
Internal Report TCS-90-3

September, 1990

Models and Logis for True Conurreny

Kamal Lodaya

1

, Madhavan Mukund

2

,

R. Ramanujam

1

, P.S. Thiagarajan

2

Abstrat

A distributed omputer system onsists of di�erent proesses or agents that funtion largely

autonomously and o�ordinate their ations by ommuniating with eah other. In suh a situation,

ations may be performed by di�erent agents of the system loally, in a onurrent manner.

In this paper, we �rst disuss formal models of distributed systems in whih onurreny is spei-

�ed expliitly, in ontrast to more traditional approahes where onurreny is represented impliitly

as a non-deterministi hoie between all possible sequentializations of onurrent ations. This nat-

urally leads to models based on partially-ordered sets of ations rather than sequenes of ations and

is often alled the true onurreny approah. The models we fous on are distributed transition

systems, elementary net systems and event strutures.

In the seond half of the paper, we develop a family of logis to speify and reason about the

behavioural properties of the models we have desribed. The logis we de�ne are extensions of

temporal logi with new modalities to diretly desribe onurreny.

This paper is essentially a survey of work done by the authors during the last few years on

modelling distributed systems with true onurreny and using logi to reason about these models.

The emphasis is on motivating de�nitions through examples and on presenting major results, without

going into too many formal details. We provide pointers to the literature where these details an be

found.

1

The Institute of Mathematial Sienes, Madras 600 113, INDIA.

2

Shool of Mathematis, SPIC Siene Foundation, 92 G.N. Chetty Road, T. Nagar, Madras 600 017,

INDIA.

This report is also published as IMS/90/12, The Institute of Mathematial Sienes, Madras 600 113,

INDIA.



Introdution

The study of distributed systems and omputations is an important topi of researh in omputer siene.

A distributed system onsists of a number of essentially autonomous omponents that work together to

perform a omplex task.

A omputer network whih brings together a heterogeneous olletion of omputing resoures and

users dispersed over a wide geographi area is a lassi example of a distributed system. Distributed

databases onstitute yet another lass of examples. At a lower level, omputer protools whih failitate

eÆient and reliable transmission of eletroni data and operating systems whih o�ordinate the ativities

of multiple proesses (programs) in the presene of multiple proessors an also be viewed as distributed

systems. With the advent of VLSI systems, the notion of a distributed system is also beoming relevant

at the iruit level.

The theory of distributed systems onsists of formulating abstrat mathematial models of distributed

systems and studying the properties of these models. A basi motivation in the study of formal models is

to develop tools and tehniques using whih one an speify, analyze and implement distributed systems.

Another goal is to develop formal means for reasoning about the behaviour of distributed systems. This

is important beause one would like to ensure that a spei�ation is in some sense onsistent before one

attempts an analysis or an implementation. Even more importantly, one would like to guarantee that a

proposed implementation indeed meets the requirements of a spei�ation.

In this paper, we present some of our work in the last few years on modelling distributed systems with

true onurreny and using logi to reason about these models. The emphasis is on motivating de�nitions

through examples and on presenting major results. No attempt will be made to go into formal details;

we shall provide pointers to the literature where these details an be found.

In the �rst part of the paper, we introdue three models alled distributed transition systems, ele-

mentary net systems and event strutures. Using these models, we illustrate some of the fundamental

features of distributed systems, suh as ausality, hoie and onurreny.

In the seond half of the paper, we develop a family of logis to speify and reason about the be-

havioural properties of the models onsidered in the �rst half of the paper.

A Models for True Conurreny

Typially, a distributed system onsists of spatially separated proesses or agents performing a joint

task. The agents funtion largely autonomously and o�ordinate their ations by ommuniating with

eah other. In suh a situation, ations may be performed by di�erent agents of the system loally, in a

onurrent manner.

Informally, we say that two events are onurrent if they our with no a priori ordering over their

ourrenes. This is in ontrast to a sequential system in whih any two events that our in a omputation

must be ordered.

In addition to onurreny, two other aspets are of interest in the theory of distributed systems {

ausality and hoie. Causality refers to the fat that ertain events in a distributed system an only

our in a �xed order; for example, a message an be reeived only after it has been sent. The reeipt of

a message is said to be ausally dependent on the sending of the message.

Choie aptures the fat that systems an behave in an indeterminate fashion. In other words, at

ertain points of the omputation, the system may hoose between alternative events, leading to di�erent

behaviours.

As we shall see, labelled transition systems are simple and onvenient models of sequential systems

whih an expliitly desribe ausality and hoie, but whih do not have a natural way of representing

onurreny. One way of desribing onurreny in the framework of transition systems is in terms

of indeterminay. In this approah, the fat that a set of ations may be performed onurrently is

represented by permitting the system to hoose between all possible sequentializations of the ations.

This approximation of onurreny by interleaving is used in various algebrai approahes to the theory

of distributed systems suh as CCS [Milner 1989℄, CSP [Hoare 1984℄ and ACP [Bergstra et al 1984℄.

Suh an impliit representation of onurreny leads to problems in analyzing system behaviour, due

to the ombinatorial explosion in the number of possible interleavings. We follow an alternative approah,

alled \true onurreny", where onurreny is represented expliitly in the models.

1



��

��

s

0

��

��

s

1

��

��

s

2

��

��

s

3

��

��

s

4

��

��

s

5

�

�

�

�*

b

�

�

�

�*a

�

�

�

�*a

�

�

�

�*a

H

H

H

Hj

b

H

H

H

Hj

b

H

H

H

Hj

b

�

�

a

Figure 1: A transition system

Many abstrat models of distributed systems have been suggested whih expliitly deal with the phe-

nomena of ausality, hoie and onurreny. Here, we shall onsider three of these models | distributed

transition systems, elementary net systems and event strutures. We shall also disuss a model alled

ommuniating sequential agents. This model, based on a restrited lass of event strutures, aptures in

a natural way the intuitive piture of a distributed system as a olletion of sequential agents o�ordinating

their ations through ommuniation.

1 Distributed Transition Systems

Before disussing models of onurrent systems, let us briey look at sequential systems. Transition

systems are a basi model of sequential systems.

De�nition 1.1 A (�-labelled) transition system is a triple TS = (S;�;!) where

(i). S is a set of states.

(ii). � is a set of ations.

(iii). ! � S � �� S is the transition relation.

If (s; a; s

0

) 2 !, then the idea is that the ation a an our at state s and after the exeution of a the

system assumes the state s

0

. We shall often write s

a

!s

0

instead of (s; a; s

0

) 2 !.

Figure 1 is a graphial representation of a transition system. The nodes of the graph represent the

states of the system. The edges, labelled by ations from �, reet the transition relation !.

Clearly the struture of a transition system aptures both the basi phenomena present in sequential

systems | ausality and hoie. The transition relation an be used to determine the ausal dependanies

between system states. Choie is spei�ed by branhing in the transition system. In other words, if s

a

!s

0

and s

b

!s

00

both belong to the transition relation, then the system at state s an hoose between the

ations a and b. For example, at s

1

the system shown in Figure 1 an either move by an a to s

2

or move

by a b to s

3

. In general, di�erent hoies available to the system at a state may be labelled by the same

ation. In other words, the behaviour ould be nondeterministi. For instane, at s

0

this system an

move on b either to s

5

or to s

1

.

In this example, starting at s

1

, either the ation a an our followed by the ation b or the ation

b an our followed by the ation a. In the interleaving approah to onurreny, this situation often

amounts to saying that a and b an our onurrently at s

1

.

However, we would like to maintain a lear distintion between nondeterminism and onurreny.

Hene, to desribe onurreny in a transition system, we enrih the relation! by permitting a transition

to be labelled by a �nite set of ations from �, rather than just by a single ation. Thus, we will now

have elements in ! of the form s

u

!s

0

, where u is a �nite subset of �. The idea is that the ations in u

an our at s with no order over their ourrenes. When they have all ourred, the resulting state is

s

0

. The set of ations u is termed a onurrent step.

2



��

��

f

;

��

��

f

a

��

��

f

b

��

��

f



��

��

f

ab

��

��

f

a

��

��

f

b

��

��

f

ab

?

b

?

b

?

b

?

b

�

�

�

�	

a

�

�

�

�	

a

�

�

�

�	

a

�

�

�

�	

a

�

�

�

�R



�

�

�

�R



�

�

�

�R



�

�

�

�R



�

�

�

fa; b; g

Figure 2: A \ube" generated by a onurrent step

Heneforth, given a set X , }(X) denotes the set of subsets of X and }

fin

(X) denotes the set of �nite

subsets of X . We an now formally de�ne distributed transition systems as follows.

De�nition 1.2 A distributed transition system (dts) is a triple DTS = (S;�;!) where

(i). S is a set of states.

(ii). � is a set of ations.

(iii). ! � S � }

fin

(�)� S is the step transition relation satisfying for all s; s

0

in S:

(a) s

;

!s

0

i� s = s

0

.

(b) for all u 2 }

fin

(�), if s

u

!s

0

then there exists a funtion f :}(u)! S suh that f(;) = s; f(u) =

s

0

and for every v

1

; v

2

2 }(u) with v

1

� v

2

, it is the ase that f(v

1

)

v

2

�v

1

�! f(v

2

).

We often say that DTS = (S;�;!) is a dts over �. For onveniene, we write s

a

!s

0

instead of s

fag

�!s

0

.

The new de�nition of ! is a bit involved beause we have to ensure that any non-trivial \substep"

of a onurrent step is also performed as a onurrent step. The funtion f in lause (3.b) is said to

de�ne a u-ube (from s to s

0

). The existene of the u-ube guarantees that the mutual independene of

the ations in u holds for all the substeps as well. For example, Figure 2 shows the ube generated by

a onurrent step onsisting of three events. To avoid luttering up the �gure, \interior" arrows suh as

f

;

fa;bg

�!f

ab

and f

b

fa;g

�!f

ab

have not been drawn.

Figure 3 is an example of a distributed transition system modelling the alloation of a shared resoure

to di�erent proesses within a system. In the example, we have 3 proesses P

1

; P

2

and P

3

funtioning

in an operating environment that supports multiproessing. The resoure | say, for example, bloks of

memory | is available in \units". There are totally 5 units available. The 3 proesses require 2, 3 and

5 units of the resoure at a time respetively. In this dts, � = fa

1

; a

2

; a

3

; r

1

; r

2

; r

3

g, where a

i

denotes

that proess P

i

has been alloated the entire amount of the resoure that it needs and r

i

denotes that

P

i

has released the resoure it has been alloated. The states of the dts are ordered pairs onsisting of

the number of unalloated units of the resoure available in the system along with the set of proesses

urrently in possession of their required quota of the shared resoure.

Thus, at the state (5; ;), no proesses are ative and all 5 units of the resoure are available. At

this state, the system an either alloate units of the resoure to one of the three proesses, or perform

a onurrent step alloating resoures to both P

1

and P

2

. Notie that the transition from (3; fP

1

g) to

(2; fP

2

g) an either be performed as a onurrent step fa

2

; r

1

g or by interleaving the two ations. In

3



�

�

�

�

(0; fP

3

g)

�

�

�

�

(5; ;)

�

�

�

�

(3; fP

1

g)

�

�

�

�

(2; fP

2

g)

�

�

�

�

(0; fP

1

; P

2

g)

�

a

3

-

r

3

�

�

�

�

�

��

a

1

�

�

�

�

�

��

a

1

�

�

�

�

�

�	

r

1

�

�

�

�

�

�	

r

1

�

�

�

�

�

�R

a

2

�

�

�

�

�

�R

a

2

�

�

�

�

�

�I

r

2

�

�

�

�

�

�I

r

2

?

fa

2

; r

1

g

6

fa

1

; r

2

g

� �

6

fa

1

; a

2

g

��

6

fr

1

; r

2

g

Figure 3: A distributed transition system

one interleaving, however, (5; ;) is reahed as an intermediate state, at whih point the resoure an be

alloated to P

3

instead of P

2

. Thus, in this ase, the e�et of the interleavings is not quite the same as

that of the onurrent step.

