
Optimized OR-Sets Without Ordering
Constraints

Madhavan Mukund, Gautham Shenoy R, and S P Suresh

Chennai Mathematical Institute, India
{madhavan,gautshen,spsuresh}@cmi.ac.in

Abstract. Eventual consistency is a relaxation of strong consistency
that guarantees that if no new updates are made to a replicated data ob-
ject, then all replicas will converge. The conflict free replicated datatypes
(CRDTs) of Shapiro et al. are data structures whose inherent mathemat-
ical structure guarantees eventual consistency. We investigate a funda-
mental CRDT called Observed-Remove Set (OR-Set) that robustly im-
plements sets with distributed add and delete operations. Existing CRDT
implementations of OR-Sets either require maintaining a permanent set
of “tombstones” for deleted elements, or imposing strong constraints such
as causal order on message delivery. We formalize a concurrent specifica-
tion for OR-Sets without ordering constraints and propose a generalized
implementation of OR-sets without tombstones that provably satisfies
strong eventual consistency. We introduce Interval Version Vectors to
succinctly keep track of distributed time-stamps in systems that allow
out-of-order delivery of messages. The space complexity of our general-
ized implementation is competitive with respect to earlier solutions with
causal ordering. We also formulate k-causal delivery, a generalization of
causal delivery, that provides better complexity bounds.

1 Introduction

The Internet hosts many services that maintain replicated copies of data across
distributed servers with support for local updates and queries. An early exam-
ple is the Domain Name Service (DNS) that maintains a distributed mapping
of Internet domain names to numeric IP addresses. More recently, the virtual
shopping carts of online merchants such as Amazon also follow this paradigm.

The users of these services demand high availability. On the other hand, the
underlying network is inherently prone to local failures, so the systems host-
ing these replicated data objects must be partition tolerant. By Brewer’s CAP
theorem, one has to then forego strong consistency, where local queries about
distributed objects return answers consistent with the most recent update [1].

Eventual consistency is a popular relaxation of consistency for distributed
systems that require high availability alongside partition tolerance [2–4]. In such
systems, the local states of nodes are allowed to diverge for finite, not necessarily
bounded, durations. Assuming that all update messages are reliably delivered,
eventual consistency guarantees that the states of all the replicas will converge if

there is a sufficiently long period of quiescence [2]. However, convergence involves
detecting and resolving conflicts, which can be problematic.

Conflict free replicated datatypes (CRDTs) are a class of data structures that
satisfy strong eventual consistency by construction [5]. This class includes widely
used datatypes such as replicated counters, sets, and certain kinds of graphs.

Sets are basic mathematical structures that underlie many other datatypes
such as containers, maps and graphs. To ensure conflict-freeness, a robust dis-
tributed implementation of sets must resolve the inherent non-serializability of
add and delete operations of the same element in a set. One such variant is
known as an Observed-Remove Set (OR-Set), in which adds have priority over
deletes of the same element, when applied concurrently.

The näıve implementation of OR-sets maintains all elements that have ever
been deleted as a set of tombstones [5]. Consider a sequence of add and delete
operations in a system with N replicas, in which t elements are added to the
set, but only p are still present at the end of the sequence because of intervening
deletes. The space complexity of the näıve implementation is O(t log t), which is
clearly not ideal. If we enforce causal ordering on the delivery of updates, then
the space complexity can be reduced to O((p+N) log t) [6].

On the other hand, causal ordering imposes unnecessary constraints: even
independent actions involving separate elements are forced to occur in the same
order on all replicas. Unfortunately, there appears to be no obvious relaxation of
causal ordering that retains enough structure to permit the simplified algorithm
of [6]. Instead, we propose a generalized implementation that does not make any
assumptions about message ordering but reduces to the algorithm of [6] in the
presence of causal ordering. We also describe a weakening of causal ordering that
allows efficient special cases of our implementation.

The main contributions of this paper are as follows:

– We identify some gaps in the existing concurrent specification of OR-Sets
[6], which assumes causal delivery of updates. We propose a new concurrent
specification for the general case without assumptions on message ordering.

– We present a generalized implementation of OR-sets whose worst-case space
complexity is O((p+Nm) log t), where m is the maximum number of updates
at any one replica. We introduce Interval Version Vectors to succinctly keep
track of distributed-time stamps in the presence of out-of-order messages.

– We formally prove the correctness of our generalized solution, from which
the correctness of all earlier implementations follows.

– We introduce k-causal delivery, a delivery constraint that generalizes causal
delivery. When updates are delivered in k-causal order, the worst-case space
complexity of our generalized implementation is O((p+Nk) log t). Since 1-
causal delivery is the same as causal delivery, the solution presented in [6] is
a special case of our generalized solution.

The paper is organized as follows. In Section 2, we give a brief overview of
strong eventual consistency and conflict free replicated datatypes (CRDTs). In

2

the next section, we describe the näıve implementation of OR-Sets and the exist-
ing concurrent specification that assumes causal delivery. In Section 4, we pro-
pose a generalized specification of OR-sets along with an optimized implementa-
tion, neither of which require any assumption about delivery constraints. In the
next section, we introduce k-causal delivery and analyze the space-complexity
of the generalized algorithm. In Section 6, we provide a proof of correctness for
the generalized solution. We conclude with a discussion about future work.

2 Strong Eventual Consistency and CRDTs

We restrict ourselves to distributed systems with a fixed number of nodes (or
replicas). We allow both nodes and network connections to fail and recover in-
finitely often, but we do not consider Byzantine faults. We assume that when a
node recovers, it starts from the state in which it crashed.

In general, concurrent updates to replicas may conflict with each other. The
replicas need to detect and resolve these conflicts to maintain eventual consis-
tency. For instance, consider two replicas r1 and r2 of an integer with value 1.
Suppose r1 receives an update multiply(3) concurrently with an update add(2)
at r2. If each replica processes its local update before the update passed on by
the other replica, the copies at r1 and r2 would have values 5 and 9, respectively.

Conflict resolution requires the replicas to agree on the order in which to
apply the set of updates received from the clients. In general, it is impossible to
solve the consensus problem in the presence of failures [7]. However, there are
several eventually consistent data structures whose design ensures that they are
conflict free. To characterize their behaviour, a slightly stronger notion of even-
tual consistency called strong eventual consistency (SEC) has been proposed [8].

Strong eventual consistency is characterized by the following principles

– Eventual delivery: An update delivered at some correct replica will even-
tually be delivered to all correct replicas.

– Termination: All delivered methods are eventually enabled (their precon-
ditions are satisfied) and method executions terminate.

– Strong Convergence: Correct replicas that have been delivered the same
updates have equivalent state.

Strong convergence ensures that systems are spared the task of performing
conflict-detection and resolution. Datatypes that satisfy strong eventual con-
sistency are called conflict-free replicated datatypes (CRDTs).

Conflict-free Replicated DataTypes (CRDTs)

In a replicated datatype, a client can send an update operation to any replica.
The replica that receives the update request from the client is called the source
replica for that update. The source replica typically applies the update locally
and then propagates information about the update to all the other replicas. On
receiving this update, each of these replicas applies it in its current state.

3

Replicated datatypes come in two flavours, based on how replicas exchange
information about updates. In a state-based replicated data object, the source
replica propagates its entire updated state to the other replicas. State-based
replicated objects need to specify a merge operation to combine the current
local state of a replica with an updated state received from another replica to
compute an updated local state. Formally, a state-based replicated datatype is
a tuple O = (S, S⊥, Q, U,m) where S is the set of all possible states of the
replicated object, S⊥ is the initial state, Q is the set of all side-effect free query
operations, U is the set of all update-operations that source replicas apply locally,
and m : S × S → S is the merge function.

Propagating states may not be practical—for instance, the payload may be
prohibitively large. In such cases replicas can, instead, propagate update oper-
ations. These are called operation based (op-based) replicated datatypes. When
a source replica receives an update request, it first computes the arguments re-
quired to perform the actual update and sends a confirmation to the client. This
is called the update-prepare phase and is free of side-effects. It then sends the
arguments prepared in the update-prepare phase to all other replicas, including
itself, to perform the actual update. This phase modifies the local state of each
replica and is called the update-downstream phase. At the source replica, the
prepare and downstream phases are applied atomically. Formally, an op-based
replicated datatype is a tuple O = (S, S⊥, Q, V, P) where S, S⊥, and Q are as in
state-based replicated datatypes, V is the set of updates of the form (p, u) where
p is the side-effect free update-prepare method and u is the update-downstream
method, and P is a set of delivery preconditions that control when an update-
downstream message can be delivered at a particular replica.

We denote the kth operation at a replica r of a state-based or object-based
datatype by fkr and the state of replica r after applying the kth operation by
Skr . Note that for all replicas r, S0

r = S⊥. The notation S ◦ f is used to denote

the result of applying operation f on state S. The notation S
f−→ S′ is used to

denote that S′ = S ◦ f . The argument of the operation f is denoted arg(f).

A reachable state of a replica is obtained by a sequence of operations S0
r

f1
r−→

S1
r

f2
r−→ · · · f

k
r−→ Skr . The causal history of a reachable state Skr , denoted by H(Skr),

is the set of updates (for state-based objects) or update-downstream operations
(for op-based objects) received so far. This is defined inductively as follows:

– H(S0
r) = ∅.

– H(Skr) = H(Sk−1
r) if fkr is a query operation or an update-prepare method.

– H(Skr) = H(Sk−1
r)∪{fkr } if fkr is an update or update-downstream operation.

– H(Skr) = H(Sk−1
r) ∪ H(S`r′) if fkr is a merge operation and arg(fkr) =

(Sk−1
r , S`r′).

An update (p, u) at source replica r is said to have happened before an update
(p′, u′) at source replica r′ if ∃k : p′ = fkr′ ∧ u ∈ H(Sk−1

r′). We denote this by

(p, u)
hb−→ (p′, u′) or simply u

hb−→ u′. Any pair of updates that are not comparable
through this relation are said to be concurrent updates. A pair of states S and S′

4

are said to be query-equivalent, or simply equivalent, if for all query operations
q ∈ Q, the result of applying q at S and S′ is the same. A collection of updates is
said to be commutative if at any state S ∈ S, applying any permutation of these
updates leads to equivalent states. We say that the delivery subsystem satisfies
causal delivery if for any two update operations (p, u) and (p′, u′),

(p, u)
hb−→ (p′, u′) =⇒ ∀r, k : (u′ ∈ H(Skr) =⇒ u ∈ H(Sk−1

r)).

That is, whenever (p, u) has happened before (p′, u′), at all other replicas, the
downstream method u is delivered before u′.

A state-based replicated object that satisfies strong eventual consistency is
called a Convergent Replicated DataType (CvRDT). A sufficient condition for
this is that there exists a partial order ≤ on its set of states S such that: i)

(S,≤) forms a join-semilattice, ii) whenever S
u−→ S′ for an update u, S ≤ S′,

and iii) all merges compute least upper bounds [8].
Assuming termination and causal delivery of updates, a sufficient condition

for an op-based replicated datatype to satisfy strong eventual consistency is that
concurrent updates should commute and all delivery preconditions are compat-
ible with causal delivery. Such a replicated datatype is called a Commutative
Replicated DataType (CmRDT) [8].

In this paper we look at a conflict-free Set datatype that supports features
of both state-based and op-based datatypes.

3 Observed-Remove Sets

Consider a replicated set of elements over a universe U across N replicas Reps =
[0..N−1]. Clients interact with the set through a query method contains and
two update methods add and delete. The set also provides an internal method
compare that induces a partial order on the states of the replicas and a method
merge to combine the local state of a replica with the state of another replica. Let
i be the source replica for one of these methods op. Let Si and S′i be the states
at i before and after applying the operation op, respectively. The sequential
specification of the set is the natural one:

– Si ◦ contains(e) returns true iff e ∈ Si.
– Si

contains(e)−−−−−−−→ S′i iff S′i = Si.

