
Foundations of Software Technology and Theoretical Computer Science,

13th Conference, Proceedings, R.K. Shyamasundar (Ed.),

Lecture Notes in Computer Science 761, Springer-Verlag (1993) 388{399.

Keeping Track of the Latest Gossip:

Bounded Time-Stamps Su�ce

Madhavan Mukund and Milind Sohoni

School of Mathematics, SPIC Science Foundation

92 G.N. Chetty Road, Madras 600 017, INDIA

Email: fmadhavan,sohonig@ssf.ernet.in

Abstract. Consider a distributed system consisting of N independent

communicating agents. Periodically, agents synchronize and exchange

information, both about each other and about agents they have talked

to earlier. As a result, an agent a

i

may receive indirect information about

another agent a

j

which is more recent than the information exchanged

in the last direct synchronization between a

i

and a

j

. The problem is

to ensure that agents always come away from a synchronization with

the latest possible information about all other agents. This requires that

when a

i

and a

j

meet, they should decide which of them has more recent

information about any other agent a

k

. We propose an algorithm to solve

this problem which is �nite-state and local. Formally, this means our

algorithm can be implemented by an asynchronous automaton.

Keywords: Distributed algorithms, synchronous communication, bounded

time-stamping, asynchronous automata.

1 Introduction

Consider N agents a

1

; : : : ; a

N

which synchronize with each other from time to

time and exchange information about themselves and others. Whenever an agent

a

i

talks to another agent a

j

the two of them must decide which of them has the

latest information, direct or indirect, about every other agent a

k

.

This is easily accomplished if the agents decide to locally time-stamp every

call and pass these time-stamps along with each exchange of information. But

as time progresses the time-stamp values increase without bound and most of

the agents' time would be consumed in passing on large numbers, as opposed to

actual gossip.

We propose a time-stamping algorithm in which the values are bounded.

Despite this restriction, any pair of agents can always decide which of them has

better information about every other agent. Thus, in essence, the agents may be

�nite state machines. Further, the algorithm itself does not induce any additional

communications, and thus works for all communication sequences. The algorithm

is implemented using asynchronous automata [Z]|a powerful and natural model

for concurrent systems. The algorithm implies that we can extend the range of

systems modelled by these automata to include those which require us to keep

track of the latest information ow between agents.

389

We point out that \bounded time-stamps" have been studied, but in con-

texts very di�erent from ours. Israeli and Li [IL] introduced them for creating

\atomic registers" which are fundamental for algorithms on distributed systems.

However, their work and that of others [CS, DS] is based on a shared-memory

model, which is quite di�erent in spirit from the asynchronous automatonmodel.

The paper is organized as follows. Section 2 formalizes the problem and de-

scribes the automata which run our algorithm. Sections 3 and 4 analyse the

problem and present our algorithm.We conclude with a discussion of our result.

2 Preliminaries

Let A = fa

1

; a

2

; : : : ; a

N

g be a set of agents. These agents communicate with each

other synchronously. For simplicity, we assume that agents only synchronize in

pairs. This restriction is not crucial: multi-way synchronizations are similarly

handled. Details can be found in [MS].

Let a communication between agents a

i

and a

j

be denoted by c

fi;jg

, abbrevi-

ated as c

ij

or c

ji

. Thus, if all pairs of agents can communicate with each other, we

have a set of communication actions � = fc

fi;jg

j i; j 2 f1; 2; : : :; Ng and i 6= jg.

For c

ij

2 �, let dom(c

ij

) (the domain of c

ij

) denote the set fa

i

; a

j

g. A word

� 2 �

�

represents a �nite sequence of communications between the agents.

2.1 Asynchronous automata

Associate a �nite set (of local states) Q

i

with each agent a

i

, for i 2 f1; 2; : : : ; Ng.

Each Q

i

contains a distinguished initial state q

i

in

. Let Q

G

= Q

1

� Q

2

� � � � �

Q

N

. Q

G

represents the set of possible global states of the system. For �q =

(q

1

; q

2

; : : : ; q

N

) 2 Q

G

, let �q[i] denote the i

th

component q

i

of �q. With each

pair of agents a

i

and a

j

, we associate a deterministic transition function �

ij

:

(Q

i

�Q

j

)! (Q

i

� Q

j

). Let � = f�

ij

j i; j 2 f1; 2; : : : ; Ng; i < jg.

An asynchronous automaton [Z] over � is a structure

M =

�

�;Q

1

; Q

2

; : : : ; Q

N

; �; (q

1

in

; q

2

in

; : : : ; q

N

in

)

�

.