In general, it is important to note that lause (3.b) in De�nition 1.2 is merely an impliation. The

existene of a funtion from }(u) into S whih ful�lls the stated requirements does not guarantee the

existene of a onurrent step. This is line with our philosophy that onurreny should be learly

di�erentiated from interleaving. As we have seen above, interleavings may permit unintended deviations

from the behaviour expeted of a onurrent step. In fat, it is possible to have a onurrent step as well

as an interleaving of the step performed at a state but leading to two di�erent states.

Finally, we introdue the important notion of reahability in a transition system. Given TS = (S;�;!)

we de�ne R(s

0

), the reahability set of s

0

2 S, as the least subset of S ontaining s

0

satisfying:

If s 2 R(s

0

); a 2 � and s

a

!s

0

; then s

0

2 R(s

0

):

Thus, R(s

0

) is the set of states reahable from s

0

in a �nite number of steps using !.

2 Elementary Net Systems

In a distributed transition system, onurreny is expliitly introdued into a transition system by per-

mitting transitions between states via �nite sets of ations alled onurrent steps. In e�et, the notion

of a state is left unhanged and the transition relation is enrihed to model onurreny.

An alternative way of introduing onurreny into a transition system is to \distribute" the states of

the system. The states of a dts orrespond to the global states of the onurrent system being modelled

by the dts. Rather than regard these global states as indivisible entities, we an break them up into

atomi omponents whih an be regarded as the loal states of the di�erent proesses within the system.

The global states of the system an then be haraterized in terms of the loal states.

By distributing the states of the model in this manner, we an learly distinguish onurreny from

hoie without having to de�ne a transition relation involving sets of ations as in a dts. Instead, the

transition relation is designed to apture the fat that the hange of state aompanying eah event

ourrene in the system is \loalized" to those proesses that atually partiipate in the event. As a

result, when an event ours, only spei� loal omponents of the global state are a�eted, leaving the

rest of the omponents untouhed. Thus, two events that are enabled at a global state of the system an

our onurrently if the loal states that they a�et are disjoint. On the other hand, if the loal states

4



Æ

��

u

b

1

Æ

��

u

b

2

e

1

e

2

e

3

Æ

��

b

3

Æ

��

b

4

e

4

e

5

�

�

�

��

A

A

A

AU

�

�

�

��

A

A

A

AU

A

A

A

AU

�

�

�

��

A

A

A

AU

�

�

�

��

? ?

��

�

-

� �

�

�

Figure 4: An elementary net system

a�eted by the two events overlap, they annot both our in the same omputation at that state and so

a hoie must be made between them.

Net theory deals with models of onurrent systems based on this approah. Here we desribe ele-

mentary net systems, whih are a basi model in this theory. We begin with the de�nition of a net.

De�nition 2.1 A net is a triple N = (B;E; F ) where B and E are disjoint sets and F � (B�E)[(E�B)

satis�es:

8x 2 B [ E : 9y 2 B [ E : (x; y) 2 F or (y; x) 2 F:

The elements of B are alled onditions and are used to denote atomi loal states. The elements of E are

alled events and are used to represent atomi ations. The ow relation F models a �xed neighbourhood

relation between the onditions and events of a system. This ow relation determines the way in whih

the atomi ations a�et the atomi loal states. The restrition on F in the de�nition of a net ensures

that there are no isolated onditions or events.

We an now de�ne an elementary net system as follows.

De�nition 2.2 An elementary net system is a quadruple N = (B;E; F; 

in

) where

(i). N

N

= (B;E; F ) is a net alled the underlying net of N .

(ii). 

in

� B is the initial ase.

Figure 4 is an example of an elementary net system. We have used the onventional graphial notation

for nets | onditions are represented by irles, events by boxes and the ow relation by direted ars.

The \marked" onditions denote the initial ase 

in

.

For e in E the onditions \pointing into" e via F are alled the pre-onditions of e and are denoted

by

�

e. Similarly, the onditions \pointing away" from e via F are alled the post-onditions of e and are

denoted by e

�

. More formally we have

�

e

def

= fb j (b; e) 2 Fg

e

�

def

= fb j (e; b) 2 Fg

A state of a net system, alled a ase, onsists of a set of onditions  � B. The onditions in  are said

to hold when the system is at the ase . Thus, 

in

is the set of onditions that hold when the system

starts up.

The system moves from one ase to another through the ourrene of events from E. An event an

our at a ase i� all its pre-onditions hold and none of its post-onditions do at the ase. When an

event ours all its pre-onditions ease to hold and all its post-onditions begin to hold.

5



In graphial terms, an event e an our at a ase  i� all the onditions pointing into e are \marked"

at  and none of the onditions pointing away from e are. For example, in Figure 4, the event e

1

an

our at the initial ase 

in

= fb

1

; b

2

g. When e

1

ours, we \unmark" all the pre-onditions of e

1

and

\mark" all its post-onditions, leaving the other onditions in 

in

untouhed. Thus, after the ourrene

of e

1

, the system is at the ase fb

2

; b

3

g.

We an formalise this by de�ning !

N

� }(B) � E � }(B), the (elementary) transition relation

generated by the net N = (B;E; F ) as follows.

!

N

= f(x; e; x

0

) j x� x

0

=

�

e; x

0

� x = e

�

g

Using this transition relation, we an assoiate a transition system with an elementary net system as

follows

De�nition 2.3 Let N = (B;E; F; 

in

) be a net system.

(i). C

N

, the state spae of N , is the least subset of }(B) ontaining 

in

suh that if  2 C

N

and

(; e; 

0

) 2 !

N

N

then 

0

2 C

N

.

(ii). TS

N

= (C

N

; E;!

N

) is the transition system assoiated with N , where !

N

is !

N

N

restrited to

C

N

�E � C

N

.

For the net system shown in Figure 4, ffb

1

; b

2

g; fb

1

; b

4

g; fb

2

; b

3

g; fb

3

; b

4

gg is its state spae.

Let N = (B;E; F; 

in

) be a net system with  2 C

N

and e 2 E. Then e is said to be enabled at  |

denoted [ei| i� there exists 

0

2 C

N

suh that 

e

!

0

, where as usual 

e

!

0

abbreviates (; e; 

0

) 2 !

N

.

As we had mentioned at the beginning of this setion, we an learly separate onurreny from hoie

one we have distributed the global states of a transition system into loal omponents.

Let N = (B;E; F; 

in

) be a net system and e; e

0

2 E. We say that e and e

0

an our onurrently at

a ase  | denoted [fe; e

0

gi | i� [ei and [e

0

i and (

�

e[ e

�

)\ (

�

e

0

[ e

0

�

) = ;. Thus, e and e

0

an our

onurrently at a ase if they an our individually and their \neighbourhoods" are disjoint.

Similarly we an de�ne the notion of onit. Let N be a net system as above with e; e

0

2 E. e and

e

0

are said to be in onit at a ase  i� [ei and [e

0

i but not [fe; e

0

gi. Thus, if e and e

0

are in onit

at , it means that they are both individually enabled at , but they annot our together at . For the

omputation to proeed, the onit must be resolved by making a (nondeterministi) hoie between

the two events.

The de�nition of !

N

is designed to ensure that the notion of hange of state in an elementary net

system is fairly restrited.

First, notie that an event must ause the same hange in the system state whenever it ours; its

pre-onditions ease to hold and its post-onditions begin to hold. Thus, if 

1

e

!

2

and 

3

e

!

4

are both

possible in a net system, then it must be the ase that 

1

� 

2

= 

3

� 

4

=

�

e and 

2

� 

1

= 

4

� 

3

= e

�

.

Further, to determine whether an event e is enabled at a ase , it is suÆient to look at the onditions

ontained in

�

e and e

�

. e is enabled at  i�

�

e �  and e

�

\  = ; | no \side-onditions" are involved in

the enabling of an event.

Finally, it turns out that the transition system TS

N

assoiated with a net system N is deterministi;

that is, 

e

!

0

and 

e

!

00

implies that 

0

= 

00

. To onnet up with other approahes to the theory of

distributed systems, nondeterminism an be introdued into TS

N

by labelling the events in E. We shall

ome bak to this point later in this setion.

Let us onsider an example of modelling a distributed system using an unlabelled elementary net

system. Consider the problem of sharing resoures in a distributed system. Suppose that there are two

proesses P

1

and P

2

in the system whih require aess to a ommon resoure r. Suppose that r an be

used by only one proess at a time { r ould, for instane, be a printer. Then, when one of the proesses is

granted aess to r, the other proess should be prevented from aessing r till the �rst proess releases it.

This will ensure that at any state during a omputation of the system, at most one proess an atually

be using that resoure.

Figure 5 models a solution to this problem of mutual exlusion. In this net system the proess P

i

,

i = 1; 2, is represented by the onditions fb

i

0

; b

i

1

; b

i

2

; b

i

3

g and the events fe

i

0

; e

i

1

; e

i

2

; e

i

3

g. Eah proess is

modelled as a simple loop onsisting of four events | getting aess to r (e

i

0

), utilizing r (e

i

1

), releasing r

(e

i

2

) and performing some internal omputations not involving r (e

i

3

). At the initial ase, both proesses

are waiting for aess to r. The additional ondition a funtions as an arbitrator whih enfores mutual

6



Æ

��

u

a

Æ

��

u

b

1

0

Æ

��

u

b

2

0

e

1

0

e

2

0

Æ

��

b

1

1

Æ

��

b

2

1

e

1

1

e

2

1

Æ

��

b

1

2

Æ

��

b

2

2

e

1

2

e

2

2

Æ

��

b

1

3

Æ

��

b

2

3

e

1

3

e

2

3

�

�

�

�=

Z

Z

Z

Z~

?

?

?

?

?

��

6

� �

6

6

�

-

?

?

?

?

?

� �

6

��

6

6

�

�

Figure 5: Mutual exlusion

exlusion of aess to r. For example, suppose that e

2

0

ours initially, giving P

2

aess to r. Sine a

eases to hold e

1

0

is no longer enabled. Thus, P

1

an gain aess to r only after P

2

releases r by the

ourrene of e

2

2

. It is easy to hek that b

1

1

and b

2

1

an never hold together in this net system. On the

other hand, the onditions b

1

3

and b

2

3

an hold at the same ase | that is, the events e

1

3

and e

2

3

whih do

not involve the use of r an our onurrently in this system.

Finally, we show that we an desribe the behaviour of elementary net systems in terms of distributed

transition systems. Consider an elementary net system

N = (B;E; F; 

in

). The transition system TS

N

ontains information about the ausality and onit

present in N . To desribe the onurreny present in N , it is suÆient to augment TS

N

with additional

transitions labelled by onurrent steps, as follows.

We �rst extend the notion of a pair of events being onurrently enabled at a ase to a set of events.

Let u = fe

1

; e

2

; : : : ; e

n

g be a �nite subset of E. We say that u is onurrently enabled at a ase  2 C

N

|

denoted [ui| i� [e

i

i for eah e

i

2 u and, further, [fe

1

; e

2

gi for every pair of distint events e

1

; e

2

2 u.

We an then de�ne the step transition relation )

N

as follows.

)

N

= f(; u; 

0

) j ; 

0

2 C

N

; [ui and � 

0

=

�

u; 

0

�  = u

�

g

Here

�

u and u

�

denote the unions of the pre-onditions and post-onditions of the events ontained in u.

Note that !

N

is \inluded" in )

N

in the sense that if (; e; 

0

) 2 !

N

then (; feg; 

0

) 2 )

N

. We an

then immediately establish the following.

Proposition 2.4 DTS

N

= (C

N

; E;)

N

) is a distributed transition system over E.

It is easy to verify that the onurreny and hoie present in N is preisely aptured by the dts DTS

N

.

However, notie that this dts is deterministi, for the same reason that the transition system TS

N

is.

As we had mentioned earlier, we an introdue nondeterminism by labelling the events.

De�nition 2.5 A �-labelled elementary net system is a pair N

�

= (N ; �), where N = (B;E; F; 

in

) is

an elementary net system, alled the underlying net system of N

�

, � is a set of labels and �:E ! � is

the labelling funtion.