– Si
add(e)−−−−→ S′i =⇒ S′i = Si ∪ {e}.

– Si
delete(e)−−−−−→ S′i =⇒ S′i = Si \ {e}.

Thus, in the sequential specification, two states S, S′ are query-equivalent if
for every element e ∈ U , S ◦ contains(e) returns true iff S′ ◦ contains(e). Notice
that the state of a replica gets updated not only when it acts as a source replica
for some update operation, but also when it applies updates, possibly concurrent
ones, propagated by other replicas, either through downstream operations or
through a merge request.

5

Defining a concurrent specification for sets is a challenge because add(e)
and delete(e), for the same element e, do not commute. If these updates are
concurrent, the order in which they are applied determines the final state.

An Observed-Remove Set (OR-Set) is a replicated set where the conflict
between concurrent add(e) and delete(e) operations is resolved by giving prece-
dence to the add(e) operation so that e is eventually present in all the repli-
cas [5]. An OR-Set implements the operations add, delete, adddown, deldown,
merge, and compare, where adddown and deldown are the downstream opera-
tions corresponding to the add and delete operations, respectively.

A concurrent specification for OR-sets is provided in [6]. Let S be the abstract
state of an OR-set, e ∈ U and u1 ‖ u2 ‖ · · · ‖ un be a set of concurrent update
operations. Then, the following conditions express the fact that if even a single
update adds e, e must be present after the concurrent updates.

– (∃i : ui = delete(e) ∧ ∀i : ui 6= add(e)) =⇒ e 6∈ S after u1 ‖ u2 ‖ · · · ‖ un
– (∃i : ui = add(e)) =⇒ e ∈ S after u1 ‖ u2 ‖ · · · ‖ un

As we shall see, this concurrent specification is incomplete unless we assume
causal delivery of updates.

Algorithm 1

A Naive OR-set implementation without ordering
constraints on operations, for replica r

1 E ⊆M, T ⊆M, c ∈ N: initially ∅, ∅, 0.
2
3 Boolean contains(e ∈ U):
4 return (∃m : m ∈ E ∧ data(m) = e)
5
6 add(e ∈ U):
7 add.prepare(e ∈ U):
8 Broadcast downstream((e, c, r))
9 add.downstream(m ∈ M):

10 E := (E ∪ {m}) \ T
11 if (rep(m) = r)
12 c = ts(m) + 1
13
14 delete(e ∈ U):
15 delete.prepare(e ∈ U):
16 Let M := {m ∈ E | data(m) = e}
17 Broadcast downstream(M)
18 delete.downstream(M ⊆M):
19 E := E \M
20 T := T ∪M
21
22 Boolean compare(S′, S′′ ∈ S):
23 Assume that S′ = (E′, T ′, c′)
24 Assume that S′′ = (E′′, T ′′, c′′)
25 Let bseen := (E′ ∪ T ′) ⊆ (E′′ ∪ T ′′)
26 Let bdeletes := T ′ ⊆ T ′′

27 return bseen ∧ bdeletes
28
29 merge(S′ ∈ S):
30 Assume that S′ = (E′, T ′, c′)
31 E := (E \ T ′) ∪ (E′ \ T)
32 T := T ∪ T ′

Fig. 1. A Naive OR-Set implementation

Näıve implementation Algorithm 1
is a variant of the näıve implementa-
tion of this specification given in [5].
Let M = U × N × [0 . . . N−1]. For
a triple m = (e, c, r) in M, we say
data(m) = e (the data or payload),
ts(m) = c (the timestamp), and
rep(m) = r (the source replica). Each
replica maintains a local set E ⊆M.
When replica r receives an add(e)
operation, it tags e with a unique
identifier (c, r) (line 8), where this
add(e) operation is the cth add op-
eration overall at r, and propagates
(e, c, r) downstream to be added to
E. Symmetrically, deleting an ele-
ment e involves removing every triple
m from E with data(m) = e. In this
case, the source replica propagates
the set M ⊆ E of elements match-
ing e downstream to be deleted at
all replicas (lines 16–17).

For an add operation, each
replica downstream should add the
triple m to its local copy of E. How-
ever, with no constraints on the de-
livery of messages, a delete operation

6

involving m may overtake an add update for m. For example in Figure 2, replica
r′′ receives deldown({(e, c + 1, r)}) before it receives adddown(e, c + 1, r). Al-
ternatively, after applying a delete, a replica may merge its state with another
replica that has not performed this delete, but has performed the corresponding
add. For instance, in Figure 2, replica r′′ merges its state with replica r when
r′′ has applied deldown({(e, c + 1, r)}) but r has not. To ensure that m is not
accidentally added back in E in such cases, each replica maintains a set T of
tombstones, containing every triple m ever deleted (lines 19–20). Before adding
m to E, a replica first checks that it is not in T (line 10).

State S of replica r is more up-to-date than state S′ of replica r′ if r has
seen all the triples present in S′ (either through an add or a delete) and r has
deleted all the triples that r′ has deleted. This is checked by compare (lines 22–
27). Finally, the merge function of states S and S′ retains only those triples from
S.E ∪ S′.E that have not been deleted in either S or S′ (line 31). The merge
function also combines the triples that have been deleted in S and S′ (line 32).

Eliminating Tombstones [6] Since T is never purged, E ∪ T contains every
element that was ever added to the set. To avoid keeping an unbounded set of
tombstones, a solution is proposed in [6] that requires all updates to be delivered
in causal order. The solution uses a version vector [9] at each replica to keep track
of the latest add operation that it has received from every other replica.

Causal delivery imposes unnecessary restrictions on the delivery of indepen-
dent updates. For example, updates at a source replica of the form add(e) and
delete(f), for distinct elements e and f , need not be delivered downstream in
the same order to all other replicas. For the concurrent specification presented
earlier to be valid, it is sufficient to have causal delivery of updates involving the
same element e. While this is weaker than causal delivery across all updates, it
puts an additional burden on the underlying delivery subsystem to keep track
of the partial order of updates separately for each element in the universe. A
weaker delivery constraint is FIFO, which delivers updates originating at the
same source replica in the order seen by the source. However, this is no better
than out-of-order delivery since causally related operations on the same element
that originate at different sources can still be delivered out-of-order.

On the other hand, the näıve implementation works even when updates are
delivered out-of-order. However, reasoning about the state of the replicas is non-
trivial in the absence of any delivery guarantees. We illustrate the challenges
posed by out-of-order delivery before formalizing a concurrent specification for
OR-Sets that is independent of delivery guarantees.

Life without causal-delivery: Challenges

If we assume causal delivery of updates, then it is easy to see that all repli-
cas apply non-concurrent operations in the same order. Hence it is sufficient
for the specification to only talk about concurrent operations. However, with-
out causal delivery, even non-concurrent operations can exhibit counter-intuitive
behaviours. We identify a couple of them in Examples 1 and 2.

7

Replica r
with state S

Replica r′

with state S′

Replica r′′

with state
S′′

S0.E = ∅,
S0.T = ∅ 1

add(e)
S1.E = {(e, c, r)},
S1.T = ∅ 2

add(e)

3.adddown(e, c+ 1, r)

S2.E = {(e, c, r),
(e, c+ 1, r)},

S2.T = ∅

6.merge(S2)

S1.E = ∅,
S1.T = ∅

S′1.E =
{(e, c+ 1, r)},

S′1.T = ∅
4

delete(e)

5.deldown({(e, c+ 1, r)})

S′2.E = ∅,
S′2.T =
{(e, c+ 1, r)}

S1.E = ∅,
S1.T = ∅

S′′1 .E = ∅,
S′′1 .T =
{(e, c+ 1, r)}

S′′2 .E =
{(e, c, r)},

S′′2 .T =
{(e, c+ 1, r)}

Fig. 2. Non-transitivity of the happened-before relation.

Example 1 In the absence of causal-delivery, the happened-before relation need
not be transitive. For instance, in Figure 2, if we denote the add operations at 1

and 2 as add1(e) and add2(e), respectively, then we can observe that add1(e)
hb−→

add2(e) and add2(e)
hb−→ delete(e). However, it is not the case that add1(e)

hb−→
delete(e) since the source replica of delete(e), which is r′, has not processed the
downstream of add1(e) before processing the prepare method of delete(e).

Replica r
with state S

Replica r′

with state S′

S.E = ∅,
S.T = ∅ 1

add(e)

2.adddown(e, c, r)

S.E = {(e, c, r)},
S.T = ∅ 4

add(e)

5.adddown(e, c+ 1, r)

S.E = {(e, c, r),
(e, c+ 1, r)},

S.T = ∅

S.E = {(e, c, r)},
S.T =
{(e, c+ 1, r)}

S.E = ∅,
S.T = ∅

S′.E = {(e, c, r)},
S′.T = ∅ 3

delete(e)

S′.E = ∅,
S′.T = {(e, c, r)}

S′.E =
{(e, c+ 1, r)},

S′.T = {(e, c, r)}
6

delete(e)

7.deldown({(e, c+ 1, r)})

S′.E = ∅,
S′.T = {(e, c, r),

(e, c+ 1, r)}

Fig. 3. Non-intuitive behaviour of deletes in the absence of causal delivery.

Example 2 In the absence of causal delivery, sometimes a delete-downstream(e)
may not remove all copies of e from the set—even copies corresponding to add(e)
operations that happened before. Say (e, c, r) is added at r, propagated to r′, and
subsequently deleted at r′. Suppose (e, c + 1, r) is later added at r, propagated
to r′, and subsequently deleted at r′. If the second delete is propagated from r′

to r before the first one, r removes only (e, c + 1, r) while retaining (e, c, r), as
illustrated in Figure 3.

8

To address these issues, we present a more precise formulation of the con-
current specification that captures the intent of [5] and allows us to uniformly
reason about the states of the replicas of OR-Sets independent of the order of
delivery of updates.

4 Optimized OR-Sets

Revised specification For an add(e) operation op, the set of nearest delete
operations, NearestDel(op), is defined to be the following set:

{op′ | op′ = delete(e)∧op hb−→ op′∧¬(∃op′′.op′′ = delete(e)∧op hb−→ op′′
hb−→ op′)}

If u is the downstream operation of op and u′ is the downstream operation of
op′ ∈ NearestDel(op) then we extend this notation to write u′ ∈ NearestDel(u).
Our new concurrent specification for OR-Sets is as follows.

For any reachable state S and element e, e ∈ S iff H(S) contains a
downstream operation u of an add(e) operation such that NearestDel(u)∩
H(S) = ∅.

The specification ensures that a delete operation at a replica removes only those
elements whose add operations the replica has observed. Thus, whenever a replica
encounters concurrent add and delete operations with the same argument, the
add wins, since the delete has not seen the element added by that particular
add. The specification also ensures that any two states that have the same causal
history are query-equivalent. Hence the order in which the update operations in
the causal history were applied to arrive at these two states is not relevant. Since
there are no delivery preconditions in the specification, any implementation of
this specification is a CmRDT, as all the operations commute.

The revised specification generalizes the concurrent OR-set specification from
[6]. Suppose u1 ‖ u2 ‖ · · · ‖ un is performed at a replica with state S. Let
S′ = S ◦ (u1 ‖ u2 ‖ · · · ‖ un). If one of the ui’s is add(e), it is clear that
NearestDel(ui) ∩ H(S′) = ∅. Thus, e ∈ S′. On the other hand, if at least one
of the ui’s is del(e) and none of the ui’s is an add(e), then, assuming causal
delivery, for every ui of the form delete(e), if e ∈ S, there is an add(e) operation
u ∈ H(S) such that ui ∈ NearestDel(u). Thus e 6∈ S′, as expected.