We associate withM a global transition function� : Q

G

�� ! Q

G

such that

� ((q

1

; q

2

; : : : ; q

N

); c) = (q

0

1

; q

0

2

; : : : ; q

0

N

) i� for a

i

; a

j

2 dom(c), �

ij

(q

i

; q

j

) =

(q

0

i

; q

0

j

) and for all a

k

=2 dom(c), q

k

= q

0

k

.

For � 2 �

�

, let j�j, the length of �, be M . We may then regard � as a

function � : f1; 2; : : :;Mg ! �. The n

th

element of �, 1 � n � M , is denoted

by �(n).

A run of M on � : f1; 2; : : : ;Mg ! � is a function � : f0; 1; : : : ;Mg ! Q

G

such that �(0) = (q

1

in

; q

2

in

; : : : ; q

N

in

) and �(`) = �(�(`�1); �(`)); 1 � ` �M . Since

M is deterministic, each word � gives rise to a unique run, which we denote �

�

.

Next we de�ne when a function is locally computable by such automata.

De�nition2.1. Let Val be a set of values. A �-indexed family of functions is

a set F

�

= ff

c

: �

�

! Val j c 2 �g.

390

F

�

is locally computable if we can �nd an asynchronous automaton M (as

above) and a family of local functions G

�

= fg

c

j c 2 �g, with each g

c

of the

form g

c

: Q

i

1

� Q

i

2

! Val, where dom(c) = fa

i

1

; a

i

2

g, such that:

8� : f1; 2; : : :;Mg ! �: f

c

(�) = g

c

(�

�

(M)[i

1

]; �

�

(M)[i

2

])

In other words, for any � 2 �

�

and c 2 �, the agents in dom(c) can compute

f

c

(�) by synchronizing and checking their local states at the end of the run �

�

.

2.2 The problem

De�nition2.2. Let � : f1; 2; : : :;Mg ! �. A path � from a

i

to a

j

in � is a

sequence of pairs (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

) such that M � k

1

� k

2

� � � � �

k

n

� 1 and `

m

2 f1; 2; : : :; Ng for m 2 f1; 2; : : :; ng satisfying:

(i) dom(�(k

1

)) = fa

i

; a

`

1

g.

(ii) 8m 2 f2; : : : ; ng: dom(�(k

m

)) = fa

`

m�1

; a

`

m

g.

(iii) a

l

n

= a

j

.

We say that source(�) = k

1

, target(�) = k

n

and that the length of � is n.

Note that k

i

= k

i+1

is expressly permitted. Let �

1

= (k

1

; a

`

1

) (k

2

; a

`

2

) � � � (k

n

; a

`

n

)

be a path from a

i

to a

j

and �

2

= (k

0

1

; a

`

0

1

)(k

0

2

; a

`

0

2

) � � � (k

0

m

; a

`

0

m

) be a path from

a

j

to a

k

, such that k

n

� k

0

1

. Then we can concatenate the two paths to obtain

a path �

1

�

2

= (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

)(k

0

1

; a

`

0

1

) � � � (k

0

m

; a

`

0

m

) from a

i

to a

k

.

De�nition2.3. Let � : f1; 2; : : :;Mg ! �. A path � from a

i

to a

j

in � is good

if for any other path �

0

from a

i

to a

j

, target(�

0

) � target(�).

Thus, a good path from a

i

to a

j

terminates at the latest communication that

a

j

took part in which a

i

has heard about. If � and �

0

are both good paths from

a

i

to a

j

, then target(�) = target(�

0

).

With each a

i

2 A we can associate a function latest

a

i

: �

�

� A ! N

0

such

that:

8� 2 �

�

: 8a

j

2 A: latest

a

i

(�; a

j

) =

8

<

:

k if there is a good path � from

a

j

to a

i

in � and target(�) = k

0 otherwise

So, latest

a

i

(�; a

j

) indicates the most recent information a

j

has about a

i

after �.

Example 2.4. Let N = 5 and � be the communication sequence c

12

c

13

c

14

c

45

c

25

c

24

.

So j�j = 6. Some paths from a

2

to a

1

are the following:

(1; a

1

); (5; a

5

)(4; a

4

)(3; a

1

); (6; a

4

)(4; a

5

)(4; a

4

)(3; a

1

); (6; a

4

)(3; a

1

):

Of these, all except the �rst are good paths. The paths (4; a

4

)(3; a

1

) (2; a

3

) from a

5

to a

3

and (2; a

1

)(1; a

2

) from a

3

to a

2

may be concatenated to get (4; a

4

)(3; a

1

)(2; a

3

)

(2; a

1

)(1; a

2

) from a

5

to a

2

. Note that this path traverses �(2) in both directions.

latest

a

1

(�; a

2

) = 3, whereas latest

a

1

(�; a

3

) = 2.