The notions we have developed for net systems an be transported to labelled net systems in the

obvious way. To represent the behaviour of a labelled net system N

�

as a dts, we an de�ne DTS

N

�

to

7



be the dts over � obtained by using the labelling funtion � to rename the ations in DTS

N

, the dts

over E generated by the underlying net system N .

However, in general we need to plae a restrition on the labelling funtion in order to get a neat

translation from labelled net systems to dts's. In a dts, we have restrited onurrent steps to be sets

of ations. On the other hand, a labelled net system N

�

may generate a onurrent step in DTS

N

�

where two distint events in the step have the same label. To avoid dealing with multisets in onurrent

steps that arise in this fashion, we require that events whih an our onurrently in the underlying

net system N have distint labels.

LetN

�

= (B;E; F; 

in

; �) be a �-labelled net system. The labelling funtion � is said to be o-injetive

if it satis�es the following ondition.

8e

1

; e

2

2 E : (9 2 C

N

: [fe

1

; e

2

gi) implies �(e

1

) 6= �(e

2

):

Proposition 2.6 Let N

�

= (N ; �) be a �-labelled elementary net system, where

N = (B;E; F; 

in

), suh that � is o-injetive. Then DTS

N

�

= (C

N

;�;)

N

�

) is a dts over �, where

)

N

�

= f(; �(u); 

0

) j (; u; 

0

) 2 )

N

g:

3 Event Strutures

To reason about the behaviour of a distributed transition system or an elementary net system, we

have to examine all the omputations of the underlying \mahines" de�ned by the model. For this,

it is onvenient to work with an abstrat representation of the entire behaviour of the system. This

behavioural desription should inlude information about all the omputations of the system, expliitly

identifying the ausal dependanies and onurreny present within eah omputation. In addition, it

should also have a way of desribing the branhing points in the system behaviour.

Before disussing behavioural representations of onurrent systems, let us �rst go bak to sequential

transition systems. A omputation of a sequential transition system TS = (S;�;!) starting at some

state s

0

2 S is an alternating sequene of ations and states whih obeys the transition relation !. We

shall restrit our attention to the maximal omputations of the system | those that annot be extended

by performing any more ations. Thus, a maximal omputation is a �nite sequene just in ase a state

is reahed at the end of the sequene from whih no transition is possible; otherwise, it is an in�nite

sequene.

A natural way to group together the sequenes whih orrespond to omputations of TS = (S;�;!)

starting from s

0

is in the form of a tree. The nodes of the tree are labelled by states from S and the

edges are labelled by ations from �. The root node is labelled by the initial state s

0

. Eah maximal

path in the tree now orresponds to a omputation of the system. The branhing points in the tree are

the states where the system makes hoies between di�erent possible ations.

In the ase of models exhibiting onurreny, the situation is more ompliated. A omputation of

suh a system is a partially ordered set of ations, not a simple sequene, so we need a more sophistiated

method of olleting all the omputations together in a single struture. An elegant way of ahieving

this is to use event strutures. Event strutures are behavioural models of distributed systems in whih

ausality, onurreny and hoie (onit) are represented expliitly.

Prime event strutures, introdued in [Nielsen et al 1980℄, are the simplest type of event strutures.

They have a rih theory and are losely related to both net systems and domains. Sine we deal only

with prime event strutures in this paper, heneforth we shall simply all them event strutures.

De�nition 3.1 An event struture is a triple ES = (E;�;#) where

(i). E is a set of event ourrenes.

(ii). � � E �E is a partial order alled the ausality relation.

(iii). # � E �E is an irreexive and symmetri onit relation.

(iv). # is inherited via � in the sense that e

1

# e

2

� e

3

implies that e

1

# e

3

for every e

1

; e

2

; e

3

in E.

An element of E represents the ourrene of an event within a spei� ontext. Thus, if the same event

an our in di�erent ontexts, \opies" of it will be present in the event struture. This is why we have

alled the elements of E event ourrenes rather than events.

8



2

e

1

2

e

2

2

e

3

2

e

4

2

e

5

2

e

6

2

e

7

2

e

8

2

e

9

2

e

10

J

J

J

J

J℄














�

J

J

J

J

J℄














�

6 6

�

�

�

�

�

�

�

�

�

�

�

�

�

�*

H

H

H

H

H

H

H

H

H

H

H

H

H

HY

Figure 6: An event struture

If e

1

� e

2

, then e

2

is ausally dependent on e

1

. Thus, in any omputation of the system, e

2

an our

only if e

1

has already ourred. As usual we let � stand for �

�1

.

The # relation identi�es pairs of events whih are inonsistent with eah other and hene annot both

our during the same omputation. The last lause of the De�nition 3.1 ensures that if e

1

# e

2

then

events that are ausally dependent on e

1

are in onit with events that are ausally dependent on e

2

|

in other words, the inonsisteny of e

1

and e

2

is inherited by events that follow these two events.

Two events that are neither ausally related nor in onit with eah other an both our within a

omputation with no order over their ourrene. We an thus de�ne the onurreny relation o in an

event struture ES = (E;�;#) in terms of � and # as follows.

o

def

= E �E � ( � [ � [ # ):

Notie that o, like #, is irreexive and symmetri. Clearly, every pair of distint events in an event

struture belongs to exatly one of the four relations f�;�;#; og.

It is useful to de�ne one more auxiliary relation. Let ES = (E;�;#) be an event struture and

e; e

0

2 E. Then

e #

�

e

0

def

= e # e

0

and 8e

1

; e

0

1

2 E : [ e

1

� e and e

0

1

� e

0

and e

1

# e

0

1

implies e

1

= e and e

0

1

= e

0

℄.

#

�

identi�es the minimal elements (under �) of the # relation and is hene alled the minimal onit

relation. #

�

identi�es the atual branhing points in the behaviour where hoies are made between

oniting events. This \basi" onit then propagates to ausally related events and \generates" other

onits.

Figure 6 is an example of an event struture. The squiggly lines represent the #

�

relation. The

ausality relation is shown in the form of the assoiated Hasse diagram. The # relation is then uniquely

determined by the last part of De�nition 3.1. In this event struture, e

1

# e

6

beause e

1

#

�

e

2

� e

6

. It

is also easy to see that e

6

o e

7

.

The states of an event struture are alled on�gurations. A on�guration identi�es a set of events

that have ourred \so far". An event an our only if all the events in its past have ourred. Two

events that are in onit an never both our in the same streth of behaviour. Before formalizing

these notions it will be onvenient to adopt the following notation.

Let ES = (E;�;#) be an event struture and X � E. Then #X = fe

0

j 9e 2 X : e

0

� eg. For the

singleton feg, we shall write #e instead of #feg.

De�nition 3.2 Let ES = (E;�;#) be an event struture and  � E. Then  is a on�guration i�

(i).  = # (left-losed)

9



(ii). (� ) \ # = ; (onit-free)

For the event struture shown in Figure 6, fe

2

; e

5

; e

6

g is a on�guration. fe

2

; e

5

; e

10

g is not a on�guration

beause it is not left-losed and fe

3

; e

7

; e

8

g is not a on�guration beause it is not onit-free.

We are partiularly interested in a restrited subset of on�gurations alled loal on�gurations. The

notion of a loal on�guration is based on a simple but ruial observation whih lies at the heart of the

theory of event strutures [Nielsen et al 1980℄.

Proposition 3.3 Let ES = (E;�;#) be an event struture and e 2 E. Then #e is a on�guration.

We now de�ne LC

ES

= f#e j e 2 Eg to be the set of loal on�gurations of the event struture

ES = (E;�;#).

We do so beause a (general) on�guration  � E an be viewed as a global state of the system. Parts

of a global on�guration may hange independent of eah other, due to the spatial separation and the

partial autonomy of the individual agents in the system being modelled by the event struture. A �nite

global on�guration  is ompletely haraterized by speifying the maximal events (with respet to �)

whih belong to . Eah loal on�guration #e orresponding to a maximal event e 2  an be regarded

as a loal state whih ontributes to the global state at .

When we reason about the behaviour of an event struture, we would like to make assertions about

properties that are satis�ed by the global on�gurations | that is, properties that hold at the global

states of the system. However, a global state an be ompletely desribed in terms of all the loal states

that are part of that global state. Thus, we shall restrit ourselves to speifying properties at the loal

on�gurations. Using ombinations of these assertions, we an desribe global on�gurations of the

event struture. Further, the assertions that we an make about a global on�guration are tied down to

the assertions that we an make about the loal on�gurations that onstitute the global on�guration.

This will beome learer in the seond part of the paper where we disuss how to speify properties of

distributed systems.

As we had mentioned at the beginning of this setion, an event struture is a single entity whih

desribes all the omputations of a distributed system. Thus, we need a means of \extrating" individual

omputations from an event struture. Sine a on�guration represents a set of events that have happened

so far, in general an arbitrary on�guration represents a partial omputation of the system. If we onsider

on�gurations whih are maximal (with respet to inlusion) we obtain the maximal omputations of

the event struture. We all these the runs of the event struture. It is easy to verify the following

haraterization of runs. Let r � E. Then r is a run i�

8e 2 E : e 2 r i� 8e

0

2 E : e # e

0

implies e

0

=2 r

Next, let us look at some useful restritions on event strutures. We begin with the auxiliary relation

#

�

. In general, there may be events in # whose inonsisteny annot be traed bak to a pair of events

in #

�

| a typial example onsists of two in�nite desending hains of events in # with eah other. We

would like to rule out suh strutures, sine they model behaviours whih are intuitively infeasible. We

an therefore restrit our attention to well branhing event strutures.

De�nition 3.4 Let ES = (E;�;#) be an event struture. ES is well branhing i�

8e; e

0

2 E : e # e

0

implies 9e

1

; e

0

1

2 E : e

1

� e and e

0

1

� e

0

and e

1

#

�

e

0

1

:

Well branhing is a fairly weak restrition. A stronger and more useful restrition is that of �nitariness.

An event struture ES = (E;�;#) is said to be �nitary in ase #e is a �nite set for every e 2 E.

Finitariness aptures the important fat that in any realizable system, an event an be ausally dependent

on only a �nite set of events. An event with an in�nite past an never atually our.

There is a systemati way of desribing the behaviour of elementary net systems using �nitary event

strutures. To do this, we require labelled event strutures. A labelled event struture is a pair ES

�

=

(ES; �) where ES = (E;�;#) is an event struture and �:E ! � is a labelling funtion.

Construting a labelled �nitary event struture desribing the behaviour of a net system involves an

intermediate stage where the net system is \unfolded" to generate an ayli struture. The details are

a bit involved and an be found in [Nielsen et al 1980℄, [Thiagarajan 1990℄. We shall merely present an

example.

10



e

1

0

e

2

0

e

1

1

e

2

1

e

1

2

e

2

2

e

1

3

e

2

3

e

1

0

e

2

0

e

2

0

e

1

0

e

1

1

e

2

1

e

2

1

e

1

1

. . .

. . .

. . .

. . .

- - - - -

- - - - -

-

-

�

�

�

�

�

�

�

�

�*

H

H

H

H

H

H

H

H

Hj

Figure 7: A labelled event struture

Consider the elementary net system in Figure 5 modelling mutual exlusion. The labelled event

struture in Figure 7 desribes the behaviour of this system. In this ase, the event ourrenes in the

event struture are labelled by the events of the net system.

Given a �nitary event struture ES, we an onstrut a dtsDTS

ES

whih exhibits the same behaviour

as ES. Let C

fin

ES

denote the set of �nite on�gurations of the �nitary event struture ES = (E;�;#).

We an de�ne the step transition relation !

ES

� C

fin

ES

� }

fin

(E)� C

fin

ES

as follows:

!

ES

= f(; u; 

0

) j  \ u = ; and  [ u = 

0

and

8e

1

; e

2

2 u : e

1

6= e

2

implies e

1

o e

2

g

Proposition 3.5 DTS

ES

= (C

fin

ES

; E;!

ES

) is a dts over E.

As in the ase of elementary net systems, it turns out that DTS

ES

is always deterministi. One

again, we an use labelled event strutures to permit nondeterminism in this dts. As before, we have to

restrit the labelling to be o-injetive to rule out multisets in onurrent steps. In other words, given

ES

�

= (E;�;#; �), we require that for every e

1

; e

2

2 E : e

1

o e

2

implies �(e

1

) 6= �(e

2

). We then have

the following result.