The new specification also explains Examples 1 and 2. In Example 1, the
add(e) operation at 1 does not have a nearest delete in H(S′′2), which explains
why e ∈ S′′2 . Similarly in the other example, the add(e) operation at 1 does
not have a nearest delete in the history of replica r, but it has a nearest delete
(operation 3) in the history of replica r′. This explains why e is in the final state
of r but does not belong to the final state of r′.

Generalized implementation Algorithm 2 describes our optimized imple-
mentation of OR-sets that does not require causal ordering and yet uses space

9

comparable to the solution provided in [6]. Our main observation is that tomb-
stones are only required to track delete(e) operations that overtake add(e) oper-
ations from the same replica. Since a source replica attaches a timestamp (c, r)
with each add(e) operation, all we need is a succinct way to keep track of those
timestamps that are “already known”.

For a pair of integers s ≤ `, [s, `] denotes the interval consisting of all integers
from s to `. A finite set of intervals {[s1, `1], . . . , [sn, `n]} is nonoverlapping if for
all distinct i, j ≤ n, either si > `j or sj > `i. An interval sequence is a finite set
of nonoverlapping intervals. We denote by I the set of all interval sequences.

The basic operations on interval sequences are given below. The function
pack(X) collapses a set of numbers X into an interval sequence. The function
unpack(A) expands an interval sequence to the corresponding set of integers.
Fundamental set operations can be performed on interval sequences by first
unpacking and then packing. For X ⊆ N, A,B ∈ I, and n ∈ N:

– pack(X) = {[i, j] | {i, i+ 1, . . . , j} ⊆ X, i− 1 6∈ X, j + 1 6∈ X}.
– unpack(A) = {n | ∃[n1, n2] ∈ A ∧ n1 ≤ n ≤ n2}.
– n ∈ A iff n ∈ unpack(A).
– add(A,X) = pack(unpack(A) ∪X).
– delete(A,X) = pack(unpack(A) \X).
– max(A) = max(unpack(A)).
– A ∪B = pack(unpack(A) ∪ unpack(B)).
– A ∩B = pack(unpack(A) ∩ unpack(B)).
– A ⊆ B iff unpack(A) ⊆ unpack(B).

As in the algorithm of [6], when replica r receives an add(e) operation, it
tags e with a unique identifier (c, r) and propagates (e, c, r) downstream to be
added to E. In addition, each replica r maintains the set of all timestamps c
received from every other replica r′ as an interval sequence V [r′]. The vector V of
interval sequences is called an Interval Version Vector. Since all the downstream
operations with source replica r are applied at r in causal order, V [r] contains a
single interval [1, cr] where cr is the index of the latest add operation received by
r from a client. Notice that if delete(e) at a source replica r′ is a nearest delete
for an add(e) operation, then the unique identifier (ts(m), rep(m)) of the triple
m generated by the add operation will be included in the interval version vector
propagated downstream by the delete operation. When this vector arrives at a
replica r downstream, r updates the interval sequence V [rep(m)] to record the
missing add operation (lines 25–26) so that, when m eventually arrives to be
added through the add-downstream operation, it can be ignored (lines 10–12).

Thus, we avoid maintaining tombstones altogether. The price we pay is main-
taining a collection of interval sequences, but these interval sequences will even-
tually get merged once the replica receives all the pending updates, collapsing
the representation to contain at most one interval per replica.

In [6], the authors suggest a solution in the absence of causal delivery us-
ing version vectors with exceptions (VVwE), proposed in [10]. A VVwE is an
array each of whose entries is a pair consisting of a timestamp and an ex-
ception set, and is used to handle out-of-order message delivery. For instance,

10

Algorithm 2 An optimized OR-Set implementation

Optimized OR-set implementation for the replica r

1 E ⊆M, V : Reps→ I, c ∈ N: initially ∅, [∅, . . . , ∅], 0
2
3 Boolean contains(e ∈ U):
4 return (∃m : m ∈ E ∧ data(m) = e)
5
6 add(e ∈ U):
7 add.prepare(e ∈ U):
8 Broadcast downstream((e, c, r))
9 add.downstream(m ∈ M):

10 if (ts(m) 6∈ V [rep(m)])
11 E := E ∪ {m}
12 V [rep(m)] :=

add(V [rep(m)], {ts(m)})
13 if (rep(m) = r)
14 c = ts(m) + 1
15
16 delete(e ∈ U):
17 delete.prepare(e ∈ U):
18 Let V ′ : Reps→ I = [0, . . . , 0]
19 for m ∈ E with data(m) = e
20 add(V ′[rep(m)], {ts(m)})
21 Broadcast downstream(V ′)
22 delete.downstream(V ′ : Reps→ I):
23 Let M = {m ∈ E |

ts(m) ∈ V ′[rep(m)]}
24 E := E \M
25 for i ∈ Reps
26 V [i] := V [i] ∪ V ′[i]
27

31 Boolean compare(S′, S′′ ∈ S):
32 Assume that S′ = (E′, V ′)
33 Assume that S′′ = (E′′, V ′′)
34 bseen := ∀i(V ′[i] ⊆ V ′′[i])
35 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) 6∈ V ′[rep(m)])
36 // If m is deleted from E′ then
37 // it is also deleted in E′′.
38 // So anything in E′′ \ E′

39 // is not even visible in S′.
40 return bseen ∧ bdeletes
41
42 merge(S′ ∈ S):
43 Assume that S′ = (E′, V ′)
44 E := {m ∈ E ∪ E′ |

m ∈ E ∩ E′∨
ts(m) 6∈ V [rep(m)] ∩ V ′[rep(m)]}

45 // You retain m if it is either
46 // in the intersection, or if it is fresh
47 // (so one of the states has not seen it).
48 ∀i.(V [i] := V [i] ∪ V ′[i])

if replica r sees operations of r′ with timestamps 1, 2, and 10, then it will
store (10, {3, 4, 5, 6, 7, 8, 9}), signifying that 10 is the latest timestamp of an
r′-operation seen by r, and that {3, 4, . . . , 9} is the set of operations that are
yet to be seen. The same set of timestamps would be represented by the interval
sequence {[1, 2], [10, 10]}. In general, it is easy to see that interval sequences are a
more succinct way of representing timestamps in systems that allow out-of-order
delivery.

5 k-causal delivery and Space Complexity

Let Sr denote the state of a replica r ∈ [0 . . . N−1]. Let n` be the number of
adddown operations whose source is `. The space required to store Sr in the

näıve implementation is bounded by O(nt log (nt)), where nt =
∑N−1

`=0
n`.

Let np denote the number all adddown operations u ∈ H(Sr) such that
NearestDel(u) ∩ H(Sr) = ∅. Clearly np ≤ nt. Let nm = max(n0, . . . , nN−1) and
let nint denote the maximum number of intervals across any index r′ in Vr[r

′].
In our optimized implementation, the space required to store Sr.V is bounded
by Nnint log(nt) and the space required to store Sr.E is bounded by np log(nt).
The space required to store Sr is thus bounded by O((np + Nnint) log(nt)). In
the worst case, nint is bounded by nm/2, which happens when r sees only the

11

alternate elements generated by any replica. Thus the worst case complexity is
O((np + Nnm) log(nt)). Note that the factor that is responsible for increasing
the space complexity is the number of intervals nint. We propose a reasonable
way of bounding this value below.

Let (p, u) be an update operation whose source is replica r. For a given k ≥ 1,
we say that the delivery of updates satisfies k-causal-delivery iff

∀r, r′ : (p = f jr ∧ u = f j
′

r′) =⇒ ∀u′ ∈ H(Sj−kr), u′ ∈ H(Sj
′−1
r′).

Intuitively it means that when a replica r′ sees the jth add operation orig-
inating at replica r, it should have already seen all the operations from r with
index smaller than j−k. Note that when k = 1, k-causal-delivery is the same as
causal delivery. Thus k-causal-delivery ensures that the out of order delivery of
updates is restricted to a bounded suffix of the sequence of operations submitted
to the replicated datatype.

In particular, if the latest add-downstream operation u received by a replica
r from a replica r′ corresponds to the cth add operation at r′, then k-causal
delivery ensures that r would have received all the add-downstream operations
from r′ whose index is less than or equal to (c − k). Thus, Sr.V [r′] consists of
one interval corresponding to the first (c− k) add-downstream operations from
r′ and at most k/2 intervals for the remaining k add-downstream operations
from r′. Since this is true for every r′, we can conclude that nint is bounded by
O(k). Hence, the space-complexity of the state Sr of an optimized-OR-Set in the
presence of k-causal-delivery isO((np+Nk) log(nt)). If we assume causal delivery
of updates (k = 1), the space complexity is bounded by O((np +N) log(nt)).

Coalescing adds: An Optimization

With k-causal delivery, we can also enforce a bound on the size of the E set at
every replica by coalescing the adds of the same element originating from the
same replica. The algorithm 3 captures this optimization. Whenever a replica
r receives a downstream add-request of an element (e, c, r′) from a replica r′

, it could evict all the triples (e, c′, r′) from its E set for in which c′ ≤ c − k
(lines 10-11 in Algorithm 3). Every replica can uniformly do this add-coalescing
on receiving (e, c, r′) since k-causal-delivery ensures that any replica which sees
(e, c, r′) would have seen all the triple (f, c′, r′). Similarly, whenever a replica
sees a triple (e, c, r′) as a part of the downstream delete, it knows that the
source-replica of that delete operation would have seen all the triples (f, c′, r′)
with c′ ≤ c − k, and would have performed add-coalescing of all such triples
with f = e. So this replica on receiving the downstream delete can also evict all
triples (e, c′, r′) with c′ ≤ c− k (lines 26-27) even though c′ may not feature in
the interval version vector V ′[r′] sent as an argument of the downstream-delete
operation.

These optimisations ensures that every replica r stores at most k triples cor-
responding to a visible element e ∈ U added by the source replica r′. Thus if the
number of visible elements is denoted by na, the size of the E set is bounded

12

by O(nakN log (nt)). Thus the total space complexity with add-coalescing is
O((na + 1)kN log(nt)). The message complexity of the downstream delete op-
eration is bounded by O(Nk log (nt)). If we assume causal delivery of updates
(k = 1), the space complexity and the message complexity of our optimized so-
lution matches the space complexity and the message complexity of the solution
in [6].

It should also be noted that if the messages are delivered in FIFO order,
we can coalesce the adds in a manner similar to the case when k = 1 in Al-
gorithm 3. Thus, the space complexity of the E set at every replica would be
O(naN log (nt)). However, FIFO does not guarantee any bound on the the num-
ber of intervals in each component of the interval-version-vector as illustrated in
example 3.

Example 3 Consider a OR-Set with three replicas r, r′ and r′′. Suppose r
gets unboundedly many add requests of which every alternate add request cor-
responds to that of element e and every other pair of add requests correspond
to that of distinct elements of the universe. Thus the E set at r would be of
the form {(e, 0, r), (f, 1, r), (e, 2, r), (g, 3, r), (e, 4, r), . . .}. Suppose further that
all the downstream add operations from r get delivered at replica r′, but none
of the downstream are delivered yet at replica r′′. This is allowed in FIFO
ordering. Now, replica r′ gets delete requests corresponding to all the non-e
elements that have been added by replica r. Suppose further that the down-
stream operations of these deletes are delivered at r′′ in FIFO order. Thus at r′′,
V [r] = {[1, 1], [3, 3], [5, 5], . . .}. Hence the number of intervals can be unbounded.