391

It is useful to draw the timing diagram of a communication sequence. Each

agent's history is represented by a horizontal line, with time increasing from left

to right. Vertical edges connecting pairs of agents correspond to communications.

In the diagram, to trace a path from a

i

to a

j

, we begin on the horizontal line for

a

i

and move vertically and/or left along lines in the diagram, to reach the line

a

j

, A good path from a

i

to a

j

terminates as far right as possible on the line a

j

.

-

-

-

-

-

a

1

a

2

a

3

a

4

a

5

1

c

12

�

�

2

c

13

�

�

3

c

14

�

�

4

c

45

�

�

5

c

25

�

�

6

c

24

�

�

?

Fig. 1. Timing diagram for Example 2.4, showing a good path

Let Val = (A [f�g)

N

. We de�ne a family of functions F

�

= ff

c

j c 2 �g,

such that f

c

= best

c

: �

�

! Val as follows:

Let c 2 �, with dom(c) = fa

i

; a

j

g:

Then 8� 2 �

�

: best

c

(�) = (a

k

1

; a

k

2

; : : : ; a

k

N

) where

8m 2 f1; 2; : : :; Ng: a

k

m

=

8

<

:

a

i

if latest

a

m

(�; a

j

) < latest

a

m

(�; a

i

)

a

j

if latest

a

m

(�; a

i

) < latest

a

m

(�; a

j

)

� otherwise

So, if dom(c) = fa

i

; a

j

g and best

c

(�)[m] = a

i

(respectively a

j

), then a

i

(re-

spectively, a

j

) has heard from a

m

more recently than a

j

(respectively a

i

) in

the communication sequence �. best

c

(�)[m] = � signi�es that both have exactly

the same information about a

m

after �. The main result of this paper is the

following.

Theorem2.5. The �-indexed family of functions F

�

= fbest

c

j c 2 �g is

locally computable.

3 Global analysis

We will now analyse the \global" structure of good paths in the system. As we

saw earlier, a communication sequence � 2 �

�

may have several good paths

from a

i

to a

j

in �. Let us �x a canonical good path as follows.

392

De�nition3.1. Let � : f1; 2; : : : ;Mg ! �. Path � = (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

)

from a

i

to a

j

is an ideal path from a

i

to a

j

if the following conditions hold:

(i) � is a good path from a

i

to a

j

.

(ii) For every m 2 f1; 2; : : :; n�1g, the path �

m

= (k

1

; a

`

1

)(k

2

; a

`

2

) : : : (k

m

; a

`

m

)

is a good path from a

i

to a

`

m

.

We denote that � is an ideal path from a

i

to a

j

by � : a

i

; a

j

.

Example 3.2. Consider the communication sequence of Example 2.4 (see Fig-

ure 1.) The path marked in it is the ideal path a

2

; a

3

= (6; a

4

)(3; a

1

)(2; a

3

). The

pre�xes (6; a

4

)(3; a

1

) and (6; a

4

) of this path constitute the ideal paths a

2

; a

1

and a

2

; a

4

respectively. The other ideal path from a

2

is a

2

; a

5

= (5; a

5

).

The following two observations are immediate.

Proposition3.3. Let � : f1; 2; : : : ;Mg ! � and a

i

; a

j

2 A. Let � = (k

1

; a

`

1

)

(k

2

; a

`

2

) � � � (k

n

; a

`

n

) be an ideal path from a

i

to a

j

in �. Then, for each m 2

f1; 2; : : :; n�1g, �

m

= (k

1

; a

`

1

) (k

2

; a

`

2

) � � � (k

m

; a

l

m

) is an ideal path from a

i

to

a

`

m

.

Proposition3.4. Let � : f1; 2; : : : ;Mg ! � and a

i

; a

j

2 A. If latest

a

j

(�; a

i

) 6=

0 then there is a unique ideal path � : a

i

; a

j

in �.

A vertical edge in the timing diagram for � which lies on some ideal path is said

to be live. Formally, we have:

De�nition3.5. Let � : f1; 2; : : : ;Mg ! � and k 2 f1; 2; : : : ;Mg. k is live in �

for a

i

2 A i� there exists a

j

2 A such � = (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

m

; a

`

m

) is the

ideal path a

i

; a

j

and k = k

n

for some n 2 f1; 2; : : :;mg.

Let Live

i

(�) = fk j k is live in � for a

i

g and Live(�) =

S

i2f1;2;:::;Ng

Live

i

(�).

Proposition3.6. Let � : f1; 2; : : : ;Mg ! �. 8i 2 f1; 2; : : :; Ng: jLive

i

(�)j �

N�1. So there are at most N (N�1) live communications in �.