Proposition 3.6 Let ES

�

= (ES; �) be a �-labelled event struture where � is a o-injetive labelling

funtion. Then DTS

ES

�

= (C

fin

ES

;�;)

ES

�

) is a dts over � where

)

ES

�

= f(; �(u); 

0

) j (; u; 

0

) 2 !

ES

g:

4 Communiating Sequential Agents

In an event struture, the entire behaviour of a distributed system is spei�ed as a single entity. Individual

omputations of the system an be identi�ed using the notion of a run. However, no further information

is provided about the struture of the system.

Consider a distributed system onsisting of a �nite set of sequential agents performing a joint task,

using ommuniation to o�ordinate their ativities. When reasoning about the behaviour of suh a system,

it is onvenient to assoiate the events ourring in the system with the agents involved in the events.

This an be aptured by restriting event strutures to a model alled ommuniating sequential agents

(sa's).

11



Let N denote the set of natural numbers f1,2,3 . . . g. We shall use elements of N as names for the

agents in our system.

De�nition 4.1 A system of ommuniating sequential agents (sa) is a triple

CSA = (E;�; �), where

(i). E is a non-empty set of event ourrenes.

(ii). � is a partial order on E alled the ausality relation.

(iii). �:E ! }

fin

(N) is a naming funtion assigning to eah e in E a non-empty �nite subset of N.

(iv). Let E

j

= fe j e 2 E and j 2 �(e)g: Then, for every e in E:

8j 2 N : #e \ E

j

is totally ordered by � :

We interpret j 2 �(e) as the agent j partiipating in the event e. Thus �(e) = f1; 2g an stand for a

synhronization \handshake" between agents 1 and 2.

The poset (E

j

;�

j

), where �

j

is � restrited to E

j

�E

j

, represents the loal behaviour of agent j in

CSA. Usually, we say \agent j" to denote this poset.

As in an event struture, if e

1

� e

2

then e

2

ausally depends on e

1

; in no run of CSA an e

2

our

without e

1

having ourred earlier.

To separate onurreny from onit, both the ausality relation � and the naming funtion � are

used. In a sa, eah agent is de�ned to be sequential. Thus, given any two events e and e

0

whih both

involve the same agent { that is �(e) and �(e

0

) are not disjoint | e and e

0

must either be ausally related

or in onit. So if e and e

0

are inomparable with respet to � and �(e) \ �(e

0

) 6= ;, then e and e

0

are

in onit.

The motivation for the last ondition in De�nition 4.1 should now be lear: we do not wish an event

ourrene to ausally depend upon oniting event ourrenes. This ondition also impliitly ensures

that the basi onit in the system is generated within agents | in e�et, hoies are made loally by

individual agents and then propogated aross agents via �.

On the other hand, if two events e and e

0

are unordered and their ombined past does not ontain

any oniting events then they must be onurrent. Sine hoies are assumed to be made loally, it is

suÆient to hek that for eah agent j, the ombined past of e and e

0

does not have inomparable events

involving j. In other words, if (#e [ #e

0

) \ E

j

is totally ordered by � for every j, then the two events e

and e

0

are onurrent.

If e 2 E

j

, the loal state #e inludes the loal history of agent j as well as the \latest" loal histories

of all other agents with whih j has ommuniated upto this state. Let LC

CSA

= f#e j e 2 Eg be the set

of loal states of CSA.

By suitably restriting the naming funtion �, we an apture interesting sublasses of sa's.

The �rst restrition is on the number of agents. In a general sa, we may have an unbounded number

of agents in the system. By restriting the range of � to a �nite subset f1; 2; : : : ; ng of N, we obtain sa's

whih may have upto n agents, whih we all n-sa's.

As we had mentioned earlier, if �(e) is not a singleton, the interpretation is that the event e is

performed jointly by the agents mentioned by �(e). This intuitively orresponds to \handshaking" or

synhronous ommuniation between agents. By restriting � so that j �(e) j = 1 for every event e in E,

we e�etively rule out this type of synhronous ommuniation. Instead, in suh an asynhronous sa,

the agents ommuniate by sending messages to eah other. The sending and reeiving of a message are

regarded as two distint ations, eah involving only one agent at a time.

Finally, we say that a sa is �nitary in ase #e is a �nite set for every e in E. The motivation for de�ning

�nitary sa's is the same as the motivation for de�ning �nitary event strutures | any omputation of

a real system an be traed bak to some starting point, so the past of any event ourring during the

omputation must be �nite.

Figure 8 is an example of an asynhronous sa onsisting of two agents, a produer and a onsumer,

ommuniating via an unbounded bu�er. The produer an produe zero or more items and then quit.

The onsumer an onsume items produed by the produer as long as the items are available in the

bu�er. The events in the sa are labelled p; q and  to denote these three types of ations.

12



p

q



p

q



p

q



p

q



. . .

. . .

. . .

- - -

- - -

? ? ? ?

�

�

��

�

�

��

�

�

��

E

1

E

2

Figure 8: An asynhronous sa

B Logis for Conurreny

We now turn our attention to the problem of reasoning about the behaviour of distributed systems.

A spei�ation language is simply a formalism in whih one spei�es behaviours of systems under

study. Thus, a spei�ation language for distributed systems is one in whih we an desribe behavioural

properties of distributed systems.

The spei�ation language should permit us to ombine simple spei�ations together to onstrut

more omplex spei�ations, reeting the intuition that large systems an be broken down into more

manageable subsystems. This alls for disjuntive and onjuntive abilities in the language.

In addition, sine we are dealing with distributed systems we expet to desribe properties like ausal-

ity, hoie and onurreny. For this, we will need to be able to speify the relationships that hold between

system states as the omputation proeeds.

Our requirements suggest the use of a formal logi with boolean onnetives and temporal modalities

as our spei�ation language. Temporal logi is a branh of modal logi whih is used to study strutures

of states varying with time. We will design a variety of modal logis whih are extensions of temporal

logi to deal with the models of distributed systems developed in Part A.

We begin with a quik sketh of lassial propositional modal logi. We assume the existene of P , a

ountable set of atomi propositions fp

0

; p

1

; : : :g. The well-formed formulas of our logi L

0

are de�ned

indutively:

� Every p 2 P is a formula of L

0

.

� If � and � are formulas of L

0

, then so are :�; � _ � and 3�.

:� is to be read as \not �", �_ � is to be read as \� or �", and 3� is to be read as \Diamond �". The

intended meaning of 3� is \� beomes true eventually".

Formulas are to be interpreted over frames. In our set-up, a frame is a transition system TS = (S;�;!).

A model M is a frame with a valuation funtion; i.e M = (TS; V ), where TS = (S;�;!) is a transition

system and V :S ! }(P). For example, if V (s) = fp

1

; p

3

g, we interpret this to mean that propositions

p

1

and p

3

are true at state s and, further, that no other proposition is true at s.

The notion of a formula � being true at a state s in a model M = (TS; V ) where TS = (S;�;!),

denoted as M; s j= �, is de�ned indutively as follows:

(i) M; s j= p i� p 2 V (s), for p 2 P .

(ii) M; s j= :� i� M; s 6j= �.

(The notation M; s 6j= � stands for \It is not the ase that M; s j= �")

(iii) M; s j= � _ � i� M; s j= � or M; s j= �.

(iv) M; s j= 3� i� 9s

0

2 R(s) : M; s

0

j= �.

(Reall that R(s) is the set of states reahable from s via !)

13



M; s j= � an be interpreted as the assertion that the model M at state s is an implementation of the

spei�ation �. We say � is satis�able if there exists a model M = (TS; V ), where TS = (S;�;!), and

there exists a state s 2 S suh that M; s j= �. We say that � is M-valid if M; s j= � for every s 2 S. We

say that � is valid | and denote this by j= � | if � is M -valid for every model M . It is easy to see that

� is valid i� :� is not satis�able.

The following derived formulas are useful.

� ^ �

def

= :(:� _ :�) the onjuntion of � and �.

�

�

�

def

= :� _ � � implies �

� � �

def

= (�

�

�) ^ (�

�

�) logial equivalene of � and �

2�

def

= :(3:�) \Heneforth" �

True

def

= p

0

_ :p

0

False

def

= :True

It an easily be veri�ed that for any model M = ((S;!); V ) and s 2 S,

M; s j= 2� i� 8s

0

2 R(s) :M; s

0

j= �:

A number of interesting properties of transition systems an be expressed using this logi. Suppose that

we are using transition systems to model a distributed system onsisting of n proesses whih an ompete

for a shared resoure r. Let the atomi proposition 

i

stand for \Proess i has aess to the resoure r".

Then

2

^

i2f1;2;:::;ng

(

i

�

^

i 6=j

:

j

)

expresses a so-alled safety property. It says that at any system state, at most one proess has ontrol

of the shared resoure r. This will ensure, for instane, that in ase r is a shared piee of data then the

sequene of values assumed by r during the history of the system will be well-de�ned. Broadly speaking,

safety properties assert that \bad" situations never arise in the system.

Similarly, if we let the proposition rq

i

stand for \Proess i requires aess to resoure r", the formula

2

^

i2f1;2;:::;ng

(rq

i

�

3

i

)

expresses a liveness property. It says that any request made by a proess for the shared resoure is

eventually granted by the system. In general, liveness properties speify that something \good" ours

eventually.

This logial framework is very simple, but for that reason is also not as expressive as we would wish.

In partiular, we would like to devise logis to reason about models with true onurreny. In the rest of

this setion, we shall show how suh logis an be de�ned for the formal models presented in Part A.

1 Logi for Distributed Transition Systems

Reall that in a dts, a onurrent step onsists of a transition labelled by a �nite set of ations. This

leads us to augment the simple modal logi onsidered earlier with one additional modality, hui, where u

is a �nite subset of �, the set of ations.

Let L

DTS

be the language whose well formed formulas are given by:

� Every p 2 P is a formula of L

DTS

.

� If � and � are formulas of L

DTS

then so are :�, � _ �, 3� and hui�, where u is a �nite subset of

�.

Thus, the logi L

DTS

is parametrized by �. To emphasize this, we will write L

�

DTS

instead of L

DTS

.

As one may expet, the frames for our logi are dts's over �. A model is a pair M = (DTS; V ),

where DTS = (S;�;!) is a dts over � and V :S ! }(P) is the valuation funtion. Given s 2 S, the

notion M; s j= � is de�ned as before for the atomi propositions and for the onnetives : and _ and the

modality 3. For the new modality we de�ne:

M; s j= hui� i� 9s

0

2 S : s

u

!s

0

and M; s

0

j= �:

14



��

��

s

0

��

��

s

1

��

��

s

2

��

��

s

3

��

��

s

0

0

��

��

s

0

1

��

��

s

00

1

��

��

s

0

2

��

��

s

0

3

?

a

�

�+

b

Q

Qs



�

�+

a

Q

Qs

a

?

b

?



Figure 9: Varieties of branhing in transition systems

Relative to the new notion of models, satis�ability and validity are de�ned as before. We will write

j=

�

DTS

� to denote that � is a valid formula in this logi. Let SAT

�

DTS

denote the set of all satis�able

formulas from L

�

DTS

.

Before onsidering an example, we introdue some notational onventions. The derived modality [u℄

is de�ned as:

[u℄�

def

= :hui:�

Where u is a singleton fag, we will write hai� instead of hfagi�. For the empty step, we write h;i�.

Now that the modalities are indexed by steps, we an learly identify the branhing points in a

transition system. For example, onsider the transition systems shown in Figure 9. In the �rst system,

starting at s

0

we an perform a and then hoose between b and  whereas in the seond system, at s

0

0

we have to deide right away whether we are going to exeute a followed by b or a followed by . The

�rst situation is aptured by the formula hai(hbiTrue ^ hiTrue) while the seond an be expressed as

hai(hbiTrue ^ [℄False) ^ hai(hiTrue ^ [b℄False).