In the case where message delivery is constrained by FIFO ordering, the worst
case space complexity in would be O((na + nint)N log(nt)) which is comparable
to space complexity of the generalized algorithm without ordering constraints
since O(nint) can be as large as O(nt) as highlighted in the example above.

6 Correctness of the Optimized Implementation

In this section we list down the main lemmas and theorems, with proof sketches,
to show the correctness of our optimized solution. The complete proofs can be
found in the appendix. Our aim is show that the solution satisfies the specifica-
tion of OR-Sets and is a CvRDT as well as a CmRDT. In the subsequent section
we provide a detailed proof of the equivalence between the näıve implementation
and our optimized implementation.

Recall that U is the universe from which elements are added to the OR-Set
and Reps = [0 . . . N−1] is the set of replicas. We let M = U × N× Reps denote
the set of labelled elements. We use r to denote replicas, e to denote elements of
U , and m to denote elements ofM, with superscripts and subscripts as needed.
For m = (e, c, r) ∈M, we set data(m) = e (the data or payload), ts(m) = c (the
timestamp), and rep(m) = r (the source replica).

13

Algorithm 3 An optimized OR-Set implementation with k-causal-delivery

Optimized OR-set implementation for the replica r with
k-causal delivery constraint

1 E ⊆M, V : Reps→ I, c ∈ N: initially ∅, [∅, . . . , ∅], 0
2
3 Boolean contains(e ∈ U):
4 return (∃m : m ∈ E ∧ data(m) = e)
5
6 add(e ∈ U):
7 add.prepare(e ∈ U):
8 Broadcast downstream((e, c, r))
9 add.downstream(m ∈ M):

10 M = {m′ | data(m′) = data(m) ∧
rep(m′) = rep(m) ∧
ts(m′) ≤ ts(m)− k}

11 E = E \M
12 if (ts(m) 6∈ V [rep(m)])
13 E := E ∪ {m}
14 V [rep(m)] :=

add(V [rep(m)], {ts(m)})
15 if (rep(m) = r)
16 c = ts(m) + 1
17
18 delete(e ∈ U):
19 delete.prepare(e ∈ U):
20 Let V ′ : Reps→ I = [0, . . . , 0]
21 for m ∈ E with data(m) = e
22 add(V ′[rep(m)], {ts(m)})
23 Broadcast downstream(e, V ′)
24 delete.downstream(e ∈ U,
25 V ′ : Reps→ I):
26 Let M = {m ∈ E |

ts(m) ∈ V ′[rep(m)]∨
(data(m) = e ∧
∃c ∈ V ′[rep(m)] ts(m) ≤ c− k)}

27 E := E \M
28 for i ∈ Reps
29 V [i] := V [i] ∪ V ′[i]
30

31 Boolean compare(S′, S′′ ∈ S):
32 Assume that S′ = (E′, V ′)
33 Assume that S′′ = (E′′, V ′′)
34 bseen := ∀i(V ′[i] ⊆ V ′′[i])
35 bdeletes := ∀m ∈ E′′ \ E′

(ts(m) 6∈ V ′[rep(m)])
36 // If m is deleted from E′ then
37 // it is also deleted in E′′.
38 // So anything in E′′ \ E′

39 // is not even visible in S′.
40 return bseen ∧ bdeletes
41
42 merge(S′ ∈ S):
43 Assume that S′ = (E′, V ′)
44 E := {m ∈ E ∪ E′ |

m ∈ E ∩ E′∨
ts(m) 6∈ V [rep(m)] ∩ V ′[rep(m)]}

45 // You retain m if it is either
46 // in the intersection, or if it is fresh
47 // (so one of the states has not seen it).
48 ∀i.(V [i] := V [i] ∪ V ′[i])

14

A set of labelled elements M ⊆ M is said to be valid if it does not contain
distinct items from the same replica with the same timestamp. Formally,

∀m,m′ ∈M : (ts(m) = ts(m′) ∧ rep(m) = rep(m′)) =⇒ m = m′

A downstream operation u is said to be an e-add-downstream operation
(respectively, e-delete-downstream operation) if it is a downstream operation of
an add(e) (respectively, delete(e)) operation. If O is a collection of commutative
update operations then for any state S, S ◦ O denotes the state obtained by
applying these operations to S in any order.

We say that two states S and S′ are equivalent and write S ≡ S′ iff S.E =
S′.E and S.V = S′.V . It is easy to see that if S and S′ are equivalent then they
are also query-equivalent.

We first prove that the add and delete downstream operations can be simu-
lated using the merge operation with appropriate arguments.

Proposition 1. Let S be a state of some replica. Let u(a) be some downstream
operation where a is the argument of the downstream operation. If

Sop = S ◦ u(a) then Sop ≡ S ◦merge(S⊥ ◦ u(a)).

Proof. Let S′ = S⊥ ◦ u(a) and Smerge = S ◦merge(S′). We have to consider the
following two cases:

Case u(a) = adddown(m) : In this case, from the code for add.downstream,
it is seen that

Sop .E =

{
S.E ∪ {m} if ts(m) 6∈ S.V [rep(m)]

S.E otherwise

Also,

Sop .V [r] =

{
S.V [r] ∪ {ts(m)} if r = rep(m) and ts(m) 6∈ S.V [r]

S.V [r] otherwise

Simplifying, we get

Sop .V [r] =

{
add(S.V [r], {ts(m)}) if r = rep(m)

S.V [r] otherwise

From the code of merge, it is immediately seen that S′.E = {m},

S′.V [r] =

{
{(ts(m), ts(m))} if r = rep(m)

∅ otherwise

Again from the code of merge, it follows that m′ ∈ Smerge .E iff

(m′ 6= m and m′ ∈ S.E) or {m′ = m and (m ∈ S.E or ts(m) 6∈ S.V [rep(m)])} .

15

Simplifying, we see that m′ ∈ Smerge .E iff

m′ ∈ S.E or (m′ = m and ts(m) 6∈ S.V [rep(m)]).

Thus it follows that Smerge .E = Sop .E.
Again from the code of merge, we see that

Smerge .V [r] =

{
add(S.V [r], {ts(m)}) if r = rep(m)

S.V [r] otherwise

Thus Smerge .V = Sop .V . Therefore Sop = Smerge .
Case u(a) = deldown(V ′) : From the code V ′ is the interval version vectors

containing timestamps of triples m that have to be deleted. Now, it is easy
to see that S′.E = ∅ and S′.V = V ′. From the code for the merge, for any
r′, Smerge .V [r′] = S.V [r′] ∪ S′.V [r′]. Similarly from the code for deldown,
Smerge .V [r′] = S.V [r′] ∪ V ′[r′]. Hence Smerge .V = Sop .V . Since S′.E = ∅,
Smerge .E = S.E \ {m′ | ts(m′) ∈ S′.V [rep(m′)]} = S.E \ {m′ | ts(m′) ∈
V ′[rep(m′)]} = Sop .E. From this and the fact that Sop .V = Smerge .V , we
can conclude that Sop = Smerge .

Any reachable state of the OR-Set is obtained by applying some sequence of
adddown, deldown and merge operations to the initial state S⊥. From Proposition
1, since any adddown or deldown operation can be simulated using the merge
operation, the structure of the reachable states can be reasoned about using
the properties of the merge operations. We prove two important properties of
merges, commutativity and idempotence.

Proposition 2. If S1, S2, S3 are three reachable states of some run then (S1 ◦
merge(S2)) ◦ merge(S3) ≡ S1 ◦ merge(S2 ◦ merge(S3)) ≡ (S1 ◦ merge(S3)) ◦
merge(S2)

Proof. Let

– S12 = S1 ◦merge(S2), S23 = S2 ◦merge(S3) and S13 = S1 ◦merge(S3),
– S(12)3 = S12 ◦ merge(S3), S1(23) = S1 ◦ merge(S23) and S(13)2 = S13 ◦

merge(S2).

For any r, S(12)3.V [r] = S1(23).V [r] = S1(32).V [r] = S1.V [r] ∪ S2.V [r] ∪
S3.V [r].

For any distinct i, j ∈ {1, 2, 3} one can observe from the code of merge that
for any triple m, m ∈ Sij .E iff (m ∈ Si.E ∩ Sj .E) ∨ (m ∈ Si.E ∧ ts(m) 6∈
Sj .V [rep(m)]) ∨ (m ∈ Sj .E ∧ ts(m) 6∈ Si.V [rep(m)]). Using repeated application
of this principle, we can show that m ∈ S(12)3.E iff one of the following is
satisfied:

– (m ∈ S1.E ∩ S2.E ∩ S3.E)
–

∨
i,j,k∈{1,2,3}∧i 6=j 6=k(m ∈ (Si.E ∩ Sj .E) ∧ ts(m) 6∈ Sk.V [rep(m)])

–
∨
i,j,k∈{1,2,3}∧i 6=j 6=k(m ∈ Si.E ∧ ts(m) 6∈ (Sj .V [rep(m)] ∪ Sk.V [rep(m)])).

16

One can show that these are also the conditions for m to belong to S1(23).E
or S1(32).E Thus S(12)3.E = S1(23).E = S1(32).E. Thus S(12)3 = S1(23) = S1(32).

Proposition 3. If S1 and S2 are two reachable states then (S1 ◦ merge(S2)) ◦
merge(S2) ≡ S1 ◦merge(S2).

Proof. Let S = S1 ◦ merge(S2) and S′ = S ◦ merge(S2). For any r, S′.V [r] =
S.V [r] ∪ S2.V [r] = (S1.V [r] ∪ S2.V [r]) ∪ S2.V [r] = S1.V [r] ∪ S2.V [r] = S.V [r].

For any element m, m ∈ S′.E iff m ∈ S.E ∩ S2.E or m ∈ S.E ∧ ts(m) 6∈
S2.V [rep(m)] or m ∈ S2.E ∧ m 6∈ S.V [rep(m)]. Again, we have m ∈ S.E iff
m ∈ S1.E ∩ S2.E or m ∈ S1.E ∧ ts(m) 6∈ S2.V [rep(m)] or m ∈ S2.E ∧ ts(m) 6∈
S1.V [rep(m)]. On combining and simplifying these two conditions we can see
that m ∈ S′.E iff m ∈ S.E.

Thus S ≡ S′ and hence (S1 ◦merge(S2)) ◦merge(S2) ≡ S1 ◦merge(S2).

Lemma 1. Let S be some reachable state of the OR-Set, O = {u1, u2, . . . un}
be a set of downstream operations and π1 and π2 are any two permutations of
[1 · · ·n]. If S1 = S ◦ uπ1(1) ◦ uπ1(2) . . . uπ1(n) and S2 = S ◦ uπ2(1) ◦ uπ2(3) . . . uπ2(n)

then S1 = S2.

Proof. We prove the result by induction on |O|. If |O| = 1, the result follows
trivially. Assume that the result holds for all O of size smaller than n. Now
considerO = {u1, u2, . . . , un}. Let π1 and π2 be any two permutations of [1 . . . n].
Let i, j ∈ [1 . . . n] such that π1(i) = π2(n− 1) and π1(j) = π2(n).