Proof. Use Propositions 3.3 and 3.4. ut

Lemma3.7. Let � : f1; 2; : : :;Mg ! � and �

0

: f1; 2; : : :;M+1g ! � be

communication sequences such that �

0

(M+1) = c for some c 2 � and �

0

(m) =

�(m) for m 2 f1; 2; : : : ;Mg.

Let dom(c) = fa

i

; a

j

g. Then the following statements hold:

(i) For a

k

=2 fa

i

; a

j

g, for all a

`

2 A n fa

k

g, if � : a

k

; a

`

is an ideal path in �,

then � remains the ideal path a

k

; a

`

in �

0

.

(ii) For a

i

and a

j

, the new ideal paths in �

0

are computed as follows.

Let a

k

2 A n fa

i

; a

j

g and let �

ik

: a

i

; a

k

and �

jk

: a

j

; a

k

be ideal paths

in �. Then the ideal paths �

0

ik

: a

i

; a

k

and �

0

jk

: a

j

; a

k

in �

0

are given

as follows: Either �

0

ik

= �

ik

and �

0

jk

= (M+1; a

i

)�

ik

, or �

0

jk

= �

jk

and

�

0

ik

= (M+1; a

j

)�

jk

.

Proof. Part (i) is immediate, since �

0

has no new paths originating at a

k

for

a

k

=2 fa

i

; a

j

g.

To show part (ii), let a

k

2 A n fa

i

; a

j

g.

393

Case 1 Suppose that target(�

jk

) < target(�

ik

). Then clearly, �

ik

remains the

ideal path a

i

; a

k

in �

0

. It is also obvious that (M+1; a

i

)�

ik

is a good path

from a

j

to a

k

. It is not di�cult to show that this is in fact the ideal path a

j

; a

k

in �

0

.

Case 2 The case target(�

ik

) < target(�

jk

) is symmetric to Case 1.

Case 3 The last case is when target(�

ik

) = target(�

jk

).

Let �

ik

= (k

1

; a

`

1

) � � � (k

m

; a

`

m

) and �

jk

= (k

0

1

; a

`

0

1

) � � � (k

0

m

0

; a

`

0

m

0

). We know

that dom(�(k

m

)) = fa

`

m�1

; a

`

m

g and dom(�(k

0

m

0

)) = fa

`

0

m

0

�1

; a

`

0

m

0

g. Since

target(�

ik

) = target(�

jk

), we have a

`

m

= a

`

0

m

0

= a

k

and k

m

= k

0

m

0

. It follows

that a

`

0

m

0

�1

= a

`

m�1

.

We \step back" on both �

ik

and �

jk

and look at the paths �

m�1

ik

= (k

1

; a

`

1

) � � �

(k

m�1

; a

`

m�1

) and �

m

0

�1

jk

= (k

0

1

; a

`

0

1

) � � � (k

0

m

0

�1

; a

`

0

m

0

�1

). Let a

`

00

= a

`

m�1

=

a

`

0

m

0

�1

. Then the two paths �

m�1

ik

and �

m

0

�1

jk

are ideal paths a

i

; a

`

00

and

a

j

; a

`

00

in � (by Proposition 3.3) and we induce on the length of the paths.

We argue for the base case, when we reach �

0

ik

or �

0

jk

|i.e., either �

ik

or �

jk

becomes empty. Without loss of generality, assume that �

ik

becomes empty. At

this point we have �

m

0

�m

jk

: a

j

; a

i

in �. We replace the path �

m

0

�m

jk

with the

unit path (M+1; a

i

) to get a new ideal path (M+1; a

i

)�

ik

: a

j

; a

k

in �

0

.

ut

So, agents a

i

and a

j

can update their ideal paths purely locally provided they

know which of them has the better path to each agent a

k

=2 fa

i

; a

j

g.

Corollary3.8. Let � : f1; 2; : : : ;Mg ! � and �

0

: f1; 2; : : :;M+1g ! � be

communication sequences such that �

0

(M+1) = c for some c 2 � and �

0

(m) =

�(m) for m 2 f1; 2; : : : ;Mg.

Then the following statements hold:

(i) M+1 is live in �

0

.

(ii) Live(�

0

) � Live(�) [fM+1g.

Proof. Immediate from Lemma 3.7. ut

4 Local Analysis

The analysis of the previous section immediately gives us an (unbounded) time-

stamping algorithm by which agents may locally update ideal paths. Every com-

munication c

ij

is time-stamped by agents a

i

and a

j

with their local times. Each

agent a

i

maintains its ideal paths a

i

; a

k

as a sequence of communications dis-

tinguished by the time-stamps given to them. When a

i

and a

j

synchronize after

�, they �rst time-stamp the new synchronization action c

ij

. Let �

i

: a

i

; a

k

and

�

j

: a

j

; a

k

in �. Both �

i

and �

j

end with a communication involving a

k

. So,

394

the time-stamps given by a

k

to the last communications in the sequences �

i

and

�

j

will reveal which is later. Once this is known, the new ideal paths �

0

i

: a

i

; a

k

and �

0

j

: a

j

; a

k

in �

0

may be computed, as in the proof of Lemma 3.7.