In this logi, we an distinguish between interleavings and true onurreny. For instane, the formula

haihbiTrue ^ hbihaiTrue ^ [fa; bg℄False is satis�able. At the state where this formula is true, both the

interleavings ab and ba an our, but the orresponding onurrent step fa; bg is not enabled. On the

other hand, it is easy to see that the formula hfa; bgi�

�

haihbi� is a valid formula, beause the de�nition

of a dts guarantees the existene of a funtion f assoiated with eah step, breaking it up into substeps.

Returning briey to the system of n proesses onsidered earlier, assume that the shared resoure r

represents a data item in a shared blok of memory. Let ud

i

denote the at of proess i updating the

value of r. Then, the spei�ation

2

^

i 6=j

[fud

i

; ud

j

g℄False

requires that the memory manager never permit two distint proesses to onurrently update r.

Let us onsider another example. The writing of a paper an be seen as a sequential ativity: work

out what you want to say, write it out, get it typed. In the ase of a joint paper, the work may be divided

up in terms of setions. One poliy the authors may follow is to work out all the setions before preparing

a typesript, with meetings for disussion and orretion in between. That is, the authors satisfy

hWKi(worked ^ hWRi(written ^ hTY ityped))

where WK = fwork out x1, work out x2, work out x3 g

WR = fwrite x1, write x2, write x3 g

TY = ftype x1, type x2, type x3 g

and worked; written and typed are atomi propositions indiating the end of the working out, writing and

typing steps respetively. Here we have assumed that there are three authors eah of whom is responsible

for one setion.

The onurrent steps are neessary, sine they express the fat that this is a joint paper; if the

interleaving of the ations required for the three setions were present, we ould not rule out the possibility

that the three authors were separately writing three (single-setion) papers.

The states we are using are global states. The person working out x2 may refer to a lemma in x1; the

person doing the word proessing for x1 may use the maros de�ned in x3.

15



It beomes neessary to use sequentializations when a omplete reord of the writing of the paper is

required. For example, a mistake pointed out by the referee in x2 may be traed to the lemma in x1,

whih may be just a ase of wrong typing thanks to a misappliation of the maro from x3.

This sort of mixture of independent ations and synhronization is well desribed in a dts framework.

We now turn to the formal theory of the language L

�

DTS

. Typial questions one asks of suh a logi

inlude:

� Is the set of valid formulas axiomatizable?

� Is the satis�ability problem deidable?

The answers to these questions provide a good deal of insight into the strengths and weaknesses of the

logi and, most importantly, into the expressive power of the logi.

It turns out that both these questions have positive answers for L

�

DTS

. Consider the following logial

system ND.

The System ND

AXIOM SCHEMES

(A0) All the substitutional instanes of the tautologies of Propositional Calulus.

(A1) (a) 2(�

�

�)

�

(2�

�

2�) (Dedutive Closure)

(b) [u℄(�

�

�)

�

([u℄�

�

[u℄�)

(A2) 2�

�

[u℄� ^22� (Reahability)

(A3) � � h;i� (Empty Step)

(A4,k) (for k � 1) (Step Axiom)

hui� ^

^

v�u

[v℄

k

_

i=1

�

i

v

�

_

f2F (u;k)

^

v

1

�u

hv

1

i(

v

1

^

^

v

1

�v

2

�u

hv

2

� v

1

i

v

2

)

where F (u; k) is the set of all funtions ff j f :}(u)! f1; 2; : : : ; kgg and



v

=

(

�

f(v)

v

^ � if v = u

�

f(v)

v

if v � u

INFERENCE RULES

(MP)

�; �

�

�

�

(TG)

�

2�

Axioms A0 to A2 and the rules MP and TG are standard. The harateristi axioms of dts's are

A3 and A4,k. A3 aptures the fat that the empty step annot hange the state of the system. A4,k is

atually an in�nite set of axioms, �nitely presented. The ompliated formulation of A4,k is neessary to

desribe the fat that eah onurrent step u in a dts an be broken up into onurrent substeps whih

are spei�ed by the assoiated funtion f :}(u)! S.

A formula � is alled a thesis of the system ND | denoted `

ND

� | i� � an be derived in a �nite

number of steps using the axioms and inferene rules of ND.

Theorem 1.1

(i). ND is a sound and omplete axiomatization of the valid formulas in L

�

DTS

. In other words, `

ND

�

i� j=

�

DTS

� for every � 2 L

�

DTS

.

(ii). The satis�ability problem for this logi (i.e. the membership problem for SAT

�

DTS

) is deidable in

nondeterministi exponential time.

It turns out that ombining onurreny, aptured by the step notion, with determinay leads to a very

expressive lass of models. The frame TS = (S;�;!) is said to be deterministi if for every s 2 S

and every u 2 }

fin

(�) there exists at most one s

0

2 S suh that s

u

!s

0

. A model is deterministi if its

underlying frame is.

16



The formula � is said to be deterministially satis�able if there exists a deterministi model for �.

Similarly, � is said to be deterministially valid if � is valid over the lass of deterministi models. Let

j=

�

Det

� denote that � is deterministially valid and let DSAT

�

DTS

denote the set of deterministially

satis�able formulas in L

�

DTS

.

It turns out that the deterministially valid formulas in L

�

DTS

are axiomatizable. Thanks to deter-

minay, one obtains a muh simpler axiomatization than for the general ase. Let D denote the logial

system obtained from ND by dropping the in�nitary set of axioms A4,k (k � 1) and adding two new

axioms:

(A5) hui�

�

hvihu� vi� (v � u) (Weak Step Axiom)

(A6) hui�

�

[u℄� (Determinay)

Let `

D

� denote that � is derivable in D.

Theorem 1.2

(i). D is a sound and omplete axiomatization of the deterministially valid formulas in L

�

DTS

. In other

words, `

D

� i� j=

�

Det

� for every � 2 L

�

DTS

.

(ii). The membership problem for DSAT

�

DTS

is undeidable.

The surprise here is that determinay adds a suÆient amount of expressive power to make the satis�abil-

ity problem undeidable. By ombining onurrent steps in a deterministi fashion, it turns out that we

an enode the two-dimensional grid of natural numbersN�N. We an then use this enoding to redue

some undeidable tiling problems desribed by Wang [Wang 1961℄ and Harel [Harel 1985℄ to the problem

of deterministi satis�ability in our logi. This negative result was shown by Parikh [Parikh 1989℄.

A variety of positive and negative results an be obtained in this logial framework by studying the

e�et of plaing suitable restritions on dts's. For instane, we an restrit the set of ations � to be

�nite. Alternatively, we an demand the dts as a whole be �nite | that is, the set of states and the set

of transitions are both �nite. We an also inorporate ideas from trae theory, arising out of the work

of Mazurkiewiz [Mazurkiewiz 1989℄, and de�ne trae transition systems, whih permit both loal and

global spei�ations of onurreny. Finally, we an also study a smooth generalization of Propositional

Dynami Logi [Harel 1984℄ obtained by extending the notion of a regular program to permit onurrent

steps as atomi ations. The details an be found in a forthoming paper [Lodaya et al 1991℄.

The logial language L

�

DTS

an also be interpreted over �-labelled elementary net systems and �-

labelled event strutures, where the labelling funtion is o-injetive. The frames that we use are the

orresponding dts's, as de�ned in Part A. Thus, a �-labelled elementary net system N

�

= (N ; �), where

N = (B;E; F; 

in

), gives rise to a model (DTS

N

�

; V ), where V :C

N

! }(P). Similarly, a �-labelled event

struture ES

�

= (ES; �), where ES = (E;�;#), de�nes a model (DTS

ES

�

; V ), where V : C

fin

ES

! }(P).

Let SAT

�

N

and SAT

�

ES

denote the set of formulas from L

�

DTS

satis�able in models generated by

�-labelled elementary net systems and �-labelled event strutures respetively.

Theorem 1.3 SAT

�

DTS

= SAT

�

N

= SAT

�

ES

.

In other words, this logi annot disriminate between these lasses of models.

2 Logi for Event Strutures

We now turn from dts's to event strutures as frames for our logi. In the logi for dts's, we used the

global state approah to reasoning about the behaviour of the system. In this approah, assertions are

made by a \global" observer of the system who an \see" the distributed system in its entirety in any

given state. This is appropriate for dts's, sine the states of a dts do in fat orrespond to the global

states of the system being modelled.

Alternatively, we an reason about the system from the point of view of the loal states of the system.

Here, assertions are made by individual agents in the system and hene the nature of the assertion is

determined by the \visibility" of the system state from that agent's point of view. This approah is more

suitable for reasoning based on event strutures, where we an use a loal on�guration #e to represent

the loal state of the system at the point where the event e has just ourred.

17



Another feature of the dts logi is that onurreny is desribed by expliitly speifying the ations

whih are to be performed onurrently and desribing the e�et of suh ations. This approah is natural

for dts's beause the models themselves are ation-based. On the other hand, in an event struture it is

more onvenient to speify onurreny in an abstrat manner by simply asserting fats about onurrent

events without speifying whih ations are to be performed onurrently.

The key notions in the theory of event strutures are those of ausality, onit and onurreny. This

leads us to extend the language L

0

by adding modalities to apture these notions. It turns out to be

fruitful to split up ausality into two parts, allowing us to speify both \past" and \future" behaviour.

The logi L

ES

is built up as follows: again �x P = fp

0

; p

1

; : : :g, a ountable set of atomi propositions.

Then the well-formed formulas of L

ES

are given by:

� Every p 2 P is a formula of L

ES

.

� If � and � are formulas of L

ES

, then so are :�, � _ �, 3�, 3

-

�, 4� and 5�.

Here, the modalities 3 and 3

-

denote the future and past respetively. 4 will be used to desribe

onurreny and 5 will be used to apture onit.

Frames for this logi are event strutures, or rather the loal on�gurations of event strutures. More

preisely, a frame is a pair (ES;LC

ES

), where ES = (E;�;#) is an event struture and LC

ES

is the set

of loal on�gurations of ES.

A model is a pair M = ((ES;LC

ES

); V ) where ES is frame and V : LC

ES

! }(P) is a valuation

funtion. If p 2 V (#e) then this is taken to mean that p is true at the loal state #e in the model M .

The notion of a formula � being true at a loal state #e in the model

M = ((ES;LC

ES

); V ) is denoted as M; #e j= � and is de�ned indutively as follows:

(i) M; #e j= p i� p 2 V (#e), for p 2 P .

(ii) M; #e j= :� i� M; #e 6j= �.

(iii) M; #e j= � _ � i� M; #e j= � or M; #e j= �.

(iv) M; #e j= 3� i� 9e

0

: e < e

0

and M; #e

0

j= �.

(v) M; #e j= 3

-

� i� 9e

0

: e

0

< e and M; #e

0

j= �.

(vi) M; #e j= 5� i� 9e

0

: e # e

0

and M; #e

0

j= �.

(vii) M; #e j= 4� i� 9e

0

: e o e

0

and M; #e

0

j= �.

Notie that we have de�ned the modalities 3 and 3

-

in an irreexive manner. This is neessary for the

axiomatization whih follows.

The notions of satis�ability and validity are de�ned as usual. j=

ES

� will denote that � is a valid

formula in L

ES

.

The derived onnetives ^;

�

;�;2 are de�ned as before. In addition, we set

2

-

�

def

= :3

-

:�; 5� �

def

= :5:�; 4� �

def

= :4:�

We an also de�ne a useful derived modality as follows:

S�

def

= � _3� _3

-

� _5� _4�

S� is to be read as \Somewhere �". Its dual E�

def

= :S:�, read as \Everywhere �" expands as follows:

E�

def

= � ^ 2� ^ 2

-

� ^5� � ^4� �

Thus E� desribes a property invariant over the entire model.

Many interesting features of event strutures an be expressed in this logi. Reall that the maximal

omputations of event strutures are termed runs. We an use an atomi proposition � to mark out a run

with the formula � � 5� :�. For any model M = ((ES;LC

ES

); V ), if the formula � � 5� :� is M -valid,

then fe j M; #e j= �g onstitutes a run of ES. Using this method of marking out runs, we an express

liveness and safety properties in event strutures. Let � represent a liveness property. Then S(� ^ �) is

M -valid for a model M just in ase every omputation of the underlying event struture ontains a loal

state where � is true. Similarly, if � represents an undesirable situation, the formula E(�

�

:�) expresses

the safety property that � does our at any state of the run marked by �.