S1 = (S ◦uπ1(1) ◦uπ1(2) · · ·uπ1(n−1)) ◦uπ1(n). From the induction hypothesis,
this is the same as (S ◦uπ1(1) ◦uπ1(2) · · ·uπ1(j−1) ◦uπ1(j+1) · · ·uπ1(n−1) ◦uπ1(j)) ◦
uπ1(n). From Proposition 1, we can be write this ((S ◦uπ1(1) ◦uπ1(2) · · ·uπ1(j−1) ◦
uπ1(j+1) · · ·uπ1(n−1)) ◦ merge(S⊥ ◦ uπ1(j))) ◦ merge(S⊥ ◦ uπ1(n)). From Proposi-
tion 2, since merges commute, using Proposition 1 we can rewrite this as (S ◦
uπ1(1)◦uπ1(2) · · ·uπ1(j−1)◦uπ1(j+1) · · ·uπ1(n−1)◦uπ1(n))◦uπ1(j). By the induction
hypothesis, this is the same as (S◦uπ1(1)◦uπ1(2) · · ·uπ1(i−1)◦uπ1(i+1) · · ·uπ1(j−1)◦
uπ1(j+1) · · ·uπ1(n−1) ◦uπ1(n) ◦uπ1(i))◦uπ1(j). Since π1(i) = π2(n−1) and π1(j) =
π2(n), and {π1(1), . . . π1(i − 1), π1(i + 1), . . . , π1(j − 1), π1(j + 1), . . . π1(n)} =
{π2(1), . . . π2(n− 2)} by the induction hypothesis, S1 is the same as S ◦ uπ2(1) ◦
uπ2(2) · · ·uπ2(n−1)) ◦ uπ2(n), which is the same as S2.

The following lemma shows the relationship between any reachable state and
its causal history. From this result we can also conclude that any two reachable
states with the same causal history are identical.

Lemma 2. Let S be any reachable state, with H(S) = {u1, u2, . . . un}. Then
S = S⊥ ◦ H(S).

Proof. The proof follows by induction over the size of H(S). If H(S) = ∅ then by
definition, S = S⊥ and the result follows. On the other hand suppose H(S) 6= ∅.
Since S is a reachable state, we can find a reachable state S′ 6= S and an
operation u ∈ {adddown, deldown,merge} such that S = S′ ◦ u. By definition,
H(S′) (H(S). Hence, by the induction hypothesis, S′ = S⊥ ◦ H(S′). Consider

17

the case when u = merge(S′′) where S′′ 6= S⊥ and S′′ 6= S. By the induction
hypothesis S′′ = S⊥ ◦ H(S′′). Let H(S′′) = {u′′1 , u′′2 , . . . , u′′k}. Now S = S′ ◦
merge(S′′) which can be written as S′ ◦merge(S⊥ ◦u′′1 ◦u′′2 · · ·u′′m). By appealing
to Propositions 1 and 2, this is the same as S′ ◦merge(S⊥ ◦ u′′1) ◦merge(S⊥ ◦
u′′2) · · ·merge(S⊥ ◦ u′′k) ◦merge(S⊥). Appealing to Proposition 1 once again, we
can rewrite this as S′ ◦ u′′1 ◦ u′′2 · · ·u′′k . ◦ merge(S⊥). Since for any state S′′′,
S′′′ ◦merge(S⊥) = S⊥ ◦merge(S′′′) = S′′′, and the induction hypothesis, we can
write S = S⊥◦H(S′)◦u′′1◦u′′2 · · ·u′′k = S⊥◦H(S′)◦H(S′′). From Propositions 2 and
3, this is the same as S⊥◦(H(S′)∪H(S′′)). By definition, H(S) = H(S′)∪H(S′′).

If u were an adddown or a deldown operation, appealing to Proposition 1, we
can reduce it to the merge case.

We now analyse the structure of the state of the optimized implementation.
In particular, we state the necessary and sufficient conditions for a certain integer
to be present in the integer version vector of the state.

Proposition 4. Let S be any reachable state. c ∈ S.V [r] iff there exists an
update operation u ∈ H(S) such that u is an adddown operation with arg(u) = m
with ts(m) = c and rep(m) = r or u is a deldown operation with arg(u) = V ′

and c ∈ V ′[r].

Proof. Proof follows by induction over |H(S)|. The base case when S = S⊥
is trivial. If |H(S)| = 1, then from Lemma 2, S = S⊥.u. If u is an adddown
operation with arg(u) = m, such that ts(m) = c and rep(m) = r, then c′ ∈
S.V [r′] iff (c′ = c) and (r′ = r). If u = deldown operation with arg(u) = V ′ then,
c ∈ S.V [r] iff c ∈ V ′[r]. Thus the result is true for all S with |H(S)| = 1. Assume
that the result holds for all states S with |H(S)| < n. Now consider a state S
such that |H(S)| = n.

From proposition 1 we can write S = S′.merge(S′′) with H(S′) (H(S) and
H(S′′) (H(S) for appropriate S′ and S′′. Now c ∈ S.V [r] iff c ∈ S′.V [r] ∪
S′′.V [r]. Since |H(S′)| < n and |H(S′′)| < n, by induction hypothesis, this
happens iff there exists such an downstream operation u ∈ H(S′) ∪H(S′′) such
that u is an adddown operation with arg(u) = m for which ts(m) = c and
rep(m) = r or u is a deldown operation with arg(u) = V ′ and c ∈ V ′[r]. By
definition, H(S) = H(S′) ∪H(S′′). Hence u ∈ H(S).

We now establish the necessary and sufficient conditions for a deldown opera-
tion to be a nearest-delete of an adddown operation by inspecting their respective
arguments. This result along with Proposition 4 yields the necessary and suf-
ficient condition characterising the structure of the Interval Version Vectors of
any reachable state through the nearest-delete relations between the adddown
and deldown operations present in the state-history.

Proposition 5. If u is an adddown operation with arg(u) = m and u′ is a
deldown operation with arg(u′) = V ′ then u′ ∈ NearestDel(u) iff ts(m) ∈ V ′[rep(m)].

Proof. Suppose data(m) = e. Let p and p′ be the corresponding del prepare
methods of u and u′ respectively. Let r′ be the source replica of the update

18

(p′, u′). Let S be the state of r′ before applying u and let S′ be the state of r′

before applying p′. Let→ be a total order on the set of all downstream operations

of OR-Set such that
hb−→⊆→. Let u′ be the ith e-deldown operation in →. The

proof follows from induction over i.

The base case occurs when i = 1. Suppose ts(m) ∈ V ′[rep(m)]. Since V ′ is
prepared by p′, from the code of delprepare, we know that m ∈ S′.E. This is
possible only if u ∈ H(S′), as every adddown operation has a unique argument.

Hence u
hb−→ u′. Since u is the earliest e-deldown operation in → and since

→ is consistent with
hb−→, there is no other e-deldown operation u′′ such that

u
hb−→ u′′

hb−→ u′. Hence by definition, u′ ∈ NearestDel(u). Conversely suppose
u′ ∈ NearestDel(u). Then since H(S′) contains u and cannot not contain any
e-deldown operations without contradicting the minimality of u′ in →, we can
conclude that m ∈ S′.E. From the code of delprepare, ts(m) ∈ V ′[rep(m)].

Assume that the result holds for all i < n. Suppose u′ is the nth e-deldown
operation in→. If ts(m) ∈ V ′[rep(m)] then we know that m ∈ S′.E which implies

that u ∈ H(S′) and hence u
hb−→ u′. If u′ 6∈ NearestDel(u) then there exists an

e-deldown operation u′′ such that u
hb−→ u′′

hb−→ u and u′′ ∈ NearestDel(u). Since

→ is consistent with
hb−→, u′′ occurs before u′ in →. Let V ′′ = arg(u′′). By

induction hypothesis, ts(m) ∈ V ′′[rep(m)]. If S′′ is the state of r′ after applying
u′′ then, from the code of deldown, we know that m 6∈ S′′.E. No adddown
operation applied by r′ to reach S′ from S′′ adds m to the E set of r′ since
ts(m) ∈ S′′.V [rep(m)] (from proposition 4). Hence m 6∈ S′.E which implies that
ts(m) 6∈ V ′[rep(m)] which is a contradiction. Hence u′ ∈ NearestDel(u).

Conversely suppose u′ ∈ NearestDel(u). Suppose there is an e-deldown op-
eration u′′ ∈ H(S′) such that arg(u′′) = V ′′ and ts(m) ∈ V ′′[rep(m)]. Since

u′′
hb−→ u′, u′′ appears before u′ in the total order →. By induction hypothesis,

u′′ ∈ NearestDel(u) which implies u
hb−→ u′′

hb−→ u′ which contradicts the fact
that u′ ∈ NearestDel(u). Hence no such u′′ exists. Since u ∈ H(S′), m ∈ S′.E.
From the code of delprepare, m is in the argument set prepared by p′. Hence
ts(m) ∈ V ′[rep(m)].

Once a replica has applied a deldown operation, any subsequent adddown
operation for which the earlier deldown operation was a nearest-delete has no
effect on the state of the replica. We formally prove this through the following
proposition.

Proposition 6. Let S be a reachable state, u be a adddown operation and u′ a
deldown operation such that u′ ∈ NearestDel(u). Then S ◦ u′ ◦ u ≡ S ◦ u′.

Proof. Let S′ = S ◦ u′. We need to show that S′ ◦ u ≡ S′. Let m = arg(u), V ′ =
arg(u′). From proposition 5, ts(m) ∈ V ′[rep(m)]. From proposition 4, ts(m) ∈
S′.V [rep(m)]. Hence from the code of adddown, the operation u will not affect
any change in the state. Hence S′ ◦ u ≡ S′.

19

We now prove the necessary and sufficient conditions characterising the struc-
ture of the E set of any reachable state. With this result we are closer to showing
that the optimized OR-Set implementation satisfies the concurrent-specification.

Lemma 3. Let S be any state and u be an e-add downstream operation such that
u 6∈ H(S) and arg(u) = m, and let S′ = S◦u. Then m ∈ S′.E iff NearestDel(u)∩
H(S) = ∅.

Proof. Suppose NearestDel(u) ∩H(S) = ∅.
From Proposition 5, for any u′, we have u′ ∈ NearestDel(u) iffm = arg(u), V ′ =

arg(u′) =⇒ ts(m) ∈ V ′[rep(m)]. Also it is given that u 6∈ H(S). Since
NearestDel(u)∩H(S) = ∅, from proposition 4, we know that ts(m) 6∈ S.V [rep(m)].
Hence from the code of the adddown operation, m ∈ S′.E. Conversely suppose
m ∈ S.E. If NearestDel(u) ∩ H(S) 6= ∅. Let u′ ∈ NearestDel(u) ∩ H(S). Let
S′ = S⊥ ◦ (H(S) \ {u, u′}). Clearly m 6∈ S′′.E since H(S′′) does not contain u.
S = S′′ ◦ u′ ◦ u. From Proposition 6, we know that S′′ ◦ u′ ◦ u ≡ S′ ◦ u′ = S′.
From the code of deldown we can see that S′.E ⊆ S′′.E. Hence m 6∈ S′.E. Since
S = S′, m 6∈ S.E which is a contradiction. Therefore NearestDel(u)∩H(S) = ∅.

Theorem 1. The optimized OR-set implementation satisfies the specification of
OR-Sets.

Proof. Given a state S and an element e, let Oadd be the set of all e-add-
downstream operations u in H(S) such that NearestDel(u) ∩ H(S) = ∅. Let
Oothers = H(S) \ Oadd and S′ = S⊥ ◦ Oothers . Then, S = S′ ◦ Oadd .

SinceOothers contains no e-add-downstream operation u such that NearestDel(u)∩
H(S) = ∅, from Lemma 3, we can conclude that for all m ∈ S′.E, ts(m) 6= e.
Hence e 6∈ S′. Again from Lemma 3, e ∈ S iff Oadd is non-empty iff there exists
an e-add-downstream operation u such that NearestDel(u) ∩H(S) = ∅.