Our algorithm is a modi�cation of this procedure. When a

i

and a

j

syn-

chronize, they label the current communication|this label is chosen from a

su�ciently large, but �nite, set L. Agents maintain mildly enhanced versions of

ideal paths called primary paths (De�nition 4.1). To detect if a

i

has a better

ideal path to a

k

than a

j

, it su�ces to check if some label from the ideal path of

a

j

is present on the primary paths of a

i

(Lemma 4.3). In other words, a

i

and a

j

have only to check for equality of labels along their primary paths to compare

their ideal paths.

The main complication is for a

i

and a

j

to decide which labels from L are

currently in use (i.e., appear along primary paths for other agents) and which

may be reused. This is decided by secondary paths maintained by each agent

(De�nition 4.4, Lemma 4.5). The update of the primary and secondary paths is

similar to that of ideal paths and needs no additional information.

Henceforth, we assume we have a set of labels L. Di�erent occurrences of

c 2 � in a communication sequence � : f1; 2; : : : ;Mg ! � will be assigned

distinct labels from L. In other words, we regard � as an injective map from

f1; 2; : : :;Mg to ��L. We may regard the set ��L as a set of events E . Given

an event e = (c; l) 2 � � L, we shall say a

i

2 dom(e) to mean a

i

2 dom(c).

Initially we assume that we have a in�nite set of distinct labels L = f�

1

; �

2

; : : :g.

Later we show that it su�ces to use a �nite set of labels which may be \recycled".

We now represent a communication sequence � as a sequence of events, i.e.,

� : f1; 2; : : :;Mg ! E . Given a path � = (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

), we let �

�

denote the sequence of events �(k

1

)�(k

2

) : : : �(k

n

).

De�nition4.1. Let � : f1; 2; : : :;Mg ! E be a communication sequence and

a

i

2 A. A primary path for a

i

is a path � = (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

)

(k

n+1

; a

`

n+1

) such that for some a

j

; a

k

2 A we have:

(i) a

`

n

= a

j

and �

n

= (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

) is the ideal path a

i

; a

j

in

�.

(ii) a

`

n+1

= a

k

and for allm 2 fk

n+1

+1; k

n+1

+2; : : : ; k

n

g, dom(�(m)) 6= fa

j

; a

k

g.

We say that � is a primary path from a

i

to a

j

to a

k

and denote this by

a

i

; a

j

! a

k

.

So, a primary path a

i

; a

j

! a

k

is an ideal path � : a

i

; a

j

extended with the

most recent c

jk

communication before and including the point target(�). Notice

that the de�nition above does not rule out the case k

n+1

= k

n

.

Example 4.2. In Example 2.4 (see Figure 1), a

2

; a

1

= (6; a

4

)(3; a

1

). The

primary path a

2

; a

1

! a

3

is given by (6; a

4

)(3; a

1

)(2; a

3

). On the other hand,

a

2

; a

1

! a

4

= (6; a

4

) (3; a

1

)(3; a

4

); i.e., the communication a

1

! a

4

in

a

2

; a

1

! a

4

is the same as the last communication in a

2

; a

1

.

395

Lemma4.3. Let � : f1; 2; : : : ;Mg ! E , with �

i

: a

i

; a

k

and �

j

: a

j

; a

k

two

ideal paths in �, for a

i

; a

j

; a

k

2 A. Let �

�

i

= e

0

1

e

0

2

: : : e

0

m

and �

�

j

= e

00

1

e

00

2

: : : e

00

n

.

Then:

(i) target(�

i

) � target(�

j

) i� for some e

0

`

2 �

�

i

, e

0

`

also appears on some pri-

mary path for a

j

.

(ii) target(�

j

) � target(�

i

) i� for some e

0

`

2 �

�

j

, e

0

`

also appears on some pri-

mary path for a

i

.

Proof. Since the cases (i) and (ii) are symmetric, we prove (i).

((): Suppose that for some e

0

`

2 �

�

i

, e

0

`

also appears on some primary path for

a

j

. Then, there is a path ~e

1

~e

2

: : : ~e

m

0

originating from a

j

such that ~e

m

0

= e

0

`

. So,

the sequence ~e

1

~e

2

: : : ~e

m

0

�1

e

0

`

e

0

`+1

: : : e

0

m

corresponds to a path ~� from a

j

to a

k

such that target(~�) = target(�

i

). target(�

j

) must be at least as large as target(~�)

since it is an ideal path a

j

; a

k

. So target(�

i

) � target(�

j

) as required.