18



In a similar spirit the formula � � 2:�^2

-

:� an be used to apture the notion of a ut| a maximal

set of pair-wise inomparable events. Within a omputation, a ut orresponds to a global state. Thus

we an use the notion of a ut in onjuntion with that of a run to look \sideways" from a loal state

and make assertions about the urrent global state.

The formula 5�

�

25� desribes the fat that onit is inherited in a prime event struture. The

formula4�

�

2

-

(4�_3�) expresses the fat that the on�gurations of an event struture are \onsistent"

by asserting that the uni�ed past of any pair of events in o is onit-free.

Due to lak of spae, we will not provide a separate detailed example for this logi. The logi presented

in the next setion, alled L

CSA

, is also based on event strutures. We shall provide a detailed example for

that logi. It will not be diÆult to see how that example an be translated into the present framework.

Consider the logial system E.

The System E

AXIOM SCHEMES

(A0) All the substitutional instanes of the tautologies of Propositional Calulus.

(A1) (i) 2(�

�

�)

�

(2�

�

2�) (Dedutive Closure)

(ii) 2

-

(�

�

�)

�

(2

-

�

�

2

-

�)

(iii) 5� (�

�

�)

�

(5� �

�

5� �)

(iv) 4� (�

�

�)

�

(4� �

�

4� �)

(A2) (i) 2�

�

22� (Transitivity of <)

(ii) 2

-

�

�

2

-

2

-

�

(A3) (i) �

�

5� 5� (Symmetry of # and o)

(ii) �

�

4� 4�

(A4) (i) �

�

23

-

� (Relating past and future)

(ii) �

�

2

-

3�

(A5) 5�

�

25� (Conit inheritane)

(A6) 4�

�

2

-

(3� _4�) (Conit-free past)

(A7) (i) 3�

�

2(� _3� _3

-

� _5� _4�) (Relating <,# and o)

(ii) 5�

�

5� (� _3� _3

-

� _5� _4�)

(iii) 4�

�

4� (� _3� _3

-

� _5� _4�)

(iv) 3

-

�

�

2

-

(� _3� _3

-

� _4�)

(v) 5�

�

4� (3� _5� _4�)

(vi) 4�

�

2(3

-

� _5� _4�)

INFERENCE RULES

(MP)

�

�

�

�

(TG) (i)

�

2�

(ii)

�

2

-

�

(iii)

�

4� �

(iv)

�

5� �

(UNIQ)

p̂

�

�

�

where p is an atomi proposition not appearing in �

and p̂

def

= p ^ 2�p ^2

-

�p ^4� �p ^5� �p

Axioms A0 to A4 and inferene rules MP and TG are standard. A5 expresses the fat that onit is

inherited via �. A6 ensures that any two events related by o have onsistent (i.e. onit-free) pasts.

The remaining axioms are neessary to apture the fat that the relations �;�;# and o \over" the

event struture { i.e., any two distint events are related by one of these relations.

The rule UNIQ is adapted from [Burgess 1980℄. Given a proposition p, the de�nition of p̂ ensures that

it an be true in at most one loal on�guration. Hene, we an label eah loal on�guration #e by a

distint formula p̂

e

. The rule UNIQ allows us to onstrut this labelling, whih is ruial in demonstrating

the ompleteness of the axiomatization.

Let `

E

� denote that � is a thesis of the system E.

19



Theorem 2.1 E is a sound and omplete axiomatization of the valid formulas in L

ES

. In other words,

`

E

� i� j=

ES

�.

Reall that we had de�ned an auxiliary relation #

�

in an event struture, alled the minimal onit

relation. We an de�ne a modality 5

�

to apture the relation #

�

.

It is possible to strengthen L

ES

by replaing the modality 5 by the modality 5

�

. Let us all this new

language L

�

ES

. To obtain a useful omparison with L

ES

, and also to obtain an axiomatization, we must

hange the notion of a frame. For this language, we de�ne a frame to be a pair (ES;LC

ES

) where ES

is a well branhing event struture. Reall that a well branhing event struture is one in whih the #

relation an be ompletely spei�ed using the relations #

�

and �. As usual, a model is a frame together

with a valuation funtion. Models based on well branhing frames are alled well branhing models.

The semantis of L

�

ES

is the same as that of L

ES

exept that the lause for 5 is replaed by:

M; #e j=5

�

� i� 9e

0

: e #

�

e

0

and M; #e

0

j= �:

In L

�

ES

, we an obtain 5 as a derived modality:

5�

def

= 5

�

� _5

�

3� _3

-

5

�

� _3

-

5

�

3�

As before, 5� � denotes the formula :5:�. It is easy to verify that 5� � an be expressed as follows:

5� �

def

= 5�

�

� ^5�

�

2� ^ 2

-

5�

�

� ^ 2

-

5�

�

2�

In a well branhing model, the derived modalities 5 and 5� have preisely the same interpretation as the

orresponding modalities of L

ES

. On the other hand, there is no obvious way to haraterize the minimal

onit relation #

�

using the modality 5. In this onnetion, we an establish the following result.

Theorem 2.2 For well branhing models, the language L

�

ES

is stritly more expressive than L

ES

.

Informally, this result says that we an use formulas from L

�

ES

to di�erentiate models whih are indis-

tinguishable using the language L

ES

.

An example of the use of 5

�

is in systems where agents have names, like sa's. For eah event e that

proess i partiipates in, we an assign an atomi proposition �

i

to the loal on�guration #e. Suppose

that there are n agents in the system, with \names" �

1

; �

2

; : : : ; �

n

. Then the formula

^

1�i�n

(�

i

�

5�

�

�

i

)

expresses the fat that all hoies in behaviour are made loally by individual agents.

The axiom system E

�

is obtained by adding the following axiom shemes to the system E.

(A1) (v) 5�

�

(�

�

�)

�

(5�

�

�

�

5�

�

�) (Dedutive Closure)

(A3) (iii)�

�

5�

�

5

�

� (Symmetry of #

�

)

(A6) (ii) 5

�

�

�

2

-

(3� _4�) (Minimal Conit)

A1(v) and A3(iii) are standard. A6(ii) is the harateristi axiom desribing the #

�

relation as the minimal onit relation.

Let `

�

E

� denote that � is a thesis of the system E

�

and let j=

�

ES

� denote that � is valid over the

lass of well branhing models. Then we get:

Theorem 2.3 E

�

is a sound and omplete axiomatization of the valid formulas in L

�

ES

. In other words,

`

�

E

� i� j=

�

ES

�.

3 Logi for Communiating Sequential Agents

We now wish to study a means of talking about a entral feature of many distributed systems | the

ommuniation pattern between the omponents of the system that ensure o�ordination. For this, we

shall de�ne a logi that is to be interpreted over sa's.

Let P = fp

0

; p

1

; : : :g be a ountable set of atomi propositions, and T = f�

0

; �

1

; : : :g, a ountable set

of type propositions disjoint from P. The formulas of L

CSA

are built up as follows:

� Every member of P [ T is a formula of L

CSA

.

20



� If � and � are formulas of L

CSA

, then so are :�; � _ �, 3

i

� and 3

-

i

�.

The formula �

i

asserts that the observer is loated in agent i. 3

i

and 3

-

i

apture the \visible" future and

past of agent i. This will beome learer when we de�ne the formal semantis of these modalities.

A frame for L

CSA

is a pair (CSA;LC

CSA

), where CSA = (E;�; �) is a system of ommuniating

sequential agents and LC

CSA

is the set of loal states of CSA. A model is a pairM = ((CSA;LC

CSA

); V )

where (CSA;LC

CSA

) is a frame and V :LC

CSA

! }(P [ T ) is a valuation funtion suh that

�

i

2 V (#e) i� i 2 �(e):

The notion M; #e j= � an be de�ned indutively as follows:

(i) M; #e j= � i� � 2 V (#e), for � 2 P [ T .

(ii) M; #e j= :� i� M; #e 6j= �.

(iii) M; #e j= � _ � i� M; #e j= � or M; #e j= �.

(iv) M; #e j= 3

-

i

� i� 9e

0

2 E

i

: e

0

� e and M; #e

0

j= �.

(v) M; #e j= 3

i

� i�

�

(e 2 E

i

) : 9e

0

2 E

i

: e � e

0

and M; #e

0

j= �:

(e 62 E

i

) : 8e

0

2 E

i

: if e

0

� e then M; #e

0

j= 3

i

�:

Note that 3

-

i

behaves like a normal past modality | it overs all events that lie in the i-past of e.

However 3

i

� is di�erent: in agent j, j 6= i, it asserts that upto the last ommuniation from i, there is a

future for agent i satisfying �. In ase there is no ommuniation from agent i at all, agent j an assert

3

i

� for any formula �.

De�ne 2

-

i

�

def

= :3

-

i

:� and 2

i

�

def

= :3

i

:�. It an be veri�ed that 2

i

�

�

3

-

i

2

i

� is a valid formula

over sa's. It asserts that an invariant formula about an agent must be supported by a ommuniation

from that agent. Thus 2

i

is a \strong" modality whereas 3

i

is \weak" unlike in standard modal logi.

This asymmetry arises from the fat that in distributed systems, the past of other agents an be ompletely

obtained by messages, while the possibilities for the future are only loally known.

Notie that the formula �

i

^ �

j

is satis�ed at a loal state #e only if fi; jg � �(e) and thus spei�es a

synhronization between agents i and j. The in�nite set of formulas f�

i

�

:�

j

j i 6= jg together speify

that eah event is in at most one agent and hene an speify asynhronous sa's.

Consider the formula 3

-

i

�^3

-

i

�

�

3

-

i

(�^3

-

i

�)_3

-

i

(� ^3

-

i

�): This spei�es that agent i is bakwards

linear { during a omputation if we look bak at any two events involving agent i, then they must be

ordered. This aptures the fat that agents in a sa are sequential.

Similarly, the formula 3

-

i

�

�

3

-

i

(� ^ 2

-

i

(:�

�

2

-

i

:�)) an be used to speify �nitary sa's, i.e those

where eah event has a �nite past. This formula asserts that if � is true somewhere in the past, then we

an �nd an \earliest" point where � is true.

The prinipal advantage of this logi is that ommuniation between agents in a distributed system

an be easily expressed: :�

i

^3

-

i

�^ �

j

an be used to speify that i has ommuniated the truth of � to

j sometime in the past.

We shall present a detailed example of reasoning with this logi at the end of this setion. First, we

present our main tehnial results for this logi.

We begin with logial system C de�ned below.

The System C

AXIOM SCHEMES

(A0) All the substitutional instanes of the tautologies of Propositional Calulus.

(A1) (a) 2

-

i

(�

�

�)

�

(2

-

i

�

�

2

-

i

�) (Dedutive losure)

(b) 2

i

(�

�

�)

�

(2

i

�

�

2

i

�)

(A2) (a) �

i

�

(2

-

i

�

�

�) (Loal reexivity)

(b) �

i

�

(2

i

�

�

�)

(A3) 3

-

i

3

-

j

�

�

3

-

j

� (Transitivity)

(A4) (a) 3

-

i

�

�

2

i

3

-

i

� (Relating past and future)

(b) 3

i

�

�

2

-

i

3

i

�

21



�nitary

n-sa's

�nitary

n-asa's

n-sa's

n-asa's

�nitary

sa's

�nitary

asa's

sa's

asa's

-

-

-

-

6 6

6 6

Figure 10: Sublasses of sa's

(A5) 3

-

i

� ^3

-

i

�

�

3

-

i

(� ^3

-

i

�) _3

-

i

(� ^3

-

i

�): (Bakward linearity)

(A6) 2

i

�

�

3

-

i

2

i

� (Communiation)

(A7) (a) 2

-

i

�

i

(Type axioms)

(b) �

i

�

2

i

�

i

INFERENCE RULES

(MP)

�; �

�

�

�

(TG2

-

i

)

�

2

-

i

�

(TG2

i

)

�

�

i

�

2

i

�

Axioms A0 to A4 are standard axioms suitably modi�ed to reet the speial interpretation of 3

i

. A5

asserts that individual agents are sequential. A6 aptures that fat that knowledge about another agent's

future an only be obtained via ommuniation. A7 ensures that the type propositions from T are

assigned onsistently. The rules MP and TG2

-

i

are standard. The standard form of the rule TG2

i

will

not preserve validity beause of the ommuniation requirement imposed by the semantis of 2

i

.