Given a reachable state S we define the set of timestamps of all the elements
added and deleted, Seen(S), as {(c, r) | c ∈ S.V [r]}, and the set of timestamps
of elements deleted in S,Deletes(S), as Seen(S) \ {(ts(m), rep(m)) | m ∈ S.E}.
For states S, S′ we say S ≤compare S

′ to mean that compare(S, S′) returns true.
To show that the optimized OR-Set implementation is a CvRDT we need to

define a partial order on the set of reachable states of the implementation. We
can observe that for states S1 and S2, if Seen(S1) = Seen(S2) and Deletes(S1) =
Deletes(S2) then S1 = S2. Thus the (Seen(S),Deletes(S)) pair uniquely identifies
a state S. We use this definition to show that there exists a well-defined partial
order on the set of states of the optimized OR-Set implementation through the
following Proposition.

Proposition 7. For states S1 and S2 , S1 ≤compares S2 iff Seen(S1) ⊆ Seen(S2)
and Deletes(S1) ⊆ Deletes(S2). ≤compare induces a partial order on S.

Proof. Suppose S1 ≤compares S2. We know that for every r′, S1.V [r′] ⊆ S2.V [r′].
Hence Seen(S1) ⊆ Seen(S2). Also, for everym′ ∈ S2.E\S1.E, ts(m′) 6∈ S1.V [rep(m′)].
Suppose (c, r) ∈ Deletes(S1). By definition, c ∈ S1.V [r] and ∀m ∈ S1.E, (ts(m), rep(m)) 6=

20

(c, r). Now suppose (c, r) 6∈ Deletes(S2). Since, S1.V [r] ⊆ S2.V [r], c ∈ S2.V [r].
Hence it is the case that ∃m ∈ S2.E with (ts(m), rep(m)) = (c, r). But from
the code of compare, if m ∈ S2.E \ S1.E, then ts(m) 6∈ S1.V [rep(m)], which is a
contradiction. Hence (c, r) ∈ Deletes(S2). Thus Deletes(S1) ⊆ Deletes(S2).

Conversely, suppose Seen(S1) ⊆ Seen(S2) and Deletes(S1) ⊆ Deletes(S2). By
definition of Seen(), for all r′, S1.V [r′] ⊆ S2.V [r′]. Also, if m ∈ S2.E \ S1.E.
Now if ts(m) ∈ S1.V [rep(m)] then, (ts(m), rep(m)) ∈ Deletes(S1). However,
Since m ∈ S2.E, (ts(m), rep(m)) 6∈ Deletes(S2) which contradicts the fact that
Deletes(S1) ⊆ Deletes(S2). Hence ts(m) 6∈ S1.V [rep(m)]. From this we can con-
clude that S1 ≤compare S2.

For any S, S ≤compare S. For S1 and S2, S1 ≤compare S2 and S2 ≤compare S1

implies that Seen(S1) = Seen(S2) and Deletes(S1) = Deletes(S2). This implies
that S1 = S2. Finally S1 ≤compare S2 and S2 ≤compare S3 implies Seen(S1) ⊆
Seen(S2) ⊆ Seen(S3) and Deletes(S1) ⊆ Deletes(S2) ⊆ Deletes(S3). Hence from
the previous part S1 ≤compare S3. Thus ≤compare is a partial order on the set of
states S.

We first show that the state computed merge operation is the upper bound
of the two states in the partial order defined by ≤compare .

Proposition 8. For states S1, S2 and S3 we have S3 = S1 ◦ merge(S2) iff
Seen(S3) = Seen(S1) ∪ Seen(S2) and Deletes(S3) = Deletes(S1) ∪Deletes(S2).

Proof. From the code, for any r′, S3.V [r′] = S1.V [r′] ∪ S2.V [r′]. Hence, by defi-
nition, Seen(S3) = Seen(S1) ∪ Seen(S2). (c, r) ∈ Deletes(S3) iff (c, r) ∈ Seen(S3)
and ∀m ∈ S3.E, (ts(m), rep(m)) 6= (c, r). Now, m ∈ S3.E iff m ∈ S1.E ∩ S2.E ∨
(m ∈ S1.E ∧ ts(m) 6∈ S2.V [rep(m)])∨ (m ∈ S2.E ∧ ts(m) 6∈ S1.V [rep(m)]). From
this and the definition of Deletes() we can conclude that (c, r) ∈ Deletes(S3) iff
(c, r) ∈ Deletes(S1) or (c, r) ∈ Deletes(S2) iff (c, r) ∈ Deletes(S1) ∪ Deletes(S2).
Thus Deletes(S3) = Deletes(S1) ∪Deletes(S2).

Conversely suppose Seen(S3) = Seen(S1) ∪ Seen(S2) and Deletes(S3) =
Deletes(S1) ∪ Deletes(S2). Let S′3 = S1.merge(S2). From the previous part,
Seen(S′3) = Seen(S1) ∪ Seen(S2) and Deletes(S′3) = Deletes(S1) ∪ Deletes(S2).
Since (Seen(S),Deletes(S)) pair uniquely identifies a state, S3 = S′3.

Using this result we show that merge operation indeed computes the least-
upper-bound.

Proposition 9. If S3 = S1 ◦merge(S2) then S3 is the least upper bound of S1

and S2 in the partial order defined by ≤compare .

Proof. From propositions 8 and 7 it is clear that S1 ≤compare S3 and S2 ≤compare

S3. Hence S3 is an upper bound of S1 and S2. If S4 is any other upper bound of
S1 and S2 then by lemma 7, Seen(S1) ⊆ Seen(S4) and Seen(S2) ⊆ Seen(S4).
This implies that Seen(S1) ∪ Seen(S2) ⊆ Seen(S4). Similarly, Deletes(S1) ∪
Deletes(S2) ⊆ Deletes(S4). From lemma 8, Seen(S3) ⊆ Seen(S4) and Deletes(S3) ⊆
Deletes(S4). From lemma 7 this implies that S3 ≤compare S4. Hence S3 is the
least upper bound of S1 and S2 in the partial order defined by ≤compare .

21

Lemma 4. For states S1,S2 and S3 ,

1. S1 ≤compare S2 iff Seen(S1) ⊆ Seen(S2) and Deletes(S1) ⊆ Deletes(S2).
Therefore ≤compare defines a partial order on S.

2. S3 = S1 ◦merge(S2) iff Seen(S3) = Seen(S1) ∪ Seen(S2) and Deletes(S3) =
Deletes(S1)∪Deletes(S2) iff S3 is the least upper bound of S1 and S2 in the
partial order defined by ≤compare .

Proof. Follows from Propositions 7, 8 and 9.

From Lemma 1 and Lemma 4, we have the following.

Theorem 2. The optimized OR-Set implementation is a CmRDT and a CvRDT.

Proof. From Lemma 1, we know that all the downstream update operations
of OR-Set commute. Furthermore, the OR-Set specification does not have any
delivery preconditions. Thus, the implementation is a CmRDT since it satisfies
the sufficient condition for a replicated datatype to be a CmRDT.

From Lemma 7, we know that ≤compare induces a partial order on the set
of states S such that (S,≤compare) is a join-semilattice. From propositions 1
and 8, we know that the states are monotonically non-decreasing across update
operations. Finally, from proposition 9 we know that the merge of any pair of
states yields the least upper bound of the two states in the join semi-lattice
(S,≤compare). Hence the implementation is a CvRDT.

7 Equivalence of the näive and the optimised
implementations

In this section, we set up the formal semantics for both the näıve implementation
(Algorithm 1) and our optimized implementation (Algorithm 2)) and establish
a strong correspondence between the two in terms of bisimulation.

A näıve state describes the local state of one replica during the execution of
Algorithm 1.

Definition 1. A näıve state is a tuple (E, T, count) where E, T ⊆M such that
E ∪ T is valid, E ∩ T = ∅ and count ∈ N. Snaive denotes the set of näıve
states. The initial näıve state is the state (∅, ∅, 0). For a valid set M , a näıve
state (E, T, count) is called M -compatible if E ∪ T ⊆M .

An opt state describes the local state of one replica during the execution of
Algorithm 2.

Definition 2. An opt state is a tuple (E, V, count) where E ⊆M is a valid set,
V : Reps → I is a vector of interval sequences and count ∈ N. Sopt denotes
the set of opt states. In the initial opt state, E = ∅, V [i] = ∅ for each i ∈ Reps,
count = 0. For a valid set M , an opt state (E, V, count) is called M -compatible if
E ⊆M and for all r ∈ Reps and c ∈ V [r], there is some e such that (e, c, r) ∈M .

22

Let S = Snaive ∪ Sopt be the set of all states. For a state S ∈ S, we use the
notation S.E, S.T , S.V , and S.count, to refer to the appropriate components of
S.

To show the correspondence between the behaviour of the two implemena-
tions, we have to define when a näıve state is equivalent to an opt state. The
intuition is that (E, T, count) is equivalent to (E, V, count), if the elements seen
so far in E ∪ T correspond to the timestamps represented in V—this exploits
the fact that for each element (e, c, r) ∈ E ∪ T the pair (c, r) is unique.

Definition 3. Let S = (E, T, count) be a näıve state, S′ = (E′, V ′, count′) be
an opt state, and M be a valid set of labelled elements. We say that S is M -
equivalent to S′ (denoted S ≡M S′) if E = E′, E ∪ T ⊆M and for all m ∈M ,
m ∈ E ∪ T iff (m) ∈ V [rep(m)].

The following observation is immediate for any valid set M of labelled elements.

Observation 3 1. For every M -compatible näıve state S = (E, T, count), there
is exactly one opt state S′ such that S ≡M S′.

2. For every M -compatible opt state S′ = (E′, V ′, count′), there is exactly one
näıve state S with S ≡M S′.

As usual, global configurations consists of tuples of local states.

Definition 4. A näıve (respectively, opt) configuration is a tuple (S0, . . . , SN−1)
of näıve (respectivelly, opt) states, one for each replica. The collection of näıve
and opt configurations are denoted, respectively, by Cnaive and Copt. A näıve
(respectively, opt) configuration C = (S0, . . . , SN−1) is an initial configuration if
each Si is an initial näıve (repectively, opt) state.

Given a valid set of labelled elements M , a näıve configuration C = (S0, . . . , SN−1)
is M -equivalent to an opt configuration C ′ = (S′0, . . . , S

′
N−1) iff Si ≡M S′i for

all i ∈ {0, 1, . . . , N−1}.

The effect of the local and downstream updates in Algorithms 1 and 2 is captured
by defining corresponding abstract operations on the states of our formal model.

Definition 5. The set of operations is given by

{r.query(e), r.add(e), r.adddown(m), r.del(e), r.deldown(M), r.merge(S)}

where r ∈ Reps, e ∈ U ,m ∈M, M,M ′ ⊆M, V ′ : Reps→ I and S ∈ S.
We say that an operation is näıve (respectively, opt) if S ∈ Snaive (respectively,

S ∈ Sopt). The sets of näıve and opt operations are denoted Onaive and Oopt,
respectively.

For an operation o, Site(o) = r where o = r.query(e), r.add(e), r.merge(S),
etc. This is the replica at which the operation is applied.

Given a valid sets of labelled elements M , a subset M ′ ⊆M and an interval
version vector V ′ we say that M ′ is M -equivalent to V ′ (written as M ′ ≡M V ′)

23

iff ∀m ∈ M,m ∈ M ′ ⇐⇒ (m) ∈ V ′[rep(m)]. If M = M ′ then we drop the
subscript M and write M ′ ≡ V ′.

Given a valid set of labelled elements M , a näıve operation o is M -equivalent
to an opt operation o′ iff either o = o′ or (o = r.deldown(M ′), o′ = r.deldown(V ′),
and M ′ ≡M V ′) or (o = r.merge(S), o′ = r.merge(S′), and S ≡M S′).

The operations r.add(e) and r.del(e) take an element as argument and prepare
the corresponding set of labelled elements to be added or deleted. This infor-
mation is propagated through the network. The actual addition or deletion is
handled by r.adddown(m) and r.deldown(M), respectively, which add or delete
the labelled elements provided as an argument. Formally, the effect of these
operations on näıve and opt configurations is captured through the transition
relations described below.

