! SatWNet is left adjoint to the fun-

tor STN Æ AS Æ WNA : SatWNet ! SatSNet. The unit of the adjuntion is a natural

isomorphism.

Proof The proof is tedious but straightforward, based on several results we have proved

already, so we omit the details. 2

So, even at the level of saturated nets, we only get a oreetion and not a ategorial

equivalene between SatSNet and SatWNet . This is beause a safe net that is saturated

with respet its desription as an asynhronous transition system need not be saturated

with respet to its desription as a safe PN-transition system. So, the \obvious" funtor

from SatWNet to SatSNet whih just removes the isolated plaes will not, in general,

yield a net in SatSNet at all.

Consider, for example, the simple transition system TS in Figure 3. If we view this

as a safe PN-transition system, the orresponding saturated net STN(TS) would have a

plae s suh that s 2 e

1

�

and s 2

�

e

3

.

However, we an make TS into an asynhronous transition system in more than one

way. The obvious asynhronous transition system version of TS has the empty indepen-

dene relation. But, we an also speify that e

1

and e

3

are independent. This would mean

that in the net AWN(TS), the neighbourhoods of e

1

and e

3

would be disjoint, hene ruling

out the plae s onneting e

1

to e

3

whih is present in STN(TS).

Another way of omparing the ategories SNet andWNet is to examine subategories

of SNet and WNet where we saturate the nets in both subategories with respet to the

same lass of transition systems.

First, we an relate SPNts and WNet by funtors STWN : SPNts ! WNet and

SWNT : WNet ! SPNts in muh the same way as we related SPNts and SNet by STN

and SNT, exept that STWN onstruts plaes orresponding to both trivial and non-

trivial regions. It is then easy to establish a oreetion between STWN and SWNT. We

an then look at the ategory SatWNet

0

, onsisting of safe nets whih are isomorphi to

STWN(TS) for some TS 2 SPNts. It is not diÆult to show that SatSNet and SatWNet

0

are ategorially equivalent, where the funtor from SatSNet to SatWNet

0

is SNWN as

before and the funtor in the opposite diretion is the one whih strips o� isolated plaes

from a net.

In a similar way, we an de�ne a oreetion between Ats

0

and SNet in terms of fun-

tors AN : Ats

0

! SNet and NA : SNet ! Ats

0

, where AN onstruts plaes orresponding

to only non-trivial regions. We an then look at the ategory SatSNet

0

onsisting of safe
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nets whih are isomorphi to AN(ATS) for some ATS 2 Ats

0

. It turns out that SatSNet

0

and SatWNet are ategorially equivalent.

So, provided we use the same notion of saturation in both SNet and WNet , we end

up with equivalent subategories of saturated nets.

10 Disussion

In this paper we have shown how to de�ne subategories of PN-transition systems whih

desribe the behaviour of safe nets and elementary net systems. This is ahieved by

\tuning" the notion of a region appropriately. It then turns out that the oreetion

established between the ategories PNts and PNet in [9℄ an be restrited to oreetions

between the orresponding subategories of these two ategories.

We have examined the relationship between sequential and step transition systems in

the setting of PN-transition systems. In general, there is a oreetion between sequential

PN-transition systems and \normal" PN-transition systems with steps. However, when

we restrit our attention to transition systems desribing the behaviour of elementary

net systems, the subategories of sequential and step transition systems are equivalent.

This shows that for elementary net systems, all information about onurreny an be

reovered by examining the sequential behaviour of the system.

We have also established a oreetion between safe PN-transition system and asyn-

hronous transition systems. This result shows that asynhronous transition systems are,

in a sense, a more onrete model of behaviour than step transition systems beause the

independene relation an provide \strutural" information about a system whih annot

be inferred diretly from an examination of its behaviour.

A brief remark is in order about the way we have desribed the orrespondene between

step transition systems and Petri nets. We have hosen to present the relationship between

step transition systems and di�erent lasses of Petri nets diretly in terms of oreetions,

by identifying speial ategories of step transition systems orresponding to eah lass of

nets. Instead, we ould have followed the approah adopted by Winskel and Nielsen in

[19℄ and �rst established the existene of left adjoints for the natural funtors from nets to

step transition systems and then \ut down" the adjuntions to oreetions by restriting

the lass of step transition systems under onsideration.

In a sense, it would have been more uniform to follow the approah of [19℄, beause

the right adjoints in all the oreetions we establish between transition systems and nets

orrespond to the same funtor|the one taking a net to its \step" marking diagram.