Let `

C

� denote that � is a thesis of the system C. Let j=

CSA

� denote that � is valid over the lass

of models based on sa's. We then have the following result.

Theorem 3.1 C is a sound and omplete axiomatization of the valid formulas of L

CSA

. In other words

`

C

� i� j=

CSA

� for every � 2 L

CSA

.

When we introdued sa's in Part A, we had de�ned various sublasses of sa's. Let CSA = (E;�; �)

be a sa. Reall that CSA is an n-sa if �(E) � f1; 2; : : : ; ng | that is, there are at most n agents in

the system. CSA is an asynhronous-sa (asa) if 8e 2 E : j �(e) j = 1. CSA is �nitary if 8e 2 E : #e

is a �nite set. We an ombine these notions; for example, an n-asa is an asa with a bounded number

of agents. Similarly, we an have �nitary n-sa's, �nitary asa's and, �nally, �nitary n-asa's. Figure 10

pitorially represents the relationships between these various lasses. The arrows in the �gure indiate

inlusion.

Let C denote one of the sublasses of sa's mentioned above. Then we an de�ne the notions

of satis�ability and validity relative to C. Thus, a formula � is C-satis�able if we an �nd a model

M = ((CSA;LC

CSA

); V ) for � suh that CSA 2 C. We let SAT

C

denote the set of C-satis�able formulas

in L

CSA

. � is C-valid if it is valid over the lass of models based on frames in C.

We an axiomatize the C-valid formulas for all these sublasses. The required axiomatizations are

obtained by suitably ombining the system C with the following axiom shemes.

AUXILIARY AXIOM SCHEMES AND INFERENCE RULES

(A8) �

1

_ �

2

_ : : : _ �

n

(n agents)

(A9) �

i

�

:�

j

, for i 6= j (disjoint agents)

(A10)(a) 3

-

i

�

�

3

-

i

(� ^2

-

i

(:�

�

2

-

i

:�)) (well-founded agents and ommuniations)

(b) 3

-

i

�

�

3

-

i

(� ^2

-

j

2

-

i

:�), for i 6= j

Theorem 3.2

22



(i). The logial system C

A

def

= C +(A9) is sound and omplete for the lass of models based on asa's.

(ii). The logial system C

F

def

= C+(A10) is sound and omplete for the lass of models based on �nitary

sa's.

(iii). The logial system C

FA

def

= C

A

+ (A10) is sound and omplete for the lass of models based on

�nitary asa's.

(iv). The logial system C

n

def

= C + (A8), n 2 N; is sound and omplete for the lass of models based

on n-sa's.

(v). The logial system C

nA

def

= C

A

+(A8), n 2 N; is sound and omplete for the lass of models based

on n-asa's.

(vi). The logial system C

nF

def

= C

F

+(A8), n 2 N; is sound and omplete for the lass of models based

on �nitary n-sa's.

(vii). The logial system C

nFA

def

= C

FA

+ (A8), n 2 N; is sound and omplete for the lass of models

based on �nitary n-asa's.

We also have the following relationship between satis�ability in sublasses with an unbounded number

of agents and the orresponding sublasses with only a bounded number of agents.

Theorem 3.3 Let C range over sa's, asa's, �nitary sa's and �nitary asa's. Let nC; n 2 N, denote

the orresponding lass with a bounded number of agents n. Then SAT

C

=

[

n

SAT

nC

.

We now give a detailed example of how ommuniation between agents an be spei�ed in L

CSA

.

Consider a distributed database aessed by n proesses whih ommuniate with eah other by exhang-

ing messages. A protool is needed whereby the proesses an ommit to a distributed transation. When

eah ommitted proess knows that all the others have also ommitted it an go ahead and perform its

loal share of the distributed transation. For this, the following requirement must be met.

If any proess ommits to the transation then it eventually knows that all proesses in the

system have also ommitted.

Suh distributed transation ommit protools ommonly arise in the design of distributed systems

[Pinter et al 1984℄.

We now speify the protool requirement in our logial language. Let f

1

; : : : ; 

n

g be a set of atomi

propositions, where 

j

is read to mean \proess j has ommitted to the transation". The formula

^

i

(�

i

^ 

i

�

3

i

(

^

j

3

-

i



j

)) (1)

expresses the requirement above.

A two-stage implementation of this protool may use two loal boolean variables in eah proess P

i

:

� a variable l

i

in whih proess P

i

reords whether it an partiipate in the transation or not, and

� a variable, whih we also all 

i

, to reord the ommitment of the proess to the transation.

The implementation an perhaps run as follows:

Proess P

i

:

(i). As soon as a loal deision l

i

is made, broadast l

i

to all other proesses;

(ii). When l

j

is heard from all j, set 

i

to True;

(iii). As soon as 

i

is set, broadast it to all other proesses;

(iv). When 

j

is heard from all j, perform transation;

23



(v). Aknowledge all inoming messages.

All proesses follow the same protool in a symmetri manner. This is, of ourse, a na��ve protool.

However, our aim here is to merely illustrate the use of our logial language. Let us again, by abuse

of notation, use fl

1

; : : : ; l

n

g to denote another set of atomi propositions. Consider now the following

formulas:

^

i

(�

i

�

(

i

�

^

j

3

-

j

l

j

)) (2)

\

i

is set True only when l

j

is heard from all other proesses P

j

"

^

i

(�

i

^ 

i

�

3

i

^

j

3

-

j

3

-

i



i

) (3)

\if 

i

is set, then it will be broadast and aknowledged"

Note that here an agent has to assert something about the state of other agents and this an be done

only using messages from them. The formula 3

i

3

-

j

3

-

i



i

says that agent i has reeived an aknowledgment

from agent j of the message 

i

sent from i to j. This is neessary beause we assume that messages may

be lost in this network.

It is easy to verify that the formulas 2 and 3 together imply the requirement 1 above. In fat, we an

use the axiom system C and logially dedue the requirement from 2 and 3. This veri�es that the simple

protool above meets its spei�ation.

Note that the protool above works for only one transation, in the sense that the ommitment is

stable; one a proess ommits to the transation, it stays ommitted. When a protool is needed for

several transations, we an index the transations by sequene numbers and modify the spei�ation

above appropriately.

While the preeding example illustrates the spei�ation of a protool whih assumes omplete on-

netivity in the network of ommuniating agents, we an also speify protools whih demand spei�

patterns of onnetivity. Sine agents are syntatially mentioned in formulas, this logi is partiularly

suited for desribing ommuniations whih name spei� agents. We illustrate this point with another

detailed example.

Assume that proesses P

0

; P

1

; : : : ; P

n�1

are onneted in a ring and ommuniate with eah other

only by exhanging messages. A proess P

i

an ommuniate only with its neighbours P

i�1

and P

i+1

on

the ring. Here and in the sequel, addition and subtration are assumed to be modulo n.

Assume that eah proess P

i

maintains a variable x

i

taking values in N and whose value initially is

v

i

, for 0 � i � n� 1. It is desired to speify a distributed protool whih omputes the greatest ommon

divisor of the values v

0

; : : : ; v

n�1

. Let result denote the value of the onstant gd(v

0

; v

1

; : : : ; v

n�1

). When

the omputation terminates, the variables x

i

; i 2 f0; : : : ; n� 1g should satisfy

x

0

= x

1

= : : : = x

n�1

= result

Sine our logial language is propositional in nature we annot express values of variables and hene

assume ountably many propositions X

k

i

; k 2 N, to denote \x

i

= k". With this understanding we write

suh propositions as equalities. Similarly we assume propositions to denote \k < l", \k = i� j" et. The

protool requirement is then spei�ed by

^

i

(�

i

^ (x

i

= v

i

)

�

3

i

^

k

3

-

k

(x

k

= result))

An algorithm for omputing the gd an be desibed as follows: proess P

i

, at any state, ompares the

urrent value of x

i

, with the urrent values of its neighbours, x

i�1

and x

i+1

. In ase x

i

is smaller, nothing

needs to be done; if x

i�1

is smaller, x

i

is updated to be x

i

�x

i�1

; similarly, if x

i+1

is smaller, x

i

is updated

to be x

i

� x

i+1

. Whenever the value of x

i

hanges, this is ommuniated to the neighbouring proesses.

Eventually, all values stabilize at the greatest ommon divisor.

As before, we assume that messages may fail and hene reeived messages are always aknowledged.

Let 3

i!j

� abbreviate the formula �

i

^3

i

3

-

j

3

-

i

�. (In some sense, this stands for \i sends the message �

to j and reeives an aknowledgment")

24



Our protool an now be spei�ed as

^

i

(�

i

�

2

i

Æ ^ 2

-

i

Æ)

where Æ

def

= Æ

0

^ Æ

1

^ Æ

2

^ Æ

3

is given by:

Æ

0

: (x

i

= v

�

^

j 2 fi�1; i+1g

3

i!j

(x

i

= v))

\neighbours are always kept informed of urrent x

i

value"

Æ

1

: (x

i

= v

�

2

i

(x

i

= v

0

�

v

0

� v))

\values are never inreased"

Æ

2

: (x

i

= v ^3

-

i�1

(x

i�1

= v

0

) ^ v

0

< v

�

3

i

(x

i

= v

00

^ v

00

= v � v

0

))

\if x

i�1

< x

i

then x

i

:= x

i

� x

i�1

"

Æ

3

: (x

i

= v ^3

-

i+1

(x

i+1

= v

0

) ^ v

0

< v

�

3

i

(x

i

= v

00

^ v

00

= v � v

0

))

\if x

i+1

< x

i

then x

i

:= x

i

� x

i+1

"

It is easy to see that this spei�es a distributed implementation of Eulid's algorithm for omputing

the gd.

Disussion

In this paper, we have looked at models for distributed systems whih emphasize their non-sequential

behaviour and onsidered their logial haraterization using an assortment of modal logis.

A fair amount of theory has been developed for the models we have onsidered. Our notion of a

distributed transition system is only one of several that have been onsidered; alternative formulations in-

lude those of Degano and Montanari [Degano et al 1987℄ and Boudol and Castellani [Boudol et al 1988℄.

Stark has de�ned a related lass of model alled onurrent transition systems [Stark 1989℄. In net theory,

more general net systems inlude Petri nets, Prediate/transition nets and oloured nets [Brauer et al 1987℄.

As far as event strutures are onerned, we have only onsidered prime event strutures in this paper;

other lasses of event strutures inlude stable event strutures and general event strutures [Winskel 1987℄

as well as ow event strutures [Boudol 1990℄. Systems of ommuniating sequential agents were intro-

dued in [Lodaya et al 1989b℄, as a generalization of the n-agent event strutures desribed in [Lodaya et al 1987℄.

The models that we have dealt with in this paper are losely related to eah other. We have desribed

how labelled net systems and labelled event strutures give rise to dts's in a natural way. A strong

relationship also exists between elementary net systems and prime event strutures ([Nielsen et al 1980℄,

[Nielsen et al 1990℄). The onnetion between sa's and event strutures is desribed in [Lodaya et al 1989b℄.

By establishing formal onnetions between models in this manner, we an translate results obtained using

one lass of models to other lasses.

As for the logis that we have desribed here, the main results that we have are sound and omplete ax-

iomatizations for di�erent lasses of models (see [Lodaya et al 1991℄, [Lodaya et al 1989a℄, [Lodaya et al 1989b℄,

[Lodaya et al 1987℄, [Mukund 1990℄,

[Mukund et al 1989℄ and [Mukund et al 1991℄). For the logi for distributed transition systems, we also

have various deidability and undeidability results [Lodaya et al 1991℄. However, for the logis for event

strutures and sa's, the deidability question remains open.