Definition 6. Given two näıve configurations C = (S0, . . . , SN−1) and C ′ =
(S′0, . . . , S

′
N−1) from Cnaive, and a näıve operation o ∈ Onaive with Site(o) = r,

we say that C
o−→naiveC

′ iff:

– for i 6= r, Si = S′i.
– if o = r.query(e) or o = r.add(e) or o = r.del(e) then E′ = E, T = T ′, and

count = count′.

– if o = r.adddown(m) then E′ = E∪{m}, T = T ′, and count′ =

{
(m) + 1 if rep(m) = r

count otherwise

– if o = r.deldown(M) then E′ = E \M , T ′ = T ∪M , and count′ = count.
– if o = r.merge(S) and S = (E1, T1, count1) then E′ = (E \ T1) ∪ (E1 \ T),
T ′ = T ∪ T1 and count′ = count.

Definition 7. Given two opt configurations C = (S0, . . . , SN−1) and C ′ =
(S′0, . . . , S

′
N−1) from Copt, and an opt operation o ∈ Oopt with Site(o) = r,

we say that C
o−→optC

′ iff:

– for i 6= r, Si = S′i
– with Sr = (E, V, count) and S′r = (E′, V ′, count′), the following conditions

are satisfied:

• if o = r.query(e) or o = r.add(e) or o = r.del(e) then E′ = E and
V ′ = V .

• if o = r.adddown(m) then
∗ E′ = E ∪ {m},
∗ V ′[rep(m)] = add(V [rep(m)], { (m)}) and V ′[i] = V [i] for i 6= rep(m),

and

∗ count′ =

{
(m) + 1 if rep(m) = r

count otherwise

• if o = r.deldown(V ′′) then
∗ E′ = E \M where M = {m ∈ E | (m) ∈ V ′′[rep(m)]}.
∗ for all i ∈ Reps: V ′[i] = V [i] ∪ V ′′[i], and
∗ count′ = count.

24

• if o = r.merge(S) and S = (E1, V1, count1) then
∗ E′ = {m ∈ E ∪ E1 | m ∈ E ∩ E1 ∨ (m) 6∈ V [rep(m)] ∩ V1[rep(m)]}.
∗ for all i ∈ Reps: V ′[i] = V [i] ∪ V1[i].
∗ count′ = count.

As usual, a run of the system is a sequence of configurations starting from the
initial configuration that respects the transition relation. In addition, we have to
ensure that each downstream operation has a corresponding prepare operation
preceding it in the sequence.

Definition 8. A näıve run (respectively, opt run) of an OR-set implementation
is a sequence C0o1C1 · · ·Cn−1onCn where (letting each Ci = (Si0, . . . , S

i
N−1)):

– each Ci is a näıve (respectively, opt) configuration
– C0 is an initial näıve (respectively, opt) configuration
– each oi is a näıve (respectively, opt) operation

– for all i < n, Ci
oi+1−→näıveCi+1 (respectively, Ci

oi+1−→optCi+1)
– if oi is an r.add(e) operation, then i < n and oi+1 is an r.adddown((e, Si−1

r .count, r))
operation.

– if oi is an r.del(e) operation, then i < n and oi+1 is a r.deldown(M) operation
for some M ⊆ M such that data(m) = e for every m ∈ M (respectively,
oi+1 is a r.deldown(V ′) operation where V ′ : Reps → I such that for all
m ∈ Si−1

r .E with data(m) = e, (m) ∈ V ′[rep(m)]).
– if oi is an r′.adddown((e, c, r)) operation, then there exists j < i such that
oj is an r.add(e) operation and c = Sj−1

r .count.
– if oi is a r′.deldown(M) operation (respectively, r′.deldown(V ′) operation),

then there exists j < i, r ∈ Reps such that oj is a r.del(e) operation and
M = {m ∈ Sj−1

r .E | data(m) = e} (respectively, V ′ : Reps → I such that
for all m ∈ Sj−1

r .E with data(m) = e, (m) ∈ V ′[rep(m)]).
– if oi is a r.merge(S) operation, then S is a state in some earlier configuration
Cj.

By a run (without any qualifiers) we mean either a näıve run or an opt run. For
a run α = C0o1C1 · · ·Cn−1onCn, define C(α) to be Cn.

We can now define what it means for a näıve run to be equivalent to an opt
run. We begin with the following preliminary definition of the set of labelled
elements generated during a run.

Definition 9. If α = C0o1C1 . . . Cn−1onCn is a run, then M(α) = {m | ∃i ≤
n, r ∈ Reps such that oi is an r.adddown(m) operation}.

Proposition 10. For any run α, M(α) is a valid set of labelled elements.

Proof. We prove by induction on the length of α the following property (letting
C(α) = (S0, . . . , SN−1) and M(α) = M):

[∀m ∈M. (m) < Srep(m).count] ∧M is valid.

25

The base case is a run with zero operations. In this case M = ∅ and all count
values are zero. So the proposition is true.

Suppose now that α = α′ · oC for some operation o and configuration C. Let
M ′ = M(α′) and let C(α′) = (S′0, . . . , S

′
N−1). We observe that the M = M ′

and S′i.count = Si.count for all i ∈ Reps, except when o = r.adddown(m) with
rep(m) = r. In this case, M = M ′ ∪ {m} and (m) = S′r.count and therefore
Sr.count = S′r.count + 1.

By induction hypothesis, for every m′ ∈ M ′, (m′) < S′rep(m′).count. And

(m) < Sr.count. And hence the first part of the statement is true. Also, since
every m′ ∈ M ′ with rep(m) = r, (m′) < S′r.count = (m). Thus m is distinct
from all other labelled elements in M . And the statement of the proposition is
proved.

Definition 10. For a näıve run α = C0o1C1 . . . Cn−1onCn and an opt run α′ =
C ′0o

′
1C
′
1 . . . C

′
n−1o

′
nC
′
n, we say that α is equivalent to α′ (denoted α ≡ α′) iff for

every i ≤ n, Ci ≡M(α) C
′
i and oi ≡M(α) o

′
i.

Remark Though it is not obvious from the definition above, the relation α ≡ α′
is symmetric. We will show that if α is equivalent to α′, then M(α) =M(α′).

We now show that the optimized OR-set implementation behaves the same as
the näıve implementation. The strategy is to set up a correspondence between
the configurations of the näıve and the optimized implementations through a
bisimulation.

In the following, we use S1 ≤naive S2 to denote that comparenaive(S1, S2)
returns true, for two näıve states S1 and S2. We define ≤opt similarly.

Our first claim is that ≡M guarantees query equivalence. We use the nota-
tion S.mergenaive(S

′) to denote the resulting state of a replica r on invoking
r.mergenaive(S

′) with r in state S. S.mergeopt(S
′) has a similar meaning.

Lemma 5. Suppose M is a valid set of labelled elements. Suppose S1, S2 are
M -compatible näıve states, and S′1, S

′
2 are M -compatible opt states such that

S1 ≡M S′1 and S2 ≡M S′2. Then

1. For any e ∈ U , S1.querynaive(e) returns true iff S′1.queryopt(e) returns
true.

2. S1 ≤naive S2 iff S′1 ≤opt S
′
2.

3. S1.mergenaive(S2) ≡M S′1.mergeopt(S
′
2).

4. If S1.mergenaive(S2) is the least upper bound of S1 and S2, then S′1.mergeopt(S
′
2)

is the least upper bound of S′1 and S′2.

Proof. Let Si = (Ei, Ti, counti) and S′i = (E′i, V
′
i , count′i), for i ∈ {1, 2}. Given

the assumptions, the following statements hold for i ∈ {1, 2}:

– Ei = E′i,
– for m ∈M , m ∈ Ei ∪ Ti iff (m) ∈ Vi[rep(m)].
– for all r ∈ Reps, V ′i [r] = { (m) | m ∈ Ei ∪ Ti, rep(m) = r}.
– Ti = {m ∈M \ E′i | (m) ∈ V ′i [rep(m)]}.

26

1. S1.query naive(e) returns true iff there is m ∈ E1 such that data(m) = e
iff there is m ∈ E′1 such that data(m) = e iff S′1.query opt(e) returns true.

2. S1 ≤ naive S2 iff (going by the code of the näıve implementation) E1 ∪ T1 ⊆
E2 ∪ T2 and T1 ⊆ T2. The first condition is equivalent to saying that for all
r ∈ Reps : V ′1 [r] ⊆ V ′2 [r].
For the second condition, note that E1∪T1 ⊆ E2∪T2 and E1∩T1 = E2∩T2 =
∅. Thus T1 ⊆ T2 iff T1 ∩ E2 = ∅ iff E2 \ E1 ∩ T1 = ∅ iff E′2 \ E′1 ∩ T1 = ∅. In
other words, for all m ∈ E′2 \E′1, m 6∈ T1. But for m ∈M , m ∈ T1 iff m 6∈ E′1
and (m) ∈ V ′1 [rep(m)]. So for m ∈ E′2 \ E′1, m 6∈ T1 iff (m) 6∈ V ′1 [rep(m)].
And this is precisely what compareopt checks, as can be seen from the code
in Algorithm 2. Thus S1 ≤naive S2 iff S′1 ≤opt S

′
2.

3. Suppose S = S1.mergenaive(S2) = (E, T, count) and S′ = S′1.mergeopt(S
′
2) =

(E′, V ′, count′). Then count = count1 = count′1 = count′. Further, T =
T1 ∪ T2 and E = (E1 \ T2) ∪ (E2 \ T1). So

E∪T = (E1∪T1)∪(E2∪T2) = {m ∈M | (m) ∈ V ′1 [rep(m)]∪V ′2 [rep(m)] = V ′[rep(m)]}.

Further, since Ei ∩ Ti = ∅, for i ∈ {1, 2},

E = [(E1 ∪ E2) \ T1] ∪ [(E1 ∪ E2) \ T2] = (E1 ∪ E2) \ (T1 ∩ T2).

So for m ∈M , m ∈ E iff

(m ∈ E1∪E2 = E′1∪E′2)∧(m ∈ E′1∨ (m) 6∈ V ′1 [rep(m)])∧(m ∈ E′2∨ (m) 6∈ V ′2 [rep(m)]).

But since m ∈ E′i =⇒ (m) ∈ V ′i [rep(m)] for i ∈ {1, 2},

for m ∈ (E′1 ∪E′2) \E′i, (m) ∈ V ′i [rep(m)] iff (m) ∈ V ′1 [rep(m)]∩ V ′2 [rep(m)].

Thus m ∈ E iff

(m ∈ E′1 ∪ E′2) ∧ ((m ∈ E′1 ∩ E′2) ∨ (m) 6∈ V ′1 [rep(m)] ∩ V ′2 [rep(m)]) .

This is precisely when m ∈ E′. Thus S ≡M S′, as all the required conditions
are fulfilled.

4. Suppose S = S1.mergenaive(S1, S2) = (E, T, count) is the least upper bound
of S1 and S2, and let S′ denote S′1.mergeopt(S

′
2) = (E′, V ′, count′). It easily

follows from part 2 that S′ is an upper bound of S′1 and S′2. Suppose S′3 =
(E′3, V

′
3 , count′3) is an upper bound of S′1 and S′2. From this it follows that for

all r ∈ Reps, V ′1 [r]∪ V ′2 [r] ⊆ V ′3 [r], and also that for all m ∈ E′3 \ (E′1 ∪E′2) :
(m) 6∈ V ′1 [r]∪V ′2 [r]. This means that if m ∈ E′3 and (m) ∈ V ′1 [r]∪V ′2 [r] then
m ∈ E′1∪E′2. Thus S′3 does not reuse labels of elements from E′1∪E′2 for the
new elements that are added in E′3. Therefore one can find an appropriate
valid set of labelled elements N ⊇ M0, where M0 = E1 ∪ E2 ∪ T1 ∪ T2 such
that all the S’s and S′’s are N -compatible. Further, since N ⊇M0, S1 ≡N S′1
and S2 ≡N S′2 and hence S ≡N S′. Now since S′3 is N -compatible, there is
a unique näıve state S3 such that S3 ≡N S′3. It follows from part 2 that S3

is an upper bound of S1 and S2. And since S is the least upper bound of S1

and S2, S ≤naive S3. And hence it again follows from part 2 that S′ ≤opt S
′
3.