()): Suppose target(�

i

) � target(�

j

). We then have to show that for some

e

0

`

2 �

�

i

, e

0

`

also appears on some primary path for a

j

. We proceed by induction

on m, the length of �

i

.

m = 1: Then �

i

= (k

1

; a

`

1

). Let �

j

= (k

0

1

; a

`

0

1

)(k

0

2

; a

`

0

2

) � � � (k

0

n

; a

`

0

n

). We know

that a

`

1

= a

`

0

n

and k

1

� k

0

n

. So, we have a path �

0

= �

j

(k

1

; a

i

) from a

j

to a

i

such that k

1

= target(�

0

).

This means that the ideal path ~� : a

j

; a

i

is such that k

1

= target(�

0

) �

target(~�). Then �(k

1

) must be the most recent communication c

ik

before target(~�).

So e

0

1

= �(k

1

) appears on the primary path a

j

; a

i

! a

k

.

m > 1: Let �

i

= (k

1

; a

`

1

) � � � (k

m

; a

`

m

) and �

j

= (k

0

1

; a

`

0

1

) � � � (k

0

n

; a

`

0

n

). Induc-

tively assume that our claim holds for all ideal paths of length less than m which

originate from a

i

.

We know that a

`

m

= a

`

0

n

= a

k

and k

m

� k

0

n

. So, we have a path �

0

=

�

j

(k

m

; a

`

m�1

) from a

j

to a

`

m�1

.

The timing diagram we have is somewhat like the one in Figure 2.

Let ~� : a

j

; a

`

m�1

in �. Then, we know that k

m

= target(�

0

) � target(~�).

Suppose target(~�) � k

m�1

. Then, the communication �(k

m

) must be the

most recent c

`

m�1

k

communication before target(~�)|if there were a more recent

communication of this kind, it would appear on the ideal path �

i

. So, the event

e

m

= �(k

m

) appears on the primary path a

j

; a

`

m�1

! a

k

.

On the other hand, suppose k

m�1

< target(~�). We know that the path

�

m�1

i

= (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

m�1

; a

`

m�1

) is the ideal path a

i

; a

`

m�1

. But

target(�

m�1

i

) � target(~�) and the length of �

m�1

i

is less than m. So, by the in-

duction hypothesis, there is an event in the sequence e

0

1

e

0

2

: : : e

0

m�1

which occurs

on some primary path for a

j

and we are done.

ut

So, to compare �

i

: a

i

; a

k

and �

j

: a

j

; a

k

, we just have to look for events

which are common to �

�

i

and �

�

0

, for some primary path �

0

of a

j

, or common

to �

�

j

and �

�

00

, for some primary path �

00

of a

i

.

396

-

-

-

-

a

k

= a

`

m

a

`

m�1

a

i

a

j

k

m

�

�

k

0

n

�

k

m�1

�

� � �

k

1

�

k

0

1

�

Fig. 2. Timing diagram for Lemma 4.3

In other words, to compare ideal paths, we need only test equality of events.

The method works as long as communications in the primary paths are con-

sistently labelled as distinct events. A slight extension of the arguments used

in Lemma 3.7 and Corollary 3.8 establishes that communications which become

dead (i.e., disappear from all primary paths in the system) do not become live

again (i.e., reappear on some agent's primary paths).

Suppose agents a

i

and a

j

can decide that a label � 2 L assigned to a previous

c

ij

action is no longer being used|i.e., the event (c

ij

; �) is not on a primary path

for any agent. Then, � can be re-used for a later synchronization. Since no \old"

copy of (c

ij

; �) is present on any primary path, this re-use of � will not introduce

any inconsistency into the procedure for comparing ideal paths.

De�nition4.4. Let � : f1; 2; : : :;Mg ! E be a communication sequence and

� = (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

) a path in �. � is a secondary path for a

i

2 A

if we can �nd agents a

j

; a

k

; a

m

2 A such that a

i

6= a

j

, a

j

6= a

k

and a

k

6= a

m

,

� is a path from a

i

to a

m

and for some n

j

2 f1; 2; : : : ; n�1g the following two

conditions are satis�ed.

(i) �

n

j

= (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

j

; a

`

n

j

) is the ideal path a

i

; a

j

in �.

(ii) Let �

n

j

: f1; 2; : : :; k

n

j

g ! E|i.e., the pre�x of � upto k

n

j

. Then, the path

(k

n

j

+1

; a

`

n

j

+1

) � � � (k

n

; a

`

n

) is the primary path a

j

; a

k

! a

m

in �

n

j

.