We have hosen to diretly present the results in terms of oreetions beause these

oreetions denote, in our opinion, stronger and more relevant relationships between

the two lasses of models than those represented by simple adjuntions. An adjuntion

between step transition systems and a partiular lass of nets desribes the minimal way

of \massaging" a given step transition system so that it represents the behaviour of some

net from the lass of nets under onsideration. On the other hand, if we have a oreetion

between a lass of step transition systems and a lass of nets, we are guaranteed that the

lass of transition systems we are onsidering aptures preisely the behaviours desribable

by the lass of nets we are interested in.

It is natural to ask what we ahieve by establishing these formal relationships between

di�erent models of onurreny. One motivation for establishing suh relationships is
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that they provide a basis for translating results from one model to another. This gives us

the freedom to work within whihever framework is most onvenient and \automatially"

obtain onnetions to other approahes.

For instane, to obtain a non-interleaved model for a proess alulus suh as CCS [8℄,

it is intuitively easier to enrih the standard interleaved transition system semantis to

obtain a more faithful representation of onurreny, rather than providing a semantis

diretly in terms of nets [2, 13℄ or event strutures [18℄. Thus, using a very simple extension

of the standard operational semantis for CCS, we an provide a non-interleaved semantis

for a rih sublass of the language in terms of asynhronous transtition systems from the

subategory Ats

0

[10℄. This implies, by the results onneting Ats

0

and WNet , that we

automatially obtain a net semantis for this language.

The other natural question that one may ask is why we work within the framework

of ategory theory. One reason is that it provides a onvenient mathematial language to

phrase the kinds of orrespondenes we would like to desribe. For instane, oreetions

suintly apture the idea of one model being embedded in another.

The other advantage of working with ategories is that many interesting operations

that one de�nes on these models an be aptured as universal ategorial onstrutions.

For instane, parallel omposition orresponds to a notion of ategorial produt, while

nondeterministi hoie an be desribed in terms of oproduts. Thus, by relating ate-

gories of models, we an also ompare how these onstrutions behave in di�erent models.

This issue is disussed in some detail in [19℄, where a number of relationships between

models for onurreny are established in a ategorial setting, spanning the spetrum of

linear-time, branhing-time and partial-order approahes to modelling the behaviour of

onurrent systems.

We onlude by pointing out a major issue whih we have ignored in our study|that

of labelling. In the theory of Petri nets, abstration is ahieved by adding a set of labels

whih an be assoiated with the underlying events of the system. This is ruial for using

nets to provide, say, a semantis for CCS-like langages. In [19℄, labelling is introdued

into the ategorial treatment of di�erent models of onurreny by means of �brations

and o�brations. Though they point out some problems in de�ning these onstrutions

over ategories of nets, it does not seem to prevent the oreetion between unlabelled

transition systems and unlabelled nets from being extended to the orresponding labelled

ategories. So, while we have not expliitly handled labelling in our framework, we are

on�dent that we an follow the route set out in [19℄ without too muh diÆulty.

Aknowledgment We thank Mogens Nielsen for helpful omments.

A Appendix

We �x some terminology and notation regarding multisets.

De�nition A.1 Let A be a set.

� A multiset u over A is a funtion u : A ! N

0

, where N

0

is the set of natural

numbers f0; 1; 2; : : :g. The set of all multisets over A is denoted by MS (A).

� For u 2 MS (A), let juj, the size of u, be given by

P

a2A

u(a). u is �nite i� juj is

�nite. The set of all �nite multisets over A is denoted by MS

�n

(A).
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� The empty multiset over A is the unique funtion O

A

: A ! N

0

suh that 8a 2

A: O

A

(a) = 0.

� Let u; v 2 MS (A). Then u is a submultiset of v, written u �

MS

v, in ase u(a) �

v(a) for all a 2 A.

Thus, if u is a multiset over A, for eah a 2 A, u(a) is the number of ourrenes of a

in u. Abusing notation, we shall write a 2 u to signify that u(a) � 1. For simpliity,

we shall usually write out multisets as sets with multipliities | for instane, if a; b 2 A,

then fa; a; bg denotes the multiset u over A whih assigns u(a) = 2, u(b) = 1 and u() = 0

for all  2 A suh that  6= a and  6= b.

Multisets an be added and subtrated pointwise | if u and v are two multisets over

A, then u+ v and u� v are de�ned as follows:

� 8a 2 A: (u+ v)(a) = u(a) + v(a).

� If v �

MS

u then 8a 2 A: (u� v)(a) = u(a)� v(a) .

Given a partial funtion f : A * B between sets, f an be extended in a natural way

to a (total) funtion

^

f : MS

�n

(A)! MS

�n

(B) as follows:

8u 2 MS

�n

(A): 8b 2 B:

^

f(u)(b) =

X

fa2Ajf(a)=bg

u(a)

By onvention,

^

f(u) = O

B

in ase f(a) is unde�ned for all a 2 u.

For onveniene, we shall denote both f and its extension

^

f to multisets by f .
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