Thus S′ is the least upper bound of S′1 and S′2.

27

Our second claim is that equivalent runs reach configurations that are strongly
equivalent to each other. We use the following useful observation which simpli-
fies the proof. A bit of notation first: for a näıve (respectively, opt) state S, we
define incr(S) to be the näıve (respectively, opt) state S′ which is the same as S
except that S′.count = S.count + 1.

Observation 4 Let o1 = r.adddown(m), o2 = r.deldown(M), o′2 = r.deldown(V).
Let T1 = ({m}, ∅, 0), T2 = (∅,M, 0), T ′1 = ({m}, V ′1 , 0), and T ′2 = (∅, V ′2 , 0) where

– V ′1 [rep(m)] = { (m)}, and V ′1 [i] = ∅ for i 6= rep(m).
– V ′2 [i] = V [i] for all i ∈ Reps.

Let C = (S0, . . . , Sr, . . . , SN−1) and C ′ = (S0, . . . , S
′
r, . . . , SN−1) be two config-

urations. Then

1. If C
o1−→naiveC

′ then S′r =

{
incr(Sr.mergenaive(T1)) if rep(m) = r

Sr.mergenaive(T1) otherwise

2. If C
o1−→optC

′ then S′r =

{
incr(Sr.mergeopt(T

′
1)) if rep(m) = r

Sr.mergeopt(T
′
1) otherwise

3. If C
o2−→naiveC

′ then S′r = Sr.mergenaive(T2).

4. If C
o′2−→optC

′ then S′r = Sr.mergeopt(T
′
2).

Lemma 6. Suppose α is a näıve run and α′ is an opt run such that α ≡ α′.
Then

1. M(α) =M(α′).
2. For any näıve operation o and näıve configuration C such that α · oC is a

näıve run, there exists an opt operation o′ and an opt configuration C ′ such
that α′ · o′C ′ is an opt run and α · oC ≡ α′ · o′C ′.

3. For any opt operation o′ and opt configuration C ′ such that α′ · o′C ′ is an
opt run, there exists a näıve operation o and a näıve configuration C such
that α · oC is a näıve run and α · oC ≡ α′ · o′C ′.

Proof. We prove the lemma by induction on the number of operations in α (and
hence in α′). Assume that the result holds for all equivalent runs α and α′, each
having strictly fewer than n operations. Now let α = C0o1C1 · · ·Cn−1onCn be a
naive run and α′ = C ′0o

′
1C
′
1 · · ·C ′n−1o

′
nC
′
n be an opt run such that α ≡ α′. Let

Mn =M(α) and M ′n =M(α′). When n > 0, let Mn−1 =M(C0o1C1 · · ·Cn−1)
and M ′n−1 =M(C ′0o

′
1C
′
1 · · ·C ′n−1).

1. If n = 0 then Mn = M ′n = ∅. Hence the statement holds. Assume that n > 0.
Then by induction hypothesis Mn−1 = M ′n−1. The following cases need to
be considered.
on = r.query(e) or on = r.add(e) or on = r.del(e): In this case on = o′n,

Mn = Mn−1, and M ′n = M ′n−1. Therefore Mn = M ′n.
on = r.adddown(m): In this case also on = o′n. If rep(m) 6= r, then Mn =

Mn−1 and M ′n = M ′n−1. If rep(m) = r, then Mn = Mn−1 ∪ {m} and
M ′n = M ′n−1 ∪ {m}. Hence Mn = M ′n.

28

on = r.deldown(M): Then, o′n = r.deldown(V) such that M ≡Mn
V . Fur-

ther, M ⊆ Mn−1 = M ′n−1. Therefore Mn = Mn−1. and importantly,
M ′n = M ′n−1. Hence Mn = M ′n.

on = r.merge(S): In this case o′n = r.merge(S′) such that S and S′ are
states from configurations Ci and C ′j respectively, i, j < n. Thus both
the states are Mn−1-compatible. But then Mn = Mn−1 and M ′n = M ′n−1.
Hence Mn = M ′n.

2. Let o and C be a näıve operation and configuration, respectively, such that
α · oC is a run. Let M =M(α · oC). Note that since Cn ≡Mn

C ′n, it is also
the case Cn ≡M C ′n. We aim to show that there is an opt operation o′ and
an opt configuration C ′ such that α′ ·o′C ′ is a run and α ·oC ≡ α′ ·o′C ′. Let
Site(o) = r. Then the only state change happens in replica r. We denote

the state of r in Cn and C ′n by S1 and S′1 respectively and the state of r in
C and C ′ by S2 and S′2 respectively.

The following cases need to be considered.

o = r.query(e) or o = r.add(e) or o = r.del(e): In this case C = Cn. We
choose o′ to be o and C ′ = C ′n. From the fact that α · oC is a näıve run,
it easily follows that α′ · o′C ′ is an opt run. Furthermore, o ≡M o′ and
C = Cn ≡M C ′n = C ′. Therefore α · oC ≡ α′ · o′C ′.

o = r.adddown(m): In this case, either M = Mn or M = Mn ∪ {m}.
We choose o′ to be o and C ′ such that C ′n

o′−→optC
′. Since α · oC is a

näıve run, α′ · o′C ′ is an opt run. By the observation preceding this
lemma, there is a näıve state S and an opt state S′ such that S ≡M S′,
S2 = S1.mergenaive(S), and S′2 = S′1.mergeopt(S

′). Thus it follows that
S2 ≡M S′2 (from part 3 of Lemma 5). Therefore Cn ≡M C ′n and hence
α · oC ≡ α′ · o′C ′.

on = r.deldown(M ′): In this case, M = Mn. Choose o′ to be r.deldown(V ′)

with M ′ ≡M V ′ and C ′ such that C ′n
o′−→optC

′. Since α · oC is a näıve
run, α′ · o′C ′ is an opt run. By the observation preceding this lemma,
there is a näıve state S and an opt state S′ such that S ≡M S′, S2 =
S1.mergenaive(S), and S′2 = S′1.mergeopt(S

′). Thus it follows that
S2 ≡M S′2 (from part 3 of Lemma 5). Therefore Cn ≡M C ′n and hence
α · oC ≡ α′ · o′C ′.

on = r.merge(S): In this case too, M = Mn. Since α · oC is a näıve run,
there exists a replica r′ and an index i ≤ n such that S is the local
state of r′ in Ci. Choose o′ = r.merge(S′) where S′ is the local state

of r′ in C ′i, and choose C ′ such that C ′n
o′−→optC

′. It is easily seen that
α′ · o′C ′ is an opt run. Since α ≡ α′, S ≡M S′ and hence o ≡M o′. Since
S ≡M S′, S2 = S1.mergenaive(S), and S′2 = S′1.mergeopt(S

′), it follows
that S2 ≡M S′2 (from part 3 of Lemma 5). Therefore C ≡M C ′ and hence
α · oC ≡ α′ · o′C ′.

3. Similar to the proof of previous item by swapping the roles of o and o′, α
and α′, and C and C ′.

29

We can now describe the correspondence we seek between näıve runs and opt
runs. We match a näıve configuration C with an opt configuration C ′ if they can
be reached by equivalent runs

Definition 11. Let B be a binary relation on Cnaive × Copt defined by

B def
= {(C,C ′) | ∃ a näıve run α and an opt run α′ such that C = C(α), C ′ = C(α′), α ≡ α′}.

Lemma 7. B is a nontrivial bisimulation.

Proof. Follows from Lemmas 5, 6, and the fact that (C0, C
′
0) ∈ B, where C0 and

C ′0 are the initial näıve and initial opt configurations, respectively.

Having established a bisimulation between the two systems, we can assert
that our optimized implementation of OR-Sets inherits all the properties that
have already been established for the näıve implementation in [5].

8 Conclusion and Future work

In this paper, we have presented an optimized OR-Set implementation that does
not depend on the order in which updates are delivered. The worst-case space
complexity is comparable to the näıve implementation [5] and the best-case
complexity is the same as that of the solution proposed in [6].

The solution in [6] requires causal ordering over all updates. As we have ar-
gued, this is an unreasonably strong requirement. On the other hand, there seems
to be no simple relaxation of causal ordering that retains the structure required
by the simpler algorithm of [6]. Our new generalized algorithm can accommodate
any specific ordering constraint that is guaranteed by the delivery subsystem.
Moreover, our solution has led us to identify k-causal ordering as a natural gener-
alization of causal ordering, where the parameter k directly captures the impact
of out-of-order delivery on the space requirement for bookkeeping.

Our optimized algorithm uses interval version vectors to keep track of the
elements that have already been seen. It is known that regular version vectors
have a bounded representation when the replicas communicate using pairwise
synchronization [9]. An alternative proof of this in [11] is based on the solution
to the gossip problem for synchronous communication [12], which has also been
generalized to message-passing systems [13]. It would be interesting to see if
these ideas can be used to maintain interval version vectors using a bounded
representation. This is not obvious because intervals rely on the linear order
between timestamps and reusing timestamps typically disrupts this linear order.

Another direction to be explored is to characterize the class of datatypes with
noncommutative operations for which a CRDT implementation can be obtained
using interval version vectors.

30

References

[1] Gilbert, S., Lynch, N.A.: Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News 33(2) (2002) 51–59

[2] Shapiro, M., Kemme, B.: Eventual consistency. In: Encyclopedia of Database
Systems. (2009) 1071–1072

[3] Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1) (2005)
42–81

[4] Vogels, W.: Eventually consistent. ACM Queue 6(6) (2008) 14–19
[5] Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study

of Convergent and Commutative Replicated Data Types. Rapport de recherche
RR-7506, INRIA (January 2011) http://hal.inria.fr/inria-00555588/PDF/

techreport.pdf.
[6] Bieniusa, A., Zawirski, M., Preguiça, N.M., Shapiro, M., Baquero, C., Balegas,

V., Duarte, S.: An optimized conflict-free replicated set. CoRR abs/1210.3368
(2012)

[7] Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2) (1985) 374–382

[8] Shapiro, M., Preguiça, N.M., Baquero, C., Zawirski, M.: Conflict-free replicated
data types. In: SSS. (2011) 386–400

[9] Almeida, J.B., Almeida, P.S., Baquero, C.: Bounded version vectors. In: DISC.
(2004) 102–116

[10] Malkhi, D., Terry, D.B.: Concise version vectors in WinFS. Distributed Comput-
ing 20(3) (2007) 209–219

[11] Mukund, M., Shenoy R, G., Suresh, S.P.: On bounded version vectors. Tech-
nical report, Chennai Mathematical Institute (2012) http://www.cmi.ac.in/

~gautshen/pubs/BVV/on_bounded_version_vectors.pdf.
[12] Mukund, M., Sohoni, M.A.: Keeping track of the latest gossip in a distributed

system. Distributed Computing 10(3) (1997) 137–148
[13] Mukund, M., Narayan Kumar, K., Sohoni, M.A.: Bounded time-stamping in

message-passing systems. Theor. Comput. Sci. 290(1) (2003) 221–239

31