We say that � is a secondary path from a

i

to a

j

to a

k

to a

m

and denote this

by � : a

i

; a

j

; a

k

! a

m

.

Lemma4.5. Let � : f1; 2; : : : ;Mg ! E . Suppose e appears on a primary path

for a

j

and a

i

2 dom(e). Then, e appears either on a primary path or a secondary

path for a

i

.

Proof. Suppose e is on a primary path � : a

j

; a

k

! a

`

. Let � = (k

1

; a

`

1

)(k

2

; a

`

2

) � � �

(k

n+1

; a

`

n+1

). Then, for somem 2 f1; 2; : : : ; n+1g, e = �(k

m

). So, either a

`

m�1

=

a

i

or a

`

m

= a

i

. Without loss of generality, we assume that a

`

m

= a

i

.

397

Case 1. (m � n): Then (k

1

; a

`

1

)(k

2

; a

`

2

) � � � (k

n

; a

`

n

), the ideal path a

j

; a

k

in

�, passes through a

i

. This path is shown in Figure 3.

-

-

-

-

-

-

a

k

= a

`

n

a

`

m+1

a

i

= a

`

m

a

`

m�1

a

`

1

a

j

k

n

�

� � �
k

m+2

�

k

m+1

�

�

k

m

�

�

e

k

m�1

�

� � �

k

2

�

k

1

�

�

Fig. 3. Timing diagram for Lemma 4.5

We claim that for some m

0

2 f1; 2; : : :;m�1g, e lies on the secondary path

a

i

; a

`

m

0

; a

k

! a

`

. To see this, consider the ideal path �

ij

: a

i

; a

j

in

�. If k

1

� target(�

ij

), e lies on the secondary path a

i

; a

j

; a

k

! a

`

. If

k

1

> target(�

ij

) then, look at �

i`

1

: a

i

; a

`

1

. We know that target(�

i`

1

) < k

1

|

otherwise we would be able to reach the point k

1

on a

j

from a

i

.

If k

2

� target(�

i`

1

) < k

1

, then e lies on the secondary path a

i

; a

`

1

; a

k

!

a

`

. On the other hand, if target(�

i`

1

) < k

2

, we look at �

i`

2

: a

i

; a

`

2

and repeat

the analysis for �

i`

1

.

In the worst case we come upto �

i`

m�1

: a

i

; a

`

m�1

. We know that target(�

i`

m�1

)

< k

m�1

by the above analysis. On the other hand, �(k

m

) = c

i`

m�1

. So we

de�nitely have k

m

� target(�

i`

m�1

) < k

m�1

. So we must have e lying on the

secondary path a

i

; a

`

m�1

; a

k

! a

`

.

Case 2. (m = n+1): So, a

i

= a

`

. Then, a slight modi�cation of the argument

put forward for Case 1 yields that e either lies on a secondary path a

i

; a

`

m

0

;

a

k

! a

i

for some m

0

2 f1; 2; : : :; n�1g or e lies on the primary path a

i

; a

k

!

a

i

. We omit the details. ut

So, the number of di�erent copies of an action c

ij

that can be part of other

agents' primary paths is bounded|by the preceding lemma, each such copy must

appear on the primary or secondary paths of a

i

and a

j

, which are bounded in

length and number. In addition, once a particular c

ij

event disappears from the

primary and secondary paths of a

i

and a

j

, these two agents know that the event

is not present on any primary path in the system. So, a

i

and a

j

can locally

decide to recycle the label assigned to that event, knowing that this will not

a�ect the outcome of any comparison in Lemma 4.3. This implies that a �nite

set of labels su�ces.

398

The algorithm

Let L = f�

1

; �

2

; : : : ; �

K

g be a �nite set of labels and let E = � �L. We assume

that each agent a

i

2 A maintains all primary and secondary paths (starting at

a

i

) as sequences of events. In addition, each agent a

i

also maintains an immediate

history of events H

i

= flast

ij

j j 6= ig, such that for each a

j

6= a

i

, last

ij

2 E is

the most recent event e in a

i

's history such that dom(e) = fa

i

; a

j

g .

Suppose agents a

i

and a

j

synchronize after �. They then update this local

information as follows.

(i) Let � 2 L be the �rst label in the sequence �

1

�

2

: : :�

K

which does not

appear in any primary or secondary path for a

i

or a

j

. (We assume that L is

large enough that we can always do this. See Lemma 4.6 below.) Label the

new c

ij

communication with �|i.e., the new event is e

�

= (c

ij

; �).