Several attempts have been made to use logis to haraterize the behaviour of distributed pro-

grams. Temporal modalities have been traditionally interpreted over di�erent types of tense strutures

([Burgess 1984℄, [Burgess 1980℄). Using the interleaving approah to modelling onurreny, various

authors have used temporal logis de�ned on sequenes and trees to desribe onurrent omputa-

tions (see e.g. [Clarke et al 1986℄, [Gabbay et al 1980℄, [Pnueli 1977℄). Pinter and Wolper have extended

25



this work to true onurreny by expliitly using partial orders to represent onurrent omputations

[Pinter et al 1984℄. Katz and Peled have de�ned a �rst-order temporal logi over sets of partial orders

[Katz et al 1989℄.

However, the use of lasses of behavioural strutures for distributed systems as frames for logis seems

to be relatively new. Penzek has used event strutures as frames [Penzek 1988℄. He was the �rst to

use an expliit modality to represent onit. Reisig [Reisig 1986℄ is working on logis whih diretly use

elementary net systems as frames. Christiansen [Christiansen 1989℄ has worked with sa-like frames; he

uses an indexed 4 modality in his logi to desribe onurreny aross agents.

Trae theory is a language theoreti approah to desribing onurreny whih we have not onsidered.

This formalism also gives rise to models of distributed systems with true onurreny. Here, along with

an alphabet of ations, one is given an independene relation delaring whih ations in the system are

onurrent. Instead of viewing a omputation as a string of symbols from the alphabet, one now onsiders

sequenes made up of sets of onurrent ations (sequenes of onurrent steps, in our framework), whih

are alled traes. Like strings, traes form a monoid, alled a partially ommutative monoid, and so one

an meaningfully talk about trae languages. A syntati Kleene-like haraterization of regular trae

languages has been given by Ohmanski [Ohmanski 1985℄, while a haraterization in terms of automata

has been obtained by Zielonka [Zielonka 1987℄. The pomsets of Gisher and Pratt [Pratt 1986℄ are similar

to traes.

Logis for trae theory have not been onsidered in the literature. We believe that results like the

ones in Part B, Setion 1 an be obtained [Lodaya et al 1991℄.

Another widely prevalent approah to modelling onurreny is algebrai. One way of desribing se-

quential nondeterministi programs is through regular expressions, by interpreting the operators

�

, + and

* as sequential omposition, hoie and iteration. Similarly, in the algebrai approah to onurreny, one

introdues an operator to denote the parallel omposition of programs. Program behaviour is spei�ed by

modelling the language operators in an appropriate semanti domain. Popular languages for onurreny

inlude CSP [Hoare 1984℄, CCS [Milner 1989℄ and ACP [Bergstra et al 1984℄, and the models most often

used are transition systems [Plotkin 1981℄ and equational algebras [Bergstra et al 1984℄. Most of this work

has been based on interleaving models and only reently have attempts been made to give a \truly on-

urrent" semantis to these languages ([Degano et al 1989℄, [van Glabbeek et al 1987℄, [Olderog 1987℄).

An earlier denotational semantis using event strutures as domains was given in [Winskel 1982℄.

In this framework, Hennessy and Milner [Hennessy et al 1985℄ have used ation-indexed logis to

haraterize omputations of sequential nondeterministi systems. Assuming an interleaving model of

onurreny, this haraterization extends to the omputations of distributed systems. This work has

been onsiderably extended by Stirling [Stirling 1987℄. However, the emphasis here is on axiomatizing

program equivalenes using equational logi. Our use of ation-indexed logis for models exhibiting true

onurreny is inspired by this work, but we have onentrated on axiomatizing the valid formulas, as is

traditional in logi.

Logis in whih the modalities are indexed by programs, rather than just ations, arose in the frame-

work of program veri�ation [Hoare 1969℄. Programs with parallel omposition operators have been

onsidered by several authors (e.g [Apt et al 1980℄). Dynami logis, originally de�ned over sequential

programs [Harel 1984℄, have been extended with an operator for intersetion to model synhronization

[Peleg 1987℄. However, a lot of work remains to be done on haraterizing models for true onurreny

using program-indexed logis.

26



Referenes

[Apt et al 1980℄ Apt K R, Franez N, de Roever W P 1980 A proof system for ommuniat-

ing sequential proesses, ACM Trans. Prog. Lang. and Sys. 2,3:359-385. [Also

Moitra A 1983 Letter, same journal 5,3:500-501.℄

[Bergstra et al 1984℄ Bergstra J A, Klop J W 1984 Proess algebra for synhronous ommuniation,

Inf. Control 60,1-3:109-137.

[Boudol 1990℄ Boudol G 1990 Flow event strutures and ow nets, LNCS 469:62-95.

[Boudol et al 1988℄ Boudol G, Castellani I 1988 A non-interleaving semantis for CCS based on

proved transitions, Fund. Inf. XI:433-452.

[Brauer et al 1987℄ Brauer W, Reisig W, Rozenberg G (eds.) 1987 Petri nets: entral models and

their properties, LNCS 254.

[Burgess 1984℄ Burgess J P 1984 Basi tense logi, in Gabbay D, Guenthner F (eds.): Hand-

book of philosophial logi II (Dordreht: D Reidel) pp. 89-133.

[Burgess 1980℄ Burgess J P 1980 Deidability for branhing time, Studia Logia

XXXIX,2/3:203-218.

[Christiansen 1989℄ Christiansen S 1989 A logial haraterization of linear n-agent event stru-

tures, M.S. thesis, Computer Siene Dept,

�

Arhus Univ,

�

Arhus, Denmark.

[Clarke et al 1986℄ Clarke E M, Emerson E A, Sistla A P 1986 Automati veri�ation of �nite-

state onurrent programs using temporal logi spei�ations, ACM Trans.

Prog. Lang. and Sys. 8,2:244-263.

[Degano et al 1987℄ Degano P, Montanari U 1987 Conurrent histories: A basis for observing dis-

tributed systems, J. Comput. Sys. Si. 34:422-461.

[Degano et al 1989℄ Degano P, de Niola R, Montanari U 1989 Partial orderings desriptions and

observations of nondeterministi onurrent proesses, LNCS 354:438-466.

[Gabbay et al 1980℄ Gabbay D, Pnueli A, Shelah S, Stavi J 1980 On the temporal analysis of

fairness, Pro. 7th ACM Conf. Prin. of Prog. Lang. pp. 163-173.

[van Glabbeek et al 1987℄ van Glabbeek R, Vaandrager F 1987 Petri net models for algebrai theories of

onurreny, LNCS 259:224-242.

[Harel 1984℄ Harel D 1984 Dynami logi, in Gabbay D, Guenthner F (eds.): Handbook of

philosophial logi II (Dordreht: D Reidel, 1984) pp. 497-604.

[Harel 1985℄ Harel D 1985 Reurring dominoes: making the highly undeidable highly un-

derstandable, Ann. Dis. Math. 24:51-72.

[Hennessy et al 1985℄ Hennessy M, Milner R 1985 Algebrai laws for nondeterminism and onur-

reny, J. ACM 32:137-161.

[Hoare 1969℄ Hoare C A R 1969 An axiomati basis for omputer programming, Comm.

ACM 12,10:576-580, 583.

[Hoare 1984℄ Hoare C A R 1984 Communiating sequential proesses (New York:Prentie-

Hall).

[Katz et al 1989℄ Katz S, Peled D 1989 An eÆient veri�ation method for parallel and dis-

tributed programs, LNCS 354:489-507.

[Lodaya et al 1991℄ Lodaya K, Parikh R, Ramanujam R, Thiagarajan P S 1991 Logis for dis-

tributed transition systems (in preparation).

27



[Lodaya et al 1989a℄ Lodaya K, Ramanujam R, Thiagarajan P S 1989a A logi for distributed

transition systems, LNCS 354:508-522.

[Lodaya et al 1989b℄ Lodaya K, Ramanujam R, Thiagarajan P S 1989b Temporal logis for ommu-

niating sequential agents: I, Report IMS/89/15, Inst. Math. S., Madras,

India (to appear in Int. J. Found. of Comput. Si.).

[Lodaya et al 1987℄ Lodaya K, Thiagarajan P S 1987 A modal logi for a sublass of event stru-

tures, LNCS 267:290-303. [Also Lodaya K, Thiagarajan P S 1989 A orretion

to \A modal logi for a sublass of event strutures," ReportDAIMI-PB-275,

Computer Siene Dept,

�

Arhus Univ,

�

Arhus, Denmark.℄

[Mazurkiewiz 1989℄ Mazurkiewiz A 1989 Basi notions of trae theory, LNCS 354:285-363.

[Milner 1989℄ Milner R 1989 Communiation and onurreny (New York:Prentie-Hall).

[Mukund 1990℄ Mukund M 1990 Expressiveness and ompleteness of a logi for well branhing

prime event strutures, Report TCS-90-1, Shool of Math., SPIC Siene

Foundation, Madras, India.

[Mukund et al 1989℄ Mukund M, Thiagarajan P S 1989 An axiomatization of event strutures,

LNCS 405:143-160.

[Mukund et al 1991℄ Mukund M, Thiagarajan P S 1991 A logial haraterization of well branhing

event strutures (to appear in Theor. Comput. Si.).

[Nielsen et al 1980℄ Nielsen M, Plotkin G, Winskel G 1980 Petri nets, event strutures and domains

I, Theor. Comput. Si. 13,1:86-108.

[Nielsen et al 1990℄ Nielsen M, Rozenberg G, Thiagarajan P S 1990 Behavioural notions for ele-

mentary net systems, Distr. Comput. 4,1:45-57.

[Ohmanski 1985℄ Ohmanski E 1985 Regular trae languages, Ph.D. thesis, Warsaw, Poland

[summary in 1985 Bull. EATCS 27.℄

[Olderog 1987℄ Olderog E-R 1987 Operational Petri net semantis for CCSP, LNCS 266:196-

223.

[Parikh 1989℄ Parikh R 1989 Deidability and undeidability in distributed transition sys-

tems, in Narasimhan R (ed.): A perspetive in theoretial omputer siene

| ommemorative volume for Gift Siromoney (Singapore:World Sienti�)

pp. 165-198.

[Peleg 1987℄ Peleg D 1987 Conurrent dynami logi, J. ACM 34,2:450-479.

[Penzek 1988℄ Penzek W 1988 A temporal logi for event strutures, Fund. Inf. XI:297-326.

[Pinter et al 1984℄ Pinter S, Wolper P 1984 A temporal logi for reasoning about partially ordered

omputations, Pro. 3rd ACM Conf. Prin. of Dist. Comput. pp. 28-37.

[Plotkin 1981℄ Plotkin G 1981 A strutural approah to operational semantis, Report

DAIMI FN-19, Computer Siene Dept,

�

Arhus Univ,

�

Arhus, Denmark.

[Pnueli 1977℄ Pnueli A 1977 The temporal logi of programs, Pro. 18th IEEE Conf. Found.

of Comput. Si. pp 46-57.

[Pratt 1986℄ Pratt V 1986 Modelling onurreny with partial orders, Int. J. Parallel Pro-

gramming 15,1:33-71.

[Reisig 1986℄ Reisig W 1986 Towards a temporal logi for ausality and hoie in distributed

systems, LNCS 354:603-627.

[Stark 1989℄ Stark E W 1989 Conurrent transition systems, Theor. Comput. Si. 64:221-

269.

28



[Stirling 1987℄ Stirling C 1987 Modal logis for ommuniating systems, Theor. Comput. Si.

49:311-347.

[Thiagarajan 1990℄ Thiagarajan P S 1990 Some behavioural aspets of net theory, Theor. Comput.

Si. 71:133-153.

[Wang 1961℄ Wang H 1961 Proving theorems by pattern reognition II, Bell Syst. Teh. J.

40:1-41.

[Winskel 1982℄ Winskel G 1982 Event struture semantis for CCS and related languages,

LNCS 140:561-577.

[Winskel 1987℄ Winskel G 1987 Event strutures, LNCS 255:325-392.

[Zielonka 1987℄ Zielonka W 1987 Notes on �nite asynhronous automata, RAIRO Inf. Th. et

Appl. 21,2:99-135.

29