(ii) Update H

i

to H

0

i

by setting last

ij

= e

�

. Symmetrically update H

j

to H

0

j

by

setting last

ji

= e

�

.

(iii) De�ne the new primary paths �

0

ijk

: a

i

; a

j

! a

k

by �

0

ijk

= e

�

last

jk

, for

each event last

jk

2 H

0

j

. Symmetrically, de�ne the new primary paths �

0

jik

.

(iv) For a

k

=2 fa

i

; a

j

g, update primary paths �

ik`

and �

jk`

using lemmas 3.7 and

4.3. Secondary paths are updated in a similar fashion. Note that the update

of the primary or secondary paths follows from the update of ideal path, i.e.,

Lemma 3.7.

It is not di�cult to establish the following bounds on our local data structures.

Lemma4.6. Let a

i

2 A.

(i) The primary paths of a

i

can be stored as an E-labelled tree with O(N

2

) nodes.

(ii) The secondary paths of a

i

can be stored as an E-labelled tree with at most

O(N

3

) nodes.

(iii) It su�ces to use O(N) labels in L.

To conclude this section, we formally relate the algorithm provided here to the

Theorem in Section 2 that we set out to prove. A local state for a

i

consists of

a E-labelled tree of primary paths and an E-labelled tree of secondary paths for

a

i

. >From Lemma 4.6, it follows that the set of possible local states for a

i

is

bounded. Given c

ij

2 �, the local function g

c

ij

which computes best

c

ij

is just

the one which applies Lemma 4.3 to the local states of a

i

and a

j

and compares

ideal paths a

i

; a

k

and a

j

; a

k

.

5 Discussion

In this paper, we have demonstrated a �nite-state algorithm for keeping track of

the ow of information in a system where N agents communicate synchronously.

Our algorithm works on an asynchronous automaton [Z]. Asynchronous au-

tomata are closely related to trace theory [Maz], an important language-theoretic

399

model of concurrent systems. Versions of these automata have been used to char-

acterize !-regular trace languages [GP, DM].

In addition to these connections to trace theory, versions of asynchronous

automata are also used in model-checking, where one wants to verify whether a

given system's behaviour corresponds to its speci�cation [GW]. Recently, Thia-

garajan [T] has developed an extension of propositional linear-time temporal

logic which is interpreted over in�nite traces, rather than linear sequences. This

logic appears to be quite expressive, while remaining decidable. Our algorithm

plays a crucial role in establishing the decidability of Thiagarajan's logic.

One interesting problem is to try and characterize the functions which are lo-

cally computable (De�nition 2.1). Another line of work is to extend our approach

to deal with (reliable) message-passing systems. We believe this is possible, sub-

ject to the assumption that there is an overall bound B on the number of new

messages that a

i

will send to a

j

without an acknowledgment (direct or indirect)

from a

j

. A report of this extension is in preparation.

Acknowledgments We thank P.S. Thiagarajan for suggesting the problem and

for numerous discussions which have helped clean up the presentation.

References

[CS] R. Cori, E. Sopena: Some combinatorial aspects of time-stamp systems, Europ.

J. Combinatorics, 14 (1993) 95{102.

[DM] V. Diekert, A. Muscholl: Deterministic asynchronous automata for in�nite

traces, Proc. STACS '93, LNCS 665 (1993) 617{628.

[DS] D. Dolev, N. Shavit: Bounded concurrent time-stamps are constructible, Proc.

ACM STOC (1989) 454{466.

[GP] P. Gastin, A. Petit: Asynchronous cellular automata for in�nite traces, Proc.

ICALP '92, LNCS 623 (1992) 583{594.

[GW] P. Godefroid, P. Wolper: A partial order approach to model checking, Proc. 6th

IEEE LICS, Amsterdam (1991) 406{415.

[IL] A. Israeli, M. Li: Bounded time-stamps, Proc. 28th IEEE FOCS (1987) 371{382.

[Maz] A. Mazurkiewicz: Basic notions of trace theory, in: J.W. de Bakker, W.-

P. de Roever, G. Rozenberg (eds.), Linear time, branching time and partial or-

der in logics and models for concurrency, LNCS 354, (1989) 285{363.

[MS] M. Mukund, M. Sohoni: Keeping track of the latest gossip: Bounded time-

stamps su�ce, Report TCS-93-3, School of Mathematics, SPIC Science Foun-

dation, Madras, India (1993).

[T] P.S. Thiagarajan: A trace based extension of PTL, Report TCS-93-4, School of

Mathematics, SPIC Science Foundation, Madras, India (1993).

[Z] W. Zielonka: Notes on �nite asynchronous automata, R.A.I.R.O.|Inf. Th�eor.

et Appl., 21 (1987) 99{135.

